第6章 实数单元测试卷(含答案)

合集下载

人教版七年级数学下册 第六章 实数。单元测试题精选(Word版附答案)

人教版七年级数学下册 第六章 实数。单元测试题精选(Word版附答案)

人教版七年级数学下册第六章实数。

单元测试题精选(Word版附答案)人教版七年级数学第6章《实数》单元测试题精选完成时间:120分钟满分:150分得分评卷人:______________ 姓名:______________ 成绩:______________一、选择题(本大题10小题,每小题4分,共40分。

每小题给出的四个选项中,只有一个选项是符合题意的,请将该选项的标号填入表格内)题号 1 2 3 4 5 6 7 8 9 10答案 B A D A A C D C B B二、填空题(每题5分,共20分)11.m = 3.n = 1.(m+n)^5 = 243.12.(1) 0.000 521 7 (2) 0.002 284.13.3.14.x = 8.三、解答题(共90分)15.1) x = ±5/3;2) x = 3/5.16.1.17.a = 9.b = -8.3a+b的算术平方根为 5.18.已知 $m=\lfloor 313\rfloor$。

$n=0.13$,求 $m-n$ 的值。

19.如图,计划围一个面积为 $50\text{ m}^2$ 的长方形场地,一边靠旧墙(墙长为 $10$ m),另外三边用篱笆围成,并且它的长与宽之比为 $5:2$。

讨论方案时,XXX说:“我们不可能围成满足要求的长方形场地。

”小军说:“面积和长宽比例是确定的,肯定可以围得出来。

”请你判断谁的说法正确,为什么?解:设长为 $5x$,宽为 $2x$,则面积为 $10x^2$,另一条边长为 $10-5x$,由题意得 $10x^2=(10-5x)\times2x$,解得$x=1$,长为 $5$,宽为 $2$,可以围成满足要求的长方形场地,小军的说法正确。

20.若 $x+3+(y-3)^2=3$,则 $(xy)^{\frac{2015}{3}}$ 等于多少?解:移项得 $(y-3)^2=3-x-3=-x$,所以 $xy=\frac{3-x}{y-3}$,将其代入 $(xy)^{\frac{2015}{3}}$ 得 $\left(\frac{3-x}{y-3}\right)^{\frac{2015}{3}}$,根据乘方的运算法则,得$\left(\frac{3-x}{y-3}\right)^{671}$。

【3套精选】人教版初中数学七年级下册第六章《实数》单元测试题(含答案)

【3套精选】人教版初中数学七年级下册第六章《实数》单元测试题(含答案)

人教版七年级下册第六章实数单元同步测试一、选择题1、以下说法正确的选项是()A.负数没有立方根B.一个正数的立方根有两个,它们互为相反数C.假如一个数有立方根,则它必有平方根D.不为 0 的任何数的立方根,都与这个数自己的符号同号2、以下语句中正确的选项是()A.-9 的平方根是 -3B.9 的平方根是 3C.9 的算术平方根是3D.9 的算术平方根是 33、以下说法中正确的选项是()A、若 a 为实数,则a0 B 、若 a 为实数,则 a 的倒数为1aC、若 x,y 为实数,且x=y ,则x y D 、若 a 为实数,则a204、估量287 的值在A. 7和8之间B. 6和 7之间C. 3和4之间D. 2和 3之间5、以下各组数中,不可以作为一个三角形的三边长的是()A、 1、 1000、 1000B、 2、 3、5C、32,42,52D、38 , 327 , 3646、以下说法中,正确的个数是()(1)- 64 的立方根是- 4;( 2)49的算术平方根是7 ;(3)1的立方根为1;(4)1是27341的平方根。

16A 、1B 、2C 、3D 、47、一个数的平方根与立方根相等,则这个数是( )A.1B. ±1C.0D. —18、假如 3 2.37 1.333 , 3 23.7 2.872 ,那么 3 0.0237 约等于().A. 13.33B. 28.72C. 0.1333D. 0.28729、若x 1 +( y+2 ) 2=0,则( x+y ) 2017=( )A .﹣ 1B . 1C . 32017D .﹣ 3201710、若 0a 1,则 a, a 2, 1的大小关系是 ()a二、填空题11、 0.0036 的平方根 是,81 的算术平方根是.12、若a 的平方根为 3 ,则 a=.13、假如一个数的平方根是 a+6 和 2a-15 ,则这个数为。

14、比较大小:5 11(填“>”、“<”或“ =”).15、比较大小: 3 10 ________5 ( 填“>”或 “<” ) .16、立方等于它自己的数是。

2020-2021学年人教版七年级下册数学第六章 实数 单元测试(含解析)

2020-2021学年人教版七年级下册数学第六章 实数 单元测试(含解析)

第六章实数单元测试一.选择题1.在﹣,﹣π,0,3.14,﹣,0.,﹣7,﹣3中,无理数有()A.1个B.2个C.3个D.4个2.下列说法正确的是()A.0.25是0.5的一个平方根B.正数有两个平方根,且这两个平方根之和等于0C.72的平方根是7D.负数有一个平方根3.下列说法错误的是()A.非负数有算术平方根B.是的算术平方根C.没有意义D.无选项4.有下列说法:①﹣3是的平方根;②﹣7是(﹣7)2的算术平方根;③25的平方根是±5;④﹣9的平方根是±3;⑤0没有算术平方根;⑥的平方根为;⑦平方根等于本身的数有0、1.其中,正确的有()A.1个B.2个C.3个D.4个5.如图,数轴上点C所表示的数是()A.2B.3.7C.3.8D.6.若的整数部分为x,小数部分为y,则x﹣y的值是()A.1B.C.3﹣3D.37.给出下列4个说法:①只有正数才有平方根;②2是4的平方根;③平方根等于它本身的数只有0;④27的立方根是±3.其中,正确的有()A.①②B.①②③C.②③D.②③④8.有一个数值转换器,原理如图所示,当输入的数x为﹣512时,输出的数y的值是()A.﹣B.C.﹣2D.29.如果=﹣,那么a,b的关系是()A.a=b B.a=±b C.a=﹣b D.无法确定10.如图,在一圆筒里放入两种不同的物体,并用一长方形的玻璃薄片(玻璃厚度忽略不计)分隔开来.已知圆筒高30厘米,容积为9420厘米3,则这长方形玻璃薄片的尺寸为(π取3.14,玻璃薄片的上边与圆筒的上底面持平)()A.30厘米×10厘米B.30厘米×20厘米C.30厘米×30厘米D.30厘米×40厘米二.填空题11.=,=,=.12.计算+=.13.已知一个表面积为12dm2的正方体,则这个正方体的棱长为.14.比较大小:﹣π﹣﹣2.(填“>”、“<”或“=”)15.下面5个数字中:0,,0.,π﹣3.14159265,是无理数的有个.16.实数a、b在数轴上所对应的点如图所示,则|﹣b|+|a+|+的值.17.的立方根是.18.已知,,则x=.19.一个圆的面积变为原来的n倍,则半径变为原来的倍;一个正方体的体积变为原来的n倍,则棱长变为原来的倍.20.按要求填空:(1)填表:a0.00040.044400(2)根据你发现规律填空:已知:,则=,=;已知:,,则x=.三.解答题21.解方程:①(2x﹣1)2﹣169=0;②.22.已知2b+1的平方根为±3,3a+2b﹣1的算术平方根为4,(1)求a、b的值;(2)求a+2b的平方根.23.计算:(1)﹣(+2);(2)﹣.24.已知:3a+1的立方根是﹣2,2b﹣1的算术平方根是3,c是的整数部分.(1)求a,b,c的值;(2)求2a﹣b+的平方根.25.如果M=是a+b+3的算术平方根,N=是a+2b的立方根,求M﹣N的立方根.26.在做浮力实验时,小华用一根细线将一正方体铁块拴住,完全浸入盛满水的圆柱形烧杯中,并用一量筒量得被铁块排开的水的体积为50.65cm3,小华又将铁块从烧杯中提起,量得烧杯中的水位下降了0.62cm.(1)求铁块的棱长.(用计算器计算,结果精确到0.1cm)(2)求烧杯内部的底面半径.(用计算器计算,结果精确到0.1cm)27.当a=10时,求﹣的值,有甲、乙同学分别这样解答:甲:原式=﹣,=10﹣4﹣(10﹣11),=7.乙:原式=|a﹣4|﹣|a﹣11|,当a=10时,a﹣4=10﹣4=6>0,a﹣11=10﹣11=﹣1<0,所以,原式=a﹣4﹣(a﹣11)=7.以上两人解答对吗?为什么?28.观察下列各式,并用所得出的规律解决问题:(1)≈1.414,≈14.14,≈141.4…≈0.1732,≈1.732,≈17.32…由此可见,被开方数的小数点每向右移动位,其算术平方根的小数点向移动位;(2)已知≈2.236,≈7.071,则≈,≈;(3)=1,=10,=100…小数点变化的规律是:.(4)已知=2.154,=4.642,则=,=.参考答案一.选择题1.解:在﹣,﹣π,0,3.14,﹣,0.,﹣7,﹣3中,无理数有﹣π,,共2个.故选:B.2.解:A、0.5是0.25的一个平方根,所以A选项不正确;B、正数有两个平方根,它们互为相反数,所以B选项正确;C、72的平方根为±7,所以C选项不正确;D、负数没有平方根,所以D选项不正确.故选:B.3.解:A、非负数有算术平方根,正确,故本选项错误;B、∵=5,∴是的算术平方根说法正确,故本选项错误;C、没有意义说法正确,故本选项错误;综上所述,无选项说法错误.故选:D.4.解:①﹣3是的平方根;故①正确,②7是(﹣7)2的算术平方根;故②错误,③25的平方根是±5;正确④﹣9的平方根是±3;负数没有平方根,故④错误,⑤0没有算术平方根;错误,⑥的平方根为;正确,⑦平方根等于本身的数有0、1.只有0,故错误.正确的有①③⑥,故选:C.5.解:∵OA=3,AB=3﹣1=2,∴OB==,∴OC=OB=,∴点C表示的数为.故选:D.6.解:∵1,∴x=1,y=﹣1,∴x﹣y=×1﹣(﹣1)=1,故选:A.7.解:①只有正数才有平方根,错误,0的平方根是0;②2是4的平方根,正确;③平方根等于它本身的数只有0,正确;④27的立方根是3,故原说法错误.所以正确的有②③.故选:C.8.解:由题中所给的程序可知:把﹣512取立方根,结果为﹣8,因为﹣8是有理数,所以再取立方根为﹣2,﹣2是有理数,所以再取立方根为=,因为是无理数,所以输出,故选:A.9.解:∵=﹣,∴a=﹣b,故选:C.10.解:依题意得:πr2h=9420,而π=3.14,h=30,∴r2=100,∴半径r=10,即圆的直径d=20,所以这长方形玻璃薄片的尺寸为30厘米×20厘米.故选:B.二.填空题11.解:=7,,,故答案为:7,,.12.解:原式=3π﹣9+10﹣3π=1.故答案为:1.13.解:∵正方体有6个面且每个面都相等,∴正方体的一个面的面积=2.∴正方形的棱长=.故答案为:dm.14.解:∵π≈3.14,≈1.414,∴π<2+,∴﹣π>﹣﹣2.故答案为:>.15.解:=3,无理数有π﹣3.14159265,共有1个.故答案为:1.16.解:由数轴可得:a<﹣,0<b<,故|﹣b|+|a+|+=﹣b﹣(a+)﹣a=﹣b﹣a﹣﹣a=﹣2a﹣b.故答案为:﹣2a﹣b.17.解:∵=,∴的立方根是,故答案为:.18.解:∵,,∴x﹣1=0.06359,∴x=1.06359,故答案为:1.06359.19.解:设圆原来的面积为S,原来的半径为r,设现在的半径为R.根据题意得:πR2=nπr2,R =r ,则它的半径是原来的倍.设原先体积为V,棱长为a,则a =,现在体积为nV,棱长为b,则b ═,故==.故答案为,.20.解:(1)根据题意填表如下:a0.00040.0444000.02 0.2 2 20故答案为:0.02,0.2,2,20;(2)∵,∴=26.38,=0.02638;∵,∴,则x=3800;故答案为:26.38,0.02638,3800.三.解答题21.解:①(2x﹣1)2﹣169=0;移项得①(2x﹣1)2=169;开平方得2x﹣1=±13,移项得2x=1±13,解得x1=7,x2=﹣6.②.移项得(x﹣4)2=4两边同时乘2得(x﹣4)2=8,开平方得x﹣4=±2移项x=4±2,解得x1=4+2,x2=4﹣2.22.解:(1)∵2b+1的平方根为±3,∴2b+1=9,解得,b=4,∵3a+2b﹣1的算术平方根为4,∴3a+2b﹣1=16,解得,a=3,即a、b的值分别是3、4;(2)∵a=3,b=4,∴a+2b=3+2×4=11,故a+2b的平方根为±.23.解:(1)原式=2﹣2﹣2=﹣2;(2)原式=2+3﹣2=3.24.解:(1)∵3a+1的立方根是﹣2,∴3a+1=﹣8,解得,a=﹣3,∵2b﹣1的算术平方根是3,∴2b﹣1=9,解得,b=5,∵<<,∴6<<7,∴的整数部分为6,即,c=6,因此,a=﹣3,b=5,c=6,(2)当a=﹣3,b=5,c=6时,2a﹣b+=﹣6﹣5+×6=16,2a﹣b+的平方根为±=±4.25.解:由已知得:,解得:,∴M==3,N==2,∴==1.26.解:(1)根据题意得:铁块的棱长为≈3.7(cm),答:铁块的棱长为3.7cm;(2)设烧杯内部的底面半径为xcm,根据题意得:πx2•0.62=50.65,解得:x≈5.1或x≈﹣5.1(舍),答:烧杯内部的底面半径约为5.1cm.27.解:甲错误原式=10﹣4﹣(11﹣10)=6﹣1=5,故甲错误;乙错误原式=a﹣4﹣(11﹣a)=a﹣4﹣11+a=5,故乙错误.28.解:(1)≈1.414,≈14.14,≈141.4…≈0.1732,≈1.732,≈17.32…由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位;(2)已知≈2.236,≈7.071,则≈0.7071,≈22.36;(3)=1,=10,=100…小数点变化的规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)已知≈2.154,≈4.642,则≈21.54,≈﹣0.4642.故答案为:(1)两;一;(2)0.7071;22.36;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)21.54;﹣0.4642。

人教版七年级数学下第6章 实数 单元测试(含答案)

人教版七年级数学下第6章  实数  单元测试(含答案)

