高中数学常用公式及定理
完整版)高中数学公式大全完整版
完整版)高中数学公式大全完整版高中数学常用公式及常用结论1.包含关系若集合A包含于集合B,则AB=B;若AB=B,则A为B 的子集;若C为A和B的并集,则B包含于C;若A和B的交集为∅,则AB=∅;若AB=R,则A和B互为补集。
2.集合的子集集合{a1,a2,…,an}的子集个数共有2n个;真子集有2n–1个;非空子集有2n–1个;非空的真子集有2n–2个。
3.充要条件1)充分条件:若p→q,则p是q的充分条件。
2)必要条件:若q→p,则p是q的必要条件。
3)充要条件:若p→q,且q→p,则p是q的充要条件。
注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然。
4.函数的单调性1)设x1≠x2,且x1,x2∈[a,b],则有:f(x1)−f(x2)>0 ⇔ f(x)在[a,b]上是增函数;f(x1)−f(x2)<0 ⇔ f(x)在[a,b]上是减函数。
2)设函数y=f(x)在某个区间内可导,如果f′(x)>0,则f(x)为增函数;如果f′(x)<0,则f(x)为减函数。
5.函数的性质如果函数f(x)和g(x)都是减函数,则在公共定义域内,和函数f(x)+g(x)也是减函数;如果函数y=f(u)和u=g(x)在其对应的定义域上都是减函数,则复合函数y=f[g(x)]是增函数。
6.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,则这个函数是奇函数;如果一个函数的图象关于y轴对称,则这个函数是偶函数。
7.函数的对称轴对于函数y=f(x)(x∈R),若f(x+a)=f(b−x)恒成立,则函数f(x)的对称轴是函数x=a+b/2;函数y=f(x+a)与y=f(b−x)的图象关于直线x=a+b/2对称。
8.几个函数方程的周期(约定a>0)1)f(x)=f(x+a),则f(x)的周期T=a;2)f(x+a)=−f(x),或f(x+a)=f(−x)(f(x)≠0),则f(x)的周期T=2a。
高中数学公式大全(完整版)
⾼中数学公式⼤全(完整版)⾼中数学常⽤公式及常⽤结论1.包含关系A B A A B B =?=I U U U A B C B C A U A C B ?=ΦI U C A B R ?=U2.集合12{,,,}n a a a L 的⼦集个数共有2n 个;真⼦集有2n –1个;⾮空⼦集有2n –1个;⾮空的真⼦集有2n –2个.3.充要条件(1)充分条件:若p q ?,则p 是q 充分条件.(2)必要条件:若q p ?,则p 是q 必要条件.(3)充要条件:若p q ?,且q p ?,则p 是q 充要条件.注:如果甲是⼄的充分条件,则⼄是甲的必要条件;反之亦然. 4.函数的单调性(1)设[]2121,,x x b a x x ≠∈?那么[]1212()()()0x x f x f x -->?[]b a x f x x x f x f ,)(0)()(2121在?>--上是增函数;[]1212()()()0x x f x f x --[]b a x f x x x f x f ,)(0)()(2121在?<--上是减函数. (2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.5.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.6.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果⼀个函数的图象关于原点对称,那么这个函数是奇函数;如果⼀个函数的图象关于y 轴对称,那么这个函数是偶函数.7.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成⽴,则函数)(x f 的对称轴是函数2ba x +=;两个函数)(a x f y +=与)(xb f y -= 的图象关于直线2ba x +=对称. 8.⼏个函数⽅程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ;(2),)0)(()(1)(≠=+x f x f a x f ,或1()()f x a f x +=-(()0)f x ≠,则)(x f 的周期T=2a ; 9.分数指数幂na=(0,,a m n N *>∈,且1n >).(2)1mnm naa-=(0,,a m n N *>∈,且1n >).10.根式的性质(1)n a =.(2)当na =;当n,0||,0a a a a a ≥?==?-11.有理指数幂的运算性质 (1) (0,,)rsr sa a aa r s Q +?=>∈.(2) ()(0,,)r s rs a a a r s Q =>∈.(3)()(0,0,)r r r ab a b a b r Q =>>∈.12.指数式与对数式的互化式 log b a N b a N =?=(0,1,0)a a N >≠>.①.负数和零没有对数,②.1的对数等于0:01log =a ,③.底的对数等于1:1log =a a ,④.积的对数:N M MN a a a log log )(log +=,商的对数:N M Na a alog log log -=,幂的对数:M n M a n a log log =;b mnb a na m log log =13.对数的换底公式 log log log m a m NN a= (0a >,且1a ≠,0m >,且1m ≠, 0N >).推论 log log m na a nb b m =(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >). 15.11,1,2n n n s n a s s n -=?=?-≥?( 数列{}n a 的前n 项的和为12n n s a a a =+++L ).16.等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-. 17.等⽐数列的通项公式1*11()n n n a a a q q n N q-==?∈;其前n 项的和公式为11(1),11,1n n a q q s q na q ?-≠?=-??=?或11,11,1n n a a qq q s na q -?≠?-=??=?.18.同⾓三⾓函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin 19正弦、余弦的诱导公式2(1)sin ,sin()2(1)s ,nn n co απαα-?-?+=??-?20和⾓与差⾓公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=m ;tan tan tan()1tan tan αβαβαβ±±=m .sin cos a b αα+)α?+(辅助⾓?所在象限由点(,)a b 的象限决定,tan ba=). 21、⼆倍⾓的正弦、余弦和正切公式:⑴sin 22sin cos ααα=.⑵2222cos2cossin 2cos 112sin ααααα=-=-=-(21cos 2cos 2αα+=,21cos 2sin 2αα-=).⑶22tan tan 21tan ααα=-. 22.三⾓函数的周期公式函数sin()y x ω?=+,x ∈R 及函数cos()y x ω?=+,x ∈R(A,ω,?为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ω?=+,,2x k k Z ππ≠+∈(A,ω,?为常数,且A ≠0,ω>0)的周期T πω=. 23.正弦定理2sin sin sin a b cR A B C===. 24.余弦定理2222cos a b c bc A =+-;2222cos b c a ca B =+-;2222cos c a b ab C =+-.25.⾯积定理111sin sin sin 222S ab C bc A ca B ===(2). 26.三⾓形内⾓和定理在△ABC 中,有()A B C C A B ππ++=?=-+222C A Bπ+?=-222()C A B π?=-+. 27.实数与向量的积的运算律设λ、µ为实数,那么(1) 结合律:λ(µa )=(λµ)a ;(2)第⼀分配律:(λ+µ)a =λa +µa;(3)第⼆分配律:λ(a +b )=λa +λb . 28.向量的数量积的运算律:(1) a ·b= b ·a (交换律);(2)(λa )·b= λ(a ·b )=λa ·b = a ·(λb );(3)(a +b )·c= a ·c +b ·c. 30.向量平⾏的坐标表⽰设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a P b(b ≠0)12210x y x y ?-=. 31. a 与b 的数量积(或内积)a ·b =|a ||b |cos θ.32.数量积a ·b 等于a 的长度|a |与b 在a 的⽅向上的投影|b |cos θ的乘积.33.平⾯向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++.(2)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --.(3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--u u u r u u u r u u u r.(4)设a =(,),x y R λ∈,则λa=(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212()x x y y +.34.两向量的夹⾓公式cos θ=(a =11(,)x y ,b =22(,)x y ).35.平⾯两点间的距离公式 ,A B d =||AB ==11(,)x y ,B 22(,)x y ).36.向量的平⾏与垂直设a =11(,)x y ,b =22(,)x y ,且b ≠0,则 A ||b ?b =λa 12210x y x y ?-=. a ⊥b(a ≠0)?a ·b=012120x x y y ?+=.37.三⾓形的重⼼坐标公式△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重⼼的坐标是123123(,)33x x x y y y G ++++. 设O 为ABC ?所在平⾯上⼀点,⾓,,A B C 所对边长分别为,,a b c ,则(1)O 为ABC ?的外⼼222OA OB OC ?==u u u r u u u r u u u r .(2)O 为ABC ?的重⼼0OA OB OC ?++=u u u r u u u r u u u r r.(3)O 为ABC ?的垂⼼OA OB OB OC OC OA ??=?=?u u u r u u u r u u u r u u u r u u u r u u u r. 38.常⽤不等式:(1),a b R ∈?222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈?2a b+≥(当且仅当a =b 时取“=”号).(3)b a b a b a +≤+≤-.39已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最⼩值p 2;(2)若和y x +是定值s ,则当y x =时积xy 有最⼤值241s . 40.含有绝对值的不等式当a> 0时,有22x a x a a x a22x a x a x a >?>?>或x a <-.41.斜率公式 2121y y k x x -=-(111(,)P x y 、222(,)P x y ).42.直线的五种⽅程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ).(2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式 1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、)(5)⼀般式 0Ax By C ++=(其中A 、B 不同时为0).43.两条直线的平⾏和垂直(1)若111:l y k x b =+,222:l y k x b =+①121212||,l l k k b b ?=≠;②12121l l k k ⊥?=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零,①11112222||A B C l l A B C ?=≠;②1212120l l A A B B ⊥?+=; (1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1与l 2的夹⾓是2π. 45.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).46. 圆的四种⽅程(1)圆的标准⽅程 222()()x a y b r -+-=.(2)圆的⼀般⽅程 220x y Dx Ey F ++++=(224D E F +->0). 47.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0相离r d ;0==相切r d ; 0><相交r d .其中22BA C Bb Aa d +++=.48.两圆位置关系的判定⽅法设两圆圆⼼分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421??+>r r d ;条公切线外切321??+=r r d ;条公切线相交22121??+<<-r r d r r ;条公切线内切121??-=r r d ; ⽆公切线内含??-<<210r r d . 49.圆的切线⽅程(1)已知圆220x y Dx Ey F ++++=.(2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线⽅程为200x x y y r +=;50.椭圆22221(0)x y a b a b +=>>的参数⽅程是cos sin x a y b θθ=??=?.51.椭圆22221(0)x y a b a b +=>>焦半径公式 )(21ca x e PF +=,)(22x c a e PF -=. 52.椭圆的的内外部(1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b ?+<. (2)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的外部2200221x y a b+>.53.双曲线22221(0,0)x y a b a b -=>>的焦半径公式21|()|a PF e x c =+,2 2|()|a PF e x c=-.54.双曲线的⽅程与渐近线⽅程的关系(1)若双曲线⽅程为12222=-b y a x ?渐近线⽅程:22220x y a b -=?x a by ±=.(2)若渐近线⽅程为x aby ±=?0=±b y a x ?双曲线可设为λ=-2222b y a x .(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222b y a x (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上).55. 抛物线px y 22=的焦半径公式抛物线22(0)y px p =>焦半径02p CF x =+.过焦点弦长p x x px p x CD ++=+++=212122.56.直线与圆锥曲线相交的弦长公式AB =1212|||AB x x y y ==-=-(弦端点A ),(),,(2211y x B y x ,由⽅程??=+=0)y ,x (F b kx y 消去y 得到02=++c bx ax ,0?>,α为直线AB 的倾斜⾓,k 为直线的斜率).57(1)加法交换律:a +b =b +a .(2)加法结合律:(a +b )+c =a +(b +c ).(3)数乘分配律:λ(a +b )=λa +λb . 59共线向量定理对空间任意两个向量a 、b (b ≠0 ),a ∥b ?存在实数λ使a =λb .P A B 、、三点共线?||AP AB ?AP t AB =u u u r u u u r ?(1)OP t OA tOB =-+u u u r u u u r u u u r.60.向量的直⾓坐标运算设a =123(,,)a a a ,b =123(,,)b b b 则(1)a +b =112233(,,)a b a b a b +++;(2)a -b =112233(,,)a b a b a b ---;(3)λa =123(,,)a a a λλλ (λ∈R); (4)a ·b =112233a b a b a b ++; 61.设A 111(,,)x y z ,B 222(,,)x y z ,则AB OB OA =-u u u r u u u r u u u r= 212121(,,)x x y y z z ---. 62.空间的线线平⾏或垂直设111(,,)a x y z =r ,222(,,)b x y z =r,则a b ⊥r r ?0a b ?=r r ?1212120x x y y z z ++=.63.夹⾓公式设a =123(,,)a a a ,b =123(,,)b b b ,则cos 〈a ,b 〉.64.异⾯直线所成⾓cos |cos ,|a b θ=r r=||||||a b a b ?=?r rr r (其中θ(090θ<≤o o)为异⾯直线a b ,所成⾓,,a b r r 分别表⽰异⾯直线a b ,的⽅向向量) 65.直线AB 与平⾯所成⾓sin ||||AB m arc AB m β?=u u u r u r u u u r u r (m u r 为平⾯α的法向量). 66.⼆⾯⾓l αβ--的平⾯⾓cos ||||m n arc m n θ?=u r r u r r 或cos ||||m narc m n π?-u r ru r r (m u r ,n r 为平⾯α,β的法向量). 134.空间两点间的距离公式若A 111(,,)x y z ,B 222(,,)x y z ,则 ,A B d=||AB =u u u r=67.球的半径是R ,则其体积343V R π=,其表⾯积24S R π=. (3) 球与正四⾯体的组合体:棱长为a的正四⾯体的内切球的半径为12a ,外接球的半径为4a . 6813V Sh =柱体(S 是柱体的底⾯积、h 是柱体的⾼).13V Sh =锥体(S 是锥体的底⾯积、h 是锥体的⾼).69.分类计数原理(加法原理)12n N m m m =+++L .70.排列数公式 mn A =)1()1(+--m n n n Λ=!!)(m n n -.(n ,m ∈N *,且m n ≤).注:规定1!0=.71.组合数公式 mnC =m n m mA A =m m n n n +--ΛΛ21)1()1(=)(m n m n -?(n ∈N *,m N ∈,且m n ≤).72.组合数的两个性质(1)m n C =mn nC - ;(2) m n C +1-m nC =m n C 1+.注:规定10=n C .155.组合恒等式(1)11m m nn n m C C m --+=;(2)1m m n n n C C n m -=-;(3)11mm n n n C C m --=; (4)∑=nr r n C 0=n 2; 73.排列数与组合数的关系m mn n A m C =?! .74.单条件排列以下各条的⼤前提是从n 个元素中取m 个元素的排列.(1)“在位”与“不在位”①某(特)元必在某位有11--m n A 种;②某(特)元不在某位有11---m n m n A A (补集思想)1111---=m n n A A (着眼位置)11111----+=m n m m n A A A (着眼元素)种.(2)紧贴与插空(即相邻与不相邻)①定位紧贴:)(n m k k ≤≤个元在固定位的排列有km k n kk A A --种.②浮动紧贴:n 个元素的全排列把k 个元排在⼀起的排法有kk k n k n A A 11+-+-种.注:此类问题常⽤捆绑法;③插空:两组元素分别有k 、h 个(1+≤h k ),把它们合在⼀起来作全排列,k 个的⼀组互不能挨近的所有排列数有kh hh A A 1+种.(3)两组元素各相同的插空m 个⼤球n 个⼩球排成⼀列,⼩球必分开,问有多少种排法?当1+>m n 时,⽆解;当1+≤m n 时,有n m n nn m C A A 11++=种排法.(4)两组相同元素的排列:两组元素有m 个和n 个,各组元素分别相同的排列数为nn m C +.75.分配问题(1)(平均分组有归属问题)将相异的m 、n 个物件等分给m 个⼈,各得n 件,其分配⽅法数共有mn n n n n n mn n n mn n mn n mn C C C C C N )!()!(22==--Λ. (2)(平均分组⽆归属问题)将相异的m ·n 个物体等分为⽆记号或⽆顺序的m 堆,其分配⽅法数共有 mn nn n n n mn n n mn n mn n m mn m C C C C C N )!(!)!(!...22==--.(3)(⾮平均分组有归属问题)将相异的)L 12m P(P=n +n ++n 个物体分给m 个⼈,物件必须被分完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数彼此不相等,则其分配⽅法数共有!!...!!!! (212)11m n n n n p n p n n n m p m C C C N mm==-.76.⼆项式定理 nn n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+---ΛΛ222110)( ;⼆项展开式的通项公式rr n r n r b a C T -+=1)210(n r ,,,Λ=. 77.n 次独⽴重复试验中某事件恰好发⽣k 次的概率()(1).k k n kn n P k C P P -=-78.离散型随机变量的分布列的两个性质(1)0(1,2,)i P i ≥=L ;(2)121P P ++=L . 79.数学期望1122n n E x P x P x Pξ=++++L L80..数学期望的性质(1)()()E a b aE b ξξ+=+.(2)若ξ~(,)B n p ,则E np ξ=. 81.⽅差()()()2221122n n D x E p x E p x E p ξξξξ=-?+-?++-?+L L 标准差σξ=ξD . 82.⽅差的性质(1)()2D a b a D ξξ+=;(2)若ξ~(,)B n p ,则(1)D np p ξ=-. 83..)(x f 在),(b a 的导数()dy df f x y dx dx ''===00()()lim limx x y f x x f x x x→?→?+?-==??. 84.. 函数)(x f y =在点0x 处的导数的⼏何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线⽅程是))((000x x x f y y -'=-.85..⼏种常见函数的导数(1) 0='C (C 为常数).(2) '1()()n n x nx n Q -=∈.(3) x x cos )(sin ='.(4) x x sin )(cos -=' (5) x x 1)(ln =';ax a xln 1)(log ='(6) x x e e =')(; a a a x x ln )(='. 86..导数的运算法则(1)'''()u v u v ±=±.(2)'''()uv u v uv =+.(3)'''2()(0)u u v uv v v v-=≠. 87..复合函数的求导法则设函数()u x ?=在点x 处有导数''()x u x ?=,函数)(u f y =在点x 处的对应点U 处有导数''()u y f u =,则复合函数(())y f x ?=在点x 处有导数,且'''x u x y y u =?,或写作'''(())()()x f x f u x ??=.89.复数的相等,a bi c di a c b d +=+?==.(,,,a b c d R ∈)90.复数z a bi =+的模(或绝对值)||z =||a bi +91.复数的四则运算法(1)()()()()a bi c di a c b d i +++=+++(2)()()()()a bi c di a c b di +-+=-+-;(3)()()()()a bi c di ac bd bc ad i ++=-++;(4)2222()()(0)ac bd bc ada bi c di i c di +-+÷+=++≠.图象定义域 R R,2x x k k ππ??≠+∈Z值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=- ()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既⽆最⼤值也⽆最⼩值周期性2π 2ππ奇偶性奇函数偶函数奇函数单调性在2,222k k ππππ?-+()k ∈Z 上是增函数;在32,222k k ππππ?++()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+ ()k ∈Z 上是减函数.在,22k k ππππ?-+()k ∈Z 上是增函数.对称性对称中⼼()(),0k k π∈Z对称轴()2x k k ππ=+∈Z对称中⼼(),02k k ππ?+∈Z 对称轴()x k k π=∈Z 对称中⼼(),02k k π??∈Z ⽆对称轴。
高中数学必考公式全总结(超详细)
高中数学必考公式全总结(超详细)高中数学必考公式全总结(超详细)1. 代数基础- 求根公式:$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$- 平方差公式:$(a+b)^2=a^2+2ab+b^2, (a-b)^2=a^2-2ab+b^2$- 完全平方公式:$a^2-b^2=(a+b)(a-b), a^3-b^3=(a-b)(a^{n-1}+...+b^{n-1})$ 二次函数相关 - 标准形式:$y=ax²+bx+c(a≠0)$- 顶点坐标: $(-\frac{b}{(2a)},-\frac{\Delta}{4a})$- 对称轴: $x=-\dfrac b {2a}$- 判别式:$ \Delta=b²-4ac $当$\Delta>0$,有两个实根;当$\Delta=0$,有一个重根;当$\Delta<0$,无实根。
