乙醇和水混合液精馏塔课程设计

合集下载

乙醇和水的精馏塔设计

乙醇和水的精馏塔设计

乙醇和水的精馏塔设计精馏是一种分离液体混合物中组分的常用方法,可通过蒸馏分离甲醇和水的混合物。

对于乙醇和水的精馏塔设计,需要考虑一系列参数和流程,包括进料组成、操作压力、图形塔塔板、冷凝器设计、降低能量消耗等。

以下是一个基本的乙醇和水的精馏塔设计方案。

1.塔板设计在乙醇和水的精馏塔设计中,决定了塔板数的重要参数是所需的乙醇纯度。

一般来说,纯度要求越高,所需的塔板数就越多。

可使用的常用塔板设计方法有McCabe-Thiele方法和Ponchon-Savarit方法。

2.冷凝器设计冷凝器用于冷凝乙醇蒸汽,使其凝结成液体后下降到下部分的收集器中。

冷凝器设计需要考虑的重要参数包括进料温度、出料温度、乙醇和水的蒸汽压力和流量等。

一般来说,选择多管冷凝器比单管冷凝器更适合于高效的冷凝过程。

3.降低能量消耗乙醇和水的精馏过程中,能量消耗是一个重要的考虑因素。

为了降低能量消耗,可以引入热回收系统,如热交换器,将高温的废气中的热能回收使用。

此外,也可以考虑采用较低的操作压力,通过降低汽化温度来减少所需的加热能量。

4.控制塔板温度在乙醇和水的精馏塔设计中,控制各个塔板的温度非常重要,以确保塔板能够正常工作。

一种常见的温度控制方法是在塔板上设置温度传感器,并通过自动化控制系统调节冷凝器的冷却剂流量来控制塔板温度。

5.回流比的选择回流比是决定乙醇和水精馏塔效率的重要因素。

回流比的选择应根据塔板的数量、损失和乙醇纯度等因素来合理决定。

一般来说,较高的回流比可以提高纯度,但同时也会增加能源消耗。

6.热平衡以上是一个基本的乙醇和水的精馏塔设计方案。

根据实际情况和具体需求,还需要根据实际的进料组成、产量、纯度和环境要求等因素进行调整。

乙醇精馏塔化工原理课程设计---分离乙醇-水混合物精馏塔设计

乙醇精馏塔化工原理课程设计---分离乙醇-水混合物精馏塔设计

乙醇精馏塔化工原理课程设计---分离乙醇-水混合物精馏塔设计化工原理课程设计分离乙醇-水混合物精馏塔设计学院:化学工程学院专业:学号:姓名:指导教师:时间: 2012年6月13日星期三化工原理课程设计任务书一、设计题目:分离乙醇-水混合物精馏塔设计二、原始数据:a)原料液组成:乙醇 20 % 产品中:乙醇含量≥94% 残液中≤4%b)生产能力:6万吨/年c)操作条件进料状态:自定操作压力:自定加热蒸汽压力:自定冷却水温度:自定三、设计说明书内容:a)概述b)流程的确定与说明c)塔板数的计算(板式塔);或填料层高度计算(填料塔)d) 塔径的计算e)1)塔板结构计算;a 塔板结构尺寸的确定; b塔板的流体力学验算;c塔板的负荷性能图。

2)填料塔流体力学计算;a 压力降;b 喷淋密度计算f)其它(1)热量衡算—冷却水与加热蒸汽消耗量的计算(2)冷凝器与再沸器传热面的计算与选型(板式塔)(3)除沫器设计g)料液泵的选型h)计算结果一览表目录前言 (2)一、概述 (2)二、精馏系统工艺流程的确定 (3)三、物料衡算 (3)四、塔板数计算 (3)1、理论塔板数的确定2、总板效率估计3、计算实际塔板数五、塔板结构的工艺设计 (5)1、初选塔板间距2、塔径计算3、塔板上溢流型式的确定4、塔板布置5、塔板各部分面积和对应气速计算六、塔板流体力学校核 (10)1、板上溢流强度检查2、气体通过塔板的压力降计算3、液面落差校核4、漏液点气速校核5、降液管内液面高度和液体停留时间校核七、塔板负荷性能图 (12)1、负荷性能图的绘制2、塔板结构设计评述八、塔总体结构 (13)1、塔高的计算2、接管3、人孔和手孔九、精馏塔附属设备选型设算 (18)参考资料 (18)附录1、乙醇~水溶液的密度 (18)2、乙醇~水溶液汽液平衡数据(常压) (19)3、乙醇~水蒸汽在沸腾条件下的密度 (20)4、苯、甲苯的密度、表面张力和汽化潜热 (20)5、总传热系数(列管换热器)的大致范围 (20)6、乙醇~水混合物的热焓 (21)摘要精馏是利用物质沸点的不同,多次的进行混合蒸气的部分冷凝和混合液的部分蒸发的过程,以达到分离的目的。

化工原理课程设计 乙醇-水精馏塔设计

化工原理课程设计 乙醇-水精馏塔设计

大连民族学院化工原理课程设计说明书题目: 乙醇-水连续精馏塔的设计设计人: 1104系别:生物工程班级:生物工程121班指导教师: 老师设计日期:2014 年10 月21 日~11月3日温馨提示:本设计有一小部分计算存在错误,但步骤应该没问题化工原理课程设计任务书一、设计题目乙醇—水精馏塔的设计。