第6章 实数 单元测试卷一、单选题1.关于√8的叙述正确的是( )A .在数轴上不存在表示√8的点B .√8=√2+√6C .与√8最接近的整数是2D .√8=2√22.在25-,π-,0,3.14,,0.33333133中,无理数的个数有( )A .1个B .2个C .3个D .4个3.在﹣1.732π,3.14••,,3.212212221……,56,这些数中,有理数的个数为()A .2B .3C .4D .54的值是( )A .2BC .±2D .5.下列说法正确的 ( )A .任何实数aB .任何实数aC .任何实数a 的绝对值是aD .任何实数a 的倒数是1a6.下列实数是无理数的是( )A .-1B .0CD .327.下列各数中最小的数是( )A .π-B .0C .D .18.下列说法正确的是( )A .14是0.5的一个平方根B .()22-的平方根是-2C .正数有两个平方根,且这两个平方根之和等于0D .负数有一个平方根9.如图,在数轴上,点A 与点C 到点B 的距离相等,A ,B 两点所对应的实数分别是1,则点C 对应的实数是( )A .1B .2C .1D .1二、填空题 10.已知2x 3-是81的算术平方根,则x 的值为______.11.数轴上点A ,B -110,则点A 距点B 的距离为_________.12.在数轴上,实数2﹣√5对应的点在原点的_____侧.(填“左”、“右”)13.2(4)-的算术平方根为__________14.已知一个正数的平方根是3a+4和5-6a ,则这个正数是___.15=x y +,则x y -=______.16.比较3(填“<”或“>”)17.已知m ,n 是两个连续整数,且m <n ,则m +n =_____.18.把下列各数的序号填入相应的括号内.①10,①π-,① 3.14-,①0,①113,①1-,①1.3,①1.8080080008…(相邻两个8之间依次多一个0)整数集合_________________________负分数集合_________________________正有理数集合_________________________无理数集合_________________________19.规定a*b=5×a-12×b(其中a,b是自然数),求(1)10*6=_______,(2)6*10=______三、解答题20.(1)的近似值的过程,请你仔细阅读并补充完整:我们知道,面积是2的正方,1,1+x(0<x<1),可画出如图所示的示意图.由各部分面积之和等于总面积.可列方程为:x2++1=2,①0<x<1,①认为x2是个较为接近于0的数,令x2≈0,因此省略x2后,得到方程:,解得,x=,即=1+x≈.(2)请仿照(1) 1.7+y(0<y<1)的近似值(精确到千分位)2122.阅读材料:对于任何数,我们规定一种运算a bad bc c d=-.例如:121423234=⨯-⨯=-.(1)按照这个规定,请你计算10634-的值. (2)请计算当21(2)02x y ++-=时,22232x y -的值.23.用“①”表示一种新的运算,对于正实数 a ,b ,都有 a ①b b , 例如 25①88=13. (1)求 1①5 的值;(2)若 16①(m 3-1)=11,求 m 的值24.(1-2(2)求x 的值:225(2)360x +-=25.计算:(1)()178-++ (2)()222169333÷-⨯--(3)(2332⨯++-26.在一次“智慧课堂”教学比武的课堂上,李老师说:是无理数,无理数就是无限不循环小数,同学们,你能的小数部分全部写出来吗?”大家议论纷纷,张晶同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用1)-表示它的小数部分.”李老师说:“的整数部分是1,将这个数减去其整数部分,差就是小数部分,”请你解答:已知8x y +=+,其中x 是一个整数,且01y <<,请你求出20122)x y +的值.27.求下列各式中的x .(1)2528x -=;(2)()3164x -=-.28.计算:求下列各式的值.(2(3) 31(2)2⎛⎫-- ⎪⎝⎭. (4) ||2|+29.计算:(1)232111(2)83-+-⨯+ ;(2)23346()()a a a a a a --+-g g g参考答案一、选择题1.D 2.B 3.B 4.A 5.B6.C 7.A 8.C 9.B二、填空题10.6 11.11 12.左13.4 14.169. 15.10 16.>17.518.①①① ①① ①①① ①①① 19.47 25三、解答题20.(1)2x,2x+1=2,0.5,1.5;(2)1.732.【解析】【分析】(1)解方程即可得到结论;(2)解方程即可得到结论.【详解】(1)由面积公式,可得x2+2x+1=2.略去x2,得方程2x+1=2.解得x=0.5;故答案为:2x,2x+1=2,0.5,1.5;(2)由面积公式,可得x2+2×1.7x+1.72=3.略去x2,得方程2×1.7x+1.72=2.解得x=0.32≈1.732;【点睛】本题考查了估算无理数的大小,正确的解方程是解题的关键.21.4.【解析】【分析】分别根据算术平方根和立方根的意义进行求解,然后再进行加减运算即可.【详解】,=4-3+3=4.【点睛】本题主要考查了实数的混合运算,熟练掌握算术平方根和立方根的意义是解此题的关键.22.(1)58;(2)-13.【解析】【分析】(1)根据题目的意思,掌握新运算的实际运算方法,按照新运算的方法进行计算即可(2)利用非负性,得出x 、y 的值,然后按照新运算的顺序进行代入计算即可【详解】解:(1)1061046(3)34=⨯-⨯--,4018=+,58=.(2)由21(2)02x y ++-=得:1 2.2x y =-=, 222222(2)332x y x y =---, 2214()322=-⨯--⨯,112=--, .13=-.【点睛】本题主要考查了新运算的实际运用,读懂题中所给的新运算是关键23.(1)6;(2)m=2.【解析】【分析】(1)根据定义的运算法则进行计算即可;(2)由新定义的运算法则可得关于m 的方程,解方程即可求得答案.【详解】(1)①a ①b b ,+5=1+5=6;(2)①a ①b b ,16①(m 3-1)=11,m 3-1)=11,即4+m 3-1=11,①m 3=8,①m=2.【点睛】本题考查了新定义运算,涉及了算术平方根,利用立方根的概念解方程等,弄清新定义运算的运算法则,熟练掌握相关知识是解题的关键.24.(1)-3;(2)145x =-,2165x =-. 【解析】【分析】(1)原式利用立方根的定义及算术平方根的意义化简,计算即可得到结果;(2)方程整理后,利用平方根定义开方即可求出解.【详解】解:(1)原式2833=-+=-;(2)225(2)360x +-= 方程整理得:236(2)25x +=, 开平方得:625x +=±, 解得:145x =-,2165x =-.【点睛】此题考查了实数的运算,以及平方根,熟练掌握运算法则是解本题的关键.25.(1)2;(2)﹣27;(3)9.【解析】【分析】(1)根据有理数的加减运算法则进计算即可;(2)先算乘方,再算乘除,然后进行加减运算即可;(3)先去括号,再进行加减运算即可.【详解】解:(1)原式=1﹣7+8=2;(2)原式=6×32﹣13×81﹣9=9﹣27﹣9=﹣27;(3)原式=6+﹣【点睛】本题主要考查实数的混合运算解此题的关键在于熟练掌握各个运算法则.26.19.【解析】【分析】x y的值,最后代入求出即可.【详解】①12,①9<810,①8x +y ,其中x 是一个整数,且0<y <1,①x =9,y =8,①2x )2012=2×9+−1)]2012=18+1=19.【点睛】本题考查了估算无理数的大小和实数的混合运算的应用,关键是求出x,y 的值.27.(1)x=;(2)x= -3.【解析】【分析】(1)先变形得到x 2=2,然后根据平方根的定义即可得到x 的值;(2)根据立方根的定义得到x -1=-4,然后解一次方程即可得到x 的值.【详解】解:(1)2528x -=2510x =,22x = ,所以x=;(2)()3164x -=-x -1=-4,所以x= -3.【点睛】本题考查立方根:如果一个数的立方等于a ,那么这个数叫做a28.(1)0.7;(2)53;(3)30;(4)4; 【解析】【分析】(1)根据算术平方根的性质可求解;(2)根据立方根的性质可得答案;(3)根据立方根、算术平方根的性质,可得答案;(4)根据绝对值、算术平方根的性质,可得答案【详解】(1=0.9-0.2,=0.7;(2=53;(3) 31(2)2⎛⎫-- ⎪⎝⎭=184(4)()2-⨯+-⨯-,=-32+2=-30.(4) ||2|+22=4.【点睛】本题考查了实数的运算,熟记法则并根据法则计算是解决此题的关键.29.(1)-1;(2)5a【解析】【分析】(1)根据实数的性质进行化简即可求解;(2)根据幂的运算公式即可求解.【详解】(1)232111(2)83-+-⨯-+ =111(8)3283-+-⨯-⨯+ =1112---+=-1;(2)23346()()a a a a a a --+-g g g=577a a a +-=5a【点睛】此题主要考查实数的运算,解题的关键是熟知实数的性质及幂的运算法则.。

人教版七年级数第二学期第6章《实数》单元测试题及答案01

人教版七年级数第二学期第6章《实数》单元测试题及答案01

人教版七年级数第二学期第6章《实数》单元测试题及答案一.选择题(共10小题)1.若m,n满足(m﹣1)2+=0,则的平方根是()A.±4B.±2C.4D.22.下列几个数中,属于无理数的数是()A.0.1 B.C.πD.3.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.2与|﹣2|4.下列计算正确的是()A.B.=﹣2C.D.(﹣2)3×(﹣3)2=725.实数a,b,c,d在数轴上对应点的位置如图所示,则正确的结论是()A.a>﹣4B.bd>0C.b+c>0D.|a|>|b|6.9的平方根是()A.B.81C.±3D.37.的算术平方根是()A.±B.C.±D.58.实数的算术平方根是()A.2B.C.±2D.±9.下列实数中,最大的是()A.﹣0.5B.﹣C.﹣1D.﹣10.估算7﹣的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间二.填空题(共8小题)11.实数a、b在数轴上的位置如图所示,则①a+b<0;②a﹣b>0;③|a|<|b|;④a2<b2;⑤ab>b2.以上说法正确的有(在横线上填写相应的序号)12.﹣1的相反数是.13.下列各数:3.146,,0.010010001,3﹣π,.其中,无理数有个.14.与最接近的整数是.15.比较大小:.16.已知2a﹣1的平方根是±3,3a﹣b﹣1的立方根是2,a+b的平方根.17.有一个数值转换器,原理如图:当输入的x=4时,输出的y等于.18.计算:=.三.解答题(共7小题)19.计算:+×﹣6+.20.求下列各式中的x.(1)3x2﹣12=0(2)(x﹣1)3=﹣6421.若5x﹣19的算术平方根是4,求3x+9的平方根.22.已知2b+1的平方根为±3,3a+2b﹣1的算术平方根为4,求3a﹣2b的立方根.23.实数a,b,c在数轴上的位置如图,化简|b+c|﹣|b+a|+|a﹣c|.24.天气晴朗时,一个人能看到大海的最远距离S(单位:km)可用公式S2=1.7h米估计,其中h(单位:m)是眼睛离海平面的高度.(1)如果一个人站在岸边观察,当眼睛离海平面的高度是1.7m时,能看到多远?(2)若登上一个观望台,使看到的最远距离是(1)中的3倍,已知眼睛到脚底的高度为1.7m,求观望台离海平面的高度?25.已知5+和5﹣的小数部分分别为a,b,试求代数式ab﹣a+4b﹣3的值.参考答案与试题解析一.选择题(共10小题)1.若m,n满足(m﹣1)2+=0,则的平方根是()A.±4B.±2C.4D.2【分析】根据非负数的性质列式求出m、n,根据平方根的概念计算即可.【解答】解:由题意得,m﹣1=0,n﹣15=0,解得,m=1,n=15,则=4,4的平方根的±2,故选:B.【点评】本题考查的是非负数的性质、平方根的概念,掌握非负数之和等于0时,各项都等于0是解题的关键.2.下列几个数中,属于无理数的数是()A.0.1 B.C.πD.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此解答即可.【解答】解:A.0.1是有限小数,属于有理数,故本选项不合题意;B.,是整数,属于有理数,故本选项不合题意;C.π是无理数,故本选项符合题意;D.是分数,属于有理数,故本选项不合题意.故选:C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.2与|﹣2|【分析】根据只有符号不同的两个数叫做互为相反数对各选项分析判断后利用排除法求解.【解答】解:A、=2,﹣2与是互为相反数,故本选项正确;B、=﹣2,﹣2与相等,不是互为相反数,故本选项错误;C、﹣2与﹣是互为倒数,不是互为相反数,故本选项错误;D、|﹣2|=2,2与|﹣2|相等,不是互为相反数,故本选项错误.故选:A.【点评】本题考查了实数的性质,对各项准确计算是解题的关键.4.下列计算正确的是()A.B.=﹣2C.D.(﹣2)3×(﹣3)2=72【分析】A、根据算术平方根的定义即可判定;B、根据立方根的定义即可判定;C、根据立方根的定义即可判定;D、根据乘方运算法则计算即可判定.【解答】解:A、=3,故选项A错误;B、=﹣2,故选项B正确;C、=,故选项C错误;D、(﹣2)3×(﹣3)2=﹣8×9=﹣72,故选项D错误.故选:B.【点评】本题主要考查实数的运算能力,解决此类题目的关键是熟记二次根式、三次根式和立方、平方的运算法则.开平方和开立方分别和平方和立方互为逆运算.立方根的性质:任何数都有立方根,①正数的立方根是正数,②负数的立方根是负数,③0的立方根是0.5.实数a,b,c,d在数轴上对应点的位置如图所示,则正确的结论是()A.a>﹣4B.bd>0C.b+c>0D.|a|>|b|【分析】观察数轴,找出a、b、c、d四个数的大概范围,再逐一分析四个选项的正误,即可得出结论.【解答】解:A、∵a<﹣4,∴结论A错误;B、∵b<﹣1,d=4,∴bd<0,结论B错误;C、∵﹣2<b<﹣1,0<c<1,∴b+c<0,结论C错误;D、∵a<﹣4,b>﹣2,∴|a|>|b|,结论D正确.故选:D.【点评】本题考查了实数与数轴以及绝对值,观察数轴,逐一分析四个选项的正误是解题的关键.6.9的平方根是()A.B.81C.±3D.3【分析】根据平方根的定义即可解答.【解答】解:9的平方根是±3,故选:C.【点评】此题主要考查了平方根.解题的关键是掌握平方根的定义,注意一个正数的平方根有两个,且互为相反数.7.的算术平方根是()A.±B.C.±D.5【分析】直接根据算术平方根的定义计算即可.【解答】解:因为=5,所以的算术平方根是,故选:B.【点评】此题主要考查了算术平方根,关键是掌握算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.8.实数的算术平方根是()A.2B.C.±2D.±【分析】首先得出=4,进而利用算术平方根的定义得出答案.【解答】解:∵=4,∴的算术平方根是:2.故选:A.【点评】此题主要考查了立方根和算术平方根的定义,正确理解算术平方根与立方根的定义是解题关键.9.下列实数中,最大的是()A.﹣0.5B.﹣C.﹣1D.﹣【分析】根据实数的比较大小即可求出答案.【解答】解:由于﹣0.5>﹣1>>﹣,故选:A.【点评】本题考查实数,解题的关键是熟练运用实数比较的方法,本题属于基础题型.10.估算7﹣的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【分析】先估算出的范围,再估算出7﹣的范围即可.【解答】解:∵4<<5,∴7﹣的值在2和3之间;故选:A.【点评】此题主要考查了估计无理数,得出的取值范围是解题关键.二.填空题(共8小题)11.实数a、b在数轴上的位置如图所示,则①a+b<0;②a﹣b>0;③|a|<|b|;④a2<b2;⑤ab>b2.以上说法正确的有①⑤(在横线上填写相应的序号)【分析】根据图示,可得a<b<0,﹣a<﹣b,据此逐项判断即可.【解答】解:∵a<b<0,∴a+b<0,∴选项①正确;∵a<b<0,∴a﹣b<0,∴选项②错误;∵a<b<0,∴|a|>|b|;∴选项③错误;∵a<b<0,﹣a>﹣b,∴a2>b2,∴选项④错误;∵a<b<0,﹣a>﹣b,∴ab>b2,∴选项⑤正确,∴正确的结论有3个:①、⑤.故答案为:①⑤.【点评】此题主要考查了有理数大小比较的方法,以及数轴的特征和应用,要熟练掌握.12.﹣1的相反数是1﹣.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣1的相反数是1﹣,故答案为:1﹣.【点评】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.13.下列各数:3.146,,0.010010001,3﹣π,.其中,无理数有1个.【分析】无理数常见的三种类型(1)开不尽的数;(2)特定结构的无限不循环小数;(3)含有π的绝大部分数.【解答】解:3.146是有限小数,属于有理数;是分数,属于有理数;0.010010001是有限小数,属于有理数;是循环小数,属于有理数.∴无理数有3﹣π共1个.故答案为:1【点评】本题主要考查的是无理数的认识,掌握无理数的常见类型是解题的关键.14.与最接近的整数是2.【分析】直接利用的取值范围进而得出答案.【解答】解:∵<<,∴1<<2,∴与最接近的整数是:2.故答案为:2.【点评】此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.15.比较大小:<.【分析】首先分别求出+、的平方的值各是倒数;然后比较出它们的大小关系,再根据:两个正数,平方大的,原来的数也大,判断出原来的两个数的大小关系即可.【解答】解:=11+2=22∵11+2<11+2×5.5=22,∴<,∴<.故答案为:<.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:两个正数,平方大的,原来的数也大.16.已知2a﹣1的平方根是±3,3a﹣b﹣1的立方根是2,a+b的平方根±.【分析】先根据平方根、立方根的定义得到关于a、b的二元一次方程组,解方程组即可求出a、b的值,进而得到2﹣b的平方根.【解答】解:由题意,有,解得.则a+b=5+6=11,所以a+b的平方根±.故答案为:±.【点评】本题考查了平方根、立方根的定义.解题的关键是掌握平方根、立方根的定义.如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.如果一个数x的立方等于a,那么这个数x就叫做a的立方根.17.有一个数值转换器,原理如图:当输入的x=4时,输出的y等于.【分析】根据转换程序把4代入求值即可.【解答】解:4的算术平方根为:=2,则2的算术平方根为:.故答案为:.【点评】此题主要考查了算术平方根,正确把握运算规律是解题关键.18.计算:=6.【分析】根据算术平方根和立方根的定义计算可得.【解答】解:原式=9﹣3=6,故答案为:6.【点评】本题主要考查实数的运算,解题的关键是熟练掌握平方根和立方根的定义.三.解答题(共7小题)19.计算:+×﹣6+.【分析】直接利用二次根式的性质和立方根的性质分别化简得出答案.【解答】解:原式===.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.求下列各式中的x.(1)3x2﹣12=0(2)(x﹣1)3=﹣64【分析】(1)根据平方根定义开方,再求出方程的解即可;(2)根据立方根定义开方,再求出方程的解即可.【解答】解:(1)3x2﹣12=0,3x2=12,x2=4,x=±2;(2)(x﹣1)3=﹣64,x﹣1=﹣4,x=﹣3.【点评】本题考查了立方根和平方根定义的运用,解此题的关键是能根据平方根和立方根定义得出一元一次方程.21.若5x﹣19的算术平方根是4,求3x+9的平方根.【分析】由题意得4的平方是16,那么5x﹣19=16,即可求得x,进而求得3x+9的平方根.【解答】解:∵5x﹣19的算术平方根是4∴5x﹣19=16∴x=7∴3x+9=30,其平方根为±.【点评】此题主要考查了算术平方根、平方根的定义,注意:被开方数应等于它的算术平方根的平方.一个正数的平方根有2个.22.已知2b+1的平方根为±3,3a+2b﹣1的算术平方根为4,求3a﹣2b的立方根.【分析】分别根据2a﹣1的平方根是±3,3a+2b﹣1的算术平方根是4,求出a、b的值,再求出3a﹣2b的值,求出其立方根即可.【解答】解:∵2b﹣1的平方根是±3,∴2b+1=(±3)2,解得b=4;∵3a+2b﹣1的算术平方根是4,∴3a+2b﹣1=16,把b=4代入得,3a+2×4﹣1=16,解得a=3,∴3a﹣2b=3×3﹣2×4=1.∵13=1,∴3a﹣2b的立方根是1.【点评】本题考查的是立方根、平方根及算术平方根的定义,根据题意列出关于a、b的方程,求出a、b的值是解答此题的关键.23.实数a,b,c在数轴上的位置如图,化简|b+c|﹣|b+a|+|a﹣c|.【分析】观察数轴,可得出b<c<0<a<﹣b,进而可得出b+c<0,b+a<0,a﹣c>0,再结合绝对值的定义即可求出结论.【解答】解:观察数轴,可知:b<c<0<a<﹣b,∴b+c<0,b+a<0,a﹣c>0,∴原式=﹣b﹣c+b+a+a﹣c=2a﹣2c.【点评】本题考查了实数与数轴以及绝对值,观察数轴找出b+c,b+a,a﹣c的正负是解题的关键.24.天气晴朗时,一个人能看到大海的最远距离S(单位:km)可用公式S2=1.7h米估计,其中h(单位:m)是眼睛离海平面的高度.(1)如果一个人站在岸边观察,当眼睛离海平面的高度是1.7m时,能看到多远?(2)若登上一个观望台,使看到的最远距离是(1)中的3倍,已知眼睛到脚底的高度为1.7m,求观望台离海平面的高度?【分析】(1)求出h=1.7时S的值即可得;(2)求出S=1.7×3=5.1时h的值,再减去1.7米即可得答案.【解答】解:(1)当h=1.7时,S2=1.7×1.7,∴S=﹣1.7(舍)或S=1.7,答:当眼睛离海平面的高度是1.7m时,能看到1.7m远;(2)当S=1.7×3=5.1时,可得5.12=1.7h,解得h=15.3,15.3﹣1.7=13.6(米),答:观望台离海平面的高度为13.6米.【点评】本题主要考查的是算术平方根.解题的关键是掌握算术平方根的定义.25.已知5+和5﹣的小数部分分别为a,b,试求代数式ab﹣a+4b﹣3的值.【分析】先估算出的大小,然后求得a、b的值,最后利用二次根式的乘法法则进行计算即可.【解答】解:∵1<3<4,∴1<<2,∴,,∴a=5+﹣6=,b==,∴ab﹣a+4b﹣3===1﹣.【点评】本题主要考查的是估算无理数的大小、二次根式的混合运算,求得a、b的值是解题的关键.。