三角函数相关正弦定理:$\dfrac{sinA}{AB}=\dfrac{sinB}{BC}=\dfrac{sinC}{AC}=k(k为常数)$余弦定理:$cosA=\dfrac {b²+c²-a²} {2bc}, cosB=…, cosC=…$正切定义:tan A = $\dfrac {\textup{o}} {\textup{邻}},tan B = …,tan C = …$ 导数与微分导数定义:$\lim_{h→0}\dfrac{(f(x+h)-f(x))}{h}$ 或者$f'(x)=lim_{Δx→0}\dfrac{\vartriangle y }{\vartriangle x}(或\dif f(x))$常见导函数:$(e^{ax})'=ae^{ax},(\ln x)'=\dfrac1{x},(log_ax)'=\dfrac1{xln a},(sin x)'=cos x,(cos x)'=-sin x,(tan x)'=sec ^ 2x,(cotan x)′=-csc ^2x,$等。
高中数学公式知识归纳总结
高中数学公式知识归纳总结在高中数学学习过程中,我们不可避免地会接触到各种各样的数学公式。
这些公式在解决数学问题时起着重要的作用,掌握它们对我们的学习和考试至关重要。
本文将对高中数学常见的公式进行归纳总结,以便日后复习和应用。
一、代数公式1. 平方差公式对于任意实数a、b,有:(a + b)² = a² + 2ab + b²(a - b)² = a² - 2ab + b²这个公式在解决平方和、平方差问题时经常用到。
利用平方差公式,我们可以方便地计算方程的展开式。
2. 二次根式公式(√a ±√b)² = a ± 2√ab + b(a ± b)(a ∓ b) = a² - b²这个公式在二次根式的加减、乘除中非常常见。
掌握这些公式可以简化计算过程,提高解题效率。
3. 比例公式设a/b = c/d,且b ≠ 0,则称a、b、c、d满足比例公式。
利用比例公式,我们可以求解未知量或者构建等式,解决实际问题。
4. 勾股定理对于直角三角形,设两直角边长分别为a、b,斜边长为c,则有:a² + b² = c²这是直角三角形中最基本的定理,广泛应用于解决与直角三角形相关的问题。
5. 三角函数公式正弦定理:a/sinA = b/sinB = c/sinC余弦定理:a² = b² + c² - 2bc*cosA正切定理:tanA = sinA/cosA这些公式是解决三角函数和三角关系问题的重要工具,对于理解三角学的概念和计算角度、边长等具有重要意义。
二、几何公式1. 等腰三角形的高设等腰三角形边长为a,底边长为b,则高h满足:h = √(a² - (b/2)²)2. 圆的周长和面积设圆的半径为r,则圆的周长C和面积S分别为:C = 2πrS = πr²这些公式是求解圆的周长和面积时经常用到的基本公式。
高中必背88个数学公式
高中必背88个数学公式1. 勾股定理:直角三角形的两条直角边的平方和等于斜边平方。
2. 余弦定理:在任意三角形中,一个角的余弦等于与该角相对的边的平方和减去另外两条边的平方的差再除以两倍的另一条边与该角相对的角的正弦的乘积。
3. 正弦定理:在任意三角形中,一个角的正弦等于与该角相对的边长和另外两条边长的比例的乘积。
4. 长方形面积公式:长方形的面积等于长乘以宽。
5. 平行四边形面积公式:平行四边形面积等于底边长乘以高。
6. 梯形面积公式:梯形的面积等于上底加下底乘以高再除以二。
7. 三角形面积公式:三角形面积等于底边长乘以高再除以二。
8. 圆面积公式:圆的面积等于圆周率乘以半径的平方。
9. 圆周长公式:圆的周长等于直径乘以圆周率。
10. 球体表面积公式:球体的表面积等于四倍的圆面积。
11. 球体体积公式:球体的体积等于四分之三的圆面积乘以半径的立方。
12. 一次函数方程: y = kx + b。
13. 二次函数方程: y = ax² + bx + c。
14. 等差数列通项公式: an = a1 + (n - 1)d,其中a1为首项,d为公差,an为第n项。
15. 等差数列前n项和公式: Sn = n(a1 + an)/2,其中a1为首项,an为第n项,n为项数。
16. 等比数列通项公式:an = a1 × qⁿ⁻¹,其中a1为首项,q为公比,n为项数。
17. 等比数列前n项和公式: Sn = a1(1 - qⁿ)/1 - q,其中a1为首项,q为公比,n为项数。
18. 三角函数正弦的定义:在直角三角形中,任意一锐角的正弦是指这个角的对边与这个角所在的斜边的比值。
19. 三角函数余弦的定义:在直角三角形中,任意一锐角的余弦是指这个角的邻边与这个角所在的斜边的比值。
20. 三角函数正切的定义:在直角三角形中,任意一锐角的正切是指这个角的对边与这个角的邻边的比值。
21. 三角函数余切的定义:在直角三角形中,任意一锐角的余切是指这个角的邻边与这个角的对边的比值。
高中数学常用公式定理大全
高中数学学考常用公式及结论必修1:一、集合1、含义与表示:(1)集合中元素的特征:确定性,互异性,无序性(2)集合的分类;有限集,无限集(3)集合的表示法:列举法,描述法,图示法2、集合间的关系:子集:对任意x A ∈,都有x B ∈,则称A 是B 的子集。
记作A B⊆真子集:若A 是B 的子集,且在B 中至少存在一个元素不属于A ,则A 是B 的真子集,记作A ≠⊂B集合相等:若:,A B B A ⊆⊆,则A B =3.元素与集合的关系:属于∈不属于:∉空集:φ4、集合的运算:并集:由属于集合A 或属于集合B 的元素组成的集合叫并集,记为A B交集:由集合A 和集合B 中的公共元素组成的集合叫交集,记为A B补集:在全集U 中,由所有不属于集合A 的元素组成的集合叫补集,记为U C A5.集合12{,,,}n a a a 的子集个数共有2n个;真子集有2n –1个;非空子集有2n–1个;6.常用数集:自然数集:N 正整数集:*N整数集:Z 有理数集:Q 实数集:R二、函数的奇偶性1、定义:奇函数<=>f (–x )=–f (x ),偶函数<=>f (–x )=f (x )(注意定义域)2、性质:(1)奇函数的图象关于原点成中心对称图形;(2)偶函数的图象关于y 轴成轴对称图形;(3)如果一个函数的图象关于原点对称,那么这个函数是奇函数;(4)如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.二、函数的单调性1、定义:对于定义域为D 的函数f (x ),若任意的x 1,x 2∈D ,且x 1<x 2①f (x 1)<f (x 2)<=>f (x 1)–f (x 2)<0<=>f (x )是增函数②f (x 1)>f (x 2)<=>f (x 1)–f (x 2)>0<=>f (x )是减函数2、复合函数的单调性:同增异减三、二次函数y =ax 2+bx +c (0a ≠)的性质1、顶点坐标公式:⎪⎪⎭⎫ ⎝⎛--ab ac a b 44,22,对称轴:a b x 2-=,最大(小)值:a b ac 442-2.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠;(2)顶点式2()()(0)f x a x h k a =-+≠;(3)两根式12()()()(0)f x a x x x x a =--≠.四、指数与指数函数1、幂的运算法则:(1)a m •a n =a m +n ,(2)nm nmaa a -=÷,(3)(a m )n =a m n(4)(ab )n =a n •b n(5)nn nb a b a =⎪⎭⎫⎝⎛(6)a 0=1(a ≠0)(7)nna a 1=-(8)mnmn a a=(9)mnmn a a1=-2、根式的性质(1)na =.(2)当na =;当n,0||,0a a a a a ≥⎧==⎨-<⎩.4、指数函数y =a x (a >0且a ≠1)的性质:(1)定义域:R ;值域:(0,+∞)(2)图象过定点(0,1)5.指数式与对数式的互化:log ba Nb a N =⇔=(0,1,0)a a N >≠>.五、对数与对数函数1对数的运算法则:(1)a b =N <=>b =log a N (2)log a 1=0(3)log a a =1(4)log a a b =b (5)a log a N=N (6)log a (MN)=log a M +log a N (7)log a (NM)=log a M --log a N (8)log a N b =b log a N(9)换底公式:log a N =aN b b log log (10)推论log log m n a a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠,0N >).(11)log a N =aN log 1(12)常用对数:lg N =log 10N (13)自然对数:ln A =log e A (其中e =2.71828…)2、对数函数y =log a x (a >0且a ≠1)的性质:(1)定义域:(0,+∞);值域:R(2)图象过定点(1,0)YX1a >1YX10<a <1Ya >1Y0<a <1六、幂函数y =x a 的图象:(1)根据a 的取值画出函数在第一象限的简图.例如:y =x 221xx y ==11-==x xy 七.图象平移:若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;规律:左加右减,上加下减八.平均增长率的问题如果原来产值的基础数为N,平均增长率为p ,则对于时间x 的总产值y ,有(1)xy N p =+.九、函数的零点:1.定义:对于()y f x =,把使()0f x =的X 叫()y f x =的零点。
高中数学公式归纳大全
高中数学公式归纳大全下面是一份高中数学公式归纳大全,包括代数、几何和三角等方面的常用公式。
这份列表将帮助您更好地复习和应用高中数学知识。
1.代数1.1一元二次方程的求根公式:对于方程ax^2+bx+c=0,其解可以通过以下公式得到:x=(-b±√(b^2-4ac))/(2a)1.2因式分解公式:a^2-b^2=(a+b)(a-b)a^3-b^3=(a-b)(a^2+ab+b^2)a^3+b^3=(a+b)(a^2-ab+b^2)a^2+2ab+b^2=(a+b)^2a^2-2ab+b^2=(a-b)^21.3二项式定理:(a+b)^n=C(n,0)a^n+C(n,1)a^(n-1)b+C(n,2)a^(n-2)b^2+...+C(n,n-1)ab^(n-1)+C(n,n)b^n1.4平方差公式:a^2-b^2=(a+b)(a-b)11.5对数公式:log(ab)=log(a)+log(b)log(a/b)=log(a)-log(b)log(a^n)=nlog(a)log(1/a)=-log(a)2.几何2.1三角形的面积公式:S=(1/2)bh,其中S是三角形的面积,b是底边的长度,h是高的长度。
2.2直角三角形的勾股定理:a^2+b^2=c^2,其中a、b是直角边的长度,c是斜边的长度。
2.3圆的面积和周长公式:圆的面积A=πr^2,其中r是半径的长度。
圆的周长C=2πr,其中r是半径的长度。
2.4正多边形的内角和外角公式:内角和为(n-2)×180°,其中n是正多边形的边数。
外角和为360°,其中n是正多边形的边数。
2.5平行线与平行线之间的关系:同位角互等:对于两条平行线和一条横截线,同位角相等。
内错角互补:对于两条平行线和一条横截线,内错角互补,即和为180°。
23.三角3.1正弦定理:a/sin(A)=b/sin(B)=c/sin(C),其中a、b、c是三角形的边长,A、B、C是对应的角度。
高中数学公式大全(完整版)
高中数学常用公式及常用结论1. 元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉. 2.德摩根公式();()U U U U U U C A B C A C B C A B C A C B == .3.包含关系A B A A B B =⇔= U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=Φ U C A B R ⇔=4.集合12{,,,}n a a a 的子集个数共有2n个,真子集有2n–1个;非空子集有2n–1个;非空的真子集有2n–2个. 5.空集是任何集合的子集6.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式⎩⎨⎧M x f x f N <<)()(的交集 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程)0(02≠=++a c bx ax 有且只有一个实根在),(21k k 内,等价于0)()(21<k f k f9.闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p a bx ,2∈-=,则{}m i n m a x m ax ()(),()(),()2b f x f f x f p f qa=-=;[]q p abx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p abx ,2∈-=,则{}m i n ()m i n (),()f x f p f q =,若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =.10.一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 . 设q px x x f ++=2)(,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402p q p m ⎧-≥⎪⎨->⎪⎩;(2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n >⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()0f m af n =⎧⎨>⎩或()0()0f n af m =⎧⎨>⎩; (3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402p q p m ⎧-≥⎪⎨-<⎪⎩ .11.看累了吧,休息一下吧 12.13.14.四种命题的相互关系15.充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 16.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. (2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.17.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.18.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.19.若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.20.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2ba x +=对称. 21.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称; 若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.22.多项式函数110()n n n n P x a x a x a --=+++ 的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. 23.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a bx +=对称()()f a mx f b mx ⇔+=- ()()f a b mx f mx ⇔+-=.24.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. (2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a bx m+=对称. (3)函数)(x f y =和)(1x fy -=的图象关于直线y=x 对称.25.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.26.互为反函数的两个函数的关系a b f b a f =⇔=-)()(1.27.若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f ky -=-,并不是)([1b kx f y +=-,而函数)([1b kx f y +=-是])([1b x f ky -=的反函数. 28.几个常见的函数方程(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指数函数()x f x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠.(4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+, 29.几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ; (2))()(a x f x f +-=,或)0)(()(1)(≠=+x f x f a x f , 或1()()f x a f x +=-(()0)f x ≠,则)(x f 的周期T=2a ;30.分数指数幂(1)m na =(0,,a m n N *>∈,且1n >). (2)1m nm naa-=(0,,a m n N *>∈,且1n >).31.根式的性质 (1)n a =.(2)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.32.有理指数幂的运算性质 (1) (0,,)r s r s a a a a r s Q +⋅=>∈. (2) ()(0,,)r s rs a a a r s Q =>∈.(3)()(0,0,)r r r ab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.33.指数式与对数式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.34.对数的换底公式log log log m a m NN a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论 log log m na a nb b m =(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >).35.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+;(2) log log log aa a MM N N=-; (3)log log ()n a a M n M n R =∈.36.设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验.37. 对数换底不等式及其推广若0a >,0b >,0x >,1x a ≠,则函数log ()ax y bx = (1)当a b >时,在1(0,)a 和1(,)a +∞上log ()ax y bx =为增函数., (2)当a b <时,在1(0,)a 和1(,)a+∞上log ()ax y bx =为减函数. 38.认真仔细思考39.数列的通项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++ ). 40.等差数列的通项公式⎪⎪⎩⎪⎪⎨⎧>-=-+=-+=-)1()()1(11n d m n d n s s a a a a a n n n m n n 等差数例的性质:若a a a a q p n m q p n m +=+⇒+=+ 若p n m a a a p n m 22=+⇒=+ 重中之重:21+=奇奇奇a S2242133333a a a S ===+,3262155555a a a S ===+,61111a S =m,2m,32m m m S S S S S --仍成等差数列其前n 项和公式为()21n n a a n S +=1(1)2n n na d -=+41.等比数列的通项公式 定义:)0(1≠=+q q a a nn ⎪⎪⎩⎪⎪⎨⎧>-===---)1(111n S S a qa a q a a n n nm n m n n n等比数列性质:若q p n m a a a a q p n m =⇒+=+ 若22p n m a a a p n m =⇒=+()m,2m,32q 1m m m m S S S S S --≠-仍成等比数列或为奇数⎪⎩⎪⎨⎧=≠--=--=)1()1(11)1(111q na q qqa a q q a S n n n45.同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=. 46.正弦、余弦的诱导公式 47.和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±= ;tan tan tan()1tan tan αβαβαβ±±= .22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式);22cos()cos()cos sin αβαβαβ+-=-.sin cos a b αα+=)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ= ).48.二倍角公式sin 22sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-. 49. 三倍角公式3sin 33sin 4sin 4sin sin()sin()33ππθθθθθθ=-=-+.3cos34cos 3cos 4cos cos()cos()33ππθθθθθθ=-=-+.323tan tan tan 3tan tan()tan()13tan 33θθππθθθθθ-==-+-. 50.三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A≠0,ω>0)的周期T πω=. 51.正弦定理2sin sin sin a b cR A B C===. 52.余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.53.面积定理(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高). (2)111sin sin sin 222S ab C bc A ca B ===.(3)OAB S ∆=54.三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+. 55. 简单的三角方程的通解sin (1)arcsin (,||1)kx a x k a k Z a π=⇔=+-∈≤.s 2arccos (,||1)co x a x k a k Z a π=⇔=±∈≤.tan arctan (,)x a x k a k Z a R π=⇒=+∈∈.特别地,有sin sin (1)()k k k Z αβαπβ=⇔=+-∈. s cos 2()co k k Z αβαπβ=⇔=±∈.tan tan ()k k Z αβαπβ=⇒=+∈.56.最简单的三角不等式及其解集sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ>≤⇔∈++-∈.sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ<≤⇔∈--+∈. cos (||1)(2arccos ,2arccos ),x a a x k a k a k Z ππ>≤⇔∈-+∈.cos (||1)(2arccos ,22arccos ),x a a x k a k a k Z πππ<≤⇔∈++-∈.tan ()(arctan ,),2x a a R x k a k k Z πππ>∈⇒∈++∈.tan ()(,arctan ),2x a a R x k k a k Z πππ<∈⇒∈-+∈.57.实数与向量的积的运算律 设λ、μ为实数,那么(1) 结合律:λ(μa )=(λμ)a ; (2)第一分配律:(λ+μ)a =λa +μa; (3)第二分配律:λ(a +b )=λa +λb . 58.向量的数量积的运算律: (1) a ·b= b ·a (交换律); (2)(λa )·b= λ(a ·b )=λa ·b = a ·(λb ); (3)(a +b )·c= a ·c +b ·c. 59.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 60.向量平行的坐标表示设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a b(b ≠0)12210x y x y ⇔-=. 53. a 与b 的数量积(或内积) a ·b =|a ||b |cos θ. 61. a ·b 的几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 62.平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++.(2)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --.(3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa=(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212()x x y y +.63.两向量的夹角公式cos θ=(a =11(,)x y ,b =22(,)x y ).64.平面两点间的距离公式,A B d=||AB ==11(,)x y ,B 22(,)x y ).65.向量的平行与垂直设a =11(,)x y ,b =22(,)x y ,且b ≠0,则 A ||b ⇔b =λa 12210x y x y ⇔-=. a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=. 66.