二、设计任务及操作条件1.进精馏塔的料液含乙醇30%(质量),其余为水。

2.产品的乙醇含量不得低于92。

5%(质量)。

3。

残液中乙醇含量不得高于0.1%(质量).4.处理量为17500t/a,年生产时间为7200h。

5.操作条件(1)精馏塔顶端压强 4kPa(表压)。

(2)进料热状态泡点进料。

(3)回流比R=2R min。

(4)加热蒸汽低压蒸汽.(5)单板压降≯0。

7kPa.三、设备型式设备型式为筛板塔。

四、厂址厂址为大连地区。

五、设计内容1.设计方案的确定及流程说明2.塔的工艺计算3.塔和塔板主要工艺尺寸的设计(1)塔高、塔径及塔板结构尺寸的确定。

(2)塔板的流体力学验算.(3)塔板的负荷性能图。

4.设计结果概要或设计一览表5.辅助设备选型与计算6。

生产工艺流程图及精馏塔的工艺条件图7.对本设计的评述或有关问题的分析讨论目录前言 (1)第一章概述 (1)1。

1塔型选择 (1)1.2操作压强选择 (1)1.3进料热状态选择 (1)1。

4加热方式 (2)1。

5回流比的选择 (2)1.6精馏流程的确定 (2)第二章主要基础数据 (2)2。

1水和乙醇的物理性质 (2)2.2常压下乙醇—水的气液平衡数据 (3)2。

3 A,B,C—Antoine常数 (4)第三章设计计算 (4)3.1塔的物料衡算 (4)3.1。

1 料液及塔顶、塔底产品含乙醇摩尔分率 (4)3.1.2 平均分子量 (4)3。

1。

3 物料衡算 (4)3。

2塔板数的确定 (4)的求取 (4)3。

2。

1 理论塔板数NT3.2。

2 全塔效率E的求取 (5)T3.2.3 实际塔板数N (6)3。

化工原理课程设计-乙醇-水混合液精馏塔设计

化工原理课程设计-乙醇-水混合液精馏塔设计

化工原理课程设计-乙醇-水混合液精馏塔设计全套论文化工原理课程设计题目:乙醇-水混合液精馏塔设计学院:化学与材料工程学院专业:高分子材料与工程*名:***学号:*********指导教师:***河南城建学院2012年12月25日《化工原理》课程设计工艺条件一、设计目的和要求课程设计是化工原理课程教学中综合性和实践性较强的教学环节,是理论系实际的桥梁。

通过课程设计,培养学生查阅资料、选用公式和搜索数据的能力;熟悉工程设计基本内容,掌握化工单元操作设计的主要程序及方法;锻炼和提高学生综合运用理论知识和技能的能力、独立工作和创新能力;培养学生能用简洁的文字清晰的图表来表达自己设计思想的能力。

二、设计任务完成精馏塔工艺设计,运用最优化方法确定最佳操作条件;精馏设备设计, 有关附属设备的设计和选用;绘制带控制点工艺流程图,塔板结构简图和塔板负荷性能图,编制设计说明书;等。

三、设计题目题目二:乙醇-水混合液精馏塔设计四、设计条件年处理量:8000吨/年料液浓度(质量%):40% 料液初温:30 C塔顶产品浓度:94% (质量分率)塔底乙醇含量不高于0.3% (以质量计)精馏塔塔顶压强:4kPa(表压)进料状态:泡点进料回流比:自选单板压降w 0. 7 k pa冷却水温度:30 E 设备形式:筛板塔饱和水蒸汽压力:2.5kgf/cm2(表压)(1kgf/=98.066kPa)每年实际生产天数:330天,每天24小时连续运转设计方案简介 (4)二物料流程说明 (4)三设计说明书 (5)3.1.气液相平衡数据 (5)3.2全塔物料衡算 (6)3.3工艺条件及物性数据计算..................................... .63.3.1操作温度: (7)3.3.2操作压强 (7)3.3.3平均分子量的计算 (8)3.3.4平均密度 (9)3.3.5混合液体表面张力 (10)3.3.6液体粘度 (11)3.3.7塔的物性数据列表 (12)3.4实际塔板数的计算 (12)3.4.1计算最小回流比错误!未定义书签。

乙醇-水精馏塔浮阀塔课程设计

乙醇-水精馏塔浮阀塔课程设计

化工原理课程设计乙醇——水混合液精馏塔设计刘入菡应用化学专业应化1104班学号110130106指导教师顾明广摘要本设计为分离乙醇—水混合物,采用筛板式精馏塔。

精馏塔是提供混合物气、液两相接触条件,实现传质过程的设备。

它是利用混合物中各组分挥发能力的差异,通过液相和气相的回流,使混合物不断分离,以达到理想的分离效果。

选择精馏方案时因组分的沸点都不高所以选择常压,进料为泡点进料,回流是泡点回流。

塔顶冷凝方式是采用全凝器,塔釜的加热方式是使用再沸器。

精馏过程的计算包括物料衡算,热量衡算,塔板数的确定等。

然后对精馏塔进行设计包括:塔径、塔高、溢流装置。

最后进行流体力学验算、绘制塔板负荷性能图.乙醇精馏是生产乙醇中极为关键的环节,是重要的化工单元。

其工艺路线是否合理、技术装备性能之优劣、生产管理者及操作技术素质之高低,均影响乙醇生产的产量及品质。

工业上用发酵法和乙烯水化法生产乙醇,单不管用何种方法生产乙醇,精馏都是其必不可少的单元操作.浮阀塔具有下列优点:1、生产能力大。

2、操作弹性大。

3、塔板效率高.4、气体压强降及液面落差较小.5、塔的造价低。

浮阀塔不宜处理易结焦或黏度大的系统,但对于黏度稍大及有一般聚合现象的系统,浮阀塔也能正常操作。

关键词:乙醇水精馏浮阀塔连续精馏塔板设计目录前言 (1)第一章设计任务书 (2)1.1、设计条件 (2)1。

2、设计任务 (2)1。

3、设计内容 (3)第二章设计方案确定及流程说明 (5)第三章塔板的工艺设计 (7)3。

1、全塔物料衡算 (7)3。

2、塔内混合液物性计算 (8)3。

3、适宜回流比 (15)3。

4、溢流装置 (21)3。

5、塔板布置与浮阀数目及排列 (22)3.6、塔板流体力学计算 (25)3。

7、塔板性能负荷图 (29)3。

8、塔高度确定 (33)第四章附属设备设计 (35)4.1、冷凝器的选择 (35)4。

2、再沸器的选择 (36)第五章辅助设备的设计 (38)5。

食品工程原理课程设计乙醇水精馏塔

食品工程原理课程设计乙醇水精馏塔

食品工程原理课程设计乙醇水精馏塔SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#食品工程原理课程设计题目乙醇-水精馏塔的设计课程名称食品工程原理课程设计学号学生姓名所在专业食品科学与工程所在班级指导老师目录任务书乙醇—水精馏搭的设计(一)设计任务1、生产能力:日产(24h)40吨93%乙醇产品。