人教版初1数学7年级下册 第6章(实数)单元测试卷(含解析)

人教版初1数学7年级下册 第6章(实数)单元测试卷(含解析)

第六章实数单元测试一.选择题1.在下列各数中是无理数的有( )0.3030030003,,,﹣,,,3.14,2.010101…(相邻两个1之间有1个0),9.0123456…(小数部分由相继的正整数组成).A.3个B.4个C.5个D.6个2.﹣可以表示( )A.0.2的平方根B.﹣0.2的算术平方根C.0.2的负的平方根D.﹣0.2的平方根3.下列说法错误的是( )A.5是25的算术平方根B.1是1的一个平方根C.(﹣4)2的平方根是﹣4D.0的平方根与算术平方根都是04.若a,b(a≠b)是64的平方根,则+的值为( )A.8B.﹣8C.4D.05.一个正数的两个平方根分别是2a﹣5和﹣a+1,则这个正数为( )A.4B.16C.3D.96.下列判断正确的是( )A.B.﹣9的算术平方根是3C.27的立方根是±3D.正数a的算术平方根是7.若<﹣2,则a的值可以是( )A.﹣9B.﹣4C.4D.98.若a是的平方根,b是的立方根,则a+b的值是( )A.4B.4或0C.6或2D.69.若9﹣的整数部分为a,小数部分为b,则2a+b等于( )A.12﹣B.13﹣C.14﹣D.15﹣10.实数a,b在数轴上对应的点的位置如图所示,那么化简的结果( )A.2a+b B.b C.2a﹣b D.3b二.填空题11.﹣8的立方根是 ,的平方根是 .12.+()2= .13.比较大小:﹣ ﹣1.5.14.若将三个数,,表示在数轴上,其中能被如图所示的墨迹覆盖的数是 .15.已知,则(a﹣b)2= .16.如图网格中每个小正方形的边长为1,若把阴影部分剪拼成一个正方形,那么新正方形的边长是 .17.已知x﹣2的平方根是±2,2x+y+7的立方根是3,则x+y的值为 .18.若的整数部分为2,则满足条件的奇数a有 个.19.给出表格:a0.00010.011100100000.010.1110100利用表格中的规律计算:已知,则a+b= .(用含k 的代数式表示)20.小明设计了一个如下图所示的电脑运算程序:(1)当输入x的值是64时,输出的y值是 .(2)分析发现,当实数x取 时,该程序无法输出y值.三.解答题21.求下列各式中的x:(1)4x2﹣81=0;(2)(x﹣1)3+4=.22.已知m﹣3的平方根是±6,,求m+n的算术平方根.23.已知一个正数m的平方根为2n+1和4﹣3n.(1)求m的值;(2)|a﹣3|++(c﹣n)2=0,a+b+c的立方根是多少?24.已知a是的整数部分,b是它的小数部分,求(﹣a)3+b2的值.25.一个底面为40cm×30cm的长方体玻璃容器中装满水,现将一部分水倒入一个底面为正方形、高为10cm的长方体铁桶中,当铁桶装满水时,容器中的水面下降了20cm,铁桶的底面边长是多少厘米?26.如图是由8个同样大小的正方体组成的魔方,其体积为8.(1)求出这个魔方的棱长;(2)图中阴影部分是一个正方形ABCD,该正方形的面积为 ,边长为 ;(3)若把长度等于AB的线段放到数轴上,使点A与﹣1重合,点B在点A的右边,设点B 表示的数为b,请计算b(b+2)的值.参考答案一.选择题1.解:无理数有,﹣,,9.0123456…(小数部分由相继的正整数组成),共4个;故选:B.2.解:﹣可以表示0.2的负的平方根,故选:C.3.解:A、因为=5,所以本说法正确;B、因为±=±1,所以1是1的一个平方根说法正确;C、因为±=±=±4,所以本说法错误;D、因为=0,=0,所以本说法正确;故选:C.4.解:∵a,b(a≠b)是64的平方根,∴a=8,b=﹣8;或a=﹣8,b=8.当a=8,b=﹣8时,+=2﹣2=0;当a=﹣8,b=8时,+=﹣2+2=0.∴+的值为0.故选:D.5.解:∵正数的两个平方根分别是2a﹣5和﹣a+1,∴(2a﹣5)+(﹣a+1)=0,解得a=4,∴2a﹣5=3,∴这个正数为32=9,故选:D.6.解:A.=4,此选项错误;B.9的算术平方根是3,此选项错误;C.27的立方根是3,此选项错误;D.正数a的算术平方根是,此选项正确;故选:D.7.解:因为<﹣2,所以a<﹣8,所以a的值可以是﹣9,故选:A.8.解:∵a是的平方根,即a为4的平方根,∴a=±2,∵b是的立方根,即b为8的立方根,∴b=2,∴当a=2,b=2时,a+b=4;当a=﹣2,b=2时,a+b=0.故选:B.9.解:∵3<<4,∴﹣4<﹣<﹣3,∴5<9﹣<6,又∵9﹣的整数部分为a,小数部分为b,∴a=5,b=9﹣﹣5=4﹣,∴2a+b=10+(4﹣)=14﹣,故选:C.10.解:实数a,b在数轴上对应的点的位置可知:a>0,b<0,且|a|>|b|,因此,b﹣a<0,a+b>0,所以,=a﹣b+a+b﹣b=2a﹣b,故选:C.二.填空题11.解:∵﹣2的立方等于﹣8,∴﹣8的立方根等于﹣2;∵=4,∵±2的平方等于4,∴4的平方根等于±2;故答案为﹣2,±2.12.解:原式=3+2=5,故答案为:513.解:=3,(﹣1.5)2=2.25,∵3>2.25,∴﹣<﹣1.5.故答案为:<.14.解:由题意:被墨迹覆盖的数在1和3之间.∵﹣<﹣<﹣,∴﹣2<﹣<﹣1∴﹣被墨迹覆盖的数.∵<<,∴2<<3.∴是被墨迹覆盖的数.∵<<,∴3<<4.∴被墨迹覆盖的数.故答案为.15.解:∵,∴a﹣2=0,b+3=0,解得a=2,b=﹣3.∴(a﹣b)2=(2+3)2=25.故答案为:25.16.解:根据图形得:S阴影=2×2×2×+2×2×=4+2=6,则新正方形的边长为.故答案为:.17.解:∵x﹣2的平方根是±2,2x+y+7的立方根是3,∴x﹣2=4,2x+y+7=27,解得:x=6,y=8,则x+y=6+8=14.故答案为:14.18.解:因为=2,=3,而的整数部分为2,所以8<a<27,则满足条件的奇数a有:9,11,13,15,17,19,21,23,25,共有9个.故答案为:9.19.解:,则a+b=10.1k,故答案为:10.1k.20.解:(1)当x=64时,=8,=2,当x=2时,y=;故答案为:;(2)当x为负数时,不能计算,因为负数没有算术平方根;当x=0时,=0,=0,一直计算,0的算术平方根和立方根都是0,不可以是无理数,不能输出y值,当x=1时,=1,=1,一直计算,1的算术平方根和立方根都是1,不可以是无理数,不能输出y值,∴当实数x取0或1或负数时,该程序无法输出y值,故答案为:0或1或负数.三.解答题21.解:(1)4x2﹣81=0,则x2=,故x=±;(2)(x﹣1)3+4=(x﹣1)3=﹣4,则(x﹣1)3=﹣,故x﹣1=﹣,解得:x=﹣.22.解:∵m﹣3的平方根是±6,∴m﹣3=(±6)2,∴m=39,∵,∴3+4n=27,∴n=6,∴m+n的算术平方根为:.23.解:(1)正数m的平方根互为相反数,∴2n+1+4﹣3n=0,∴n=5,∴2n+1=11,∴m=121;(2)∵|a﹣3|++(c﹣n)2=0,∴a=3,b=0,c=n=5,∴a+b+c=3+0+5=8,∴a+b+c的立方根是2.24.解:∵3<a<4,∴a=3,b=﹣3,∴原式=(﹣3)3+(﹣3)2=﹣27+(10+9)=﹣27+10﹣6+9=.25.解:设铁桶的底面边长为xcm,则x2×10=40×30×20,x2=40×30×2,x=,x=.答:铁桶的底面边长是cm.26.解:(1)设魔方的棱长为x,则x3=8,解得:x=2;(2)∵棱长为2,∴每个小立方体的边长都是1,∴正方形ABCD的边长为:,∴S正方形ABCD=()2=2;故答案为2;.(3)∵正方形ABCD的边长为,点A与﹣1重合,∴点B在数轴上表示的数b为:﹣1﹣,∴b(b+2)=(﹣1﹣)(﹣1﹣﹣2 )=5+4.。