线段的定比分公式设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12PP 的分点,λ是实数,且12PP PP λ=,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+ ⇔12(1)OP tOP t OP =+- (11t λ=+). 67.三角形的重心坐标公式△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++. 68.点的平移公式''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ . 注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP的坐标为(,)h k .69.“按向量平移”的几个结论(1)点(,)P x y 按向量a =(,)h k 平移后得到点'(,)P x h y k ++.(2) 函数()y f x =的图象C 按向量a =(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+.(3) 图象'C 按向量a =(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-.(4)曲线C :(,)0f x y =按向量a =(,)h k 平移后得到图象'C ,则'C 的方程为(,)0f x h y k --=. (5) 向量m =(,)x y 按向量a =(,)h k 平移后得到的向量仍然为m =(,)x y .70. 三角形五“心”向量形式的充要条件设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则(1)O 为ABC ∆的外心222OA OB OC ⇔== .(2)O 为ABC ∆的重心0OA OB OC ⇔++=.(3)O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅.(4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=.(5)O 为ABC ∆的A ∠的旁心aOA bOB cOC ⇔=+.71.常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b+≥当且仅当a =b 时取“=”号). (3)3333(0,0,0).a b c abc a b c ++≥>>>(4)柯西不等式22222()()(),,,,.a b c d ac bd a b c d R ++≥+∈(5)b a b a b a +≤+≤-. 72.极值定理已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2; (2)若和y x +是定值s ,则当y x =时积xy 有最大值241s . 推广 已知R y x ∈,,则有xy y x y x 2)()(22+-=+ (1)若积xy 是定值,则当||y x -最大时,||y x +最大; 当||y x -最小时,||y x +最小.(2)若和||y x +是定值,则当||y x -最大时, ||xy 最小; 当||y x -最小时, ||xy 最大.73.一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<; 121212,()()0()x x x x x x x x x x <>⇔--><或.74.含有绝对值的不等式 当a> 0时,有22x a x a a x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-.75.无理不等式(1()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩. (22()0()0()()0()0()[()]f x f x g x g x g x f x g x ≥⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或. (32()0()()0()[()]f x g x g x f x g x ≥⎧⎪⇔>⎨⎪<⎩. 76.指数不等式与对数不等式 (1)当1a >时,()()()()f x g x a a f x g x >⇔>;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x a a f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩77.斜率公式2121y y k x x -=-(111(,)P x y 、222(,)P x y ).78.直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式 1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、)(5)一般式 0Ax By C ++=(其中A 、B 不同时为0).79.两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零,①11112222||A B C l l A B C ⇔=≠; ②1212120l l A A B B ⊥⇔+=; 80.夹角公式(1)2121tan ||1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan ||A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A AB B +≠). 直线12l l ⊥时,直线l 1与l 2的夹角是2π.81. 1l 到2l 的角公式(1)2121tan 1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A AB B +≠). 直线12l l ⊥时,直线l 1到l 2的角是2π.82.四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数.(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.83.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).84. 0Ax By C ++>或0<所表示的平面区域设直线:0l Ax By C ++=,则0Ax By C ++>或0<所表示的平面区域是: 若0B ≠,当B 与Ax By C ++同号时,表示直线l 的上方的区域;当B 与Ax By C ++异号时,表示直线l 的下方的区域.简言之,同号在上,异号在下. 若0B =,当A 与Ax By C ++同号时,表示直线l 的右方的区域;当A 与Ax By C ++异号时,表示直线l 的左方的区域. 简言之,同号在右,异号在左.85. 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域 设曲线111222:()()0C A x B y C A x B y C ++++=(12120A A B B ≠),则 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域是:111222()()0A x B y C A x B y C ++++>所表示的平面区域上下两部分;111222()()0A x B y C A x B y C ++++<所表示的平面区域上下两部分.86. 圆的四种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).(3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).87. 圆系方程(1)过点11(,)A x y ,22(,)B x y 的圆系方程是1212112112()()()()[()()()()]0x x x x y y y y x x y y y y x x λ--+--+-----=1212()()()()()0x x x x y y y y ax by c λ⇔--+--+++=,其中0a x b yc ++=是直线AB 的方程,λ是待定的系数.(2)过直线l :0Ax By C ++=与圆C :220x y Dx Ey F ++++=的交点的圆系方程是22()0x y Dx Ey F Ax By C λ+++++++=,λ是待定的系数.(3) 过圆1C :221110x y D x E y F ++++=与圆2C :222220x y D x E y F ++++=的交点的圆系方程是2222111222()0x y D x E y F x y D x E y F λ+++++++++=,λ是待定的系数.88.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d =d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内.89.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d .其中22BA CBb Aa d +++=.90.两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d ; 条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ; 条公切线内切121⇔⇔-=r r d ; 无公切线内含⇔⇔-<<210r r d .91.圆的切线方程(1)已知圆220x y Dx Ey F ++++=.①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是0000()()022D x xE y y x x y yF ++++++=. 当00(,)x y 圆外时, 0000()()022D x xE y y x x y yF ++++++=表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线.(2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=;②斜率为k 的圆的切线方程为y kx =±92.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩.93.椭圆22221(0)x y a b a b+=>>焦半径公式)(21c a x e PF +=,)(22x ca e PF -=.94.椭圆的的内外部(1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b ⇔+<. (2)点00(,)P x y 在椭圆22221(0)x y a b a b+=>>的外部2200221x y a b⇔+>. 95. 椭圆的切线方程(1)椭圆22221(0)x y a b a b+=>>上一点00(,)P x y 处的切线方程是00221x x y y a b +=.(2)过椭圆22221(0)x y a b a b+=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b+=. (3)椭圆22221(0)x y a b a b+=>>与直线0Ax By C ++=相切的条件是22222A a B b c +=.96.双曲线22221(0,0)x y a b a b -=>>的焦半径公式21|()|a PF e x c =+,22|()|a PF e x c=-.97.双曲线的内外部(1)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->. (2)点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>的外部2200221x y a b ⇔-<. 98.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-by a x ⇒渐近线方程:22220x y a b -=⇔x a by ±=.(2)若渐近线方程为x a by ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222by a x .(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x (0>λ,焦点在x轴上,0<λ,焦点在y 轴上).99. 双曲线的切线方程(1)双曲线22221(0,0)x y a b a b-=>>上一点00(,)P x y 处的切线方程是00221x x y y a b -=.(2)过双曲线22221(0,0)x y a b a b-=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b-=. (3)双曲线22221(0,0)x y a b a b-=>>与直线0A x B yC ++=相切的条件是22222A a B b c -=.100. 抛物线px y 22=的焦半径公式抛物线22(0)y px p =>焦半径02pCF x =+.过焦点弦长p x x px p x CD ++=+++=212122.101.抛物线px y 22=上的动点可设为P ),2(2 y py 或或)2,2(2pt pt P P (,)x y ,其中22y px = .102.二次函数2224()24b ac b y ax bx c a x a a-=++=++(0)a ≠的图象是抛物线:(1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a-+-;(3)准线方程是2414ac b y a--=.103.抛物线的内外部(1)点00(,)P x y 在抛物线22(0)y px p =>的内部22(0)y px p ⇔<>. 点00(,)P x y 在抛物线22(0)y px p =>的外部22(0)y px p ⇔>>. (2)点00(,)P x y 在抛物线22(0)y px p =->的内部22(0)y px p ⇔<->. 点00(,)P x y 在抛物线22(0)y px p =->的外部22(0)y px p ⇔>->. (3)点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =>的外部22(0)x py p ⇔>>. (4) 点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =->的外部22(0)x py p ⇔>->. 104. 抛物线的切线方程(1)抛物线px y 22=上一点00(,)P x y 处的切线方程是00()y y p x x =+.(2)过抛物线px y 22=外一点00(,)P x y 所引两条切线的切点弦方程是00()y y p x x =+. (3)抛物线22(0)y px p =>与直线0Ax By C ++=相切的条件是22pB AC =.105.两个常见的曲线系方程(1)过曲线1(,)0f x y =,2(,)0f x y =的交点的曲线系方程是12(,)(,)0f x y f x y λ+=(λ为参数).(2)共焦点的有心圆锥曲线系方程22221x y a k b k+=--,其中22max{,}k a b <.当22min{,}k a b >时,表示椭圆; 当2222min{,}max{,}a b k a b <<时,表示双曲线.106.直线与圆锥曲线相交的弦长公式 AB =1212|||AB x x y y ==-=-(弦端点A ),(),,(2211y xB y x ,由方程⎩⎨⎧=+=0)y ,x (F b kx y 消去y 得到02=++c bx ax ,0∆>,α为直线AB 的倾斜角,k 为直线的斜率).107.圆锥曲线的两类对称问题(1)曲线(,)0F x y =关于点00(,)P x y 成中心对称的曲线是00(2-,2)0F x x y y -=. (2)曲线(,)0F x y =关于直线0Ax By C ++=成轴对称的曲线是22222()2()(,)0A Ax By C B Ax By C F x y A B A B++++--=++. 108.“四线”一方程对于一般的二次曲线220Ax Bxy Cy Dx Ey F +++++=,用0x x 代2x ,用0y y 代2y ,用002x y xy +代xy ,用02x x +代x ,用02y y +代y 即得方程0000000222x y xy x x y yAx x B Cy y D E F ++++⋅++⋅+⋅+=,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.109.证明直线与直线的平行的思考途径 (1)转化为判定共面二直线无交点; (2)转化为二直线同与第三条直线平行; (3)转化为线面平行; (4)转化为线面垂直; (5)转化为面面平行.110.证明直线与平面的平行的思考途径 (1)转化为直线与平面无公共点; (2)转化为线线平行; (3)转化为面面平行.111.证明平面与平面平行的思考途径 (1)转化为判定二平面无公共点; (2)转化为线面平行; (3)转化为线面垂直.112.证明直线与直线的垂直的思考途径 (1)转化为相交垂直; (2)转化为线面垂直;(3)转化为线与另一线的射影垂直;(4)转化为线与形成射影的斜线垂直. 113.证明直线与平面垂直的思考途径(1)转化为该直线与平面内任一直线垂直; (2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面; (5)转化为该直线与两个垂直平面的交线垂直. 114.证明平面与平面的垂直的思考途径 (1)转化为判断二面角是直二面角; (2)转化为线面垂直.115.空间向量的加法与数乘向量运算的运算律 (1)加法交换律:a +b =b +a .(2)加法结合律:(a +b )+c =a +(b +c ). (3)数乘分配律:λ(a +b )=λa +λb .116.平面向量加法的平行四边形法则向空间的推广 始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量.117.共线向量定理对空间任意两个向量a 、b (b ≠0 ),a ∥b ⇔存在实数λ使a =λb .P A B 、、三点共线⇔||AP AB ⇔AP t AB = ⇔(1)OP t OA tOB =-+.||AB CD ⇔AB 、CD共线且AB CD 、不共线⇔AB tCD = 且AB CD 、不共线.118.共面向量定理向量p 与两个不共线的向量a 、b 共面的⇔存在实数对,x y ,使p ax by =+.推论 空间一点P 位于平面MAB 内的⇔存在有序实数对,x y ,使MP xMA yMB =+,或对空间任一定点O ,有序实数对,x y ,使OP OM xMA yMB =++.119.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++(x y z k ++=),则当1k =时,对于空间任一点O ,总有P 、A 、B 、C 四点共面;当1k ≠时,若O ∈平面ABC ,则P 、A 、B 、C 四点共面;若O ∉平面ABC ,则P 、A 、B 、C 四点不共面.C A B 、、、D 四点共面⇔AD 与AB 、AC 共面⇔AD xAB yAC =+⇔ (1)OD x y OA xOB yOC =--++(O ∉平面ABC ).120.空间向量基本定理如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组x ,y ,z ,使p =x a +y b +z c .推论 设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数x ,y ,z ,使OP xOA yOB zOC =++.121.射影公式已知向量AB =a 和轴l ,e 是l 上与l 同方向的单位向量.作A 点在l 上的射影'A ,作B点在l 上的射影'B ,则''||cos AB AB = 〈a ,e 〉=a ·e122.向量的直角坐标运算设a =123(,,)a a a ,b =123(,,)b b b 则 (1)a +b =112233(,,)a b a b a b +++; (2)a -b =112233(,,)a b a b a b ---; (3)λa =123(,,)a a a λλλ (λ∈R);(4)a ·b =112233a b a b a b ++; 123.设A 111(,,)x y z ,B 222(,,)x y z ,则 AB OB OA =-= 212121(,,)x x y y z z ---.124.空间的线线平行或垂直设111(,,)a x y z =r ,222(,,)b x y z =r,则a b r r P ⇔(0)a b b λ=≠r r r r ⇔121212x x y y z zλλλ=⎧⎪=⎨⎪=⎩;a b ⊥r r ⇔0a b ⋅=r r⇔1212120x x y y z z ++=.125.夹角公式设a =123(,,)a a a ,b =123(,,)b b b ,则 cos 〈a ,b 〉.推论 2222222112233123123()()()a b a b a b a a a b b b ++≤++++,此即三维柯西不等式.126. 四面体的对棱所成的角四面体ABCD 中, AC 与BD 所成的角为θ,则2222|()()|cos 2AB CD BC DA AC BDθ+-+=⋅.127.异面直线所成角cos |cos ,|a b θ=r r=||||||a b a b ⋅=⋅r rr r (其中θ(090θ<≤o o)为异面直线a b ,所成角,,a b r 分别表示异面直线a b ,的方向向量)128.直线AB 与平面所成角sin ||||AB m arc AB m β⋅=(m为平面α的法向量). 129.若ABC ∆所在平面若β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,A B 、为ABC ∆的两个内角,则2222212sin sin (sin sin )sin A B θθθ+=+.特别地,当90ACB ∠=时,有22212sin sin sin θθθ+=.130.若ABC ∆所在平面若β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,''A B 、为ABO ∆的两个内角,则222'2'212tan tan (sin sin )tan A B θθθ+=+.特别地,当90AOB ∠=时,有22212sin sin sin θθθ+=. 131.二面角l αβ--的平面角cos ||||m n arc m n θ⋅= 或cos ||||m narc m n π⋅-(m ,n 为平面α,β的法向量).132.三余弦定理设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1θ,AB 与AC 所成的角为2θ,AO 与AC 所成的角为θ.则12cos cos cos θθθ=.133. 三射线定理若夹在平面角为ϕ的二面角间的线段与二面角的两个半平面所成的角是1θ,2θ,与二面角的棱所成的角是θ,则有22221212sin sin sin sin 2sin sin cos ϕθθθθθϕ=+- ;1212||180()θθϕθθ-≤≤-+ (当且仅当90θ= 时等号成立).134.空间两点间的距离公式若A 111(,,)x y z ,B 222(,,)x y z ,则,A B d =||AB = =. 135.点Q 到直线l 距离h =(点P 在直线l 上,直线l 的方向向量a =PA ,向量b =PQ ).136.异面直线间的距离||||CD n d n ⋅=(12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).137.点B 到平面α的距离||||AB n d n ⋅=(n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈). 138.异面直线上两点距离公式d =.d =d ='E AA F ϕ=--).(两条异面直线a 、b 所成的角为θ,其公垂线段'AA 的长度为h.在直线a 、b 上分别取两点E 、F ,'A E m =,AF n =,EF d =). 139.三个向量和的平方公式2222()222a b c a b c a b b c c a ++=+++⋅+⋅+⋅2222||||cos ,2||||cos ,2||||cos ,a b c a b a b b c b c c a c a =+++⋅+⋅+⋅140. 长度为l 的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、,则有2222123l l l l =++222123cos cos cos 1θθθ⇔++=222123sin sin sin 2θθθ⇔++=.(立体几何中长方体对角线长的公式是其特例). 141. 面积射影定理'cos S S θ=.(平面多边形及其射影的面积分别是S 、'S ,它们所在平面所成锐二面角的为θ). 142. 斜棱柱的直截面已知斜棱柱的侧棱长是l ,侧面积和体积分别是S 斜棱柱侧和V 斜棱柱,它的直截面的周长和面积分别是1c 和1S ,则①1S c l =斜棱柱侧. ②1V S l =斜棱柱.143.作截面的依据三个平面两两相交,有三条交线,则这三条交线交于一点或互相平行. 144.棱锥的平行截面的性质如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点到截面距离与棱锥高的平方比(对应角相等,对应边对应成比例的多边形是相似多边形,相似多边形面积的比等于对应边的比的平方);相应小棱锥与小棱锥的侧面积的比等于顶点到截面距离与棱锥高的平方比.145.欧拉定理(欧拉公式)2V F E +-=(简单多面体的顶点数V 、棱数E 和面数F).(1)E =各面多边形边数和的一半.特别地,若每个面的边数为n 的多边形,则面数F 与棱数E 的关系:12E nF =; (2)若每个顶点引出的棱数为m ,则顶点数V 与棱数E 的关系:12E mV =. 146.球的半径是R ,则其体积343V R π=, 其表面积24S R π=.147.球的组合体(1)球与长方体的组合体:长方体的外接球的直径是长方体的体对角线长. (2)球与正方体的组合体:正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长. (3) 球与正四面体的组合体:棱长为a ,a . 148.