2、产品要求:塔釜排出的残液中要求乙醇的浓度不大于%(质量分率)。

3、设备型式:筛板塔(二)操作条件1、精馏塔顶压强:P=1 atm(绝压)2、进料热状况:原料来至上游的粗馏塔,为95-96℃的饱和蒸气R3、回流比:操作回流比R=—min4、加热蒸汽:接蒸汽加热5、单板压降:不大于(三)设计内容1、方案确定流程说明2、塔的工艺计算3、塔和塔板主要工艺尺寸的设计4、辅助设备选型(四)设计成果1、设计说明书一份2、设计图纸,包括流程图,负荷性能图,塔盘布置图,浮阀塔工艺条件图。

一、方案确定流程说明1、生产时日设计要求塔日产40吨93%乙醇,工厂实行三班制,每班工作8小时,每天24小时连续正常工作。

2、选择塔型精馏塔属气—液传质设备。

气—液传质设备主要分为板式塔和填料塔两大类。

该塔设计生产时日要求较大,由板式塔与填料塔比较知:板式塔直径放大时,塔板效率较稳定,且持液量较大,液气比适应范围大,因此本次精馏塔设备选择板式塔。

筛板塔是降液管塔板中结构最简单的,它与泡罩塔相比较具有下列优点:生产能力大10-15%,板效率提高15%左右,而压降可降低30%左右,另外筛板塔结构简单,消耗金属少,塔板的造价可减少40%左右,安装容易,也便于清洗检修。

因此,本设计采用筛板塔比较合适。

3、精馏方式由设计要求知,本精馏塔为连续精馏方式。

4、操作压力常压操作可减少因加压或减压操作所增加的增、减压设备费用和操作费用,提高经济效益, 在条件允许下常采用常压操作,因此本精馏设计选择在常压下操作。

5、加热方式在本物系中,水为难挥发液体,选用直接蒸汽加热,可节省再沸器。

《化工原理》乙醇-水混合液精馏塔设计

《化工原理》乙醇-水混合液精馏塔设计

《化工原理》乙醇-水混合液精馏塔设计一、设计任务:完成精馏塔工艺优化设计、精馏塔结构优化设计以及有关附属设备的设计和选用,绘制精馏塔的工艺条件图及塔板性能负荷图,并编制工艺设计说明书。

二、操作条件:年产量:7500t。

料液初温:30℃料液浓度:43%(含乙醇摩尔分数)塔顶产品浓度:97%(含乙醇摩尔分数)乙醇回收率:99.8%(以摩尔分数计)年工作日:330天(24小时运行)精馏塔塔顶压力:4kPa(表压)冷却水温度:30℃饱和蒸汽压力:2.5kgf/cm2(表压)单板压降:不大于0.7kPa全塔效率:52%回流比是最小回流比的1.8倍进料状况:泡点进料三、设计内容:(1)设计方案简介:对确定的工艺流程及精馏塔型式进行简要论述。