第六章 实数单元测试及答案

第六章 实数单元测试及答案

第六章 实数单元测试及答案一、选择题1.一列数1a , 2a , 3a ,…… n a ,其中1a =﹣1, 2a =111a -, 3a =211a -,……, n a =111n a --,则1a ×2a ×3a ×…×2017a =( )A .1B .-1C .2017D .-20172.圆的面积增加为原来的m 倍,则它的半径是原来的( )A .m 倍B .2m 倍 C倍 D .2m 倍3.下列命题中,真命题是( )A .实数包括正有理数、0和无理数B .有理数就是有限小数C .无限小数就是无理数D .无论是无理数还是有理数都是实数4.下列说法中正确的个数有( )①0是绝对值最小的有理数;②无限小数是无理数;③数轴上原点两侧的数互为相反数;④相反数等于本身的数是0;⑤绝对值等于本身的数是正数;A .2个B .3个C .4个D .5个5.若a ,b均为正整数,且a >b <+a b 的最小值是( ) A .3 B .4 C .5 D .66.有下列四种说法:①数轴上有无数多个表示无理数的点;②带根号的数不一定是无理数;③平方根等于它本身的数为0和1;④没有最大的正整数,但有最小的正整数;其中正确的个数是( )A .1B .2C .3D .47.已知|x |=2,y 2=9,且xy <0,则x +y 的值为( )A .1或﹣1B .-5或5C .11或7D .-11或﹣7830b -=)A .0B .±2C .2D .49.下列各数中3.14,0.1010010001…,﹣17,2π有理数的个数有()A .1个B .2个C .3个D .4个10.已知m 是整数,当|m ﹣40|取最小值时,m 的值为( ) A .5 B .6 C .7 D .8二、填空题11.若x +1是125的立方根,则x 的平方根是_________.12.若()2320m n ++-=,则m n 的值为 ____.13.估计51-与0.5的大小关系是:51-_____0.5.(填“>”、“=”、“<”) 14.观察下列各式:(1)123415⨯⨯⨯+=;(2)2345111⨯⨯⨯+=;(3)3456119⨯⨯⨯+=;根据上述规律,若121314151a ⨯⨯⨯+=,则a =_____.15.比较大小:512-__________0.5.(填“>”“<”或“=”) 16.已知31.35 1.105≈,3135 5.130≈,则30.000135-≈________.17.已知a 、b 为两个连续的整数,且a <19<b ,则a +b =_____.18.如图,直径为1个单位长度的半圆,从原点沿数轴向右滚动一周,圆上的一点由原点O 到达点'O ,则点'O 对应的数是_______.19.若一个正数的平方根是21a +和2a +,则这个正数是____________.20.若x ,y 为实数,且|2|30x y ++-=,则(x+y) 2012的值为____________.三、解答题21.先阅读然后解答提出的问题:设a 、b 是有理数,且满足2322+=-a b b a 的值.解:由题意得(3)(20-++=a b ,因为a 、b 都是有理数,所以a ﹣3,b+2也是有理数,2是无理数,所以a-3=0,b+2=0,所以a=3,b=﹣2, 所以3(2)8=-=-a b .问题:设x 、y 都是有理数,且满足225y 1035x y -+=+x+y 的值.22.阅读下面文字:对于5231591736342⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭可以如下计算: 原式()()()5231591736342⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦ ()()()5231591736342⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-+-+-++-⎡⎤ ⎪ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦ 1014⎛⎫=+- ⎪⎝⎭ 114=- 上面这种方法叫拆项法,你看懂了吗?仿照上面的方法,计算:(1)115112744362⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭ (2)235120192018201720163462⎛⎫⎛⎫-++-+ ⎪ ⎪⎝⎭⎝⎭ 23.阅读理解: 计算1111234⎛⎫+++ ⎪⎝⎭×11112345⎛⎫+++ ⎪⎝⎭﹣111112345⎛⎫++++ ⎪⎝⎭×111234⎛⎫++ ⎪⎝⎭时,若把11112345⎛⎫+++ ⎪⎝⎭与111234⎛⎫++ ⎪⎝⎭分别各看着一个整体,再利用分配律进行运算,可以大大简化难度.过程如下: 解:设111234⎛⎫++ ⎪⎝⎭为A ,11112345⎛⎫+++ ⎪⎝⎭为B , 则原式=B (1+A )﹣A (1+B )=B+AB ﹣A ﹣AB=B ﹣A=15.请用上面方法计算: ①11111123456⎛⎫+++++ ⎪⎝⎭×111111234567⎛⎫+++++ ⎪⎝⎭-1111111234567⎛⎫++++++ ⎪⎝⎭×1111123456⎛⎫++++ ⎪⎝⎭②111123n ⎛⎫++++ ⎪⎝⎭111231n ⎛⎫+++ ⎪+⎝⎭-1111231n ⎛⎫++++ ⎪+⎝⎭11123n ⎛⎫+++ ⎪⎝⎭. 24.你能找出规律吗?(1= ,= ;= ,= .“<”).(2)请按找到的规律计算:;(3)已知:a,b= (可以用含a ,b 的式子表示).25.阅读理解.23.∴11<21的整数部分为1,12.解决问题:已知a﹣3的整数部分,b﹣3的小数部分.(1)求a ,b 的值;(2)求(﹣a )3+(b +4)22=17.26.阅读下列解题过程:为了求23501222...2+++++的值,可设23501222...2S =+++++,则2345122222...2S =+++++,所以得51221S S -=-,所以5123505121:1222...221S =-+++++=-,即;仿照以上方法计算:(1)2320191222...2+++++= .(2)计算:2320191333...3+++++(3)计算:101102103200555...5++++【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】因为1a =﹣1,所以2a =11111112a ==---(),3 a =21121112a ==--,4 a =3111112a ==---,通过观察可得:1 a ,2a ,3a ,4 a ……的值按照﹣1,1 2, 2三个数值为一周期循环,将2017除以3可得372余1,所以2017a 的值是第273个周期中第一个数值﹣1,因为每个周期三个数值的乘积为: 11212-⨯⨯=-,所以1a ×2a ×3a ×…×2017a =()()372111,-⨯-=-故选B. 2.C解析:C【分析】设面积增加后的半径为R ,增加前的半径为r ,根据题意列出关系式计算即可.【详解】设面积增加后的半径为R ,增加前的半径为r ,根据题意得:πR 2=mπr 2,∴,故选:C .【点睛】此题主要考查了实数的运算,要注意,圆的面积和半径之间是平方关系而非正比例关系.3.D解析:D【分析】直接利用实数以及有理数、无理数的定义分析得出答案.【详解】A 、实数包括有理数和无理数,故此命题是假命题;B 、有理数就是有限小数或无限循环小数,故此命题是假命题;C 、无限不循环小数就是无理数,故此命题是假命题;D 、无论是无理数还是有理数都是实数,是真命题.故选:D .【点睛】此题主要考查了命题与定理,正确掌握相关定义是解题关键.4.A解析:A【分析】分别利用绝对值的定义、无理数、有理数的定义、相反数的定义分别进行判断即可得出答案.【详解】①0是绝对值最小的有理数;根据绝对值的性质得出,故此选项正确;②无限小数是无理数;根据无限循环小数是有理数判断,故此选项错误;③数轴上原点两侧的数互为相反数;根据到原点距离相等的点是互为相反数,故此选项错误;④相反数等于本身的数是0;根据相反数的定义判断,故此选项正确;⑤绝对值等于本身的数是正数;还有0的绝对值也等于本身,故此选项错误.∴正确的个数有2个故选:A.【点睛】本题主要考查了绝对值的定义、无理数、有理数的定义、相反数的定义等知识,熟练掌握其性质是解题关键.5.B解析:B【分析】的范围,然后确定a、b的最小值,即可计算a+b的最小值.【详解】23.∵a a为正整数,∴a的最小值为3.12.∵b b为正整数,∴b的最小值为1,∴a+b的最小值为3+1=4.故选B.【点睛】本题考查了估算无理数的大小,解题的关键是:确定a、b的最小值.6.C解析:C【分析】根据实数的定义,实数与数轴上的点一一对应,平方根的定义可得答案.【详解】①数轴上有无数多个表示无理数的点是正确的;;2③平方根等于它本身的数只有0,故本小题是错误的;④没有最大的正整数,但有最小的正整数,是正确的.综上,正确的个数有3个,故选:C.【点睛】本题主要考查了实数的有关概念,正确把握相关定义是解题关键.7.A解析:A【分析】根据题意,利用平方根定义,绝对值的代数意义,以及有理数的乘法法则判断确定出x与y 的值即可.【详解】解:∵|x |=2,y 2=9,且xy <0,∴x=2或-2,y=3或-3,当x=2,y=-3时,x+y=2-3=-1;当x=-2,y=3时,原式=-2+3=1,故选:A .【点睛】此题考查了有理数的乘方,绝对值,以及有理数的加法,熟练掌握运算法则是解本题的关键.8.C解析:C【分析】由算术平方根和绝对值的非负性,求出a 、b 的值,然后进行计算即可.【详解】解:根据题意,得a ﹣1=0,b ﹣3=0,解得:a =1,b =3,∴a +b =1+3=4,∴2.故选:C .【点睛】本题考查了算术平方根和绝对值的非负性,解题的关键是正确求出a 、b 的值.9.C解析:C【分析】直接利用有理数的定义进而判断得出答案.【详解】解:3.14,0.1010010001…,-17 ,2π 3.14,-17=-2共3个.故选C .【点睛】此题主要考查了有理数,正确把握有理数的定义是解题关键. 10.B解析:B【分析】根据绝对值是非负数,所以不考虑m 为整数,则m 取最小值是0,又0的绝对值为0,令0m=,得出m=m的整数可得:m =6.【详解】解:因为m取最小值,m∴=,∴=,m解得:m=240m=,∴<<,且m更接近6,67m∴当6m=时,m有最小值.故选:B.【点睛】本题考查绝对值的非负性,以及估算二次根式的大小,理解并熟练掌握绝对值的非负性是本题解题关键;在估算二次根式大小的时候,先算出二次根式的平方,再看这个平方在哪两个平方数之间,就相应的得出二次根式在哪两个整数之间,即可估算出二次根式的大小.二、填空题11.±2【分析】先根据立方根得出x的值,然后求平方根.【详解】∵x+1是125的立方根∴x+1=,解得:x=4∴x的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根,注意一个正解析:±2【分析】先根据立方根得出x的值,然后求平方根.【详解】∵x+1是125的立方根∴x=4∴x的平方根是±2故答案为:±2本题考查立方根和平方根,注意一个正数的平方根有2个,算术平方根只有1个.12.【分析】根据非负数的性质列式求出m 、n 的值,然后代入代数式进行计算即可得解.【详解】由题意得,m+3=0,n-2=0,解得m=-3,n=2,所以,mn=(-3)2=9.故答案为9.【解析:【分析】根据非负数的性质列式求出m 、n 的值,然后代入代数式进行计算即可得解.【详解】由题意得,m+3=0,n-2=0,解得m=-3,n=2,所以,m n =(-3)2=9.故答案为9.【点睛】此题考查绝对值和算术平方根非负数的性质,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.13.>【解析】∵ . , ∴ , ∴ ,故答案为>.解析:>【解析】∵10.52-=-=20-> , ∴0> , ∴0.5> ,故答案为>.14.181【分析】观察各式得出其中的规律,再代入求解即可.【详解】由题意得将代入原式中故答案为:181.本题考查了实数运算类的规律题,掌握各式中的规律是解题的关键.解析:181【分析】观察各式得出其中的规律,再代入12n=求解即可.【详解】由题意得()31n n=⨯++将12n=代入原式中12151181a==⨯+=故答案为:181.【点睛】本题考查了实数运算类的规律题,掌握各式中的规律是解题的关键.15.>【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【详解】∵,∵-2>0,∴>0.故>0.5.故答案为:>.【点睛】此题考查实数大小比较,解题关键在于解析:>【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【详解】12>0,∴22>0.>0.5.故答案为:>.【点睛】此题考查实数大小比较,解题关键在于掌握比较两个实数的大小,可以采用作差法、取近似值法等.16.-0.0513【分析】根据立方根的意义,中,m的小数点每移动3位,n的小数点相应地移动1位.【详解】因为所以-0.0513故答案为:-0.0513【点睛】考核知识点:立方根.理解立方解析:-0.0513【分析】=中,m的小数点每移动3位,n的小数点相应地移动1位.n【详解】≈5.130≈-0.0513故答案为:-0.0513【点睛】考核知识点:立方根.理解立方根的定义是关键.17.9【分析】首先根据的值确定a、b的值,然后可得a+b的值.【详解】∵<,∴4<<5,∵a<<b,∴a=4,b=5,∴a+b=9,故答案为:9.【点睛】本题主要考查了估算无理数的解析:9【分析】a 、b 的值,然后可得a +b 的值.【详解】<∴45,∵a b ,∴a =4,b =5,∴a +b =9,故答案为:9.【点睛】本题主要考查了估算无理数的大小,关键是正确确定a 、b 的值. 18.【分析】点对应的数为该半圆的周长.【详解】解:半圆周长为直径半圆弧周长即故答案为:.【点睛】本题考查数轴上的点与实数的关系.明确的长即为半圆周长是解答的关键. 解析:12π+【分析】点O '对应的数为该半圆的周长.【详解】解:半圆周长为直径+半圆弧周长 即12π+ 故答案为:12π+.【点睛】 本题考查数轴上的点与实数的关系.明确OO '的长即为半圆周长是解答的关键. 19.1【分析】一个正数有两个平方根,它们互为相反数,由此即可列式2a+1+a+2=0,求出a 再代回一个根再平方即可得到该正数.【详解】由题意得2a+1+a+2=0,解得a=-1,∴a+2=1解析:1【分析】一个正数有两个平方根,它们互为相反数,由此即可列式2a+1+a+2=0,求出a 再代回一个根再平方即可得到该正数.【详解】由题意得2a+1+a+2=0,解得a=-1,∴a+2=1,∴这个正数是22(2)11a +==,故答案为:1.【点睛】此题考查平方根的性质:一个正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.20.1【分析】先根据绝对值的非负性、算术平方根的非负性求出x 、y 的值,再代入计算有理数的乘方即可.【详解】由绝对值的非负性、算术平方根的非负性得:解得则故答案为:1.【点睛】本题考查了解析:1【分析】先根据绝对值的非负性、算术平方根的非负性求出x 、y 的值,再代入计算有理数的乘方即可.【详解】由绝对值的非负性、算术平方根的非负性得:2030x y +=⎧⎨-=⎩解得23x y =-⎧⎨=⎩则201220122012()(23)11x y +=-+==故答案为:1.【点睛】本题考查了绝对值的非负性、算术平方根的非负性、有理数的乘方运算,利用绝对值的非负性、算术平方根的非负性求解是常考知识点,需重点掌握.三、解答题21.7或-1.【分析】根据题目中给出的方法,对所求式子进行变形,求出x 、y 的值,进而可求x+y 的值.【详解】解:∵2210x y -=+∴()22100x y --+-=,∴2210x y --=0-=0∴x=±4,y=3当x=4时,x+y=4+3=7当x=-4时,x+y=-4+3=-1∴x+y 的值是7或-1.【点睛】本题考查实数的运算,解题的关键是弄清题中给出的解答方法,然后运用类比的思想进行解答.22.(1)14-(2)124- 【分析】(1)根据例子将每项的整数部分相加,分数部分相加即可解答;(2)根据例子将每项的整数部分相加,分数部分相加即可解答.【详解】 (1)115112744362⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭()115112744362⎛⎫=--+-+--+- ⎪⎝⎭ 104⎛⎫=+- ⎪⎝⎭ 14=- (2)原式()235120192018201720163462⎛⎫=-+-++-+-+ ⎪⎝⎭ 124⎛⎫=-+- ⎪⎝⎭124=- 【点睛】此题考察新计算方法,正确理解题意是解题的关键,根据例子即可仿照计算.23.(1)17;(2)11n +. 【解析】【分析】①根据发现的规律得出结果即可;②根据发现的规律将所求式子变形,约分即可得到结果.【详解】(1)设1111123456⎛⎫++++ ⎪⎝⎭为A ,111111234567⎛⎫+++++ ⎪⎝⎭为B , 原式=(1+A )B ﹣(1+B )A=B+AB ﹣A ﹣AB=B ﹣A=17; (2)设11123n ⎛⎫+++ ⎪⎝⎭为A ,111231n ⎛⎫+++ ⎪+⎝⎭为B , 原式=(1+A )B ﹣(1+B )A=B+AB ﹣A ﹣AB=B ﹣A=11n +. 【点睛】 考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.(1)6,6,20,20,=,=;(2)①10,②4;(3)2a b【分析】(1)0,0a b =≥≥,据此判断即可.(2=10===,4===,据此解答即可.(3)根据a =b =2a b ==,据此解答即可.【详解】解:(1236=⨯=6==;4520=⨯=20==.==故答案为:6,6,20,20,=,=;(210===;4===;(3)∵a =b =2a b ==, 故答案为:2a b .【点睛】 本题考查算数平方根,掌握求一个数算术平方根的方法为解题关键.25.(1)a =1,b ﹣4;(2)±4.【分析】(1)根据被开饭数越大算术平方根越大,可得a ,b 的值,(2)根据开平方运算,可得平方根.【详解】解:(1<,∴4<<5,∴1﹣3<2,∴a =1,b 4;(2)(﹣a )3+(b+4)2=(﹣1)3+﹣4+4)2=﹣1+17=16,∴(﹣a )3+(b+4)2的平方根是:±4.【点睛】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出4<5是解题关键.26.(1)202021-;(2)2020312-;(3)201101554-. 【分析】仿照阅读材料中的方法求出所求即可.【详解】解:(1)根据2350511222...221+++++=-得:2320191222...2+++++=202021-(2)设2320191333...3S =+++++,则234202033333...3S =+++++,∴2020331S S -=-, ∴2020312S -= 即:2020232019311333 (32)-+++++= (3)设232001555...5S =+++++,则23420155555...5S =+++++,∴201551S S -=-,∴201514S -= 即:20123200511555 (5)4-+++++= 同理可求⸫10123100511555 (5)4-+++++= ∵1011021032002320023100555...51555...5)(1555...5)++++=+++++-+++++( 201101201101101102103200515155555 (5444)---∴++++=-= 【点睛】此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.。

人教版七年级下册第六章《实数》单元测试题及答案

人教版七年级下册第六章《实数》单元测试题及答案

第六章《实数》单元测试题一、用心填一填,一定能填对:(每空1分,共53分)1. 正数的平方根记作,正数的正的平方根记作,正数的负的平方根记作。

2. 如果2=4,则叫作4的,记作。

3。

81的平方根是,0。

64的算术平方根是。

5的平方根是,0的平方根是。

4。

的算术平方根的相反数是,平方根的倒数是,平方根的绝对值是。

5。

的相反数的倒数是,这个结果的算术平方根是。

6。

当时,有意义,当时,=0.7. 如果=5,则= .8。

如果一个正数的一个平方根是m,那么这个数的另一个平方根是 ,这个数的算术平方根是 ,两个平方根的和是 .9。

当>0时,表示的,当<0时,表示的 .10。

的负的平方根是,的平方根是。

11. 的平方根是 .12. 如果那么是的,是的.13。

0。

064的立方根是,的立方根是,3的立方根是,0的立方根是,的立方根是 .14.是5的,一个数的立方根是,则这个数是 .15. , ,。

16. .17.当时,有意义.18、若,则= ,若,则= 。

19.。

20.若是225的算术平方根,则的立方根是 .21。

的平方根是。

22。

若是的立方根,则的平方根是 .23。

的相反数是。

24。

若,则。

25. 若有意义,则26。

比较大小: , ,27. 数轴上离原点距离是的点表示的数是 .28. 无理数满足, 请写出两个你熟悉的无理数 .二、你很聪明,一定能选对:(每小题1分,共10分)1。