柱体、锥体的体积13V Sh =柱体(S 是柱体的底面积、h 是柱体的高).13V Sh =锥体(S 是锥体的底面积、h 是锥体的高).149.分类计数原理(加法原理) 12n N m m m =+++ . 150.分步计数原理(乘法原理) 12n N m m m =⨯⨯⨯ . 151.排列数公式mnA =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).注:规定1!0=.152.排列恒等式(1)1(1)m m n nA n m A -=-+; (2)1mmn n n A A n m -=-; (3)11m m n n A nA --=;(4)11n n n n n n nA A A ++=-;(5)11m m m n n nA A mA -+=+. (6) 1!22!33!!(1)!1n n n +⋅+⋅++⋅=+- . 153.组合数公式m n C=m n mmA A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N *,m N ∈,且m n ≤). 154.组合数的两个性质(1)m n C =mn n C - ; (2) m n C +1-m n C =m n C 1+.注:规定10=n C .155.组合恒等式(1)11mm n n n m C C m --+=; (2)1m mn n n C C n m -=-; (3)11mm n n n C C m--=;(4)∑=nr r nC0=n2;(5)1121++++=++++r n r n r r r r r rC C C C C .(6)n n n r n n n n C C C C C 2210=++++++ . (7)14205312-+++=+++n n n n n n n C C C C C C . (8)1321232-=++++n n n n n n n nC C C C . (9)r n m r n r m n r m n r m C C C C C C C +-=+++0110 .(10)nn n n n n n C C C C C 22222120)()()()(=++++ . 156.排列数与组合数的关系m mn nA m C =⋅! . 157.单条件排列以下各条的大前提是从n 个元素中取m 个元素的排列. (1)“在位”与“不在位”①某(特)元必在某位有11--m n A 种;②某(特)元不在某位有11---m n m n A A (补集思想)1111---=m n n A A (着眼位置)11111----+=m n m m n A A A (着眼元素)种.(2)紧贴与插空(即相邻与不相邻)①定位紧贴:)(n m k k ≤≤个元在固定位的排列有km k n k k A A --种.②浮动紧贴:n 个元素的全排列把k 个元排在一起的排法有k k k n k n A A 11+-+-种.注:此类问题常用捆绑法;③插空:两组元素分别有k 、h 个(1+≤h k ),把它们合在一起来作全排列,k 个的一组互不能挨近的所有排列数有k h h h A A 1+种.(3)两组元素各相同的插空m 个大球n 个小球排成一列,小球必分开,问有多少种排法?当1+>m n 时,无解;当1+≤m n 时,有n m n nn m C A A 11++=种排法.(4)两组相同元素的排列:两组元素有m 个和n 个,各组元素分别相同的排列数为nn m C +.158.分配问题(1)(平均分组有归属问题)将相异的m 、n 个物件等分给m 个人,各得n 件,其分配方法数共有mnn nn nn mn nn mn nmn n mn C C C C C N )!()!(22=⋅⋅⋅⋅⋅=-- . (2)(平均分组无归属问题)将相异的m ·n 个物体等分为无记号或无顺序的m 堆,其分配方法数共有mn nn n n n mn n n mn n mn n m mn m C C C C C N )!(!)!(!...22=⋅⋅⋅⋅=--. (3)(非平均分组有归属问题)将相异的) 12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数彼此不相等,则其分配方法数共有!!...!!!! (212)11m n n n n p n p n n n m p m C C C N m m=⋅⋅=-.(4)(非完全平均分组有归属问题)将相异的) 12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数中分别有a 、b 、c 、...个相等,则其分配方法数有!...!!! (2)11c b a m C C C N m mn n n n p n p ⋅⋅=- 12!!!!...!(!!!...)m p m n n n a b c =.(5)(非平均分组无归属问题)将相异的) 12m P(P=n +n ++n 个物体分为任意的1n ,2n ,…,m n 件无记号的m 堆,且1n ,2n ,…,m n 这m 个数彼此不相等,则其分配方法数有!!...!!21m n n n p N =.(6)(非完全平均分组无归属问题)将相异的) 12m P(P=n +n ++n 个物体分为任意的1n ,2n ,…,m n 件无记号的m 堆,且1n ,2n ,…,m n 这m 个数中分别有a 、b 、c 、…个相等,则其分配方法数有!...)!!(!!...!!21c b a n n n p N m =.(7)(限定分组有归属问题)将相异的p (2m p n n n = 1+++)个物体分给甲、乙、丙,……等m 个人,物体必须被分完,如果指定甲得1n 件,乙得2n 件,丙得3n 件,…时,则无论1n ,2n ,…,m n 等m 个数是否全相异或不全相异其分配方法数恒有!!...!! (212)11m n n n n p n p n n n p C C C N m m=⋅=-.159.“错位问题”及其推广贝努利装错笺问题:信n 封信与n 个信封全部错位的组合数为1111()![(1)]2!3!4!!n f n n n =-+-+- . 推广: n 个元素与n 个位置,其中至少有m 个元素错位的不同组合总数为 1234(,)!(1)!(2)!(3)!(4)!(1)()!(1)()!m m m m ppmm mmf n m n C n C n C n C n C n p C n m =--+---+--+--++--12341224![1(1)(1)]p m p m m m m m m mp m n n n n n nC C C C C C n A A A A A A =-+-+-+-++- .160.不定方程2n x x x m = 1+++的解的个数(1)方程2n x x x m = 1+++(,n m N *∈)的正整数解有11m n C --个. (2) 方程2n x x x m = 1+++(,n m N *∈)的非负整数解有 11n m n C +--个.(3) 方程2n x x x m = 1+++(,n m N *∈)满足条件i x k ≥(k N *∈,21i n ≤≤-)的非负整数解有11(2)(1)m n n k C +----个.(4) 方程2n x x x m = 1+++(,n m N *∈)满足条件i x k ≤(k N *∈,21i n ≤≤-)的正整数解有12222321(2)11121221(1)n m n m n k n m n k n m n k n n n n n n C C C C C C C +--+---+---+---------+-+- 个.161.二项式定理nn n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+--- 222110)( ;二项展开式的通项公式rr n r n r b a C T -+=1)210(n r ,,,=. 162.等可能性事件的概率()mP A n=. 163.互斥事件A ,B 分别发生的概率的和 P(A +B)=P(A)+P(B).164.n 个互斥事件分别发生的概率的和P(A 1+A 2+…+A n )=P(A 1)+P(A 2)+…+P(A n ). 165.独立事件A ,B 同时发生的概率 P(A ·B)= P(A)·P(B).166.n 个独立事件同时发生的概率P(A 1· A 2·…· A n )=P(A 1)· P(A 2)·…· P(A n ). 167.n 次独立重复试验中某事件恰好发生k 次的概率()(1).k kn k n n P k C P P -=-168.离散型随机变量的分布列的两个性质 (1)0(1,2,)i P i ≥= ; (2)121P P ++= . 169.数学期望1122n n E x P x P x P ξ=++++170.数学期望的性质(1)()()E a b aE b ξξ+=+. (2)若ξ~(,)B n p ,则E np ξ=.。
(word完整版)高中数学书本基础定理和公式(有拓展)
高中数学常用公式及结论1 元素与集合的关系:xA xC u A,xC u A x A. ? A A2集合佝旦丄,%}的子集个数共有2n个;真子集有2n1个;非空子集有2n1个;非空的真子集有2n2个.3二次函数的解析式的三种形式:⑴一般式f(x) ax2 bx c(a 0);(2) 顶点式f(x) a(x h)2 k(a 0);(当已知抛物线的顶点坐标(h,k)时,设为此式)(3) 零点式f (x) a(x xj(x x2)(a 0);(当已知抛物线与x轴的交点坐标为(x1,0),( X2,0)时,设为此式)(4) 切线式:f (x) a(x x。
)2 (kx d),(a 0)。
(当已知抛物线与直线y kx d相切且切点的横坐标为x0时,设为此式)4真值表:同真且真,同假或假5常见结论的否定形式;原结论反设词原结论反设词是不是至少有一个[一个也没有都是不都是至多有一个至少有两个大于不大于至少有n个[至多有(n 1)个小于不小于至多有n个至少有(n 1)个对所有X,成立存在某x,不成立p或q p且q对任何x,不成立存在某x,成立p且q p或q6四种命题的相互关系(下图):(原命题与逆否命题同真同假;逆命题与否命题同真同假.)充要条件:(1)、p q,则P是q的充分条件,反之,q是p的必要条件;(2) 、p q,且q工> p,则P是q的充分不必要条件;(3) 、p H > p,且q p,则P是q的必要不充分条件;4、p H > p,且q H > p,贝U P是q的既不充分又不必要条件。
7函数单调性:增函数:(1)、文字描述是:y随x的增大而增大。
(2)、数学符号表述是:设f (x)在x D上有定义,若对任意的x1,x2 D,且x1 X2,都有f(Xi) f(x2)成立,则就叫f (X )在x D 上是增函数。
D 则就是f (x )的递增区间。
减函数:(i)、文字描述是:y 随x 的增大而减小。
高中所有数学公式整理
判别
式
求根
公式
韦达
定理
2、指数:
分数
指数
① ②
运算
性质
① ②
③
3、对数:
性
质
公
式
①零和负数没有对数 ② ③ ④ ⑤
推论:换底公式:
推论: 换底公式:
运
算
法
则
① ②
③指数、对数的互化:
③ 指数、对数的互化:
4、数列
等
差
数
列
通项公式
① ② ③
前n项和
① ② ③
判定方法
① ② ③ ④
等
比
数
列
通项公式
① ② ③
前n项和
① ② ③
判定方法
① ②
5、代数和
平方差
立方和(差)
完全平方公式
完全立方公式
多项式乘法
6.三角函数
正 弦
定 理
(R为 外接圆的半径)
余弦定理
同角三角
函数关系
平方关系:倒数关系:商数关系:=
两角和差
二倍角
7、简单几何重要、特殊面积、体积公式
(由正弦定理得)
(海伦公式, )
弧长
8、直线:
点 到直线的距离
平行线距离公式
弦长公式
=
9、导数
定义
常用公式
① (C为常数) ② ③ ④
⑤ ⑥ ⑦ ⑧
运算法则
① ② ③
10、排列、组合、二次项定理
排列数公式
==(,∈N*, 且)
组合数公式
= = =组合数性质=Fra bibliotek+ =
二项式定理
展开式通项
规定
高中数学公式大全(完整版)
高中数学常用公式及常用结论1。
元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.2.德摩根公式();()U U U U U U C A B C A C B C A B C A C B ==.3。
包含关系A B A A B B =⇔=U U A B C B C A ⇔⊆⇔⊆ U A C B ⇔=ΦU C A B R ⇔=4。
容斥原理()()card A B cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++-()()()()card A B card B C card CA card ABC ---+.5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n–2个。
6。
二次函数的解析式的三种形式 (1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式()N f x M <<⇔[()][()]0f x M f x N --<⇔|()|22M N M Nf x +--<⇔()0()f x N M f x ->- ⇔11()f x N M N>--。
8。
方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条件。
特别地, 方程)0(02≠=++a c bx ax 有且只有一个实根在),(21k k 内,等价于0)()(21<k f k f ,或0)(1=k f 且22211k k a bk +<-<,或0)(2=k f 且22122k abk k <-<+. 9.闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下:(1)当a 〉0时,若[]q p abx ,2∈-=,则{}min max max ()(),()(),()2bf x f f x f p f q a=-=; []q p abx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a 〈0时,若[]q p abx ,2∈-=,则{}min ()min (),()f x f p f q =,若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =。
高中数学公式大全(完整版)
⾼中数学公式⼤全(完整版)⾼中数学常⽤公式及常⽤结论1.元素与集合的关系,.2.德摩根公式.3.包含关系4.容斥原理.5.集合的⼦集个数共有个;真⼦集有–1个;⾮空⼦集有–1个;⾮空的真⼦集有–2个.6.⼆次函数的解析式的三种形式(1)⼀般式;(2)顶点式;(3)零点式.7.解连不等式常有以下转化形式.8.⽅程在上有且只有⼀个实根,与不等价,前者是后者的⼀个必要⽽不是充分条件.特别地,⽅程有且只有⼀个实根在内,等价于,或且,或且.9.闭区间上的⼆次函数的最值⼆次函数在闭区间上的最值只能在处及区间的两端点处取得,具体如下:(1)当a>0时,若,则;,,.(2)当a<0时,若,则,若,则,.10.⼀元⼆次⽅程的实根分布依据:若,则⽅程在区间内⾄少有⼀个实根.设,则(1)⽅程在区间内有根的充要条件为或;(2)⽅程在区间内有根的充要条件为或或或;(3)⽅程在区间内有根的充要条件为或.11.定区间上含参数的⼆次不等式恒成⽴的条件依据(1)在给定区间的⼦区间(形如,,不同)上含参数的⼆次不等式(为参数)恒成⽴的充要条件是.(2)在给定区间的⼦区间上含参数的⼆次不等式(为参数)恒成⽴的充要条件是.(3)恒成⽴的充要条件是或.12.真值表pq⾮pp或qp且q真真假真真真假假真假假真真真假假假真假假 13.常见结论的否定形式原结论反设词原结论反设词是不是⾄少有⼀个⼀个也没有都是不都是⾄多有⼀个⾄少有两个⼤于不⼤于⾄少有个⾄多有()个⼩于不⼩于⾄多有个⾄少有()个对所有,成⽴存在某,不成⽴或且对任何,不成⽴存在某,成⽴且或14.四种命题的相互关系原命题互逆逆命题若p则q若q则p互互互为为互否否逆逆否否否命题逆否命题若⾮p则⾮q互逆若⾮q则⾮p15.充要条件(1)充分条件:若,则是2)必要条件:若是.(3)充要条件:若,则是.注:如果甲是⼄的充分条件,则⼄是甲的必要条件;反之亦然.16.函数的单调性(1)设那么上是增函数;上是减函数.(2)设函数在某个区间内可导,如果,则为增函数;如果,则为减函数.17.如果函数和都是减函数,则在公共定义域内,和函数也是减函数;如果函数和在其对应的定义域上都是减函数,则复合函数是增函数.18.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果⼀个函数的图象关于原点对称,那么这个函数是奇函数;如果⼀个函数的图象关于y轴对称,那么这个函数是偶函数.19.若函数是偶函数,则;若函数是偶函数,则.20.对于函数(),恒成⽴,则函数的对称轴是函数;两个函数与的图象关于直线对称.21.若,则函数的图象关于点对称;若,则函数为周期为的周期函数.22.多项式函数的奇偶性多项式函数是奇函数的偶次项(即奇数项)的系数全为零.多项式函数是偶函数的奇次项(即偶数项)的系数全为零.23.函数的图象的对称性(1)函数的图象关于直线对称.(2)函数的图象关于直线对称.24.两个函数图象的对称性(1)函数与函数的图象关于直线(即轴)对称.(2)函数与函数的图象关于直线对称.(3)函数和的图象关于直线y=x对称.25.若将函数的图象右移、上移个单位,得到函数的图象;若将曲线的图象右移、上移个单位,得到曲线的图象.26.互为反函数的两个函数的关系.27.若函数存在反函数,则其反函数为,并不是,⽽函数是的反函数.28.⼏个常见的函数⽅程(1)正⽐例函数,.(2)指数函数,.(3)对数函数,.(4)幂函数,.(5)余弦函数,正弦函数,,.29.⼏个函数⽅程的周期(约定a>0)(1),则的周期T=a;(2),或,或,或,则的周期T=2a;(3),则的周期T=3a;(4)且,则的周期T=4a;(5),则的周期T=5a;(6),则的周期T=6a.30.分数指数幂(1)(,且).(2)(,且).31.根式的性质(1).(2)当为奇数时,;当为偶数时,.32.有理指数幂的运算性质(1).(2).(3).注:若a>0,p是⼀个⽆理数,则ap表⽰⼀个确定的实数.上述有理指数幂的运算性质,对于⽆理数指数幂都适⽤.33.指数式与对数式的互化式.34.对数的换底公式(,且,,且,).推论(,且,,且,,).35.对数的四则运算法则若a>0,a≠1,M>0,N>0,则(1);(2);(3).36.设函数,记.若的定义域为,则,且;若的值域为,则,且.对于的情形,需要单独检验.37.对数换底不等式及其推⼴若,,,,则函数(1)当时,在和上为增函数.,(2)当时,在和上为减函数.推论:设,,,且,则(1).(2).38.平均增长率的问题如果原来产值的基础数为N,平均增长率为,则对于时间的总产值,有.39.数列的同项公式与前n项的和的关系(数列的前n项的和为).40.等差数列的通项公式;其前n项和公式为.41.等⽐数列的通项公式;其前n项的和公式为或.42.等⽐差数列:的通项公式为;其前n项和公式为.43.分期付款(按揭贷款)每次还款元(贷款元,次还清,每期利率为). 44.常见三⾓不等式(1)若,则.(2)若,则.(3).45.同⾓三⾓函数的基本关系式,=,.46.正弦、余弦的诱导公式47.和⾓与差⾓公式;;.(平⽅正弦公式);.=(辅助⾓所在象限由点的象限决定,).48.⼆倍⾓公式...49.三倍⾓公式...50.三⾓函数的周期公式函数,x∈R及函数,x∈R(A,ω,为常数,且A≠0,ω>0)的周期;函数,(A,ω,为常数,且A≠0,ω>0)的周期.51.正弦定理?.52.余弦定理;;.53.⾯积定理(1)(分别表⽰a、b、c边上的⾼).(2).(3).54.三⾓形内⾓和定理在△ABC中,有.55.简单的三⾓⽅程的通解...特别地,有...56.最简单的三⾓不等式及其解集......57.实数与向量的积的运算律设λ、µ为实数,那么(1)结合律:λ(µa)=(λµ)a;(2)第⼀分配律:(λ+µ)a=λa+µa;(3)第⼆分配律:λ(a+b)=λa+λb.58.向量的数量积的运算律:(1)a·b=b·a(交换律);(2)(a)·b=(a·b)=a·b=a·(b);(3)(a+b)·c=a·c+b·c.59.平⾯向量基本定理?如果e1、e2是同⼀平⾯内的两个不共线向量,那么对于这⼀平⾯内的任⼀向量,有且只有⼀对实数λ1、λ2,使得a=λ1e1+λ2e2.不共线的向量e1、e2叫做表⽰这⼀平⾯内所有向量的⼀组基底.60.向量平⾏的坐标表⽰??设a=,b=,且b0,则ab(b0).53.a与b的数量积(或内积)a·b=|a||b|cosθ.61.a·b的⼏何意义数量积a·b等于a的长度|a|与b在a的⽅向上的投影|b|cosθ的乘积.62.平⾯向量的坐标运算(1)设a=,b=,则a+b=.(2)设a=,b=,则a-b=.(3)设A,B,则.(4)设a=,则a=.(5)设a=,b=,则a·b=.63.两向量的夹⾓公式(a=,b=).64.平⾯两点间的距离公式=(A,B).65.向量的平⾏与垂直设a=,b=,且b0,则A||bb=λa.ab(a0)a·b=0.66.线段的定⽐分公式?设,,是线段的分点,是实数,且,则().67.三⾓形的重⼼坐标公式△ABC三个顶点的坐标分别为、、,则△ABC的重⼼的坐标是.68.点的平移公式.注:图形F上的任意⼀点P(x,y)在平移后图形上的对应点为,且的坐标为.69.“按向量平移”的⼏个结论(1)点按向量a=平移后得到点.(2)函数的图象按向量a=平移后得到图象,则的函数解析式为.(3)图象按向量a=平移后得到图象,若的解析式,则的函数解析式为.(4)曲线:按向量a=平移后得到图象,则的⽅程为.(5)向量m=按向量a=平移后得到的向量仍然为m=.70.三⾓形五“⼼”向量形式的充要条件设为所在平⾯上⼀点,⾓所对边长分别为,则(1)为的外⼼.(2)为的重⼼.(3)为的垂⼼.(4)为的内⼼.(5)为的的旁⼼.71.常⽤不等式:(1)(当且仅当a=b时取“=”号).(当且仅当a=b时取“=”号).(4)柯西不等式(5).72.极值定理已知都是正数,则有(1)若积是定值,则当时和有最⼩值;(2)若和是定值,则当时积有最⼤值.推⼴已知,则有(1)若积是定值,则当最⼤时,最⼤;当最⼩时,最⼩.(2)若和是定值,则当最⼤时,最⼩;当最⼩时,最⼤.73.⼀元⼆次不等式,如果与同号,则其解集在两根之外;如果与异号,则其解集在两根之间.简⾔之:同号两根之外,异号两根之间.;.74.含有绝对值的不等式a>0时,有.或.75.⽆理不等式(1).(2).(3).76.指数不等式与对数不等式(1)当时,;.(2)当时,;77.斜率公式(、.78.直线的五种⽅程(1)点斜式直线过点,且斜率为.斜截式b为直线在y轴上的截距.(3)两点式)(、()(分别为直线的横、纵截距,)(5)⼀般式(其中A、B不同时为0)平⾏和垂直,①;②.(2)若,,且A1、A2、B1、B2都不为零,①;②;80.夹⾓公式(1).(,,)(2).(,,).直线时,直线l1与l2的夹⾓是.到的⾓公式(1).(,,)(2).(,,).直线时,直线l1l2的⾓是.(1)定点直线系⽅程:经过定点的直线系⽅程为(除直线),其中是待定的系数;经过定点的直线系⽅程为,其中是待定的系数.(2)共点直线系⽅程:经过两直线,的交点的直线系⽅程为(除),其中λ是待定的系数.(3)平⾏直线系⽅程:直线中当斜率k⼀定⽽b变动时,表⽰平⾏直线系⽅程.与直线平⾏的直线系⽅程是(),λ是参变量.(4)垂直直线系⽅程:与直线(A≠0,B≠0)垂直的直线系⽅程是,λ是参变量.83.点到直线的距离(点,直线).时,表⽰直线的下⽅的区域,当与同号时,表⽰直线的右⽅的区域与异号时,表⽰直线的左⽅的区域或所表⽰的平⾯区域(),则或所表⽰的平⾯区域所表⽰的平⾯区域所表⽰的平⾯区域.圆的⽅程圆的标准⽅程(2)圆的⼀般⽅程(>0).圆的.(4)圆的⽅程(圆的直径的端点是、).,的圆系⽅程是,其中是直线的⽅程,λ是待定的系数.(2)过直线:与圆:的交点的圆系⽅程是,λ是待定的系数.(3)过圆:与圆:的交点的圆系⽅程是,λ是待定的系数.88.点与圆的位置关系点与圆的位置关系有三种若,则点在圆外;点在圆上;点在圆内.89.直线与圆的位置关系直线与圆的位置关系有三种:;;.其中.90.两圆位置关系的判定⽅法设两圆圆⼼分别为O1,O2,半径分别为r1,r2,;;;;.91.圆的切线⽅程(1)已知圆.①若已知切点在圆上,则切线只有⼀条,其⽅程是.当圆外时,表⽰过两个切点的切点弦⽅程.于y轴的切线.③斜率为k的切线⽅程可设为,再利⽤相切条件求b,必有两条切线.(2)已知圆.①过圆上的点的切线⽅程为;②斜率为的圆的切线⽅程为.92.椭圆.93.椭圆,.94.椭圆的在椭圆.(2)点在椭圆.95.椭圆上⼀点处的切线⽅程是.(2)过椭圆外⼀点所引两条切线的切点弦⽅程是.(3)椭圆与直线相切的条件是.96.双曲线的焦半径公式,.97.双曲线在双曲线的内部.(2)点在双曲线的外部.98.双曲线渐近线⽅程:.(2)若渐近线⽅程为双曲线可设为.(3)若双曲线与有公共渐近线,可设为(,焦点在x轴上,,焦点在y轴上).99.双曲线的切线⽅程(1)双曲线上⼀点处的切线⽅程是.(2)过双曲线外⼀点所引两条切线的切点弦⽅程是.(3)双曲线与直线相切的条件是.100.抛物线的焦半径公式抛物线焦半径.过焦点弦长.101.抛物线上的动点可设为P或P,其中.102.⼆次函数的图象是抛物线;(2)焦点的坐标为;(3)准线⽅程是. 103.抛物线的内外部(1)点在抛物线的内部.点在抛物线的外部.(2)点在抛物线的内部.点在抛物线的外部.(3)点在抛物线的内部.点在抛物线的外部.(4)点在抛物线的内部.点在抛物线的外部.104.抛物线的切线⽅程(1)抛物线上⼀点处的切线⽅程是.(2)过抛物线外⼀点所引两条切线的切点弦⽅程是.(3)抛物线与直线相切的条件是.105.两个常见的曲线系⽅程(1)过曲线,的交点的曲线系⽅程是(为参数).(2)共焦点的有⼼圆锥曲线系⽅程,其中.当时,表⽰椭圆;当时,表⽰双曲线. 106.直线与圆锥曲线相交的弦长公式或(弦端点A,由⽅程消去y得到,,为直线的倾斜⾓,为直线的斜率). 107.圆锥曲线的两类对称问题(1)曲线关于点成中⼼对称的曲线是.(2)曲线关于直线成轴对称的曲线是.108.“四线”⼀⽅程对于⼀般的⼆次曲线,⽤代,⽤代,⽤代,⽤代,⽤代即得⽅程,曲线的切线,切点弦,中点弦,弦中点⽅程均是此⽅程得到. 109.证明直线与直线的平⾏的思考途径(1)转化为判定共⾯⼆直线⽆交点;(2)转化为⼆直线同与第三条直线平⾏;(3)转化为线⾯平⾏;(4)转化为线⾯垂直;(5)转化为⾯⾯平⾏.110.证明直线与平⾯的平⾏的思考途径(1)转化为直线与平⾯⽆公共点;(2)转化为线线平⾏;(3)转化为⾯⾯平⾏.111.证明平⾯与平⾯平⾏的思考途径(1)转化为判定⼆平⾯⽆公共点;(2)转化为线⾯平⾏;(3)转化为线⾯垂直.112.