(2)工艺参数的确定基础数据的查取及估算,工艺过程的物料衡算及热量衡算,理论塔板数,塔板效率,实际塔板数等。

(3)主要设备的工艺尺寸计算板间距,塔径,塔高,溢流装置,塔盘布置等。

(4)主要附属设备设计计算及选型塔顶全凝器设计计算:热负荷,载热体用量。

(5)用坐标纸绘制乙醇-水溶液的y-x图一张,并用图解法求理论塔板数(贴在说明书中对应的地方)。

(6)绘制精馏塔设计条件图。

附:汽液平衡数据表1一、总体设计计算1.1 汽液平衡数据(760mm Hg)1.2塔的物料衡算=43/46.07/(43/46.07+57/18.01)=0.2277XF=97/46.07/(97/46.07+31/18.01)=0.9267XDM=0.2277⨯46.07+(1-0.2277)⨯18.02=24.399kg/kmol F同理可得M=44.013 D,=7.5*106/7920=946.97DD=946.97/44.013=21.516η=0.998=DXD /FXF=21.516*0.9267/0.2277FF=87.742 由 F=D+WFXF =DXD+WXW得:Xw=0.03998W=66.226 Kmol/h1.3塔板计算tF=(0.2277-0.1661/0.2337-0.1661)*(82.7-84.1)+84.1=82.82°CtF=82.82℃乙醇不同温度的饱和蒸气压乙醇的饱和蒸气压o={[(82.82-80)/(90-80)]*(158.27-108.32)}+108.32=122.41 PA水不同温度的饱和蒸气压由图数据通过内插法得P B O =53.0525 α =122.41/53.0525=2.31 泡点进料q=1R min =1/α-1[X D /X F -α(1-X D )/1-X F ]=2.94 R=1.8R min =5.292精馏段操作线方程1111n n D R y x x R R +=+++=0.841x+0.1473提馏段操作线方程W m m x WqF L W x W qF L qF L y -+--++=+''1=1.503x-0.000849实际塔板数N pE T =0.52精馏段Np1=11/0.52=21块提馏段Np2=3/0.52=6块总板数21+6=27块二、塔的工艺条件及物性数据计算2.1精馏段的数据1.平均压力Pm单板降压不大于0.7Kpa所以等于0.7Kpa塔顶:PD=4+101.3=105.3Kpa加料板:PF=105.3+0.7*21=120Kpa平均压力:Pm=(105.3+120)/2=112.65Kpa2.平均温度tD={[(0.9267-0.08943)/(1-0.8943)]*(80.02-78.15)}+78.15=78.72℃tF=82.82℃精馏段tm=(82.82+78.72)/2=80.77℃3.平均分子量塔顶:M VDM = XD×M轻组分+(1-XD)×M重组分=46.07*0.9267+(1-0.9267)*18.01=44.01kg/kmolM LDM = x1×M轻组分+(1-x1)×M重组分=46.07*0.743+(1-0.743)*18.01=38.86kg/kmol进料板的平均分子量:进料板对应的组成Xn 和ynM VFM = yn×M轻组分+(1-yn)×M重组分=46.01*0.512+(1-0.512)*18.01=32.38kg/kmolM LFM = Xn×M轻组分+(1-Xn)×M重组分=46.07*0.2277+(1-0.2277)*18.01=24.4kg/kmol 精馏段:MVm=(44.01+32.38)/2=38.2kg/kmolMLm=(38.36+24.4)/2=31.63kg/kmol4.平均密度塔顶:aA =0.97 aB=0.03查物性数据:易挥发组分密度ρ1= 763.42 Kg/m3难挥发组分密度ρ2= 972.58 Kg/ m3塔顶液相密度:ρLD =1/[a1/ρ1+(1-a1) /ρ2]= 741.84Kg/ m3进料板:aA =0.43 aB=0.53查物性数据:易挥发组分密度ρ1= 733.59 Kg/m3难挥发组分密度ρ2= 969.97 Kg/ m3进料液相密度:ρLF =1/[a2/ρ1+(1-a2) /ρ2]= 851.93Kg/ m3精馏段的平均液相密度:ρLM =(ρLD+ρLF)/2=796.88Kg/ m3精馏段平均汽相密度:TM =(TF+TD)/2=80.77℃ρVM =PM V /RT M =1.463Kg/ m 35. 液体的平均表面张力 (1)塔顶t D =78.72℃ бO =17.26 бW =62.8V O =46.07/737=0.06251m 3/kmol V w =18.01/973=0.01851m 3/kmol X o =X D =0.9267 X W =1-0.9267=0.0733 φo =X o V O /(X W V w +X o V O )=0.977 φW =1-0.977=0.023 B=lg(φW q /φo )=-3.266Q=0.041(q/T)(бO V O 2/3/q-бW V w 2/3)=-0.0007 A=B+Q=-3.266-0.0007=-3.2667lg(φs W q /φso )=-3.2667和φs W +φso =1解得 φs W =0.021 φso =0.979бm 1/4=φs W бW 1/4+φso бO 1/4=2.05 бDm =17.81N/m2. 进料板t F =82.82℃ бO =16.88 бW =62.04V O =46.07/733=0.06285m 3/kmol V w =18.01/969.3=0.01858m 3/kmol X o =X F =0.2277 X W =1-0.2277=0.7723 φo =X o V O /(X W V w +X o V O )=0.499φW =1-0.499=0.501 B=lg(φW q /φo )=-0.298Q=0.041(q/T)(бO V O 2/3/q-бW V w 2/3)=-0.00748A=B+Q=-0.298-0.00748=-0.3055lg(φs W q /φso )=-0.3055和φs W +φso =1解得 φs W =0.498 φso =0.502бm 1/4=φs W бW 1/4+φso бO 1/4=2.415 бFm =34.01N/m(3) 精馏段бm =(17.81+34.01)/2=25.91N/m 6. 液体的平均黏度,L D μ=0.44⨯0.9267+(1-0.9267)⨯0.357=0.434.a mP s,L F μ=0.12⨯0.33+(1-0.12)⨯0.30=0.3904.a mP s,L M μ精=0.435*0.3904+0.357*(1-0.3904)=0.387.a mP s 7. 精馏段的汽液负荷计算V=(R+1)D=(5.292+1)⨯21.516=135.38/kmol hS V =,,3600V V m V M ρ精精=135.38*38.2/(3600*1.463)=0.91m 3/sV h =3600*0.91=3262.96m 3/hL=RD=50292⨯21.516=113.86/kmol h,3600L s L m LM L ρ=精精=113.86*31.63/(3600*796.88)=0.001255L h =3600*0.001255=4.52m 3/h2.2 提馏段的数据1.平均温度t W ={[(0.03998-0.019)/(1-0.019)]*(89-95.5)}+95.5=92.93℃ t F =82.82℃提馏段t m =(82.82+92.93)/2=87.88℃2.平均分子量 塔底:M VWM = X W ×M 轻组分+(1-X W )×M 重组分=46.07*0.414+(1-0.414)*18.01=29.63kg/kmol M LWM = x 1×M 轻组分+(1-x 1)×M 重组分=46.07*0.03998+(1-0.03998)*18.01=19.13kg/kmol 提馏段:M Vm =(29.63+32.38)/2=31kg/kmol M Lm =(19.13+24.4)/2=21.77kg/kmol 3.平均密度塔底:a A =0.64 a B =0.36查物性数据: 易挥发组分密度ρ1= 725.87 Kg/m 3 难挥发组分密度ρ2= 963.23 Kg/ m 3塔底液相密度:ρLD =1/[a 1/ρ1+(1-a 1) /ρ2]= 963.15Kg/ m 3 提馏段的平均液相密度:ρLM =(ρLW +ρLF )/2=907.54Kg/ m 3 提馏段平均汽相密度:T M =(T F +T D )/2=87.88℃ ρVM =PM V /RT M =1.16Kg/ m34.液体的平均表面张力 (1)塔底t W =92.93℃ бO =13.27 бW =60.16V O =46.07/737=0.06251m 3/kmol V w =18.01/973=0.01851m 3/kmol X o =X W =0.03998 X W =1-0.03998=0.96 φo =X o V O /(X W V w +X o V O )=0.123φW =1-0.123=0.877B=lg(φW q /φo )=0.796Q=0.041(q/T)(бO V O 2/3/q-бW V w 2/3)=-0.000163 A=B+Q=0.796-0.000163=0.794lg(φs W q /φso )=0.794和φs W +φso =1解得 φs W =0.634 φso =0.366бm 1/4=φs W бW 1/4+φso бO 1/4=2.46 бWm =36.62N/m提馏段бm =(36.62+34.01)/2=35.32N/m 5.液体的平均黏度μlw =0.03998⨯0.324+(1-0.03998)⨯0.324=0.393.a mP s ,L F μ=0.12⨯0.33+(1-0.12)⨯0.30=0.3904.a mP s μL,M 提=0.393*0.084+0.393*(1-0.084)=0.33.a mP s 6.精馏段的汽液负荷计算V=(R+1)D=(5.292+1)⨯21.516=135.38/kmol hS V ==135.38*31/(3600*1.16)=1m 3/sV h =3600*1=3600m 3/hL=RD=50292⨯21.516=113.86/kmol hL s =113.86*21.77/(3600*907.54)=0.00154L h =3600*0.00154=5.508m 3/h三、塔和塔板主要工艺尺寸计算 3.1 塔径首先考虑精馏段:参考有关资料,初选板音距T H =0.5m 取板上液层高度L h =0.06m 故 T H -L h=0.5-0.06=0.44ms s L V ⎛ ⎝查图可得 20C =0.097校核至物系表面张力为9.0mN/m 时的C ,即C=20C 0.220σ⎛⎫⎪⎝⎭=0.0102max u =CL VVρρρ-可取安全系数0.7,则 u=0.7max u =0.7⨯2.378=1.665m/s故4sV uπ按标准,塔径圆整为1.2m ,则空塔气速为0.805m/s3.2 精馏塔有效高度的计算精馏段有效高度为1Z N =-T 精精()H =(21-1)⨯0.5=10m提馏段有效高度为1Z N =-T 提提()H =(6-1)⨯0.5=2.5mZ 总=10+2.5=12.5m3.3 溢流装置采用单溢流、弓形降液管⑴ 堰长 w l 取堰长 w l =0.6Dw l =0.6⨯1.2=0.72m⑵ 出口堰高w h =L ow h h -选用平直堰,堰上液层高度ow h 由下式计算ow h =2/32.841000h w L E L ⎛⎫ ⎪⎝⎭近似取E=1.03,则ow h =0.00995故 w h =0.06-0.00995=0.05m ⑶ 降液管的宽度d W 与降液管的面积f A 由L D /D T =0.6《化工设计手册》 得dW D =0.1,f TA A =0.053 故 d W =0.12 f A =0.0722()24D π=0.062m留时间 f T sA H L τ==23.9s (>5s 符合要求)提馏段t=A d H T /Ls=33.11=>5s⑷ 降液管底隙高度 h ο u o ,=0.08h ο=L s /w l u o ,=0.022m3.4 塔板布置(1)取边缘区宽度c W =0.06,安定区宽度s W =0.075(2)计算开孔面积212sin 180a x A R R π-⎡⎤=⎢⎥⎣⎦=0.7992m 其中 x=2D-(d s W W +)=0.405m R=2D-c W =0.54m 3.5 筛板数n取筛孔的孔径0d 为39mm,正三角形排列,一般碳钢的板厚δ为3mm,孔中心距t=75.0mm 浮阀数目 取阀动能因数11F =,则由式o υ=o υ=计算塔板上的筛孔数n,即 n=4V s /πd o 2u o =83.75=84提馏段的筛口气速和筛孔数用上述公式计算, 提馏段 u 0=10.21m/s, n=82个取边缘区宽度c W =0.06,安定区宽度s W =0.075,板厚δ为3mm, 做等腰三角形叉排h=Aa/0.075n=0.127m=120mm 阀孔气速μo =4V s /πnd o 2=9.12m/s F 0=10.97四、筛板的流体力学性能 1. 塔板压降校核 h f =h c +h e(1)气体通过干板的降压h c临界孔速 u 0c =(73/ρv )1/1.825=8.52m/s<u 0 所以h c =5.34(ρv /ρL )(u 02/2g)=0.0411m (2)气体通过班上液层的压降h e h e =β(h w +h ow )=0.05*0.06=0.03 (3)h б克服表面张力的压降 h б=0.00034m(4)气体通过筛板压降h f 和∆p f h f =h c +h e +h б=0.07144m∆p f =ρl *g*h f =558.5kpa<0.7kpa 2. 雾沫夹带量校核泛点率1100%F bF =板上液体流经长度 Z L =D T -2W D =0.96m F=40.72%<80%不会发生过量的雾沫夹带 3. 漏液校核=4.134m/s k=u 0/u'0=2.19=>2提馏段用同样的方法得,k=u 0/u'0==>2 4. 降低管液泛校核为防止降液管液泛的发生,应使降液管中清液层高度()d T w H H h ≤Φ+d P L d H h h h =++ 即h d =0.153(L s /L w h o )2=0.00096m取 取校正系数Φ=0.5,H d =0.1324,Φ(H T +h w )=0.275m可见(),d T W H H h φ≤+符合防止淹塔的要求。