0。

0196的算术平方根是()A 0.014B 0。

14CD ±0。

142. 下列各式正确的是()A B C D3. 下列语句、式子中① 4是16的算术平方根,即②4是16的算术平方根,即③—7是49的算术平方根,即④7是的算术平方根,即其中正确的是()A ①③B ②③C ②④D ①④4。

下列说法错误的有()①无限小数一定是无理数;②无理数一定是无限小数;③带根号的数一定是无理数;④不带根号的数一定是有理数.A ①②③B ②③④C ①③④D ①②④5. 的平方根是( )A 9B 3C ±3D ±96. 若一个数的算术平方根与它的立方根相同,则这个数是()A 1B 0或1C 0D 非负数7. 下列语句正确的是( )A 的立方根是2.B —3是27的负的立方根。

2021-2022学年人教版七年级数学下册《第6章实数》单元综合达标测试题(附答案)

2021-2022学年人教版七年级数学下册《第6章实数》单元综合达标测试题(附答案)

2021-2022学年人教版七年级数学下册《第6章实数》单元综合达标测试题(附答案)一.选择题(共8小题,满分40分)1.估计的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间2.化简的结果是()A.﹣4B.4C.±4D.23.若8x m y与6x3y n的和是单项式,则(m+n)3的平方根为()A.4B.8C.±4D.±84.若+b2﹣4b+4=0,则ab的值等于()A.﹣2B.0C.1D.25.在实数范围内定义运算“☆”:a☆b=a+b﹣1,例如:2☆3=2+3﹣1=4.如果2☆x=1,则x的值是()A.﹣1B.1C.0D.26.一个正方体的体积扩大为原来的27倍,则它的棱长变为原来的()倍.A.2B.3C.4D.57.下列结论正确的是()A.64的立方根是±4B.﹣没有立方根C.立方根等于本身的数是0D.=﹣38.若+(y+2)2=0,则(x+y)2020等于()A.﹣1B.1C.32020D.﹣32020二.填空题(共10小题,满分40分)9.已知实数﹣,0.16,,π,,,其中为无理数的是.10.估计与0.5的大小关系是:0.5.(填“>”、“=”、“<”)11.已知≈1.038,则≈.12.下面是一个简单的数值运算程序,当输入x的值为16时,输出的数值为.(用科学计算器计算或笔算).13.计算:27的立方根是;的平方根是.14.若|a|=,则﹣的相反数是.15.若a﹣1和﹣5是实数m的两个不同的平方根,则a的值为.16.的立方根与﹣27的立方根的差是.17.,,,…,,其中n为正整数,则的值是.18.已知,实数x满足x=20202+20212,求代数式的值等于.三.解答题(共5小题,满分40分)19.计算:|﹣5|﹣+(﹣2)2+4÷(﹣).20.已知一个正数m的两个不相等的平方根是a+6与2a﹣9.(1)求a的值;(2)求这个正数m;(3)求关于x的方程ax2﹣16=0的解.21.列方程解应用题小丽给了小明一张长方形的纸片,告诉他,纸片的长宽之比为3:2,纸片面积为294cm2.(1)请你帮小明求出纸片的周长.(2)小明想利用这张纸片裁出一张面积为157cm2的完整圆形纸片,他能够裁出想要的圆形纸片吗?请说明理由.(π取3.14)22.求一个正数的算术平方根,有些数可以直接求得,如,有些数则不能直接求得,如,但可以通过计算器求.还有一种方法可以通过一组数的内在联系,运用规律求得,请同学们观察下表:n160.160.00161600160000…4x0.04y400…(1)表格中x=;y=;(2)从表格中探究n与数位的规律,并利用这个规律解决下面两个问题:①已知≈1.435,则≈;②已知=1.83,若=0.183,则x=.23.我们知道,是一个无理数,将这个数减去整数部分,差就是小数部分,即的整数部分是1,小数部分是﹣1,请回答以下问题:(1)的小数部分是,﹣2的小数部分是.(2)若a是的整数部分,b是的小数部分,求a+b﹣的立方根.参考答案一.选择题(共8小题,满分40分)1.解:∵2=<=3,∴3<<4,故选:B.2.解:==4.故选:B.3.解:由8x m y与6x3y n的和是单项式,得m=3,n=1.(m+n)3=(3+1)3=64,64的平方根为±8.故选:D.4.解:由+b2﹣4b+4=0,得a﹣1=0,b﹣2=0.解得a=1,b=2.ab=2.故选:D.5.解:由题意知:2☆x=2+x﹣1=1+x,又2☆x=1,∴1+x=1,∴x=0.故选:C.6.解:一个正方体的体积扩大为原来的27倍,它的棱长变为原来的倍,即3倍.故选:B.7.解:A、64的立方根是4,原说法错误,故这个选项不符合题意;B、﹣的立方根为﹣,原说法错误,故这个选项不符合题意;C、立方根等于本身的数是0和±1,原说法错误,故这个选项不符合题意;D、=﹣3,原说法正确,故这个选项符合题意;故选:D.8.解:∵+(y+2)2=0,∴x﹣1=0,y+2=0,∴x=1,y=﹣2,∴(x+y)2020=(1﹣2)2020=1,故选:B.二.填空题(共10小题,满分40分)9.解:,、0.16是有理数;无理数有、π、.故答案为:、π、.10.解:∵﹣0.5=﹣=,∵﹣2>0,∴>0,∴>0.5.故答案为:>.11.解:==10×≈10.38.故答案为:10.38.12.解:由题图可得代数式为.当x=16时,原式=÷2+1=4÷2+1=2+1=3.故答案为:313.解:27的立方根是3;的平方根是.故答案为:3;.14.解:∵|a|=,∴a2=6,∴﹣=﹣=﹣2,﹣2的相反数是2.故本题的答案是2.15.解:因为a﹣1和﹣5是实数m的两个不同的平方根,可得:a﹣1+(﹣5)=0,解得:a=6.故答案为:6.16.解:根据题意得:﹣=2+3=5,故答案为:5.17.解:∵,,,,∴,=,=,=,=,=.故答案为.18.解:2x﹣1=2(20202+20212)﹣1=2[20202+(2020+1)2]﹣1=2(20202+20202+2×2020+1)﹣1=4×20202+4×2020+1=(2×2020+1)2=40412∴==4041故答案为:4041.三.解答题(共5小题,满分40分)19.解:原式=5﹣3+4﹣6=020.解:(1)由题意得,a+6+2a﹣9=0,解得,a=1;(2)当a=1时,a+6=1+6=7,∴m=72=49;(3)x2﹣16=0,x2=16,x=±4.21.解:设长方形纸片的长为3xcm,宽为2xcm.依题意,3x•2x=294,6x2=294,x2=49,x=±7,∵x>0,∴x=7,∴长方形的纸片的长为21厘米,宽为14厘米,(21+14)×2=70厘米.答:纸片的周长是70厘米.(2)设圆形纸片的半径为r,S=πr2=157,r2=50,由于长方形纸片的宽为14厘米,则圆形纸片的半径最大为7,72=49<50,所以不能裁出想要的圆形纸片.22.解:(1)根据题意得,x=0.4,y=40;故答案为:0.4,40;(2)①已知≈1.435,则≈143.5;故答案为:143.5;②已知=1.83,若=0.183,则x=0.03489.故答案为:0.03489.23.解:(1)∵3<<4.∴的整数部分是3,小数部分是﹣3.∵4<<5.∴2<﹣2<3.∴﹣2的整数部分是2,小数部分是﹣2﹣2=﹣4.故答案为:﹣3,﹣4.(2)∵,∴a=9.∵,∴,∴,∵=2.∴的立方根等于2.。

人教版七年级下册数学第六章实数 单元测试训练卷含答案

人教版七年级下册数学第六章实数 单元测试训练卷含答案

22.方案一可行.
因为正方形胶合板的面积为 4 m2,所以正方形胶合板的边长为 4=2(m).
如图所示,沿着 EF 裁剪,因为 BC=EF=2 m,所以只要使 BE=CF=3÷2=1.5(m)就满足条
件.
方案二不可行.理由如下: 设所裁长方形装饰材料的长为 3x m、宽为 2x m. 则 3x·2x=3,
11. 1- 2 的相反数是_______,绝对值是_________.
12. 我们可以利用计算器求一个正数 a 的算术平方根,其操作方法是按顺序进行按键输入:
3 a = .小明按键输入 3 1 6 = 显示结果为 4,则他按键输入
3 1 6 0 0 = 显示结果应为____. 13. 计算:| 2- 3|+ 2=________. 14. 一个正数的平方根分别是 x+1 和 x-5,则 x=________. 15. 有两个正方体纸盒,已知小正方体纸盒的棱长是 5 cm,大正方体纸盒的体积比小正方体 纸盒的体积大 91 cm3,则大正方体纸盒的棱长是__ __cm. 16. 现有两个大小不等的正方体茶叶罐,大正方体茶叶罐的体积为 1 000 cm3,小正方体茶叶 罐的体积为 125 cm3,将其叠放在一起放在地面上(如图),则这两个茶叶罐的最高点 A 到地 面的距离是________cm.
()
A.2 倍 B.3 倍
C.4 倍 D.5 倍
7. 实数 a,b 在数轴上对应点的位置如图所示,则化简 (a-1)2- (a-b)2+b 的结果
是( )
A.1
B.b+1
C.2a
D.1-2a
8. 制作一个表面积为 30 cm2 的无盖正方体纸盒,则这个正方体纸盒的棱长是( )
A. 6 cm B. 5 cm

七年级数学下册《第六章 实数》单元检测卷(附带答案)

七年级数学下册《第六章 实数》单元检测卷(附带答案)

七年级数学下册《第六章 实数》单元检测卷(附带答案)一、选择题(每题3分,共30分)1.9的平方根是( ) A.3 B.-3C.±3D.不存在 2.38=( )A.2B.-2C.±2D.不存在3.下列说法正确的是( ) A.-0.064的立方根是0.4 B.-9的平方根是±3 C.16316D.0.01的立方根是0.0000014.若a 3=-27,则a 的倒数是( )A .3B .-3C.13D .-135.面积为8的正方形的边长在( )5. ,且,则的值为( )A .B .C .1D .1或6. 已知x ,y ,则y x 的立方根是( )AB .-2C .-8D .±27.下列命题中正确的是( )①0.027的立方根是0.3 不可能是负数 ③如果a 是b 的立方根,那么ab≥0 ④一个数的平方根与其立方根相同,则这个数是1. A .①③ B .②④ C .①④ D .③④8.一个数的算术平方根等于这个数的立方根,那么这个数是( )A.1B.0或1C.0D. ±19.下列实数317 -π 3.14159 8 327 12中无理数有( )A.2个B.3个C.4个D.5个10.如图,数轴上A ,B 两点对应的实数分别是1和3,若AB=BC ,则点C 所对应的实数是( )A.231B.13+C.23D.231二、填空题(每题3分,共24分) 11.4是_____的算术平方根.2316,27a b ==-||a b a b -=-+a b 1-7-7-()2320x y -+=363a12.25的算术平方根是_______.13.若一个正数的两个不同的平方根分别是2a﹣1和﹣a+2,则这个正数是.14.若a<0,化简=.15.已知10+的整数部分是x,小数部分是y,求x﹣y的相反数.16.已知x,y都是实数,且y=x-3+3-x+4,则y x=________.17.点A在数轴上和表示1的点相距6个单位长度,则点A表示的数为________.18.若两个连续整数x,y满足x<5+1<y,则x+y的值是________.三、解答题(满分46分,19题6分,20、21、22、23、24题每题8分)19.(6分)计算:(1)|-2|+3-8-(-1)2017(2)9-(-6)2-3-27.20.(8分)求下列各式中x的值.(1)(x-3)2-4=21 (2)27(x+1)3+8=0.21.(本题8分)已知与互为相反数,求的平方根.22.你能找出规律吗?(1)计算:9×16=________,9×16=________ 25×36=________,25×36=________.(2)请按找到的规律计算:5×125 ②123×935.(3)已知a=2,b=10,用含a,b的式子表示40.23.如图,用两个面积为28cm的小正方形纸片剪拼成一个大的正方形.(1)大正方形的边长是________cm(2)请你探究是否能将此大正方形纸片沿着边的方向裁出一个面积为214cm的长方形纸片,使它的长宽之比为2:1,若能,求出这个长方形纸片的长和宽,若不能,请说明理由.24.已知:31a+的立方根是2-,21b-的算术平方根3,c43(1)求,,a b c的值(2)求922a b c-+的平方根.参考答案一.填空题题号12345678910答案C B C D B C A B A A二.选择题11.【答案】16【解析】试题解析:∵42=16∴4是16的算术平方根12.【答案】513.【解答】解:∵一个正数的两个平方根分别是2a﹣1与﹣a+2∴2a﹣1﹣a+2=0解得:a=﹣1故2a﹣1=﹣3则这个正数是:(﹣3)2=9故答案为:914.【答案】1﹣a15.【答案】16.【答案】6417.【答案】1-6或1+6点拨:数轴上到某个点距离为a(a>0)个单位长度的点有两个.注意运用数形结合思想,利用数轴帮助分析.18.【答案】7点拨:∵2<5<3,∴3<5+1<4.∵x<5+1<y,且x,y为两个连续整数,∴x=3,y=4.∴x+y=3+4=7.三.解答题19.【答案】解:(1)原式=2-2+1=1.(4分)(2)原式=3-6+3=0.(8分)20.【答案】解:(1)移项得(x-3)2=25,∴x-3=5或x-3=-5,∴x=8或-2.(5分)(2)移项整理得(x+1)3=-827,∴x+1=-23,∴x=-53.(10分)21.【答案】解:根据相反数的定义可知:解得:a=-8,b=364的平方根是:22.【答案】解:(1)12 12 30 30(2)①原式=5×125=625=25②原式=53×485=16=4(3)40=2×2×10=2×2×10=a2b.23.【答案】(1)4 (2)不能,理由见解析.【解析】(1)根据已知正方形的面积求出大正方形的边长即可(2)先设未知数根据面积=14(cm2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再判断即可.解:(1)两个正方形面积之和为:2×8=16(cm2)∴拼成的大正方形的面积=16(cm 2) ∴大正方形的边长是4cm 故答案为:4(2)设长方形纸片的长为2xcm ,宽为xcm 则2x •x =14 解得:7x =2x 7>4∴不存在长宽之比为2:1且面积为214cm 的长方形纸片. 24.【答案】(1)3,5,6a b c =-== (2)其平方根为4± 【解析】(1)根据立方根,算术平方根,无理数的估算即可求出,,a b c 的值 (2)将(1)题求出的值代入922a b c -+,求出值之后再求出平方根. 解:(1)由题得318,219a b +=--= 3,5a b ∴=-= 364349<6437∴<6c ∴=3,5,6a b c ∴=-==(2)当3,5,6a b c =-==时()99223561622a b c -+=⨯--+⨯=∴其平方根为164±±。

人教版数学七年级下册-第六章《实数》单元测试(含答案)

人教版数学七年级下册-第六章《实数》单元测试(含答案)