证明直线与直线的垂直的思考途径(1)转化为相交垂直;(2)转化为线⾯垂直;(3)转化为线与另⼀线的射影垂直;(4)转化为线与形成射影的斜线垂直.113.证明直线与平⾯垂直的思考途径(1)转化为该直线与平⾯内任⼀直线垂直;(2)转化为该直线与平⾯内相交⼆直线垂直;(3)转化为该直线与平⾯的⼀条垂线平⾏;(4)转化为该直线垂直于另⼀个平⾏平⾯;(5)转化为该直线与两个垂直平⾯的交线垂直.114.证明平⾯与平⾯的垂直的思考途径(1)转化为判断⼆⾯⾓是直⼆⾯⾓;(2)转化为线⾯垂直.115.空间向量的加法与数乘向量运算的运算律(1)加法交换律:a+b=b+a.(2)加法结合律:(a+b)+c=a+(b+c).(3)数乘分配律:λ(a+b)=λa+λb.116.平⾯向量加法的平⾏四边形法则向空间的推⼴始点相同且不在同⼀个平⾯内的三个向量之和,等于以这三个向量为棱的平⾏六⾯体的以公共始点为始点的对⾓线所表⽰的向量.117.共线向量定理对空间任意两个向量a、b(b≠0),a∥b存在实数λ使a=λb.、共线且不共线且不共线.118.共⾯向量定理向量p与两个不共线的向量a、b共⾯的存在实数对,使.推论空间⼀点P位于平⾯MAB内的存在有序实数对,使,或对空间任⼀定点O,有序实数对,使.119.对空间任⼀点和不共线的三点A、B、C,满⾜(),则当时,对于空间任⼀点,总有P、A、B、C四点共⾯;当时,若平⾯ABC,则P、A、B、C四点共⾯;若平⾯ABC,则P、A、B、C四点不共⾯.四点共⾯与、共⾯(平⾯ABC).120.空间向量基本定理如果三个向量a、b、c不共⾯,那么对空间任⼀向量p,存在⼀个唯⼀的有序实数组x,y,z,使p=xa+yb+zc.推论设O、A、B、C是不共⾯的四点,则对空间任⼀点P,都存在唯⼀的三个有序实数x,y,z,使.121.射影公式已知向量=a和轴,e是上与同⽅向的单位向量.作A点在上的射影,作B点在上的射影,则〈a,e〉=a·e122.向量的直⾓坐标运算设a=,b=则(1)a+b=;(2)a-b=;(3)λa=(λ∈R);(4)a·b=;123.设A,B,则=.124.空间的线线平⾏或垂直设,,则;.125.夹⾓公式设a=,b=,则推论,此即三维柯西不等式.126.四⾯体的对棱所成的⾓四⾯体中,与所成的⾓为,则.127.异⾯直线所成⾓=(其中()为异⾯直线所成⾓,分别表⽰异⾯直线的⽅向向量)128.直线与平⾯所成⾓(为平⾯的法向量).129.若所在平⾯若与过若的平⾯成的⾓,另两边,与平⾯成的⾓分别是、,为的两个内⾓,则.特别地,当时,有.130.若所在平⾯若与过若的平⾯成的⾓,另两边,与平⾯成的⾓分别是、,为的两个内⾓,则.特别地,当时,有.131.⼆⾯⾓的平⾯⾓或(,为平⾯,的法向量).132.三余弦定理设AC是α内的任⼀条直线,且BC⊥AC,垂⾜为C,⼜设AO与AB所成的⾓为,AB与AC所成的⾓为,AO与AC所成的⾓为.则.133.三射线定理若夹在平⾯⾓为的⼆⾯⾓间的线段与⼆⾯⾓的两个半平⾯所成的⾓是,,与⼆⾯⾓的棱所成的⾓是θ,则有;(当且仅当时等号成⽴).134.空间两点间的距离公式若A,B,则=.135.点到直线距离136.异⾯直线间的距离(是两异⾯直线,其公垂向量为,分别是上任⼀点,为间的距离).137.点到平⾯的距离(为平⾯的法向量,是经过⾯的⼀条斜线,).138.异⾯直线上两点距离公式..().(两条异⾯直线a、b所成的⾓为θ,其公垂线段的长度为h.在直线a、b上分别取两点E、F,,,). 139.三个向量和的平⽅公式140.长度为的线段在三条两两互相垂直的直线上的射影长分别为,夹⾓分别为,则有.(⽴体⼏何中长⽅体对⾓线长的公式是其特例).141.⾯积射影定理.(平⾯多边形及其射影的⾯积分别是、,它们所在平⾯所成锐⼆⾯⾓的为).142.斜棱柱的直截⾯已知斜棱柱的侧棱长是,侧⾯积和体积分别是和,它的直截⾯的周长和⾯积分别是和,则①.②.143.作截⾯的依据三个平⾯两两相交,有三条交线,则这三条交线交于⼀点或互相平⾏.144.棱锥的平⾏截⾯的性质如果棱锥被平⾏于底⾯的平⾯所截,那么所得的截⾯与底⾯相似,截⾯⾯积与底⾯⾯积的⽐等于顶点到截⾯距离与棱锥⾼的平⽅⽐(对应⾓相等,对应边对应成⽐例的多边形是相似多边形,相似多边形⾯积的⽐等于对应边的⽐的平⽅);相应⼩棱锥与⼩棱锥的侧⾯积的⽐等于顶点到截⾯距离与棱锥⾼的平⽅⽐.145.欧拉定理(欧拉公式)(简单多⾯体的顶点数V、棱数E和⾯数F).(1)=各⾯多边形边数和的⼀半.特别地,若每个⾯的边数为的多边形,则⾯数F与棱数E的关(2)若每个顶点引出的棱数为,则顶点数V与棱数E的关系:. 146.球的半径是R,则其体积,其表⾯积.的正四⾯体的内切球的半径为,外接球的半径为. 148.柱体、锥体的体积(是柱体的底⾯积、是柱体的⾼).(是锥体的底⾯积、是锥体的⾼).149.分类计数原理(加法原理).150.分步计数原理(乘法原理).151.排列数公式==.(,∈N,且).注:规定.152.排列恒等式(1);(2);(3);(4);(5).(6).153.组合数公式===(∈N,,且).154.组合数的两个性质(1)=;(2)+=.注:规定.155.组合恒等式(1);(2);(4)=;(5).(6).(7).(8).(9).(10).156.排列数与组合数的关系.157.单条件排列以下各条的⼤前提是从个元素中取个元素的排列.(1)“在位”与“不在位”①某(特)元必在某位有种;②某(特)元不在某位有(补集思想)(着眼位置)(着眼元素)种.(2)紧贴与插空(即相邻与不相邻)①定位紧贴:个元在固定位的排列有种.②浮动紧贴:个元素的全排列把k个元排在⼀起的排法有种.注:此类问题常⽤捆绑法;③插空:两组元素分别有k、h个(),把它们合在⼀起来作全排列,k个的⼀组互不能挨近的所有排列数有种.(3)两组元素各相同的插空个⼤球个⼩球排成⼀列,⼩球必分开,问有多少种排法?当时,⽆解;当时,有种排法.(4)两组相同元素的排列:两组元素有m个和n个,各组元素分别相同的排列数为.158.分配问题(1)(平均分组有归属问题)将相异的、个物件等分给个⼈,各得件,其分配⽅法数共有.(2)(平均分组⽆归属问题)将相异的·个物体等分为⽆记号或⽆顺序的堆,其分配⽅法数共有.(3)(⾮平均分组有归属问题)将相异的个物体分给个⼈,物件必须被分完,分别得到,,…,件,且,,…,这个数彼此不相等,则其分配⽅法数共有.(4)(⾮完全平均分组有归属问题)将相异的个物体分给个⼈,物件必须被分完,分别得到,,…,件,且,,…,这个数中分别有a、b、c、…个相等,则其分配⽅法数有.(5)(⾮平均分组⽆归属问题)将相异的个物体分为任意的,,…,件⽆记号的堆,且,,…,这个数彼此不相等,则其分配⽅法数有.(6)(⾮完全平均分组⽆归属问题)将相异的个物体分为任意的,,…,件⽆记号的堆,且,,…,这个数中分别有a、b、c、…个相等,则其分配⽅法数有.(7)(限定分组有归属问题)将相异的()个物体分给甲、⼄、丙,……等个⼈,物体必须被分完,如果指定甲得件,⼄得件,丙得件,…时,则⽆论,,…,等个数是否全相异或不全相异其分配⽅法数恒有.159.“错位问题”及其推⼴贝努利装错笺问题:信封信与个信封全部错位的组合数为.推⼴:个元素与个位置,其中⾄少有个元素错位的不同组合总数为.160.不定⽅程的解的个数(1)⽅程()的正整数解有个.(2)⽅程()的⾮负整数解有个.(3)⽅程()满⾜条件(,)的⾮负整数解有个.(4)⽅程()满⾜条件(,)的正整数解有个.161.⼆项式定理;⼆项展开式的通项公式.162.等可能性事件的概率.163.互斥事件A,B分别发⽣的概率的和P(A+B)=P(A)+P(B).164.个互斥事件分别发⽣的概率的和P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An).165.独⽴事件A,B同时发⽣的概率P(A·B)=P(A)·P(B).166.n个独⽴事件同时发⽣的概率P(A1·A2·…·An)=P(A1)·P(A2)·…·P(An).167.n次独⽴重复试验中某事件恰好发⽣k次的概率168.离散型随机变量的分布列的两个性质(1);(2).169.数学期望170.数学期望的性质(1).(2)若~,则.(3)若服从⼏何分布,且,则.171.⽅差172.标准差=.173.⽅差的性质(1);)~,则.(3)若服从⼏何分布,且,则.174.⽅差与期望的关系.175.正态分布密度函数,式中的实数µ,(>0)是参数,分别表⽰个体的平均数与标准差. 176.标准正态分布密度函数.177.对于,取值⼩于x的概率..178.回归直线⽅程,其中.179.相关系数.|r|≤1,且|r|越接近于1,相关程度越⼤;|r|越接近于0,相关程度越⼩.180.特殊数列的极限(1).(2).(3)(⽆穷等⽐数列()的和).181.函数的极限定理.182.函数的夹逼性定理如果函数f(x),g(x),h(x)在点x0的附近满⾜:(1);(2)(常数),则.本定理对于单侧极限和的情况仍然成⽴. 183.⼏个常⽤极限(1),();(2),.184.两个重要的极限(1);(2)(e=2.718281845…).185.函数极限的四则运算法则若,,则(1);(2);(3).186.数列极限的四则运算法则若,则(1);(2);(3)(4)(c是常数).187.在处的导数(或变化率或微商).188.瞬时速度.189.瞬时加速度.190.在的导数.191.函数在点处的导数的⼏何意义函数在点处的导数是曲线在处的切线的斜率,相应的切线⽅程是.192.⼏种常见函数的导数(1)(C为常数).(2).(3).(4).(5);.(6);.193.导数的运算法则(1).(2).(3).194.复合函数的求导法则设函数在点处有导数,函数在点处的对应点U处有导数,则复合函数在点处有导数,且,或写作.195.常⽤的近似计算公式(当充⼩时)(1);;(2);;(3);(4);(5)(为弧度);(6)(为弧度);(7)(为弧度)196.判别是极⼤(⼩)值的⽅法当函数在点处连续时,(1)如果在附近的左侧,右侧,则是极⼤值;(2)如果在附近的左侧,右侧,则是极⼩值.197.复数的相等.()198.复数的模(或绝对值)==.199.复数的四则运算法则(1);(2);(3);(4).200.复数的乘法的运算律对于任何,有交换律:.结合律:.分配律:.201.复平⾯上的两点间的距离公式(,).202.向量的垂直⾮零复数,对应的向量分别是,,则的实部为零为纯虚数(λ为⾮零实数).203.实系数⼀元⼆次⽅程的解实系数⼀元⼆次⽅程,①若,则;②若,则;③若,它在实数集内没有实数根;在复数集内有且仅有两个共轭复数根. (n为偶数)(n为奇数) (n为偶数) (n为奇数)。
高中数学重要公式定律
高中数学重要公式定律1.指数(1)分数指数幂①nm nm a a =()1,,,0*>∈>n Nn m a 且②n m n m nm aa a 11-==()1,,,0*>∈>n Nn m a 且③0的正分数指数幂等于0;0的负分数指数幂没有意义。
(2)运算的性质:设Qs ,r ,b<a>∈,00①s r s r a a a +=sr s r aa a +=②r-s s r a aa =③()rssr a a =④()r r r b a ab =⑤rb r a rb a =⎪⎭⎫⎝⎛2.对数(1)性质:①()101log ≠>=,a a a a ②()1001log ≠>=,a a a (2)常用对数:N N lg log 10=;自然对数:N N e In log =(3)运算性质:设1000≠>>>,a ,a ,N M 那么:①()N M MN a a a log log log +=②N M Ma a alog log log -=③()R n M n M a a ∈=log log n (4)常用公式设0011000≠≠≠≠>>>,n ,m ,b ,a ,b ,a N①对数恒等式:N a N a =log ②换底公式:bN N a a b log log log =③ab b a log 1log =3.空间几何体公式(1)侧面积公式:①πrl S 2圆柱侧=②πrl S =圆锥侧③()l r r πS '+=圆台侧(2)表面积公式:①()l r πr S +=2圆柱②2圆锥πr πrl S +=③()rl l r r r πS ''+++=22圆台④2R 4πS =球(3)体积公式:①Sh V =棱柱②hπr V 2圆柱=③ShV 1棱柱=()''S SS S h V ++=1棱台④h πr V 2圆锥31=()22圆台31r'rr r πh V '++=⑤3球34πR V =4.直线与平面之间的平行与垂直(1)空间两直线平行的判定:①c a c b b a //////⇒⎭⎬⎫②b a b a //⇒⎭⎬⎫⊥⊥αα③ba b a //⇒⎭⎬⎫=⊂βαβ ④a//bb βγa αγ⇒⎭⎬⎫== (2)空间两直线垂直的判定:①b a b a a ⊥⇒⎪⎭⎪⎬⎫⊂⊥ααα//②b l a l b a ⊥⇒⎪⎭⎪⎬⎫⊥////βα(3)直线与平面平行的判定:①ααα////a b a b a ⇒⎪⎭⎪⎬⎫⊂⊄②βαβα////a a ⎭⎬⎫⊂(4)直线与平面平行的性质:b a b a a ////⇒⎪⎭⎪⎬⎫=⊂βααβ(5)直线与平面垂直的判定:①ααα⊥⇒⎪⎭⎪⎬⎫⊥⊥=⊂⊂l n l m l B n m n m ,, ②αα⊥⇒⎭⎬⎫⊥b a b a //(6)直线与平面垂直的性质:b a b a //⇒⎭⎬⎫⊥⊥αα(7)平面与平面平行的判定:①βαααββ////,//,⇒⎪⎭⎪⎬⎫=⊂⊂A b a b a b a ②βαβα//⇒⎭⎬⎫⊥⊥a a ③βαγβγα//////⇒⎭⎬⎫(8)平面与平面平行的性质:b a b a ////⇒⎪⎭⎪⎬⎫==γβγαβα (9)平面与平面垂直的判定:①βαβα⊥⇒⎭⎬⎫⊥⊂a a ②二面角的平面角90=θ(10)平面与平面垂直的性质:①βαβαβα⊥⇒⎭⎬⎫⊥⊂=⊥a b a a b ,, ②αββαα⊂⇒⎭⎬⎫⊥⊥∈∈a a A a A ,,5.直线、圆与方程(1)直线的斜率公式:()211212x x x x y y k ≠--=(2)直线方程:①点斜式:()00x x k y y -=-②斜截式:b kx y +=③两点式:121121x x x x y y y y --=--④截距式:()01≠=+ab bya x ⑤一般式:()0022≠+=++B A C By Ax (3)两条直线的位置关系:①()()2121222111且平行b b k k b x k y l b x k y l ≠=+=+=:与②()()1垂直21222111-=+=+=k :k b x k y 与l b x k y l ③2121212222111100C CB B A A :)C y B x (A l )C y B x (A l ≠==++=++平行与④000212122221111=+=++=++B B A :A )C y B x (A l )C y B x (A l 垂直与(4)距离公式:①两点间距离:()()21221221y y x x P P -+-=②点到直线的距离:2200B A CBy Ax d +++=③两平行线间的距离:2212B A C C d +-=(5)圆的方程:①圆的标准方程:()()222r b y a x =-+-,其中圆心为()b a ,,半径为r②圆的一般方程:FE D r E DF E D F Ey Dx y x 421,2,2,04,0222222-+=⎪⎭⎫⎝⎛-->-+=++++半径为圆心为其中(6)空间直角坐标系:①空间中的点与原点的距离公式:222z y x OP ++=②空间中任意两点的距离公式:()()()22122122121z z y y x x P P -+-+-=③空间的中点坐标公式:⎪⎭⎫⎝⎛+++2,2,2212121z z y y x x 6.概率与统计(1)概率:①古典概型的概念公式:()nmA A P ==基本事件总数包含的基本事件数事件②几何概型的概率公式:()()()体积积或面的区域长区试验的全部结果所构成体积积或面的区域长区构成事件A A P =(2)统计①离散型随机变量的数学期望:()nn i i p x p x p x p x X E ++++=2211性质:()()()是常数b a b X aE b aX E ,+=+若X 服从两点分布,则()p X E =;若X 服从二项分布,即()p n B X ,~,则()npX E =②离散型随机变量的方差:()()()ini i p X E x X D ∑=-=12性质:()()()是常数b a X D a b aX D ,2=+若X 服从两点分布,则()()p p X D -=1若X 服从二项分布,即()p n B X ,~,则()()p np X D -=17.三角函数(1)弧度与角度的换算关系:①rad rad 017453.01==π②'18573.571801=≈⎪⎭⎫ ⎝⎛=πrad (2)弧长公式:rl α=扇形的面积公式:2211r lr S α==(3)同角三角函数的基本关系:①1cos sin 22=+αα②⎪⎭⎫⎝⎛∈+≠=z ,k πkπαααα2cos sin tan (4)三角函数的诱导公式:公式一:()απαsin 2sin =⋅+k ()απαcos 2cos =⋅+k ()()z k απk α∈=⋅+其中tan 2tan 公式二:()ααπsin sin -=+()ααπcos cos -=+()ααπtan tan =+公式三:()ααsin sin -=-()ααcos cos =-()ααtan tan -=-公式四:()ααπsin sin =-()ααπcos cos -=-()ααπtan tan -=-公式五:ααπcos 2sin =⎪⎭⎫⎝⎛-ααπsin 2cos =⎪⎭⎫⎝⎛-公式六:ααπcos 2sin =⎪⎭⎫⎝⎛+ααπsin 2cos -=⎪⎭⎫⎝⎛+8.平面向量(1)向量的坐标运算:设()()则,,,,,2211R y x b y x a ∈==λ①()2121,y y x x b a ±±=±②()()1111,,y x y x a λλλλ== ③2121cos y y x x b a b a +=⋅=⋅θ (2)平面向量的重要定理、公式:①平面向量基本定理:2211e e aλλ+=②两个向量平行的充要条件:()0//1221=-⇔=⇔≠y x y x b a b b aλ③两个非零向量垂直的充要条件:002121=+⇔=⋅⇔⊥y y x x b a b a④长度公式:()()⎧-+-=+=22122122y y x x y x a ⑤角度公式:()之间的夹角与为非零向量b a y x y x y y x x b a b aθcos 222221212121+⋅++=⋅⋅=θ9.三角恒等变换(1)两角和与差的三角函数:()βαβαβαsin cos cos sin sin ±=±()βαβαβαsin sin cos cos cos =±()βαβαβαtan tan 1tan tan tan ±=±()()πϕϕϕϕααα20cos ,sin ;sin cos sin 222222≤≤+=+=++=+ba a ba b b a b a 其中(2)二倍角公式:αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=ααα2tan 1tan 22tan -=(3)积化和差与和差化积公式:()()βαβαβα-++=sin sin cos sin 2()()βαβαβα--+=sin sin sin cos 2()()βαβαβα-++=cos cos cos cos 2()()βαβαβα--+=-cos cos sin sin 22cos 2sin 2sin sin βαβαβα-+=+sincos 2sin sin βαβαβα-+=-2cos2cos 2cos cos βαβαβα-+=+2sin2sin 2cos cos βαβαβα-+-=-(4)半角公式:2cos 1sinαα-±=2cos 1cosαα+±=αααααααcos 1sin sin cos 1cos 1cos 12tan+=-=+-±=10.解三角形(1)正弦定理:()的外接圆外接为2sin sin sin ΔABC R R CcB b A a ===(2)余弦定理:Abc c b a cos 2222-+=Bac c a b cos 2222-+=Cab b a c cos 2222-+=推理:bca cb A 2cos 222-+=acb c a B 2cos 222-+=abc b a C 2cos 222-+=(3)三角形的面积公式Cab B ac A bc S sin 21sin 21sin 21===∆11.数列(1)等差数列:通项公式:()dn a a n 11-+=中项公式:()成等差列,,2b A a b a A +=前n 项和公式:()()dn n na a a n S n n 21211-+=+=(2)等比数列:通项公式:11-=n n q a a 中项公式:abG =2()成等比数列,,b G a 前n 项和公式:()()()⎪⎩⎪⎨⎧=≠--=--=11111S 111n q na q q q a a q q a n n (3)n a 与n S 的关系:()()⎩⎨⎧=≥-=-1211n S n S S a n nn (4)常用求和公式:①()211+=∑=n n k nk ②()()612112++=∑=n n n k nk ③()2131⎥⎦⎤⎢⎣⎡+=∑=n n k nk 12.基本不等式(1)()时等号成立当且仅当b a ab b a =≥+222(2))时等号成立当且仅当b a ab ba =≥+(3)()()时等号成立当且仅当b a b a b a ba ab ba =>+≤+≤≤+0,,221122213.圆锥曲线与方程(1)椭圆:标准方程:()012222>>=+b a b y a x 离心率:()222,10b a c e ace -=<<=(2)双曲线:标准方程:()0,012222>>=-b a b y a x 离心率:()222,1b a c e ace +=>=(3)抛物线:标准方程:()022>=p px y 准线:2p x -=离心率:1=e 14.空间向量与立体几何(1)空间向量运算的坐标表示:设()()为实数,则,,,,,,222111λz y x b z y x a ==()212121,,z z y y x x b a +++=+()212121,,z z y y x x b a ---=-()111,,z y x a λλλλ=212121z z y y x x b a ++=⋅222222212121212121,cos z y x z y x z z y y x x ba b a b a ++⋅++++=⋅⋅=(2)空间向量的平行和垂直:()λλ===⇔=⇔≠2121210//z z y y x x b a b b a2121210z z y y x x b a b a ++⇔=⋅⇔⊥(3)空间两点的距离:()()()212212212z z y y x x -+-+-=15.导数及其应用(1)几种常见函数的导数:①()为常数0'c c =②()()0,1'≠∈=-n Q n nx x n n 且③()x x cos sin '=④()x x sin cos '-=⑤()x x e e ='⑥()()1,0'≠>=a a Ina a a x x 且⑦()()01'>=x x Inx ⑧()()1,0,01log '≠>>=a a x x a 且(2)导数的运算①()[]()[]()()x g x f x g x f '''±=±②()()[]()()()()x g x f x g x f x g x f '''+=⋅③()()()()()()()[]()()02'''≠-=⎥⎦⎤⎢⎣⎡x g x g x g x f x g x f x g x f (3)定积分的基本性质:①()()()为常数k dx x f k dx x kf ba b a ⎰⎰=②()()[]()()⎰⎰⎰±=±b a b a b a dx x f dx x f dx x f x f 2121③()()()()b c a dx x f dx x f dx x f bc c a b a <<+=⎰⎰⎰其中16.数系的扩充与复数的引入(1)复数:()R b a bi a z ∈+=,,其共轭复数为bia z -=(2)复数的代数运算12-=i i i -=314=i d b c a di c bi a ==⇔+=+,()()()()i d b c a di c bi a ±+±=+±+()()()()i ad bc bd ac di c bi a ++-=++()02222≠++-+++=++di c i ad bc bd ac bi a 17.记数原理(1)排列数公式:()()()()()n m N m n m n n m n n n n A m n ≤∈-=+---=且、,!!121* (2)组合数公式:()()()()()n m N m n m n m n m m n n n n A A C m m m n m n ≤∈-=+---==且、,!!!!121* (3)组合数与排列数的关系:()n m A C A m m m n m n≤⋅=(4)二项式定理()()*110N n b C b a C b a C a C b a n n n r r n r n n n n n n ∈+++++=+-- 通项公式:()n r b a C T r r n r nr ≤≤=-+01二项式系数的性质:①m n n m n C C -=②n n n n nC C C 210=+++ ③131202-=++=++n n n n nC C C C 特例:1!0=10=n C。
高中公式大全
高中公式大全高中阶段是学习数理化知识的关键时期,而掌握一些常用的数理化公式是非常重要的。
下面将为大家整理一份高中公式大全,帮助大家更好地学习和记忆这些重要的公式。
数学公式:1. 一元二次方程的根公式:对于方程ax^2+bx+c=0,其根的公式为x=(-b±√(b^2-4ac))/(2a)。
2. 三角函数的关系公式:包括正弦定理、余弦定理、正切定理等,用于求解三角形的各种问题。
3. 二项式定理:(a+b)^n的展开公式为∑(k=0)^n(C(n,k)a^(n-k)b^k)。
4. 等差数列的通项公式:对于公差为d的等差数列an=a1+(n-1)d。
5. 等比数列的通项公式:对于公比为q的等比数列an=a1*q^(n-1)。
6. 三角函数的导数公式:包括sin(x)的导数为cos(x),cos(x)的导数为-sin(x),tan(x)的导数为sec^2(x)等。
7. 积分的基本公式:包括定积分的计算公式,如∫f(x)dx=F(x)+C。
物理公式:1. 运动学公式:包括匀速直线运动公式、匀加速直线运动公式、自由落体运动公式等,用于描述物体运动的规律。
2. 牛顿定律:包括牛顿第一定律、牛顿第二定律、牛顿第三定律,用于描述物体受力和运动的关系。
3. 力学功和功率公式:功的公式为W=F·s·cosθ,功率的公式为P=W/t。
4. 万有引力定律:F=G*(m1*m2)/r^2,用于描述物体之间的引力关系。