化工原理课程设计乙醇和水筛板精馏塔

化工原理课程设计乙醇和水筛板精馏塔

化工原理课程设计乙醇和水筛板精馏塔
一、工艺原理
乙醇和水筛板精馏塔是一种以乙醇为介质的广泛应用的化学反应设备。

这种精馏塔主要是利用乙醇对水的抽提分离物质的蒸馏和沉淀形式,在乙醇中达到分离的目的。

其操作原理是:将一定比例的乙醇与水混合,通过螺杆螺桶升温,使乙醇蒸馏,吸收乙醇汽体并伴随水汽在热力学过程中分离开。

因此,当这两种物质同时沉淀分离时,乙醇和水就可以通过这种方法获得更纯净的液体。

通过这个过程,物质也可以进行混合或有机溶剂的分离。

二、工艺流程
1.投料:将水混合物经过投料口,均匀的进入精馏塔管内。

2.抽提:采用乙醇为介质,出口的温度和压强维持一定的范围,当介质达到一定温度时,可使水和有机溶剂通过抽提过程进行分离。

3.进料:将经过抽提的液体经过调节阀再次进料,使乙醇连续循环。

4.净化:当液体进行循环抽提时,可使有机溶剂、水和乙醇通过滤筛板分离,达到净化的效果,经过多次的净化过程,乙醇的干净度可以达到99%以上。

5.出料:乙醇和水筛板精馏塔中的液体通过调节阀分别流入工艺和控制系统中,其中纯乙醇可作为常温下的产品出料。

三、应用领域
1、医药:
乙醇和水筛板精馏塔可以用来分离生物分子,如蛋白质、多肽、核酸和抗体等.因为乙醇有很好的气溶能力,也可以用乙醇作为载体进行药物的辅料成分分离和分离。

2、催化:
乙醇的介质有利于催化剂的活性,可以使催化剂在乙醇环境中进行催化反应,从而获得合成催化剂所需的原料。

3、有机溶剂:
乙醇可以用作有机溶剂,特别是对一些有机物质有良好的溶解效果。

在乙醇和水
筛板精馏塔的应用中,可以实现在有机溶剂中分离固体物质的目的。

乙醇—水混合溶液连续精馏塔设计

乙醇—水混合溶液连续精馏塔设计

乙醇—水混合溶液连续精馏塔设计乙醇-水混合溶液连续精馏塔的设计引言:乙醇-水混合溶液的连续精馏塔在工业生产中有广泛的应用,尤其是在酒精生产、燃料乙醇的提纯等领域。