第六章《实数》单元测试姓名:班级:座号:一、单选题(共8题;共32分)1. 9的算术平方根是()A. 81B. ±81C. 3D. ±32. -8的立方根是()A. B. C.D.3.在,1.01001000100001,2 ,3.1415,- ,,0,,这些数中,无理数共有()A. 2个B. 3个C. 4个D. 5个4.下列说法中错误的是( )A. 0的算术平方根是0B. 36的平方根为±6C.D. -4的算术平方根是-25.已知a2=25, =7,且|a+b|=a+b,则a﹣b的值为()A. 2或12B. 2或﹣12C. ﹣2或12D. ﹣2或﹣126.,则a与b的关系是()A. B. a与b相等 C. a与b互为相反数 D. 无法判定7.下列计算或说法:①±3都是27的立方根;②=a;③的立方根是2;④=±4,其中正确的个数是()A. 1个B. 2个C. 3个 D. 4个8.下列六种说法正确的个数是()①无限小数都是无理数;②正数、负数统称实数;③无理数的相反数还是无理数;④无理数与无理数的和一定还是无理数;⑤无理数与有理数的和一定是无理数;⑥无理数与有理数的积一定仍是无理数.A. 1B. 2C. 3 D . 4二、填空题(共24分)1.算术平方根等于本身的实数是________.2.﹣125的立方根是________.3.比较大小:﹣π________﹣3.14(选填“>”、“=”、“<”).4.某正数的平方根是n+l和n﹣5,则这个数为________.5.已知一个正数的两个平方根是x﹣7和3x﹣1,则x的值是________.6.方程(x﹣1)3﹣8=0的根是 ________7.若=2﹣x,则x的取值范围是________;若3+ 的小数部分是m,3﹣的小数部分是n,则m+n=________.三、求下列各式中x的值(共10分)(1)(2x﹣1)2=9 (2)2x3﹣6=四、解答题(共10分)1.已知某数的平方根是a+3和2a﹣15,求1﹣7a的立方根。

七年级数学(下)第六章《实数》单元测试题含答案

七年级数学(下)第六章《实数》单元测试题含答案
11. 的平方根是, 的算术平方根是.
12.比较大小: (填“>”“<”“=”).
13.已知 + ,那么 .
14.在 中,________是无理数.
15. 的立方根的平方是________.
16.若 的平方根为 ,则 .
17._____和_______统称为实数.
18.若 、 互为相反数, 、 互为负倒数,则 =_______.
因为 ,所以 的算术平方根为
因为 所以 平方根为
因为 ,所以 的算术平方根为
23.解:因为 ,所以 的立方根是 .
因为 所以 的立方根是 .
因为 ,所以 的立方根是 .
因为 ,所以 的立方根是 .
24.解:因为 ,所以源自,即 ,所以 .故 ,
从而 ,所以 ,
所以 .
25.解:可知 ,由于 ,
所以 .
C.如果一个数有立方根,则它必有平方根
D.不为0的任何数的立方根,都与这个数本身的符号同号
8.下列各式成立的是( )
A. B. C. D.
9.在实数 , , , , 中,无理数有( )
A.1个 B.2个 C.3个 D.4个
10.在-3,- ,-1,0这四个实数中,最大的是()
A. B. C. D.
二、填空题(每小题3分,共24分)
4.当 时, 的值为( )
A. B. C. D.
5.下列关于数的说法正确的是()
A.有理数都是有限小数
B.无限小数都是无理数
C.无理数都是无限小数
D.有限小数是无理数
6.与数轴上的点具有一一对应关系的数是()
A.实数B.有理数C.无理数D.整数
7.下列说法正确的是( )
A.负数没有立方根

人教新版 七年级(下)第二学期 第6章 实数章节 单元测试A卷 含答案

人教新版 七年级(下)第二学期 第6章 实数章节 单元测试A卷 含答案

七年级(下)第二学期 第6章 实数章节 单元测试卷一.选择题(共10小题)1.下列四个实数中,最小的是( )A .2B .2-C .0D .1-2.立方根是3-的数是( )A .9B .27-C .9-D .273.下列各数:3.1415926,117-,327,12π,4.217,2,2.1010010001⋯(相邻两个1之间依次增加1个0)中,无理数有( )A .4个B .3个C .2个D .1个4.下列四个式子:9,327-,|3|-,(3)--,化简后结果为3-的是( )A .9B .327-C .|3|-D .(3)--5.若x 的算术平方根有意义,则x 的取值范围是( )A .一切数B .正数C .非负数D .非零数6.在数轴上,表示实数52-的点落在( )A .①B .②C .③D .④7.估计5624-( )A .8和9之间B .7和8之间C .6和7之间D .5和6之间8.下列判断:①一个数的平方根等于它本身,这个数是0和1;②实数包括无理数和有理数;③22;④无理数是带根号的数.正确的有( )A .1个B .2个C .3个D .4个 9.在数轴上,点A 表示实数3,以点A 为圆心,25+的长为半径画弧,交数轴于点C ,则点C 表示的实数是( )A .5B .1C 1-或5+D .1-或5+10( )A .3和4B .4和5C .5和6D .6和7二.填空题11的算术平方根是 .12.如果某数的一个平方根是2-,那么这个数是 .13;-.14.若6a b -+的算术平方根是2,21a b +-的平方根是4±,则53a b -+的立方根是 .15与b a = .16.已知a 的整数部分,b 22(4)b a +-的值是 .17.观察下列表格:3.32=a =b =,则a b +的值(保留一位小数)是 .18.对于实数a ,b ,给出以下判断:①若||||a b ==;②若||||a b <,则a b <;③若a b =-,则22()a b -=;④若33()a b -=-,则a b =,其中正确的判断的序号是 .三.解答题19|.20.计算:2019311|(2)10|(0.5)3-+--⨯+ 21.求下列各式中x 的值:(1)2(1)64x -=;(2)3(8)270x ++=.22.已知21a -的算术平方根是3,39a b +-的立方根是2,c 是的整数部分,求722a b c --的平方根.23.观察下列等式:①133⨯=:②3515⨯=:③5735⨯=;④7963⨯=;⋯(1)写出第n 个等式(n 为正整数)(2)是否存在正整数n ,使等式右边等于2499,如果存在,求出n ;若不存在,请说明理由.24.定义一种新运算“*”满足下列条件:①对于任意的实数a ,b ,*a b 总有意义;②对于任意的实数a ,均有*0a a =;③对于任意的实数a ,b ,c ,均有*(*)*a b c a b c =+.(1)填空:1*(1*1)= ,2*(2*2)= ,3*0= ;(2)猜想*0a = ,并说明理由;(3)*a b = (用含a 、b 的式子直接表示).25.[阅读材料]Q <<23<<,112∴<<.∴1-的整数部分为1∴1-2-[解决问题](1的小数部分是 ;(2)已知a b 的小数部分,求代数式1(a b -的平方根为 .26.对于实数a ,我们规定:用符号称为a 的根整数,例如:3=,3=.(1)仿照以上方法计算:= ;= .(2)若1=,写出满足题意的x 的整数值 .如果我们对a连续求根整数,直到结果为1为止.例如:对10连续求根整数2次=→=,这时候结果为1.31(3)对120连续求根整数,次之后结果为1.(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是.参考答案一.选择题1.下列四个实数中,最小的是( )A .2B .C .0D .1- 解:根据实数大小比较的方法,可得102<-<<,所以四个实数中,最小的数是.故选:B .2.立方根是3-的数是( )A .9B .27-C .9-D .27解:Q 3=-, ∴立方根是3-的数是27-.故选:B .3.下列各数:3.1415926,117-12π,4.217,2.1010010001⋯(相邻两个1之间依次增加1个0)中,无理数有( )A .4个B .3个C .2个D .1个解:无理数有12π 2.1010010001⋯(相邻两个1之间依次增加1个0),共3个, 故选:B .4|3|-,(3)--,化简后结果为3-的是( )AB C .|3|- D .(3)--解:Q3=,3=-,|3|3-=,(3)3--=,-,∴化简后结果为3-的是327故选:B.5.若x的算术平方根有意义,则x的取值范围是()A.一切数B.正数C.非负数D.非零数解:xQ的算术平方根有意义,∴的取值范围是:0xx….故选:C.6.在数轴上,表示实数52-的点落在()A.①B.②C.③D.④解:Q459<<<<,∴253<-<,∴0521-的点落在②处.∴52故选:B.7.估计5624-()A.8和9之间B.7和8之间C.6和7之间D.5和6之间解:562456263654===,Q495464<<∴-7和8之间.624故选:B.8.下列判断:①一个数的平方根等于它本身,这个数是0和1;②实数包括无理数和有理数;③22;④无理数是带根号的数.正确的有()A.1个B.2个C.3个D.4个解:①一个数的平方根等于它本身,这个数是0,错误;②实数包括无理数和有理数,正确;③2,正确;④故选:B.9.在数轴上,点A表示实数3,以点A为圆心,2+的长为半径画弧,交数轴于点C,则点C表示的实数是()A.5B.1C1-或5+D.1-或5+解:根据题意得:325-+=-,++=+3(21则点C表示的实数是5+1-,故选:D.10() A.3和4B.4和5C.5和6D.6和7解:Q<<∴的值在两个连续整数之间,这两个连续整数是:4和5.故选:B.二.填空题(共8小题)11的算术平方根是2.解:Q4=,=.∴2故答案为:2.12.如果某数的一个平方根是2-,那么这个数是4.解:Q某数的一个平方根是2-,∴这个数为4.故答案为:4.13 2;-.解:2=Q <∴2<;-=Q -=,∴->-,故答案为:<;>.14.若6a b -+的算术平方根是2,21a b +-的平方根是4±,则53a b -+的立方根是 3- . 解:6a b -+Q 的算术平方根是2,21a b +-的平方根是4±, 64a b ∴-+=,2116a b +-=,解得5a =,7b =,53535327a b ∴-+=-+=-,53a b ∴-+的立方根3-.故答案为:3-15与b a 2 .解:Q 互为相反数,(31)(12)0a b ∴-+-=,32a b ∴=,∴32b a =. 故答案为:32.16.已知a 的整数部分,b 22(4)b a +-的值是 1 .解:a Q 的整数部分,b4a ∴=,4b -,22(4)b a ∴+-2244)4=-+-1716=-1=,故答案为:1.17.观察下列表格:3.32=a =b =,则a b +的值(保留一位小数)是 33.5 .3.32=a =b =,则0.33233.233.53233.5a b +=+=≈, 故答案为:33.5.18.对于实数a ,b ,给出以下判断:①若||||a b ==;②若||||a b <,则a b <;③若a b =-,则22()a b -=;④若33()a b -=-,则a b =,其中正确的判断的序号是 ③④ .解:a Q 、b 有一个小于0或都小于0,但是它们的绝对值相等时,||||a b =不一定有意义,∴若||||a b ==不一定成立,∴选项①不符合题意;Q 若||||a b <,0a <,0b <时,a b >,∴选项②不符合题意;Q 若a b =-,则22()a b -=,∴选项③符合题意;Q 若33()a b -=-,则a b =,∴选项④符合题意,∴其中正确的判断的序号是③④.故答案为:③④.三.解答题(共8小题)19|.|22=+-=.20.计算:2019311|(2)10|(0.5)3-+--⨯+解:2019311|(2)10|(0.5)3-+--⨯+-511856=-+⨯- 1155=-+-9=21.求下列各式中x 的值:(1)2(1)64x -=;(2)3(8)270x ++=.解:(1)2(1)64x -=,18x -==±,解得9x =或7-;(2)3(8)270x ++=,3(8)27x +=-,83x +==-,解得11x =-.22.已知21a -的算术平方根是3,39a b +-的立方根是2,c 是的整数部分,求722a b c --的平方根.解:21a -Q 的算术平方根是3,219a ∴-=,5a ∴=,39a b +-Q 的立方根是2,398a b ∴+-=,2b ∴=,c Q 的整数部分,34<<,3c ∴=,722354625a b c ∴--=--=,722a b c ∴--的平方根是5±.23.观察下列等式:①133⨯=:②3515⨯=:③5735⨯=;④7963⨯=;⋯(1)写出第n 个等式(n 为正整数) 2(21)(21)(2)1n n n -+=-(2)是否存在正整数n ,使等式右边等于2499,如果存在,求出n ;若不存在,请说明理由解:(1)21321⨯=-Q ;2351541⨯==-;2573561⨯==-;2796381⨯==- ∴第n 个等式(n 为正整数)应为:2(21)(21)(2)1n n n -+=-.(2)2(2)12499n -=,解得:25n =.故答案为:2(21)(21)(2)1n n n -+=-.24.定义一种新运算“*”满足下列条件:①对于任意的实数a ,b ,*a b 总有意义;②对于任意的实数a ,均有*0a a =;③对于任意的实数a ,b ,c ,均有*(*)*a b c a b c =+.(1)填空:1*(1*1)= 1 ,2*(2*2)= ,3*0= ;(2)猜想*0a = ,并说明理由;(3)*a b = (用含a 、b 的式子直接表示).解:(1)1*(1*1)1*111=+=,2*(2*2)2*222=+=,3*03*(3*3)3*333==+=故答案为:1,2,3;(2)*0(*)*a a a a a a a a ==+=,故答案为a ;(3)*(*)*a b b a b b =+,即*0*a a b b =+,而*0a a =,故*a b a b =-.25.[阅读材料]Q <<23<<,112∴<<.∴1-的整数部分为1∴1-2-[解决问题](12- ;(2)已知a b 的小数部分,求代数式1(a b -的平方根为 . 解:(1)479<<Q ,∴的整数部分是2,∴2-;(2)a Q b 的小数部分,91016<<,3a ∴=,3b -,∴1(9a b --=,9的平方根为3±.2;3±.26.对于实数a ,我们规定:用符号称为a 的根整数,例如:3=,3=.(1)仿照以上方法计算:= 2 ;= .(2)若1=,写出满足题意的x 的整数值 .如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次31=→=,这时候结果为1.(3)对120连续求根整数, 次之后结果为1.(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是 . 解:(1)224=Q ,2636=,2749=,67∴<<,2∴=;6=,故答案为:2,6;(2)211=Q ,224=,且1=,1x ∴=,2,3,故答案为:1,2,3;(3)第一次:10=,第二次:3=,第三次:1=,故答案为:3;(4)最大的正整数是255,理由是:15=Q ,3=,1=,∴对255只需进行3次操作后变为1,=,1=,=,2Q,416=∴对256只需进行4次操作后变为1,∴只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为:255.。