5. 电学公式:包括欧姆定律、库仑定律、电场强度公式等,用于描述电流、电荷和电场的关系。
6. 磁学公式:包括洛伦兹力公式、磁感应强度公式、电磁感应公式等,用于描述磁场和电磁感应的关系。
化学公式:1. 摩尔定律:V1/n1=V2/n2,用于描述气体的摩尔关系。
2. 热力学公式:包括焓的计算公式、熵的计算公式、自由能的计算公式等,用于描述化学反应的热力学性质。
3. 化学平衡常数公式:Kc=[C]^c[D]^d/[A]^a[B]^b,用于描述化学平衡反应的平衡常数。
高中数学常用公式及定理
高中数学常用公式及定理1.熟悉这些解题小结论,启迪解题思路、探求解题佳径,防止解题易误点的产生,对提升数学成绩将会起到很大的作用。
2.所有定义、概念、公式、解题方法都须熟记,且应在弄清它们的来龙去脉后再熟记。
1.元素与集合的关系:U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.2.德摩根公式:();()U U U U U U C A B C A C B C A B C A C B ==.3.包含关系A B A A B B =⇔=U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=Φ()U C A B R ⇔= 4.容斥原理()()card A B cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++-()()()()card A B card B C card C A card A B C ---+.5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n -1个;非空子集有2n -1个;非空的真子集有2n -2个. 6.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)两根式12()()()(0)f x a x x x x a =--≠.7.解连不等式()N f x M <<常有以下转化形式:()N f x M <<⇔[()][()]0f x M f x N --<; 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程)0(02≠=++a c bx ax 有且只有一个实根在),(21k k 内,等价于“0)()(21<k f k f ”或“0)(1=k f 且22211k k ab k +<-<”或“0)(2=k f 且22122k ab kk <-<+”9.闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p a bx ,2∈-=,则{}min max max ()(),()(),()2b f x f f x f p f q a =-=; 若[]q p a bx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =.(2)当a<0时,若[]q p a bx ,2∈-=,则{}min ()min (),()f x f p f q =;若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =.10.一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 . 设2()f x x px q =++,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为()0f m <或2402()0p q p m f m ⎧-≥⎪⎪->⎨⎪≥⎪⎩ .(2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n >⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()02f m f n p m n ⎧⎪=⎪>⎨⎪⎪<-<⎩或()0()02f n f m p m n ⎧⎪=⎪>⎨⎪⎪<-<⎩ . (3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0fn <或2402()0p q pn f n ⎧-≥⎪⎪-<⎨⎪≥⎪⎩ . 11.定区间上含参数的二次不等式恒成立的条件依据:(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是min (,)0()f x t x L ≥∈.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≤(t 为参数)恒成立的充要条件是(,)0()man f x t x L ≤∈.(3)42()0(0)f x ax bx c a =++>>恒成立的充要条件是020ba c ⎧-≤⎪⎨⎪>⎩或20240b a b ac ⎧->⎪⎨⎪-<⎩.12.真值表13.常见结论的否定形式14.四种命题的相互关系原命题互逆逆命题互否若非p则非q互逆若非q则非p15.充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 16.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数.(2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.17.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数;如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.18.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数图象关于y 轴对称,那么这个函数是偶函数.19.若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+,并且()y f x =关于x a =对称. 20.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2b ax -=对称. 21.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称;若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数. 22.多项式函数110()n n n n P x a x a x a --=+++的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. 23.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-= (2)函数()y f x =的图象关于直线2a b x m+=对称()()f a mx f b mx ⇔+=-()()f a b mx f mx ⇔+-=24.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. (2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a b x m+=对称.(3)函数)(x f y =和)(1x fy -=的图象关于直线y=x 对称.25.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象; 若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象. 26.互为反函数的两个函数的关系:a b f b a f =⇔=-)()(1.27.若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f ky -=-,并不是1()y f kx b -=+,而函数1()y f kx b -=+是])([1b x f ky -=的反函数. 28.几个常见的函数方程(1)正比例函数()f x cx =,具有性质:()()(),(1)f x y f x f y f c +=+=.(2)指数函数()x f x a =,具有性质:()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,具有性质:()()(),()1(0,1)f xy f x f y f a a a =+=>≠. (4)幂函数()f x x α=,具有性质:'()()(),(1)f xy f x f y f α==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,具有性质:()()()()()f x y f x f y g x g y -=+,()(0)1,lim1x g x f x→==. 29.几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期a =T ;(2)()()f x a f x +=-或)0)(()(1)(≠=+x f x f a x f 或1()()f x a f x +=-(()0)f x ≠,则)(x f 的周期a 2T =; (3)1(),(()1)1()f x a f x f x +=≠-,则)(x f 的周期a 3T =;(4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期a 4T =;(5)()()()f x a f x f x a +=--,则)(x f 的周期a 6T =. 30.分数指数幂(1)mna =0,,a m n N *>∈,且1n >);(2)1m nm na a-=(0,,a m n N *>∈,且1n >).31.根式的性质(1)n a =.(2)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.32.有理指数幂的运算性质(1)(0,,)r s r s a a a a r s Q +⋅=>∈;(2)()(0,,)r s rs a a a r s Q =>∈;(3)()(0,0,)r r r ab a b a b r Q =>>∈ 33.指数式与对数式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.34.对数的换底公式log log log m a m NN a=(0a >,且1a ≠,0m >,且1m ≠, 0N >). 推论 log log m n a a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >). 35.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则(1)log ()log log a a a MN M N =+;(2) log log log a a a M M N N=-;(3)log log ()n a a M n M n R =∈.36.设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.【对于0=a 的情形,需要单独检验.】 37.平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x y N p =+.38.数列的通项公式n a 与前n 项的和n S 的关系11,1,2n n n S n a S S n -=⎧=⎨-≥⎩ .39.等差数列的通项公式:*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和n S 公式为:1()2n n n a a S +=1(1)2n n na d -=+211()22d n a d n =+-. 40.等比数列的通项公式:1*11()n nn a a a q q n N q-==⋅∈; 其前n 项的和公式为:11(1),11,1n n a q q S q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a qq q S na q -⎧≠⎪-=⎨⎪=⎩.41.等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为1(1),1(),11n n n b n d q a bq d b q dq q -+-=⎧⎪=+--⎨≠⎪-⎩【用待定系数法来求】 ; 42.常见三角不等式(1)若(0,)2x π∈,则sin tan x x x <<;(2) 若(0,)2x π∈,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥.43.同角三角函数的基本关系式:22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=.44.正弦、余弦的诱导公式:奇变偶不变,符号看象限。
高中数学公式总结大全
高中数学公式总结大全高中数学是一个基础而重要的学科,其中包含了众多的公式和定理。
下面是我为您总结的高中数学公式大全(只列出了常用和重要的公式,因篇幅限制可能无法完全涵盖全部公式):-----------------一、代数运算1. 二次根式的乘除公式:(a√b) ×(c√b)= ac√b, (a√b)÷(c√b)= a÷c√b2. 幂的乘除公式:a^n × a^m = a^(n+m), a^n ÷ a^m = a^(n-m)3. 平方差公式:(a-b)² = a² - 2ab + b²4. 平方和公式:(a+b)² = a² + 2ab + b²5. 完全平方公式:a² - 2ab + b² = (a - b)²6. 立方差公式:(a-b)³ = a³ - 3a²b + 3ab² - b³7. 立方和公式:(a+b)³ = a³ + 3a²b + 3ab² + b³8. a² - b² = (a+b)(a-b)9. 二次方程的求根公式:对于 ax² + bx + c = 0 的一元二次方程,x = (-b ± √(b²-4ac)) / 2a10. 二次三角恒等式:(sinθ)² + (cosθ)² = 111. 二次三角恒等式:1 + (tanθ)² = (secθ)²12. 二次三角恒等式:1 + (cotθ)² = (cscθ)²13. 对数运算公式:log_a(xy) = log_a(x) + log_a(y), log_a(x/y) = log_a(x) - log_a(y) log_a(x^n) = nlog_a(x), log_a(1/x) = -log_a(x)14. 指数运算公式:a^x × a^y = a^(x+y), a^x ÷ a^y = a^(x-y)(a^x)^y = a^(xy), (ab)^x = a^x × b^x二、平面几何1. 圆的周长公式:C = 2πr或C = πd2. 圆的面积公式:A = πr²3. 锐角三角函数:sinθ = 对边/斜边, cosθ = 邻边/斜边, tanθ = 对边/邻边4. 余角三角函数:cscθ = 1/sinθ, secθ = 1/cosθ, cotθ = 1/tanθ5. 三角恒等式:sin(90°-θ) = cosθ, cos(90°-θ) = sinθ, tan(90°-θ) = cotθ6. 直角三角形勾股定理:a² + b² = c²或c = √(a² + b²)7. 正弦定理:a/sinA = b/sinB = c/sinC8. 余弦定理:a² = b² + c² - 2bc·cosA9. 面积公式:面积S = 0.5 ×底 ×高三、空间几何1. 简单体积公式:直方体 V = l × w × h正方体 V = a³圆柱体V = πr²h球体V = (4/3)πr³2. 简单表面积公式:直方体表面积 A = 2lw + 2lh + 2wh正方体表面积 A = 6a²圆柱体侧面积A = 2πrh圆柱体全面积A = 2πr(r+h)球体表面积A = 4πr²四、概率与统计1. 排列公式:n个元素取r个排列的情况总数为 P(n,r) = n!/(n-r)!2. 组合公式:n个元素取r个组合的情况总数为 C(n,r) = n!/(r!(n-r)!)3. 随机事件概率公式:P(A) = n(A)/n(S)4. 条件概率公式:P(A|B) = P(AB)/P(B), P(B|A) = P(AB)/P(A)5. 独立事件概率公式:P(A∩B) = P(A) × P(B)六、数列与数学归纳法1. 等差数列通项公式:an = a1 + (n-1)d2. 等差数列前n项和公式:Sn = n/2 × (a1 + an) = n/2 × (2a1 + (n-1)d)3. 等比数列通项公式:an = a1 × q^(n-1)4. 等比数列前n项和公式:Sn = a1 × (1-q^n) / (1-q), q≠1五、其他1. 三角函数导数:(sinx)' = cosx, (cosx)' = -sinx, (tanx)' = sec²x2. 指数函数导数:(a^x)' = a^x × ln(a), (e^x)' = e^x3. 对数函数导数:(log_ax)' = 1 / (x × ln(a)), (lnx)' = 1 / x4. 反三角函数导数:(sin⁻¹x)' = 1 / √(1-x²), (cos⁻¹x)' = -1 / √(1-x²), (tan⁻¹x)' = 1 / (1+x²)-----------------这只是高中数学公式的一小部分,在学习过程中会遇到更多的公式和定理,希望以上总结对您有所帮助。
高考数学公式大全(完整版)
高中数学常用公式及常用结论1. 元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉. 2.德摩根公式();()U U U U U U C A B C A C B C A B C A C B ==.3.包含关系A B A A B B =⇔=U U A B C B C A ⇔⊆⇔⊆ U A C B ⇔=ΦU C A B R ⇔=4.容斥原理()()card A B cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++-()()()()card A B card B C card C A card A B C ---+.5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n–1个;非空的真子集有2n–2个.6.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式()N f x M <<⇔[()][()]0f x M f x N --<⇔|()|22M N M Nf x +--<⇔()0()f x N M f x ->- ⇔11()f x N M N>--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程)0(02≠=++a c bx ax 有且只有一个实根在),(21k k 内,等价于0)()(21<k f k f ,或0)(1=k f 且22211k k a bk +<-<,或0)(2=k f 且22122k abk k <-<+. 9.闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p abx ,2∈-=,则{}min max max ()(),()(),()2bf x f f x f p f q a=-=; []q p abx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =.(2)当a<0时,若[]q p abx ,2∈-=,则{}min ()min (),()f x f p f q =,若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =. 10.一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 . 设q px x x f ++=2)(,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402p q p m ⎧-≥⎪⎨->⎪⎩;(2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n >⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()0f m af n =⎧⎨>⎩或()0()0f n af m =⎧⎨>⎩;(3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402p q p m ⎧-≥⎪⎨-<⎪⎩ .11.定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是min (,)0()f x t x L ≥∉.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是(,)0()man f x t x L ≤∉.(3)0)(24>++=c bx ax x f 恒成立的充要条件是000a b c ≥⎧⎪≥⎨⎪>⎩或2040a b ac <⎧⎨-<⎩.12114.四种命题的相互关系15.充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 16.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. (2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.17.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.18.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.19.若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.20.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2ba x +=对称.21.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称; 若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.22.多项式函数110()n n n n P x a x a x a --=+++的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零.多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. 23.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a bx +=对称()()f a mx f b mx ⇔+=- ()()f a b mx f mx ⇔+-=.24.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. (2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a bx m+=对称. (3)函数)(x f y =和)(1x fy -=的图象关于直线y=x对称.25.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.26.互为反函数的两个函数的关系a b f b a f =⇔=-)()(1.27.若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f ky -=-,并不是)([1b kx fy +=-,而函数)([1b kx fy +=-是])([1b x f ky -=的反函数. 28.几个常见的函数方程(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指数函数()xf x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠. (4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+,()(0)1,lim1x g x f x→==. 29.几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T =a ; (2)0)()(=+=a x f x f ,或)0)(()(1)(≠=+x f x f a x f , 或1()()f x a f x +=-(()0)f x ≠,或[]1(),(()0,1)2f x a f x +=+∈,则)(x f 的周期T =2a; (3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a; (4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T =4a;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ; (6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a .30.分数指数幂 (1)m na =(0,,a m n N *>∈,且1n >). (2)1m nm naa-=(0,,a m n N *>∈,且1n >).31.根式的性质(1)na =.(2)当na =; 当n 为偶数时,0||,0a a a a a ≥⎧==⎨-<⎩.32.有理指数幂的运算性质 (1) (0,,)rsr sa a aa r s Q +⋅=>∈.(2) ()(0,,)r srs a a a r s Q =>∈. (3)()(0,0,)r rrab a b a b r Q =>>∈.注: 若a>0,p 是一个无理数,则a p 表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.33.指数式与对数式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.34.对数的换底公式log log log m a m NN a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论 log log m na a nb b m =(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >).35.