本文将以设计乙醇-水混合溶液连续精馏塔为主题,对连续操作的工艺参数、设备设计等方面进行详细的探讨。

一、乙醇-水混合溶液的特性乙醇-水混合溶液的特性是设计连续精馏塔的基础,其中最重要的是乙醇和水的气液平衡数据。

通过实验测得的气液平衡数据可以用于计算实际操作中的塔回流比、落液比等重要参数,以保证精馏塔的正常运行。

二、连续操作的工艺参数1.塔回流比:乙醇-水混合溶液的精馏塔中,塔回流比是一个关键的控制参数。

通过控制塔回流比,可以实现对塔内温度和浓度的调节,以保证乙醇和水的分离效果。

一般来说,较高的塔回流比可以提高塔底液的浓度,但会相应地降低塔顶的乙醇含量。

2.塔顶温度:塔顶温度是乙醇-水混合溶液精馏塔操作中另一个重要的工艺参数。

通过调节塔顶温度,可以控制乙醇的纯度,实现乙醇的提纯。

一般来说,较低的塔顶温度可以提高乙醇的纯度,但会增加底液的回流量。

3.塔底液的回流量:塔底液的回流量也是连续精馏塔操作中需要控制的参数之一、通过调节底液的回流量,可以实现对塔底温度和浓度的控制,从而保证乙醇和水的分离效果。

一般来说,增加底液的回流量可以提高底液的浓度,但会相应地降低塔顶温度。

三、设备设计1.乙醇-水混合溶液连续精馏塔的设备包括:塔体、填料、除沫器、塔底液泵、塔顶动力和塔口动力等。

塔体的设计需要考虑到溶液的物理特性,如压力、温度和粘度等。

2.填料是乙醇-水混合溶液连续精馏塔中的关键设备。

填料的选择应考虑到温度、浓度和性质等因素,以满足乙醇和水的分离要求。

3.除沫器在乙醇-水混合溶液连续精馏塔中起到除去塔顶产生的泡沫的作用。

合理的除沫器设计可以提高精馏效果,避免泡沫堵塞导致操作不稳定。

4.塔底液泵是用于控制底液回流量的设备,通过调节泵的转速来实现对回流量的调节。

乙醇-水精馏塔课程设计

乙醇-水精馏塔课程设计

燕京理工学院Yanching Institute of Technology (2017)届制药工程专业课程设计任务书题目:乙醇——水混合液精馏塔设计学院:化工与材料工程学院专业:制药1301 学号: 130120004 姓名:张世宇指导教师:林贝教研室主任(负责人):林贝2016 年 09月 25 日化工原理课程设计乙醇——水混合液精馏塔设计张世宇制药工程1301班学号130120003指导教师林贝摘要本设计是以乙醇――水混合液为设计物系,以筛板塔为精馏设备分离乙醇和水。

筛板塔是化工生产中主要的气液传质设备,此设计针对二元物系乙醇--水的精馏问题进行分析,选取,计算,核算,绘图等,是较完整的精馏设计过程。

关键词:乙醇-水精馏筛板塔连续精馏塔板设计目录前言 (1)第1章设计任务书 (2)第2章设计方案的确定及流程说明 (3)第2.1节设计方案的确定 (3)第2.2节设计流程 (5)第3章精馏塔的工艺设计 (6)第3.1节精馏塔的物料衡算 (6)第3.2节理论板的计算 (7)第3.3节平均参数的计算 (11)第3.4节塔径的初步设计 (15)第3.5节塔高的计算 (17)第4章塔板结构设计 (19)第4.1节溢流装置计算 (19)第4.2节塔板及筛板设计 (20)第4.3节塔板流体力学验算 (21)第5章塔板负荷性能图 (24)第5.1节雾沫夹带线 (24)第5.2节液泛线 (24)第5.3节液相负荷上限线 (25)第5.4节漏液线 (25)第5.5节液相负荷下限线 (26)第5.6节塔板负荷性能图 (26)第6章附属设备设计 (27)第6.1节冷凝器 (27)第6.2节再沸器 (28)第7章设计结果汇总 (30)第7.1节各主要流股物性汇总 (30)第7.2节筛板塔设计参数汇总 (30)参考文献 (32)附录 (33)前言1.1精馏原理及其在化工生产上的应用实际生产中,在精馏柱及精馏塔中精馏时,上述部分气化和部分冷凝是同时进行的。