精选人教版初中数学七年级下册第六章《实数》单元测试及答案

精选人教版初中数学七年级下册第六章《实数》单元测试及答案

精选⼈教版初中数学七年级下册第六章《实数》单元测试及答案⼈教版七年级数学下册第六章实数复习检测试题⼀、选择题(每⼩题3分,共30分)1.下列各数中最⼤的数是( )A.3 C.π D.-32.下列说法正确的是()A.任何数都有算术平⽅根B.只有正数有算术平⽅根C.0和正数都有算术平⽅根D.负数有算术平⽅根3.下列语句中,正确的是( )A.⽆理数都是⽆限⼩数B.⽆限⼩数都是⽆理数C.带根号的数都是⽆理数D.不带根号的数都是⽆理数4.的⽴⽅根是( )A.-1B.OC.1D. ±15.在-1.732,π,3.,2,3.212 212 221…(每相邻两个1之间依次多⼀个2),3.14这些数中,⽆理数的个数为( )A.5个B.2个C.3个D.4个6.有下列说法:①实数和数轴上的点⼀⼀对应;②不含根号的数⼀定是有理数;③负数没有平⽅根;④是17的平⽅根.其中正确的有()A.3个B.2个C.1个D.0个7.下列说法中正确的是( )A.若a为实数,则a≥0B.若a为实数,则a的倒数为1 aC.若x,y为实数,且x=yD.若a为实数,则a2≥08.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2B.±5C.5D.﹣59.实数a,b在数轴上的位置如图所⽰,则|a|-|b|可化简为( )A.a-bB.b-aC.a+bD.-a-b10.如图,数轴上的点A,B,C,D分别表⽰数﹣1,1,2,3,则表⽰2﹣的点P应在()A.线段AO上B.线段OB上C.线段BC上D.线段CD上⼆、填空题(每⼩题3分,共24分)1.按键顺序是“,,则计算器上显⽰的数是.2.⼀个数的平⽅根和它的⽴⽅根相等,则这个数是.3.计算:-2+-|-2|=.4.若某数的平⽅根为a+3和2a-15,则这个数是.5.⽐较⼤⼩:-23-0.02;3.6.定义运算“@”的运算法则为:x@y=xy﹣1,下⾯给出关于这种运算的⼏种结论:①(2@3)@(4)=19;②x@y=y@x;③若x@x=0,则x﹣1=0;④若x@y=0,则(xy)@(xy)=0.其中正确结论的序号是.7.计算:|3-π|+-的结果是.三、解答题(共46分)1.计算(6分)(1)|1-|+||+|-2|+|2-|;(2) (-2)3×---.2.(6分)求未知数的值:(1)(2y﹣3)2﹣64=0;(2)64(x+1)3=27.3.(8分)已知=0,求实数a,b的值,并求出的整数部分和⼩数部分.4.(8分)设a.b为实数,且=0,求a2﹣的值.5. (10分)王⽼师给同学们布置了这样⼀道习题:⼀个数的算术平⽅根为2m-6,它的平⽅根为±(m-2),求这个数.⼩张的解法如下:依题意可知,2m-6是(m-2),-(m-2)两数中的⼀个.(1)当2m-6=m-2时,解得m=4.(2)所以这个数为2m-6=2×4-6=2.(3)当2m-6=-(m-2)时,解得m=83.(4)所以这个数为2m-6=2×83-6=-23.(5)综上可得,这个数为2或-23.(6)王⽼师看后说,⼩张的解法是错误的.你知道⼩张错在哪⾥吗?为什么?请予以改正.6.(8分)设的整数部分和⼩数部分分别是x,y,试求x,y的值与x﹣1的算术平⽅根.参考答案与解析⼀、选择题1.B2. C3.A4.C5.D6.A7.D8.B9.C 10. A A⼆、填空题11.4 12.0 13.1 14. 49 15.<> 16. ①②④17.1三、解答题1. 解:(1)原式1221-+=-.(2)原式=-8×4-4×14-3=-32-1-3=-36. 2 ⼈教版初中数学七年级下册第六章《实数》检测卷含答案⼀、选择题(每⼩题3分,共30分) 1. 916的平⽅根是( )A. C. 34 D. ±342. ,227,π-20.121 221 222 1…(相邻两个“1”之间依次多⼀个“2”)中,有理数有( )A. 1个B. 2个C. 3个D. 4个3. 若x 2=16,则5-x 的算术平⽅根是( )A. ± 1B. ±4C. 1或9D. 1或34. 下列说法中,不正确的是( )A. 0.027的⽴⽅根是0.3B. -8的⽴⽅根是-2C. 0的⽴⽅根是0D. 125的⽴⽅根是±55. 的值在( )A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间6. ⼀个⾃然数的算术平⽅根是a ,则下⼀个⾃然数的算术平⽅根是( )A. B. +1C. a+1D.7. 如图,数轴上A,B和5.1,则A,B两点之间表⽰整数的点共有( )A. 6个B. 5个C. 4个D. 3个8. ≈0.793 7≈1.710 0,那么下列各式正确的是( )A. B. ≈7.937C. D. ≈79.379. 0,则a与b的关系是( )A. a=b=0B. a与b相等C. a与b互为相反数D. a=1 b10. 若a2=(-5)2,b3=(-5)3,则a+b的值为( )A. 0B. ±10C. 0或10D. 0或-10⼆、填空题(每⼩题3分,共24分)11. ⽐较⼤⼩:-5 -26(填“>”“=”或“<”).12. 3-11的相反数是,绝对值是.13. =3,则2x+5的平⽅根是.14. ⼩成编写了⼀个程序:输⼊x→x2→⽴⽅根→倒数→算术平⽅根→12,则x为.15. 若数m,n满⾜(m-1)20,则(m+n)5=.16. 已知36=x3,z是16的算术平⽅根,则2x+y-5z的值为.17. 点A在数轴上和原点相距3个单位长度,点B在数轴上和原点相距5个单位长度,则A,B两点之间的距离是.18. 对于任意不相等的两个数a,b,定义⼀种运算※如下:a※b,如3※2= 5.那么12※4=.三、解答题(共66分)19. (8分)计算:1-3;(1)3+1+3+||(2)25+144.20. (8分)求下列各式中的x的值:(1)25(x-1)2=49;(2)64(x-2)3-1=0.21. (9分)已知2a-1的平⽅根是±3,3a+b-1的平⽅根是±4,求a+2b的平⽅根.22. (9分)已知某正数的两个平⽅根分别是a +3和2a -15,b 的⽴⽅根是-2,求3a +b 的算术平⽅根.23.⼈教版七年级数学下册第六章实数单元综合能⼒提升测试卷⼀、选择题(每⼩题3分,共30分)1.下列选项中正确的是()A .27的⽴⽅根是±3B .16 的平⽅根是±4C .9的算术平⽅根是3D .⽴⽅根等于平⽅根的数是1 2.在实数﹣0.8,2015,﹣,四个数中,是⽆理数的是() A .﹣0.8 B .2015 C .﹣D . 3.(-)2的平⽅根是() A . B .- C . D .± 4.下列四个数中的负数是()A .﹣22B .C .(﹣2)2D . |﹣2|5.|的值为()A.5 B .5-2 C .1D .2-16.在下列各式中正确的是()A .=-2B .=3C .=8D .=2 7.⼀个⾃然数a 的算术平⽅根为x ,则a+1的⽴⽅根是()A B C D8.下列结论中正确的个数为() 72233722331512512515152)1(-662)2(-1622(1)零是绝对值最⼩的实数;(2)数轴上所有的点都表⽰实数;(3)⽆理数就是带根号的数;(4)-的⽴⽅根为±; A .1个 B .2个 C .3个 D .4个9=3,则(x+3)2的值是()A.81 B .27C .9 D.310.若有理数a 和b 在数轴上所表⽰的点分别在原点的右边和左边,则-︱a -b ︱等于()A .aB .-aC .2b +aD .2b -a⼆、填空题(每⼩题3分,共30分)11.在下列各数中⽆理数有个。

人教版初中七年级数学下册第六单元《实数》测试卷(含答案解析)

人教版初中七年级数学下册第六单元《实数》测试卷(含答案解析)

一、选择题1.在实数:20192020,π,9,3,2π,38,0.36,0.3737737773…(相邻两个3之间7的个数逐次加1),52-,49中,无理数的个数为( ) A .4 B .5 C .6 D .7 2.下列各数中,无理数有( )3.14125,8,127,0.321,π,2.32232223(相邻两个3之间的2的个数逐次增加1)A .0个B .1个C .2个D .3个 3.在实数3-,-3.14,0,π,364中,无理数有( )A .1个B .2个C .3个D .4个 4.实数a ,b 在数轴上的位置如图所示,那么化简33a b a b ++-+的结果为( )A .2a -B .22b a -C .0D .2b5.下列说法中,正确的是( )A .无理数包括正无理数、零和负无理数B .无限小数都是无理数C .无理数都是无限不循环小数D .无理数加上无理数一定还是无理数6.下列命题中,①81的平方根是9;16±2;③−0.003没有立方根;④−64的立方根为±4;5 )A .1B .2C .3D .47.下列命题是真命题的是( )A .两个无理数的和仍是无理数B .有理数与数轴上的点一一对应C .垂线段最短D .如果两个实数的绝对值相等,那么这两个实数相等8.下列实数3223640.010*******;;; (相邻两个1之依次多一个0);52,其中无理数有( )A .2个B .3个C .4个D .5个 9.如图,直径为1个单位长度的圆从A 点沿数轴向右滚动(无滑动)两周到达点B ,则点B 表示的数是( )A .1π-B .21π-C .2πD .21π+ 10.已知n 是正整数,并且n -1<326+<n ,则n 的值为( )A .7B .8C .9D .1011.下列选项中,属于无理数的是( )A .πB .227-C 4D .012. 5.713457.134,则571.34的平方根约为( ) A .239.03 B .±75.587 C .23.903 D .±23.903 13.关于x 的多项式32711159x mx x --+与多项式22257x nx --相加后不含x 的二次和一次项,则()mn n -+平方根为( )A .3B .3-C .3±D .3±14.下列有关叙述错误的是( )A 2B 2是2的平方根C .122<<D .22是分数 15.下列各组数中都是无理数的为( )A .0.07,23,π;B .0.7•,π2;C 26,π;D .0.1010101……101,π3二、填空题16.计算:(1)132322⎛⎫⨯-⨯- ⎪⎝⎭(2)2291|121232⎛⎫-+-⨯- ⎪⎝⎭ 17.对于有理数,a b ,我们规定*a b b ab =-(1)求(2)*1-的值.(2)若有理数x 满足(2)*36x -=,求x 的值.18.求下列各式中x 的值(1)21(1)64x +-=; (2)3(1)125x -=.19.(223228432--20.若一个正数的平方根是3m +和215m -,n 的立方根是2-,则2n m -+的算术平方根是______.21.材料:一般地,n 个相同因数a 相乘:n a a a a a ⋅⋅⋅⋅⋅个记为n a .如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=).那么3log 9=_____,()2231log 16log 813+=_____. 22.若|2|30a b -+-=,则a b +=_________. 23.实数2-,2,227,π-,327-中属于无理数的是________. 24.计算: (1)()2325273-+-.(2)()2411893⎡⎤⎛⎫--⨯-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. 25.定义运算“@”的运算法则为:x@y=xy 4+,则2@6 =____.26.观察下面一列数:-1,2,-3,4,-5,6,-7……,将这列数排成下图形式.按照此规律排下去,那么第_________行从坐标数第_________个数是-2019.三、解答题27.阅读下列信息材料信息1:因为尤理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来比如:2π、等,而常用的“……”或者“≈”的表示方法都不够百分百准确;信息2:2.5的整数部分是2,小数部分是0.5,可以看成2.52-得来的;信息3:任何一个无理数,都可以夹在两个相邻的整数之间,如253<<,是因为459<<;根据上述信息,回答下列问题:(1)13的整数部分是___________,小数部分是______________;(2)若2122a <<,则a 的整数部分是___________;小数部分可以表示为_______; (3)103+也是夹在相邻两个整数之间的,可以表示为103a b <+<则a b +=______;(4)若303x y -=+,其中x 是整数,且01y <<,请求x y -的相反数. 28.阅读下列材料,并回答问题:我们把单位“”平均分成若干份,表示其中一份的数叫“单位分数”.单位分数又叫埃及分数,在很早以前,埃及人就研究如何把一个单位分数表示成两个或几个单位分数的和或差.今天我们来研究如何拆分一个单位分数.请观察下列各式:111162323==-⨯;1111123434==-⨯, 1111204545==-⨯,1111305656==-⨯. (1)由此可推测156= ; (2)请用简便方法计算:11111612203042++++; (3)请你猜想出拆分一个单位分数的一般规律,并用含字母m 的等式表示出来(m 表示正整数);(4)仔细观察下面的式子,并用(3)中的规律计算:()()()()()()121231312x x x x x x -+------29.计算:(1)132322⎛⎫⨯-⨯- ⎪⎝⎭(2)2291|11232⎛⎫-+-⨯- ⎪⎝⎭ 30.111111133557792017201920192021++++⋯+⨯⨯⨯⨯⨯⨯。

新初中数学七年级下册第六章《实数》单元测试题(含答案)(1)

新初中数学七年级下册第六章《实数》单元测试题(含答案)(1)