对数的四则运算法则若a >0,a ≠1,M>0,N>0,则 (1)log ()log log a a a MN M N =+;(2) log log log aa a MM N N =-; (3)log log ()na a M n M n R =∈.36.设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验.37. 对数换底不等式及其推广若0a >,0b >,0x >,1x a ≠,则函数log ()ax y bx = (1)当a b >时,在1(0,)a 和1(,)a +∞上log ()ax y bx =为增函数., (2)当a b <时,在1(0,)a 和1(,)a+∞上log ()ax y bx =为减函数.推论:设1n m >>,0p >,0a >,且1a ≠,则 (1)log ()log m p m n p n ++<. (2)2log log log 2a a am nm n +<. 38. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x y N p =+.39.数列的同项公式与前n项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n项的和为12n n s a a a =+++).40.等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+ 211()22d n a d n =+-. 41.等比数列的通项公式1*11()n nn a a a q q n N q-==⋅∈; 其前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.42.等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为1(1),1(),11n n n b n d q a bq d b q d q q -+-=⎧⎪=+--⎨≠⎪-⎩;其前n项和公式为(1),(1)1(),(1)111n n nb n n d q s d q db n q q q q +-=⎧⎪=-⎨-+≠⎪---⎩. 43.分期付款(按揭贷款)每次还款(1)(1)1nn ab b x b +=+-元(贷款a 元,n 次还清,每期利率为b ).44.常见三角不等式 (1)若(0,)2x π∈,则sin tan x x x <<.(2) 若(0,)2x π∈,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥.45.同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=. 46.正弦、余弦的诱导公式212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩212(1)s ,s()2(1)sin ,n n co n co απαα+⎧-⎪+=⎨⎪-⎩47.和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=;tan tan tan()1tan tan αβαβαβ±±=.22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式); 22cos()cos()cos sin αβαβαβ+-=-.sin cos a b αα+=)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ= ).48.二倍角公式sin22sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-. 49. 三倍角公式3sin 33sin 4sin 4sin sin()sin()33ππθθθθθθ=-=-+.3cos34cos 3cos 4cos cos()cos()33ππθθθθθθ=-=-+.323tan tan tan 3tan tan()tan()13tan 33θθππθθθθθ-==-+-. 50.三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R (A,ω,ϕ为常数,且A≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0,ω>0)的周期T πω=.51.正弦定理2sin sin sin a b cR A B C===. 52.余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.53.面积定理(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c边上的高). (2)111sin sin sin 222S ab C bc A ca B ===.(3)22(||||)()OAB S OA OB OA OB ∆=⋅-⋅.54.三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+. 55. 简单的三角方程的通解sin (1)arcsin (,||1)kx a x k a k Z a π=⇔=+-∈≤. s 2arccos (,||1)co x a x k a k Z a π=⇔=±∈≤.tan arctan (,)x a x k a k Z a R π=⇒=+∈∈.特别地,有sin sin (1)()k k k Z αβαπβ=⇔=+-∈.s cos 2()co k k Z αβαπβ=⇔=±∈.tan tan ()k k Z αβαπβ=⇒=+∈.56.最简单的三角不等式及其解集sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ>≤⇔∈++-∈.sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ<≤⇔∈--+∈. cos (||1)(2arccos ,2arccos ),x a a x k a k a k Z ππ>≤⇔∈-+∈.cos (||1)(2arccos ,22arccos ),x a a x k a k a k Z πππ<≤⇔∈++-∈.tan ()(arctan ,),2x a a R x k a k k Z πππ>∈⇒∈++∈.tan ()(,arctan ),2x a a R x k k a k Z πππ<∈⇒∈-+∈.57.实数与向量的积的运算律 设λ、μ为实数,那么(1) 结合律:λ(μa )=(λμ)a ; (2)第一分配律:(λ+μ)a =λa+μa; (3)第二分配律:λ(a +b )=λa+λb . 58.向量的数量积的运算律:(1) a·b= b·a (交换律); (2)(λa)·b= λ(a ·b)=λa ·b = a ·(λb ); (3)(a +b)·c= a ·c +b ·c . 59.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a =λ1e1+λ2e 2.不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 60.向量平行的坐标表示设a =11(,)x y ,b =22(,)x y ,且b≠0,则a b(b≠0)12210x y x y ⇔-=. 53. a与b的数量积(或内积) a·b =|a||b |cos θ. 61. a ·b 的几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b|c os θ的乘积. 62.平面向量的坐标运算(1)设a =11(,)x y ,b=22(,)x y ,则a+b =1212(,)x x y y ++.(2)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --. (3)设A 11(,)x y ,B22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa=(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212()x x y y +. 63.两向量的夹角公式cos θ=(a =11(,)x y ,b=22(,)x y ).64.平面两点间的距离公式 ,A B d=||AB AB AB =⋅=A11(,)x y ,B22(,)x y ).65.向量的平行与垂直设a =11(,)x y ,b =22(,)x y ,且b≠0,则 A ||b ⇔b =λa 12210x y x y ⇔-=.a ⊥b(a ≠0)⇔a·b =012120x x y y ⇔+=. 66.线段的定比分公式设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12P P 的分点,λ是实数,且12PP PP λ=,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+ ⇔12(1)OP tOP t OP =+-(11t λ=+). 67.三角形的重心坐标公式△AB C三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++. 68.点的平移公式''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ . 注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP 的坐标为(,)h k .69.“按向量平移”的几个结论(1)点(,)P x y 按向量a=(,)h k 平移后得到点'(,)P x h y k ++.(2) 函数()y f x =的图象C 按向量a =(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+.(3) 图象'C 按向量a =(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-.(4)曲线C :(,)0f x y =按向量a =(,)h k 平移后得到图象'C ,则'C 的方程为(,)0f x h y k --=.(5) 向量m =(,)x y 按向量a =(,)h k 平移后得到的向量仍然为m =(,)x y .70. 三角形五“心”向量形式的充要条件设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则 (1)O 为ABC ∆的外心222OA OB OC ⇔==. (2)O 为ABC ∆的重心0OA OB OC ⇔++=.(3)O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅. (4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=. (5)O 为ABC ∆的A ∠的旁心aOA bOB cOC ⇔=+. 71.常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a=b 时取“=”号).(2),a b R +∈⇒2a b+≥(当且仅当a=b时取“=”号). (3)3333(0,0,0).a b c abc a b c ++≥>>>(4)柯西不等式22222()()(),,,,.a b c d ac bd a b c d R ++≥+∈(5)b a b a b a +≤+≤-. 72.极值定理已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2; (2)若和y x +是定值s ,则当y x =时积xy 有最大值241s . 推广 已知R y x ∈,,则有xy y x y x 2)()(22+-=+ (1)若积xy 是定值,则当||y x -最大时,||y x +最大; 当||y x -最小时,||y x +最小.(2)若和||y x +是定值,则当||y x -最大时, ||xy 最小; 当||y x -最小时, ||xy 最大.73.一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<; 121212,()()0()x x x x x x x x x x <>⇔--><或.74.含有绝对值的不等式 当a > 0时,有22x a x a a x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-.75.无理不等式(()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩.(22()0()0()()0()0()[()]f x f x g x g x g x f x g x ≥⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或.2()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩.76.指数不等式与对数不等式 (1)当1a >时,()()()()f x g x a a f x g x >⇔>;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x a a f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩77.斜率公式2121y y k x x -=-(111(,)P x y 、222(,)P x y ).78.直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、) (5)一般式 0Ax By C ++=(其中A 、B 不同时为0).79.两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠;②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A1、A 2、B1、B 2都不为零,①11112222||A B C l l A B C ⇔=≠; ②1212120l l A A B B ⊥⇔+=;80.夹角公式(1)2121tan ||1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan ||A B A B A A B B α-=+. (1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l1与l2的夹角是2π. 81. 1l 到2l 的角公式(1)2121tan 1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1到l 2的角是2π. 82.四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数.(3)平行直线系方程:直线y kx b =+中当斜率k一定而b变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.83.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).84. 0Ax By C ++>或0<所表示的平面区域设直线:0l Ax By C ++=,则0Ax By C ++>或0<所表示的平面区域是:若0B ≠,当B 与Ax By C ++同号时,表示直线l 的上方的区域;当B 与Ax By C ++异号时,表示直线l 的下方的区域.简言之,同号在上,异号在下.若0B =,当A 与Ax By C ++同号时,表示直线l 的右方的区域;当A 与Ax By C ++异号时,表示直线l 的左方的区域. 简言之,同号在右,异号在左.85. 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域设曲线111222:()()0C A x B y C A x B y C ++++=(12120A A B B ≠),则111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域是: 111222()()0A x B y C A x B y C ++++>所表示的平面区域上下两部分; 111222()()0A x B y C A x B y C ++++<所表示的平面区域上下两部分.86. 圆的四种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).(3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).87. 圆系方程(1)过点11(,)A x y ,22(,)B x y 的圆系方程是1212112112()()()()[()()()()]0x x x x y y y y x x y y y y x x λ--+--+-----= 1212()()()()()0x x x x y y y y ax by c λ⇔--+--+++=,其中0ax by c ++=是直线AB 的方程,λ是待定的系数.(2)过直线l :0Ax By C ++=与圆C :220x y Dx Ey F ++++=的交点的圆系方程是22()0x y Dx Ey F Ax By C λ+++++++=,λ是待定的系数.(3) 过圆1C :221110x y D x E y F ++++=与圆2C :222220x y D x E y F ++++=的交点的圆系方程是2222111222()0x y D x E y F x y D x E y F λ+++++++++=,λ是待定的系数.88.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d =d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内.89.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d .其中22BA C Bb Aa d +++=.90.两圆位置关系的判定方法设两圆圆心分别为O1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d ; 条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ;条公切线内切121⇔⇔-=r r d ; 无公切线内含⇔⇔-<<210r r d .91.圆的切线方程(1)已知圆220x y Dx Ey F ++++=.①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是0000()()022D x xE y y x x y yF ++++++=. 当00(,)x y 圆外时, 0000()()022D x xE y y x x y yF ++++++=表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b,必有两条切线.(2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=;②斜率为k 的圆的切线方程为y kx =±.92.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩.93.椭圆22221(0)x y a b a b+=>>焦半径公式)(21c a x e PF +=,)(22x ca e PF -=.94.椭圆的的内外部(1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b⇔+<.(2)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的外部2200221x y a b⇔+>.95. 椭圆的切线方程(1)椭圆22221(0)x y a b a b +=>>上一点00(,)P x y 处的切线方程是00221x x y y a b +=.(2)过椭圆22221(0)x y a b a b+=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b+=. (3)椭圆22221(0)x y a b a b+=>>与直线0Ax By C ++=相切的条件是22222A a B b c +=.96.双曲线22221(0,0)x y a b a b -=>>的焦半径公式21|()|a PF e x c =+,22|()|a PF e x c=-.97.双曲线的内外部(1)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b⇔->.(2)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的外部2200221x y a b⇔-<.98.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x aby ±=.(2)若渐近线方程为x aby ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222b y a x .(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上).99. 双曲线的切线方程(1)双曲线22221(0,0)x y a b a b-=>>上一点00(,)P x y 处的切线方程是00221x x y ya b-=. (2)过双曲线22221(0,0)x y a b a b-=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b-=. (3)双曲线22221(0,0)x y a b a b-=>>与直线0Ax By C ++=相切的条件是22222A a B b c -=.100. 抛物线px y 22=的焦半径公式抛物线22(0)y px p =>焦半径02p CF x =+.过焦点弦长p x x px p x CD ++=+++=212122.101.抛物线px y 22=上的动点可设为P),2(2 y py 或或)2,2(2pt pt P P (,)x y ,其中 22y px =.102.二次函数2224()24b ac b y ax bx c a x a a-=++=++(0)a ≠的图象是抛物线:(1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a-+-;(3)准线方程是2414ac b y a--=.103.抛物线的内外部(1)点00(,)P x y 在抛物线22(0)y px p =>的内部22(0)y px p ⇔<>. 点00(,)P x y 在抛物线22(0)y px p =>的外部22(0)y px p ⇔>>. (2)点00(,)P x y 在抛物线22(0)y px p =->的内部22(0)y px p ⇔<->.点00(,)P x y 在抛物线22(0)y px p =->的外部22(0)y px p ⇔>->. (3)点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =>的外部22(0)x py p ⇔>>. (4) 点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =->的外部22(0)x py p ⇔>->. 104. 抛物线的切线方程(1)抛物线px y 22=上一点00(,)P x y 处的切线方程是00()y y p x x =+.(2)过抛物线px y 22=外一点00(,)P x y 所引两条切线的切点弦方程是00()y y p x x =+.(3)抛物线22(0)y px p =>与直线0Ax By C ++=相切的条件是22pB AC =.105.两个常见的曲线系方程(1)过曲线1(,)0f x y =,2(,)0f x y =的交点的曲线系方程是12(,)(,)0f x y f x y λ+=(λ为参数).(2)共焦点的有心圆锥曲线系方程22221x y a k b k+=--,其中22max{,}k a b <.当22min{,}k a b >时,表示椭圆; 当2222min{,}max{,}a b k a b <<时,表示双曲线.106.直线与圆锥曲线相交的弦长公式 AB =1212||||AB x x y y ==-=-(弦端点A ),(),,(2211y xB y x ,由方程⎩⎨⎧=+=0)y ,x (F b kx y 消去y 得到02=++c bx ax ,0∆>,α为直线AB 的倾斜角,k 为直线的斜率).107.圆锥曲线的两类对称问题(1)曲线(,)0F x y =关于点00(,)P x y 成中心对称的曲线是00(2-,2)0F x x y y -=. (2)曲线(,)0F x y =关于直线0Ax By C ++=成轴对称的曲线是22222()2()(,)0A Ax By C B Ax By C F x y A B A B ++++--=++.108.“四线”一方程对于一般的二次曲线220Ax Bxy Cy Dx Ey F +++++=,用0x x 代2x ,用0y y 代2y ,用002x y xy +代xy ,用02x x +代x ,用02y y+代y 即得方程 0000000222x y xy x x y yAx x B Cy y D E F ++++⋅++⋅+⋅+=,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.109.证明直线与直线的平行的思考途径 (1)转化为判定共面二直线无交点; (2)转化为二直线同与第三条直线平行; (3)转化为线面平行; (4)转化为线面垂直; (5)转化为面面平行.110.证明直线与平面的平行的思考途径 (1)转化为直线与平面无公共点; (2)转化为线线平行; (3)转化为面面平行.111.证明平面与平面平行的思考途径 (1)转化为判定二平面无公共点; (2)转化为线面平行; (3)转化为线面垂直.112.证明直线与直线的垂直的思考途径 (1)转化为相交垂直; (2)转化为线面垂直;(3)转化为线与另一线的射影垂直; (4)转化为线与形成射影的斜线垂直. 113.证明直线与平面垂直的思考途径 (1)转化为该直线与平面内任一直线垂直; (2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面; (5)转化为该直线与两个垂直平面的交线垂直. 114.证明平面与平面的垂直的思考途径 (1)转化为判断二面角是直二面角; (2)转化为线面垂直.115.