化工原理课程设计乙醇水精馏塔设计doc

化工原理课程设计乙醇水精馏塔设计doc

化工原理课程设计-乙醇-水精馏塔设计.doc化工原理课程设计:乙醇-水精馏塔设计一、设计任务本设计任务是设计一个乙醇-水精馏塔,用于分离乙醇和水混合物。

给定混合物中,乙醇的含量为30%,水含量为70%。

设计要求塔顶分离出95%以上的乙醇,塔底剩余物中水含量不超过5%。

二、设计方案1.确定理论塔板数根据给定的乙醇含量和设计要求,利用简捷计算法计算理论塔板数。

首先确定乙醇的回收率和塔顶产品的浓度,然后根据简捷计算公式计算理论塔板数。

2.塔的总体积和尺寸根据理论塔板数和每块理论板的液相体积流量,计算塔的总体积。

根据总体积和塔内件设计要求,确定塔的外形尺寸。

3.塔内件设计塔内件包括溢流管、进料口、冷凝器、再沸器和出口管等。

溢流管的尺寸和形状应根据塔径和物料性质进行设计。

进料口的位置和尺寸应根据进料流量和进料组成进行设计。

冷凝器和再沸器应根据物料的热力学性质和工艺要求进行设计。

出口管应根据塔径和出口流量进行设计。

4.塔板设计每块塔板的设计包括板上液相和气相的流动通道、堰和降液管等。

根据物料的物理性质和操作条件,确定液相和气相的流动通道尺寸和形状。

堰的高度和形状应根据液相流量和操作条件进行设计。

降液管的设计应保证液相流动顺畅且无滞留区。

5.塔的支撑结构和保温根据塔的外形尺寸和操作条件,设计支撑结构的形状和尺寸。

考虑保温层的设置,以减小热量损失。

三、设计计算1.确定理论塔板数根据简捷计算法,乙醇的回收率为95%,塔顶产品的乙醇浓度为95%。

通过简捷计算公式,得到理论塔板数为13块。

2.塔的总体积和尺寸每块理论板的液相体积流量为0.01m3/min,因此总体积为0.013m3/min。

考虑一定裕度,确定塔的外径为0.6m,高度为10m。

3.塔内件设计溢流管的尺寸为Φ10mm,形状为直管上升式。

进料口的位置位于第3块理论板处,尺寸为Φ20mm。

冷凝器采用列管式换热器,再沸器采用釜式再沸器。

出口管采用标准出口管,直径为Φ20mm。

化工原理课程设计乙醇水混合液精馏塔设计

化工原理课程设计乙醇水混合液精馏塔设计

化工原理课程设计乙醇水混合液精馏塔设计化工原理课程设计乙醇水混合液精馏塔设计一、引言精馏是石油化工、化学工业等领域中非常重要的分离和纯化方法之一。

在工业生产中,乙醇与水混合液的精馏分离技术应用非常广泛。

本文针对乙醇水混合液的精馏塔设计展开探讨。

二、乙醇水混合液的精馏分离原理通常将乙醇水混合液进行精馏时,可以利用其两种组分的沸点差异来实现分离。

在常压下,100克水的沸点为100℃,而100克乙醇的沸点为78.5℃,因此在一定的操作条件下,乙醇可以被分离出来。

三、精馏塔结构及工作原理精馏塔是一种具有特殊内部结构的容器,它可以用来将液体混合物分离成其组分。

精馏塔通常包括塔体、进料口、下塔液口和顶部气体口。

在塔体内部,有许多被称为塔板的“板子”,可以使物质沿着塔的高度进行反复蒸馏和冷凝,以达到分离组分的目的。

四、乙醇水混合液精馏塔设计对于乙醇水混合液的精馏塔设计,主要需要掌握以下几个参数。

4.1 精馏塔塔板数量精馏塔塔板数量对精馏分离效率有着决定性的影响。

一般来说,塔板的数量越多,分离效率越高。

在设计乙醇水混合液精馏塔时,需要根据不同的情况选择适当的塔板数量。

4.2 进料口位置和进料速度进料口位置和进料速度对于精馏分离的效果也有比较大的影响。

在设计乙醇水混合液精馏塔时,需要根据实际情况确定进料口位置和进料速度。

4.3 塔顶气体口和旋流板塔顶气体口和旋流板的设置也是精馏塔设计中必不可少的环节。

旋流板能够使得气体在塔体内形成旋涡,加速液体蒸发,从而提高精馏塔的分离效率。

五、结论乙醇水混合液的精馏塔设计是一项非常重要的工作,直接影响到分离效率和产品质量。

在进行精馏塔设计时,需要对塔板数量、进料口位置和进料速度、塔顶气体口和旋流板等参数进行合理的把握,以达到最佳的分离效果。

乙醇与水连续精馏塔课程设计

乙醇与水连续精馏塔课程设计

目录第一章设计方案的确定及流程说明 (3)1.1塔型选择 (3)1.2操作流程 (3)第二章塔的工艺计算 (4)2.1整理有关数据并绘制相关表格 (4)2.2全塔物料衡算 (5)2.3最小回流比与操作回流比 (6)2.4理论塔板数的确定 (7)2.5全塔效率的估算 (7)2.6实际塔板数的求取 (10)第三章塔的工艺条件及物性计算 (11)3.1操作压强Pm (11)3.2温度tm (12)3.3平均摩尔质量.................................... 错误!未定义书签。

23.4平均密度 (13)3.5液体表面张力 (16)3.6平均粘度的计算 (17)3.7汽液相体积流率 (18)3.8塔径的计算 (19)3.9精馏塔高度的计算 (20)第四章塔板主要工艺尺寸的计算 (21)4.1 溢流装置 (21)4.2 塔板布置 (24)第五章塔板的流体力学验算 (245)5.1 气体通过塔板的压力降hp液柱 (27)5.2 液面落差 (267)5.3 液沫夹带(雾沫夹带) (267)5.4 漏液 (278)5.5 液泛 (28)第六章塔板负荷性能图 (289)6.1漏液线 (289)6.2液沫夹带线 (29)6.3液相负荷下限线 (30)6.4液相负荷上限线 (30)6.5液泛线 (30)第七章各接管尺寸的确定及选型 (33)7.1进料管尺寸的计算及选型 (33)7.2釜液出口管尺寸的计算及选型 (33)7.3回流管尺寸的计算及选型 (33)7.4塔顶蒸汽出口径及选型 (34)第八章精馏塔的主要附属设备 (34)8.1冷凝器 (34)8.2预热器 (35)8.3再沸器 (35)设计结果一览表 (36)参考文献 (36)第一章、设计方案的确定及流程说明1.1 塔型选择根据生产任务,若按年工作日300天,每天开动设备24小时计算,产品流量为10.8t/h,由于产品粘度较小,流量较大,为减少造价,降低生产过程中压降和塔板液面落差的影响,提高生产效率,选用筛板塔。

乙醇水精馏塔课程设计

乙醇水精馏塔课程设计

燕京理工学院Yanching Institute of Technology(2017)届制药工程专业课程设计任务书题目:乙醇——水混合液精馏塔设计学院:化工与材料工程学院专业:制药1301学号: 130120004 姓名:张世宇指导教师:林贝教研室主任(负责人):林贝2016 年 09月 25 日化工原理课程设计乙醇——水混合液精馏塔设计张世宇制药工程1301班学号130120003指导教师林贝摘要本设计是以乙醇――水混合液为设计物系,以筛板塔为精馏设备分离乙醇和水。