人教版七年级数学下册第六章实数能力检测卷一.选择题(共10小题)1.16的平方根是()A.4 B.-4 C.16或-16 D.4或-4 2.下列各等式中计算正确的是()A±4 B C=-3 D= 3 23.若方程2(4)x-=19的两根为a和b,且a>b,则下列结论中正确的是()A.a是19的算术平方根B.b是19的平方根C.a-4是19的算术平方根D.b+4是19的平方根4.给出下列说法:①-2是49;③;④2的平)A.0个B.1个C.2个D.3个5.如果-b是a的立方根,则下列结论正确的是()A.3b-=a B.-b=3a C.b=3a D.3b=a6.已知一个正数的两个平方根分别为3a-1和-5-a,则这个正数的立方根是()A.-2 B.2 C.3 D.47.若一个正方形的面积为7,它的周长介于两个相邻整数之间,这两个相邻整数是()A.9,10 B.10,11 C.11,12 D.12,138)A.线段AB上B.线段BC上C.线段CD上D.线段DE上9.已知a、b均为正整数,且a>,b>,则a+b的最小值为( )A.6 B.7 C.8 D.910.在实数,3.1415926,π2,,,,,0.1010010001…(相邻两个1中间一次多1个0)中,无理数有( )A.2个B.3个C.4个D.5个二.填空题(共6小题)11.4的平方根是; 的立方根是.12.非零整数x、y+0,请写出一对符合条件的x、y的值:.13.一个正方体,它的体积是棱长为2cm的正方体的体积的8倍,则这个正方体的棱长是cm.14.5x+9的立方根是4,则2x+3的平方根是.15小的无理数.16.数轴上从左到右依次有A、B、C三点表示的数分别为a、b其中b为整数,且满足|a+3|+|b-2|=b-2,则b-a= .三.解答题(共7小题)17.求出下列x的值.(1)16x2-49=0;(2)24(x-1)3+3=0.18.计算++-|1|19.已知|a|=5,b2=4,c3=-8.(1)若a<b,求a+b的值;(2)若abc>0,求a-3b-2c的值.20.已知a+1的算术平方根是1,-27的立方根是b-12,c-3的平方根是±2,求a+b+c的平方根.21.阅读材料:我们定义:如果两个实数的差等于这两个实数的商,那么这两个实数就叫做“差商等数对”.即:如果a-b=a÷b,那么a与b就叫做“差商等数对”,记为(a,b).例如:4-2=4÷2;932-=9÷3;21(1)2⎛⎫--- ⎪⎝⎭=1÷(1);2⎛⎫-- ⎪⎝⎭则称数对91(4,2),,3,,122⎛⎫⎛⎫--⎪ ⎪⎝⎭⎝⎭是“差商等数对”.根据上述材料,解决下列问题: (1)下列数对中,“差商等数对”是______(填序号);①(-8.1,-9),②11,,22⎛⎫⎪⎝⎭③+ (2)如果(x,4)是“差商等数对”,请求出x 的值;22.对于实数a ,我们规定:用符号的最大整数,称为a 的根整数,例如:=3,=3.(1)仿照以上方法计算:==.(2)若=1,写出满足题意的x 的整数值人教版数学 七年级下册期末复习 第6章《实数》 同步测试卷一.选择题(共10小题,3*10=30) 1.3的相反数是( ) A .- 3 B . 3 C .12D .2 2.81的平方根是( ) A .3 B .-3 C .±3D .±93.下列实数中,无理数是( ) A .-2 B .0 C .πD . 44.下列各式中正确的是( )A .16=±4B .3-27=-9 C .-32=-3 D .214=1125.下列说法中:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④-17是17的相反数.正确的有( )A .0个B .1个C .2个D .3个6.若一个数的算术平方根和立方根都等于它本身,则这个数一定是( ) A .0或1 B .1或-1 C .0或±1D .07.如图,数轴上点P 表示的数可能是( )A . 2B . 5C .10D .158.一个正方形的面积为2,则它的边长是( ) A .4B .±2C .- 2D . 29.在实数 -13, -2, 0, 3 中,最小的实数是( )A .-2B .0C .-13D . 310.已知35.28=1.738,3a =0.173 8,则a 的值为( ) A .0.528B .0.052 8C .0.005 28D .0.000 528 二.填空题(共6小题,3*6=18) 11.化简:|3—2|=________. 12.比较大小:-6 ________-35.13.在数轴上到原点的距离是5的点表示的数是________.14.一个正数x 的两个平方根分别是a +2和a -4,则a =________. 15.已知a 、b 为两个连续的整数,且a <11<b ,则a +b = ________. 16.已知x -1+|2y -2|=0,则x -y =________. 三.解答题(共9小题,72分)17.(7分)计算:(-3)2+||3-2-2(3-1).18.(7分)解方程:3(x -2)2=27.19.(8分)解方程:2(x -1)3+16=0.20.(8分)20.某居民生活小区需要建一个大型的球形储水罐,需储水13.5立方米,那么这个球罐的半径r 为多少米(球的体积V =43πr 3,π取3.14,结果精确到0.1米)?21.(8分)实数a ,b ,c 在数轴上的对应点如图所示,化简:3a 3+||a +b -c 2-||b -c .22.(8分)已知实数2a-1的平方根是±3,2b+3人教版数学七下第六章实数能力水平检测卷一.选择题(共10小题)1.下列选项中的数,小于4且为有理数的为()A.πB.16 C.D.92.已知|a|=5, =7,且|a+b|=a+b,则a-b的值为()A.2或12 B.2或-12 C.-2或12 D.-2或-123.若实数a,b是同一个数的两个不同的平方根,则()A.a-b=0 B.a+b=0 C.a-b=1 D.a+b=14.用计算器求25的值时,按键的顺序是()A.5、x y、2、= B.2、x y、5、= C.5、2、x y、= D.2、3、x y、=5.如果x2=2,有x=±当x3=3时,有x想一想,从下列各式中,能得出x=±的是()A.2x=±20 B.20x=20 D.3x=±20x=2 C.±206.下列选项中正确的是()A.27的立方根是±3B的平方根是±4C.9的算术平方根是3D.立方根等于平方根的数是17.在四个实数、3、-1.4中,大小在-1和2之间的数是()A.B.3 C D.-1.481-的相反数是()A.1-B1+-D1-C.19a,小数部分为b,则a-b的值为()A.- 13 B.6-C.8-D6-10.下列说法:①-1是1的平方根;②如果两条直线都垂直于同一直线,那么这两条直线平行;在两个连续整数a 和b 之间,那么a+b=7;④所有的有理数都可以用数轴上的点表示,反过来,数轴上的所有点都表示有理数;⑤无理数就是开放开不尽的数;正确的个数为( ) A .1个B .2个C .3个D .4个二.填空题(共6小题)11.已知a 的平方根是±8,则它的立方根是 ;36的算术平方根是 .122(3)b ++=0= .13A 的算术平方根为B ,则A+B= .14.若45,<<则满足条件的整数a 有 个.15.如图,M 、N 、P 、R 分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1,数a 对应的点在M 与N 之间,数b 对应的点在P 与R 之间,若|a|+|b|=3,则原点是 (M 、N 、P 、R 中选).16.=5,付老师又用计算器求得:=55=555, =5555,个3,2016个4)= . 三.解答题(共7小题) 17.求出下列x 的值 (1)4(x-1)2-36=0(2)27(x+1)3=-6418.计算:(1)|2||1|--(2--++19.学校计划围一个面积为50m2的长方形场地,一边靠旧墙(墙长为10m),另外三边用篱笆围成,并且它的长与宽之比为5:2.讨论方案时,小马说:“我们不可能围成满足要求的长方形场地”小牛说:“面积和长宽比例是确定的,肯定可以围得出来.”请你判断谁的说法正确,为什么?20.已知5a+2的立方根是3,3a+b-1的算术平方根是4,c(1)求a,b,c的值;(2)求3a-b+c的平方根.21.如果一个正数的两个平方根是a+1和2a-22,求出这个正数的立方根.22-的小数部分,此1事实上,小明的表示方法是有道理的,1,将这个数减去其整数部分,222<<<<即23,23,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第6章 实数单元测试卷(含答案)考试时间:100分钟;满分:100分学校:___________姓名:___________班级:___________考号:___________题号一 二 三 总分得分 注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)评卷人得 分一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2019秋•锡山区期中)在227, 1.732-、2π、39、0.121121112⋯(每两个2中逐次多一个1)、0.01-中,无理数的个数是( ) A .2个 B .3个 C .4个 D .5个 2.(3分)(2019秋•红谷滩新区校级期中)下列计算中正确的是( )A .93=±B .2(5)5-=-C .164-=-D .331717-=-3.(3分)(2019秋•德惠市期中)如图,数轴上点N 表示的数可能是( )A 2B 3C 7D 104.(3分)(2019秋•陇西县期中)已知2(2)30x y ++-=,则2y 的值是( )A .6-B .19C .9D .8-5.(3分)(2019秋•碑林区校级月考)已知a 8116b =c 是8-的立方根,则a b c +-的值为( )A .15B .15或3-C .9D .9或36.(3分)(2019春•昌平区校级月考)若2()25x y +=,则x y +的值为( )A .10B .5C .5-D .5±7.(3分)(2019春•西湖区校级月考)若601(k k k <<+是整数),则(k = )A .6B .7C .8D .98.(3分)(2019秋•东坡区校级月考)若01x <<,则x ,1x ,x ,2x 的大小关系为( ) A .21x x x x <<< B .21x x x x <<< C .21x x x x <<< D .21x x x x<<< 9.(3分)(2019春•西湖区校级月考)如图,用四个长和宽分别为a ,()b a b >的长方形拼成面积是64的大正方形,中间围成的小正方形的面积是S ,( )A .若4S =,则8ab =B .若16S =,则10ab =C .若12ab =,则16S =D .若14ab =,则4S =10.(3分)(2019秋•蚌山区校级月考)马鞍山市的精神是“海纳百川,一马当先”.若在正方形的四个顶点处依次标上“海”“纳”“百”“川”四个字,且将正方形放置在数轴上,其中“百”“川”对应的数分别为2-和1-,如图,现将正方形绕着顶点按顺时针方向在数轴上向右无滑动地翻滚.例如,第一次翻滚后“海”所对应的数为0,则连续翻滚后数轴上数2019对应的字是( )A .海B .纳C .百D .川第Ⅱ卷(非选择题)评卷人得 分二.填空题(共6小题,满分18分,每小题3分)11.(3分)(2019秋•北碚区校级月考)64的相反数的立方根是 .12.(3分)(2019.(选填“>”、“ <”或“=” )13.(3分)(2019a =,那么a = .14.(3分)(2019春•杨浦区期中)已知数轴上A 、B A 在数轴上对应的数是2,那么点B 在数轴上对应的数是 .15.(3分)(2019春•西湖区校级月考)若a (6)a a += .16.(3分)(2019秋•吴兴区期中)对于有理数a ,b ,定义{min a ,}b 的含义为:当a b <时,{min a ,}b a =,当a b >时,{min a ,}b b =.例如:{1min ,2}2-=-,{3min ,1}1-=-.已知min }a =min }b b =,且a 和b 为两个连续正整数,则a b +的平方根为 .评卷人得 分三.解答题(共6小题,满分52分)17.(8分)(2019秋•锡山区期中)解方程:(1)32160x +=(2)2(1)40x +-=18.(8分)(2019秋•锡山区期中)计算:(1)0(1)2|( 3.14)π---+-(219.(8分)(2019秋•渠县校级月考)(1)已知3既是4x -的算术平方根,又是210x y +-的立方根,求22x y -的平方根.(2)若x ,y 均为实数,且2(3)x -与2y -互为相反数,求22x xy y +-的值.20.(8分)(2018秋•邢台期末)如图甲,这是由8个同样大小的立方体组成的魔方,总体积为364cm .(1)这个魔方的棱长为 cm ;(2)图甲中阴影部分是一个正方形ABCD ,求这个正方形的边长; (3)把正方形ABCD 放置在数轴上,如图乙所示,使得点A 与数1重合,则D 在数轴上表示的数为 .21.(10分)(2019春•内黄县期末)阅读下面的文字,解答问题: 大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,而122212请解答下列问题:(121的整数部分是 ,小数部分是 .(27a 15b ,求7a b +(3)已知:100110x y ++,其中x 是整数,且01y <<,求11024x y -的平方根.22.(10分)(2018春•广元期末)阅读理解下面内容,并解决问题: 善于思考的小明在学习《实数》一章后,自己探究出了下面的两个结论:①2(94)94⨯=⨯,222(94)(9)(4)94=⨯=⨯94⨯94都是94⨯的算术平方根, 而94⨯9494⨯②2(916)916⨯=⨯,222(916)(9)(16)916=⨯=⨯916⨯916都是916⨯的算术平方根, 而916⨯的算术平方根只有一个,所以 .请解决以下问题:(1)请仿照①帮助小明完成②的填空,并猜想:一般地,当0a …,0b …ab a b 系是怎样的?(2)再举一个例子,检验你猜想的结果是否正确.(31. 【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此解答即可.【答案】解:227是分数,属于有理数; 1.732-是有限小数,属于有理数;110-,是分数,属于有理数.∴无理数有:2π0.121121112⋯(每两个2中逐次多一个1)共3个. 故选:B .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001⋯,等有这样规律的数.2. 【分析】依据算术平方根以及立方根的定义,即可得到结论.【答案】解:3=,故本选项错误;5=,故本选项错误;C=故选:D .【点睛】本题主要考查了算术平方根以及立方根的定义,一般地,如果一个正数x 的平方等于a ,即2x a =,那么这个正数x 叫做a 的算术平方根.3. 【分析】根据估算无理数大小的方法进行估算,再确定数字在数轴上的位置即可求解.【答案】解:.12A <,不符合题意;.12B <,不符合题意;.23C <<,符合题意;.34D <,不符合题意.故选:C .【点睛】本题考查了估算无理数大小的方法、实数和数轴,解决本题的关键是掌握估算的方法.4. 【分析】根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解.【答案】解:由题意得,20x +=,30y -=,解得2x =-,3y =,所以,2239y ==.故选:C .【点睛】本题考查了非负数的性质.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.5. 【分析】先根据平方根、算术平方根、立方根的定义求得a 、b 、c 的值,再代入所求代数式即可计算.【答案】解:a Q b =c 是8-的立方根,3a ∴=或3-,4b =,2c =-,当3a =,4b =,2c =-时,34(2)9a b c +-=+--=,当3a =-,4b =,2c =-时,34(2)3a b c +-=-+--=,则9a b c +-=或3,故选:D .【点睛】此题考查了平方根,立方根和算术平方根,熟练掌握各自的性质是解本题的关键.6. 【分析】利用平方根的定义求解.【答案】解:2()25x y +=Q ,5x y ∴+=±.故选:D .【点睛】本题考查了平方根:求一个数a 的平方根的运算,叫做开平方.7. 7=8=,可知78<<,依此即可得到k 的值.【答案】解:1(k k k <+Q 是整数),78<,7k ∴=.故选:B .8. 【分析】由于已知x 的取值范围,所以可用取特殊值的方法比较大小.【答案】解:Q 若01x <<,可取0.01x =,代入上式得:1100x =0.1=,220.010.0001x ==,0.00010.010.1100<<<,21x x x ∴<<<.【点睛】考查了实数大小比较,此类选择题由于已知未知数的取值范围,故可选用取特殊值的方法进行选择以简化计算.9.【分析】能够根据大正方形和小正方形的面积分别求得正方形的边长,再根据其边长分别列方程,根据4个矩形的面积和等于两个正方形的面积的差列方程.【答案】解:根据大正方形的面积求得该正方形的边长是8,则8+=,a b若4-=,a bS=,则根据小正方形的面积可以求得该正方形的边长是2,则2解得5ab=,故选项A、D错误;b=,15a=,3若16-=,a bS=,则根据小正方形的面积可以求得该正方形的边长是4,则4解得6ab=,故选项B错误;故选项C正确.a=,2b=,12故选:C.【点睛】本题考查了算术平方根和完全平方公式.此题关键是能够结合图形和图形的面积公式正确分析,运用排除法进行选择.10.【分析】根据规律可知,数轴上的数字与字的对应关系,“百”字是数字除以4余2的,“川”是除以4余3的,“海”是能被4整除的,“纳”是除以4余1的,由此可得连续翻滚后数轴上数2019对应的字.【答案】解:由题意可知:“百”字是数字除以4余2的,“川”是除以4余3的,“海”是能被4整除的,“纳”是除以4余1的,因为201945043÷=⋯,所以对应的数字是川,故选:D.【点睛】本题考查了旋转的性质,根据翻转的变化规律确定出每4次翻转为一个循环组依次循环是解题的关键.11.【分析】先根据相反数的定义得到64的相反数,再根据开立方,可得到答案.【答案】解:64的相反数是64-.-的立方根是4-,64故答案为:4-.【点睛】本题考查了实数的性质,熟练掌握相反数的定义和利用立方根是解题关键.12.的大小,再求差后与1进行比较即可.【答案】解:23<,Q,23<∴1【点睛】本题考查了数轴、有理数的大小比较等知识点,能熟记有理数的大小比较的法则的内容是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.13. 【分析】将已知等式两边平方,再移项,因式分解,可求得答案.【答案】解:Qa =,2a a ∴=(1)0a a ∴-=0a ∴=或1a = 故答案为:0或1.【点睛】本题考查了算术平方根等于其本身的数,或者因式分解法解一元二次方程,本题属于基础题型.14. 【分析】根据数轴求出点A 表示的数,再分别分两种情况讨论求解点B 所对应的数即可.【答案】解:Q 数轴上A 、B A 在数轴上对应的数是2,∴点B 在数轴上对应的数是2.故答案为:2【点睛】本题考查了数轴,主要利用了数轴上数的表示,难点在于分情况讨论.15. a 的值,最后代入求出即可.【答案】解:34Q ,3a ∴=,(6)3)36)a a ∴+=⨯+3)3)=⨯109=-1=,故答案为:1.【点睛】本题考查了估算无理数的大小和求代数式的值.解题的关键是能够正确估算无理数的大小,以及平方差公式的运用.16. 【分析】根据已知和45得出a 、b 的值,再求出a b +的值,最后根据平方根的定义得出即可.【答案】解:min Q ,}a =min ,}b b =,且a 和b 为两个连续正整数,45<, 5a ∴=,4b =,9a b ∴+=,a b ∴+的平方根是3=±,故答案为:3±.【点睛】本题考查了估算无理数的大小和平方根的定义,能求出a 、b 的值是解此题的关键.17. 【分析】(1)直接利用立方根的定义计算得出答案;(2)直接利用平方根的定义计算得出答案.【答案】解:(1)32160x +=,则38x =-,解得:2x =-;(2)2(1)40x +-=,2(1)4x +=,12x +=±,解得:1x =或3x =-.【点睛】此题主要考查了立方根和平方根,正确把握相关定义是解题关键.18. 【分析】(1)原式利用绝对值的代数意义,零指数幂法则计算即可求出值;(2)原式利用平方根、立方根定义计算即可求出值.【答案】解:(1)原式121=-+(2)原式4(3)23=+-+=.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.19. 【分析】(1)根据算术平方根的平方,可得被开方数,根据立方根的立方,可得被开方数,根据平方差公式,可得答案;(2)根据非负数的性质列出方程,求出a 、b 的值,代入代数式计算即可.【答案】解:(1)因为3既是(4)x -的算术平方根,又是(210)x y +-的立方根,所以2439x -==,32103x y +-=,所以13x =,12y =,22x y -()()x y x y =+-(1312)(1312)=+⨯-25=.22x y ∴-的平方根为5±;(2)因为2(3)x -互为相反数,所以2(3)0x -+=,所以30x -=,20y -=,解得,3x =,2y =,所以22x xy y +-223322=+⨯-964=+-11=,即22x xy y +-的值是11.【点睛】本题考查了平方根、算术平方根和立方根,以及非负数的性质.解题的关键是掌握平方根、算术平方根和立方根的定义,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.20. 【分析】(1)魔方是个正方体,正方体的体积等于棱长的三次方;(2)这个正方形ABCD 的边长是小立方体一个面的对角线的长度;(3)点D 表示的数是负数,它的绝对值比正方形ABCD 的边长少1.【答案】解:(1)设魔方的棱长为a cm ,根据题意得 364a =4a ∴=故答案为4.(2)设小正方体的棱长为b cm ,根据题意得3864b =2b ∴=∴所以根据勾股定理得 22222CD =+CD ∴=答:这个正方形的边长是.(3)由(2)知,AD =∴点D 对应的数的绝对值是1Q 点D 对应的数是负数∴点D对应的数是1-故答案为1-【点睛】本题考查了正方体的体积、实数与数轴之间的关系和勾股定理.正方体的体积=棱长的立方.实数与数轴上的点是一一对应的关系,要在数轴上表示一个实数,要知道这个实数的正负性和绝对值.21.【分析】(1(2a、b的值,再代入求出即可;(3x、y的值,再代入求出即可.【答案】解:(1)45Q,<∴44,故答案为:44;(2)23Q,<<∴,2a<<Q,34∴=,b3∴+=+=;a b231(3)100110121Q,<<∴<,1011∴<,110100111Q,其中x是整数,且01100x y+=+<<,yy==,∴=,10011010x110∴-=-=,241102410144x y-的平方根是12x y24±..22.【分析】(1)直接利用二次根式乘法运算法则得出答案;(2)利用特殊值进而验证得出答案;(3【答案】解:(1根据题意,当0a …,0b …=(255=20=20符合(1)的猜想;(3912=⨯108=.【点睛】此题主要考查了实数运算以及二次根式的性质,正确由特殊值分析式子变化规律是解题关键.。

相关文档
最新文档