空间向量的加法与数乘向量运算的运算律 (1)加法交换律:a +b=b +a .(2)加法结合律:(a +b )+c =a +(b +c ). (3)数乘分配律:λ(a +b)=λa+λb.116.平面向量加法的平行四边形法则向空间的推广始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量.117.共线向量定理对空间任意两个向量a 、b (b ≠0 ),a ∥b ⇔存在实数λ使a =λb .P A B 、、三点共线⇔||AP AB ⇔AP t AB =⇔(1)OP t OA tOB =-+.||AB CD ⇔AB 、CD 共线且AB CD 、不共线⇔AB tCD =且AB CD 、不共线.118.共面向量定理向量p 与两个不共线的向量a 、b 共面的⇔存在实数对,x y ,使p ax by =+. 推论 空间一点P 位于平面MAB 内的⇔存在有序实数对,x y ,使MP xMA yMB =+, 或对空间任一定点O,有序实数对,x y ,使OP OM xMA yMB =++.119.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++(x y z k ++=),则当1k =时,对于空间任一点O ,总有P、A 、B 、C 四点共面;当1k ≠时,若O ∈平面ABC,则P 、A 、B 、C四点共面;若O ∉平面ABC ,则P 、A 、B 、C 四点不共面.C A B 、、、D 四点共面⇔AD 与AB 、AC 共面⇔AD x AB y AC =+⇔(1)OD x y OA xOB yOC =--++(O ∉平面A BC).120.空间向量基本定理 如果三个向量a 、b 、c不共面,那么对空间任一向量p ,存在一个唯一的有序实数组x,y,z,使p =xa +y b +z c .推论 设O 、A、B 、C 是不共面的四点,则对空间任一点P,都存在唯一的三个有序实数x,y,z,使OP xOA yOB zOC =++.121.射影公式已知向量AB =a 和轴l ,e 是l 上与l 同方向的单位向量.作A 点在l 上的射影'A ,作B 点在l 上的射影'B ,则''||cos A B AB =〈a ,e 〉=a ·e122.向量的直角坐标运算设a=123(,,)a a a ,b =123(,,)b b b 则 (1)a +b=112233(,,)a b a b a b +++; (2)a -b =112233(,,)a b a b a b ---; (3)λa =123(,,)a a a λλλ (λ∈R); (4)a ·b=112233a b a b a b ++;123.设A 111(,,)x y z ,B222(,,)x y z ,则AB OB OA =-= 212121(,,)x x y y z z ---.124.空间的线线平行或垂直设111(,,)a x y z =,222(,,)b x y z =,则a b ⇔(0)a b b λ=≠⇔121212x x y y z zλλλ=⎧⎪=⎨⎪=⎩;a b ⊥⇔0a b ⋅=⇔1212120x x y y z z ++=.125.夹角公式设a =123(,,)a a a ,b=123(,,)b b b ,则 cos 〈a ,b 〉.推论 2222222112233123123()()()a b a b a b a a a b b b ++≤++++,此即三维柯西不等式.126. 四面体的对棱所成的角四面体ABCD 中, AC 与BD 所成的角为θ,则2222|()()|cos 2AB CD BC DA AC BDθ+-+=⋅.127.异面直线所成角cos |cos ,|a b θ==21||||||a b a b x ⋅=⋅+(其中θ(090θ<≤)为异面直线a b ,所成角,,a b 分别表示异面直线a b ,的方向向量) 128.直线AB 与平面所成角sin||||AB marc AB m β⋅=(m 为平面α的法向量).129.若ABC ∆所在平面若β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,A B 、为ABC ∆的两个内角,则2222212sin sin (sin sin )sin A B θθθ+=+.特别地,当90ACB ∠=时,有22212sin sin sin θθθ+=. 130.若ABC ∆所在平面若β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,''A B 、为ABO ∆的两个内角,则222'2'212tan tan (sin sin )tan A B θθθ+=+.特别地,当90AOB ∠=时,有22212sin sin sin θθθ+=. 131.二面角l αβ--的平面角cos||||m n arc m n θ⋅=或cos ||||m narc m n π⋅-(m ,n 为平面α,β的法向量).132.三余弦定理设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与A B所成的角为1θ,A B与AC 所成的角为2θ,AO 与AC所成的角为θ.则12cos cos cos θθθ=.133. 三射线定理若夹在平面角为ϕ的二面角间的线段与二面角的两个半平面所成的角是1θ,2θ,与二面角的棱所成的角是θ,则有22221212sin sin sin sin 2sin sin cos ϕθθθθθϕ=+- ;1212||180()θθϕθθ-≤≤-+(当且仅当90θ=时等号成立).134.空间两点间的距离公式若A111(,,)x y z ,B 222(,,)x y z ,则,A B d =||AB AB AB =⋅=135.点Q 到直线l 距离h =(点P 在直线l 上,直线l 的方向向量a =PA ,向量b =PQ ).136.异面直线间的距离||||CD n d n ⋅=(12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).137.点B 到平面α的距离||||AB n d n ⋅=(n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈). 138.异面直线上两点距离公式2cos d mn θ=. ',d EA AF =.d =('E AA F ϕ=--).(两条异面直线a 、b 所成的角为θ,其公垂线段'AA 的长度为h.在直线a、b 上分别取两点E 、F,'A E m =,AF n =,EF d =). 139.三个向量和的平方公式2222()222a b c a b c a b b c c a ++=+++⋅+⋅+⋅2222||||cos ,2||||cos ,2||||cos ,a b c a b a b b c b c c a c a =+++⋅+⋅+⋅140. 长度为l 的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、,则有2222123l l l l =++222123cos cos cos 1θθθ⇔++=222123sin sin sin 2θθθ⇔++=.(立体几何中长方体对角线长的公式是其特例).141. 面积射影定理'cos S S θ=.(平面多边形及其射影的面积分别是S 、'S ,它们所在平面所成锐二面角的为θ). 142. 斜棱柱的直截面已知斜棱柱的侧棱长是l ,侧面积和体积分别是S 斜棱柱侧和V 斜棱柱,它的直截面的周长和面积分别是1c 和1S ,则①1S c l =斜棱柱侧. ②1V S l =斜棱柱.143.作截面的依据三个平面两两相交,有三条交线,则这三条交线交于一点或互相平行. 144.棱锥的平行截面的性质如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点到截面距离与棱锥高的平方比(对应角相等,对应边对应成比例的多边形是相似多边形,相似多边形面积的比等于对应边的比的平方);相应小棱锥与小棱锥的侧面积的比等于顶点到截面距离与棱锥高的平方比.145.欧拉定理(欧拉公式)2V F E +-=(简单多面体的顶点数V 、棱数E 和面数F).(1)E =各面多边形边数和的一半.特别地,若每个面的边数为n 的多边形,则面数F 与棱数E 的关系:12E nF =; (2)若每个顶点引出的棱数为m ,则顶点数V 与棱数E 的关系:12E mV =. 146.球的半径是R ,则其体积343V R π=, 其表面积24S R π=.147.球的组合体(1)球与长方体的组合体:长方体的外接球的直径是长方体的体对角线长. (2)球与正方体的组合体:正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长. (3) 球与正四面体的组合体:棱长为a ,a . 148.柱体、锥体的体积13V Sh =柱体(S 是柱体的底面积、h 是柱体的高).13V Sh =锥体(S 是锥体的底面积、h 是锥体的高).149.分类计数原理(加法原理)12n N m m m =+++.150.分步计数原理(乘法原理) 12n N m m m =⨯⨯⨯. 151.排列数公式m n A =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).注:规定1!0=.152.排列恒等式(1)1(1)m m n n A n m A -=-+;(2)1mmn n n A A n m -=-; (3)11m m n n A nA --=;(4)11n n nn n n nA A A ++=-; (5)11m m m n n n A A mA -+=+.(6) 1!22!33!!(1)!1n n n +⋅+⋅++⋅=+-.153.组合数公式m nC =m n m mA A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N*,m N ∈,且m n ≤).154.组合数的两个性质 (1)mn C =mn nC - ; (2) m n C +1-m nC =mn C 1+.注:规定10=n C .155.组合恒等式(1)11mm n n n m C C m --+=; (2)1m mn n n C C n m -=-;(3)11mm n n n C C m--=;(4)∑=nr r nC0=n2;(5)1121++++=++++r n r n r r r r r rC C C C C . (6)nn n r n n n n C C C C C 2210=++++++ . (7)14205312-+++=+++n n n n n n n C C C C C C . (8)1321232-=++++n n n n n n n nC C C C . (9)rn m r n r m n r m n r m C C C C C C C +-=+++0110 . (10)nn n n n n n C C C C C 22222120)()()()(=++++ .156.排列数与组合数的关系m m n n A m C =⋅! .157.单条件排列以下各条的大前提是从n 个元素中取m 个元素的排列. (1)“在位”与“不在位”①某(特)元必在某位有11--m n A 种;②某(特)元不在某位有11---m n m n A A (补集思想)1111---=m n n A A (着眼位置)11111----+=m n m m n A A A (着眼元素)种.(2)紧贴与插空(即相邻与不相邻)①定位紧贴:)(n m k k ≤≤个元在固定位的排列有km k n kk A A --种.②浮动紧贴:n 个元素的全排列把k 个元排在一起的排法有kk k n k n A A 11+-+-种.注:此类问题常用捆绑法;③插空:两组元素分别有k 、h个(1+≤h k ),把它们合在一起来作全排列,k 个的一组互不能挨近的所有排列数有kh hh A A 1+种.(3)两组元素各相同的插空m 个大球n 个小球排成一列,小球必分开,问有多少种排法?当1+>m n 时,无解;当1+≤m n 时,有n m n nn m C A A 11++=种排法.(4)两组相同元素的排列:两组元素有m 个和n 个,各组元素分别相同的排列数为nn m C +. 158.分配问题(1)(平均分组有归属问题)将相异的m 、n 个物件等分给m 个人,各得n 件,其分配方法数共有mnn nn nn mn nn mn nmn n mn C C C C C N )!()!(22=⋅⋅⋅⋅⋅=-- . (2)(平均分组无归属问题)将相异的m ·n 个物体等分为无记号或无顺序的m 堆,其分配方法数共有mn nn n n n mn n n mn n mn n m mn m C C C C C N )!(!)!(!...22=⋅⋅⋅⋅=--.(3)(非平均分组有归属问题)将相异的)12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数彼此不相等,则其分配方法数共有!!...!!!! (212)11m n n n n p n p n n n m p m C C C N m m =⋅⋅=-.(4)(非完全平均分组有归属问题)将相异的)12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数中分别有a 、b 、c、…个相等,则其分配方法数有!...!!!...211c b a m C C C N m m n n n n p n p ⋅⋅=- 12!!!!...!(!!!...)m p m n n n a b c =.(5)(非平均分组无归属问题)将相异的)12m P(P=n +n ++n 个物体分为任意的1n ,2n ,…,m n 件无记号的m 堆,且1n ,2n ,…,m n 这m 个数彼此不相等,则其分配方法数有!!...!!21m n n n p N =.(6)(非完全平均分组无归属问题)将相异的)12m P(P=n +n ++n 个物体分为任意的1n ,2n ,…,m n 件无记号的m 堆,且1n ,2n ,…,m n 这m 个数中分别有a、b、c、…个相等,则其分配方法数有!...)!!(!!...!!21c b a n n n p N m =.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学常用公式及定理1.熟悉这些解题小结论,启迪解题思路、探求解题佳径,防止解题易误点的产生,对提升数学成绩将会起到很大的作用。
2.所有定义、概念、公式、解题方法都须熟记,且应在弄清它们的来龙去脉后再熟记。
1.元素与集合的关系:U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.2.德摩根公式:();()U U U U U U C A B C A C B C A B C A C B ==.3.包含关系A B A A B B =⇔=U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=Φ()U C A B R ⇔= 4.容斥原理()()card A B cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++-()()()()card A B card B C card CA card ABC ---+.5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n -1个;非空子集有2n -1个;非空的真子集有2n -2个. 6.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)两根式12()()()(0)f x a x x x x a =--≠.7.解连不等式()N f x M <<常有以下转化形式:()N f x M <<⇔[()][()]0f x M f x N --<; 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程)0(02≠=++a c bx ax 有且只有一个实根在),(21k k ,等价于“0)()(21<k f k f ”或“0)(1=k f 且22211k k ab k +<-<”或“0)(2=k f 且22122k ab kk <-<+”9.闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p a bx ,2∈-=,则{}min max max ()(),()(),()2b f x f f x f p f q a =-=; 若[]q p a bx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =.(2)当a<0时,若[]q p a bx ,2∈-=,则{}min ()min (),()f x f p f q =;若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =.10.一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 . 设2()f x x px q =++,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为()0f m <或2402()0p q p m f m ⎧-≥⎪⎪->⎨⎪≥⎪⎩ .(2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n >⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()02f m f n p m n ⎧⎪=⎪>⎨⎪⎪<-<⎩或()0()02f n f m p m n ⎧⎪=⎪>⎨⎪⎪<-<⎩ .(3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0fn <或2402()0p q pn f n ⎧-≥⎪⎪-<⎨⎪≥⎪⎩ .11.定区间上含参数的二次不等式恒成立的条件依据:(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是min (,)0()f x t x L ≥∈.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≤(t 为参数)恒成立的充要条件是(,)0()man f x t x L ≤∈.(3)42()0(0)f x ax bx c a =++>>恒成立的充要条件是020ba c ⎧-≤⎪⎨⎪>⎩或20240b a b ac ⎧->⎪⎨⎪-<⎩. 12.真值表13.常见结论的否定形式14.四种命题的相互关系原命题 互逆 逆命题否 否 逆 逆 否 否否命题 逆否命题 若非p则非q 互逆 若非q则非p 15.充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 16.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数.(2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.17.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数;如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.18.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数图象关于y 轴对称,那么这个函数是偶函数.19.若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+,并且()y f x =关于x a =对称. 20.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2ba x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2b ax -=对称. 21.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称;若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.22.多项式函数110()n n n n P x a x a x a --=+++的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. 23.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-= (2)函数()y f x =的图象关于直线2a b x m+=对称()()f a mx f b mx ⇔+=-()()f a b mx f mx ⇔+-=24.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. (2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a b x m+=对称.(3)函数)(x f y =和)(1x fy -=的图象关于直线y=x 对称.25.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象; 若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.26.互为反函数的两个函数的关系:a b f b a f =⇔=-)()(1.27.若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f ky -=-,并不是1()y f kx b -=+,而函数1()y f kx b -=+是])([1b x f ky -=的反函数. 28.几个常见的函数方程(1)正比例函数()f x cx =,具有性质:()()(),(1)f x y f x f y f c +=+=.(2)指数函数()x f x a =,具有性质:()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,具有性质:()()(),()1(0,1)f xy f x f y f a a a =+=>≠. (4)幂函数()f x x α=,具有性质:'()()(),(1)f xy f x f y f α==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,具有性质:()()()()()f x y f x f y g x g y -=+,()(0)1,lim1x g x f x→==. 29.几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期a =T ; (2)()()f x a f x +=-或)0)(()(1)(≠=+x f x f a x f 或1()()f x a f x +=-(()0)f x ≠,则)(x f 的周期a 2T =; (3)1(),(()1)1()f x a f x f x +=≠-,则)(x f 的周期a 3T =;(4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期a 4T =;(5)()()()f x a f x f x a +=--,则)(x f 的周期a 6T =. 30.分数指数幂(1)mna =0,,a m n N *>∈,且1n >);(2)1m nm naa-=(0,,a m n N *>∈,且1n >).31.根式的性质(1)n a =.(2)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.32.有理指数幂的运算性质(1)(0,,)r s r s a a a a r s Q +⋅=>∈;(2)()(0,,)r s rs a a a r s Q =>∈;(3)()(0,0,)r r r ab a b a b r Q =>>∈ 33.指数式与对数式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.34.对数的换底公式log log log m a m NN a=(0a >,且1a ≠,0m >,且1m ≠, 0N >). 推论 log log m n a a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >). 35.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则(1)log ()log log a a a MN M N =+;(2) log log log a a a M M N N=-;(3)log log ()n a a M n M n R =∈.36.设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.【对于0=a 的情形,需要单独检验.】 37.平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x y N p =+.38.数列的通项公式n a 与前n 项的和n S 的关系11,1,2n n n S n a S S n -=⎧=⎨-≥⎩ .39.等差数列的通项公式:*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和n S 公式为:1()2n n n a a S +=1(1)2n n na d -=+211()22d n a d n =+-. 40.等比数列的通项公式:1*11()n nn a a a q q n N q-==⋅∈;其前n 项的和公式为:11(1),11,1n n a q q S q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a qq q S na q -⎧≠⎪-=⎨⎪=⎩.41.等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为1(1),1(),11n n n b n d q a bq d b q dq q -+-=⎧⎪=+--⎨≠⎪-⎩【用待定系数法来求】 ; 42.常见三角不等式(1)若(0,)2x π∈,则sin tan x x x <<;(2) 若(0,)2x π∈,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥.43.同角三角函数的基本关系式:22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=.44.正弦、余弦的诱导公式:奇变偶不变,符号看象限。