筛板塔是化工生产中主要的气液传质设备,此设计针对二元物系乙醇--水的精馏问题进行分析,选取,计算,核算,绘图等,是较完整的精馏设计过程。

关键词:乙醇-水精馏筛板塔连续精馏塔板设计目录前言............................................ 错误!未定义书签。

第1章设计任务书 (2)第2章设计方案的确定及流程说明 (4)第2.1节设计方案的确定 (4)第2.2节设计流程 (6)第3章精馏塔的工艺设计 (8)第3.1节精馏塔的物料衡算 (8)第3.2节理论板的计算 (9)第3.3节平均参数的计算 (16)第3.4节塔径的初步设计 (21)第3.5节塔高的计算 (23)第4章塔板结构设计 (24)第4.1节溢流装置计算 (24)第4.2节塔板及筛板设计 (25)第4.3节塔板流体力学验算 (26)第5章塔板负荷性能图 (28)第5.1节雾沫夹带线 (28)第5.2节液泛线 (28)第5.3节液相负荷上限线 (28)第5.4节漏液线 (28)第5.5节液相负荷下限线 (29)第5.6节塔板负荷性能图 (29)第6章附属设备设计 ................................ 错误!未定义书签。

第6.1节冷凝器 (29)第6.2节再沸器 (30)第7章设计结果汇总 (32)第7.1节各主要流股物性汇总 (32)第7.2节筛板塔设计参数汇总 (33)参考文献 (37)附录 (38)前言1.1精馏原理及其在化工生产上的应用实际生产中,在精馏柱及精馏塔中精馏时,上述部分气化和部分冷凝是同时进行的。

化工原理课程设计--乙醇——水混合液常压连续精馏

化工原理课程设计--乙醇——水混合液常压连续精馏

化工原理课程设计--乙醇——水混合液常压连续精馏课程设计任务书一、设计题目:乙醇——水混合液常压连续精馏二、设计原始数据:原料液处理量28000吨/年原料液初温20℃原料液含乙醇45%(质量)馏出液含乙醇93%(质量)乙醇回收率99.9%(质量)三、设计任务:完成精馏工艺设计,精馏塔设备设计和有关附属设备的设计、选用;编写设计说明书;绘制工艺流程图和塔板结构简图。

四、设计完成日期: 2013年01月18日五、设计者:王尧尧设计指导教师:张鸿发目录:1.…………………………………………………………………绪论2.………………………………………………………………工艺计算3.…………………………………………………………塔设备的计算4.………………………………………………………泵的选择及计算5.……………………………………………………………主凝器选型6.…………………………………再沸器加热釜中水蒸汽的用量计算7.………………………………………………………计算结果汇总表8.…………………………………………………………工艺流传简图绪论精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。

有板式塔与填料塔两种主要类型。

根据操作方式又可分为连续精馏塔与间歇精馏塔。

蒸气由塔底进入,与下降液进行逆流接触,两相接触中,下降液中的易挥发(低沸点)组分不断地向蒸气中转移,蒸气中的难挥发(高沸点)组分不断地向下降液中转移,蒸气愈接近塔顶,其易挥发组分浓度愈高,而下降液愈接近塔底,其难挥发组分则愈富集,达到组分分离的目的。

由塔顶上升的蒸气进入冷凝器,冷凝的液体的一部分作为回流液返回塔顶进入精馏塔中,其余的部分则作为馏出液取出。

塔底流出的液体,其中的一部分送入再沸器,热蒸发后,蒸气返回塔中,另一部分液体作为釜残液取出。

精馏塔的工作原理是根据各混合气体的汽化点(或沸点)的不同,控制塔各节的不同温度,达到分离提纯的目的。

化工生产常需进行液体混合物的分离以达到提纯或回收有用组分的目的,精馏操作在化工、石油化工、轻工等工业生产中中占有重要的地位。

化工原理课程设计乙醇——水精馏塔设计

化工原理课程设计乙醇——水精馏塔设计

化工原理课程设计乙醇——水精馏塔设计乙醇-水精馏塔是一种常用的工业分离设备,在乙醇生产和燃料乙醇制备过程中被广泛使用。

本文将针对乙醇-水精馏塔的设计进行分析,并确定适当的工艺参数,以提高精馏过程的效率和产品质量。

首先,我们将根据乙醇-水体系的相图,确定该体系在精馏条件下的温度和压力。

乙醇-水体系具有正常的沸点-成份成分曲线,根据该曲线,我们可以得出在大气压下,纯乙醇的沸点约为78.15摄氏度,纯水的沸点约为100摄氏度。

为了提高乙醇的产率,我们需要在尽可能低的温度下进行精馏。

因此,我们可以设置塔底的进料温度为80摄氏度,以确保乙醇能够以尽量低的温度进入塔体。

同时,在塔顶设置回流装置,利用较低温度的冷凝液将一部分乙醇回流至塔顶,以进一步提高精馏效率。

在塔体设计方面,我们将采用传统的浮阀塔设计。

浮阀塔是一种常见的分离设备,通过浮阀的升降来实现液体的分馏。

在塔内部设置多层分隔板,以确保流体在塔体内的充分混合和接触,从而提高分离效率。

同时,通过调整浮阀的数量和高度,可以控制液体的分布和流速,以适应不同的操作需求。

为了提高塔体内的传质效率,我们还可以在塔内设置填料。

填料能够增加塔体的表面积,促进乙醇和水之间的质量传递。

常用的填料包括碎石、金属网和板式填料等。

我们可以根据乙醇-水体系的特性,选择合适的填料类型和形状。

在操作过程中,我们需要通过加热器将塔内的液体加热至沸点,使液体蒸发,并且在塔顶通过冷凝器将蒸汽冷凝成液体。

通过控制塔底的进料量和顶部回流量,可以控制乙醇和水的分离效果。

同时,通过调整加热器的温度和冷凝器的冷却水流量,可以控制塔内的温度和压力,进一步影响精馏效果。

最后,为了确保操作的安全性和稳定性,我们需要在塔体上设置相应的监测仪表和安全设备,以及控制系统。

监测仪表包括温度计、压力计和流量计等,用于监测塔体内各参数的变化。

安全设备包括安全阀和过流保护装置,用于防止塔体发生过压和过流情况。

控制系统通过监测和调节各参数,保证塔体内的操作在合适的范围内进行。

分离乙醇-水混合液的筛板精馏塔设计_化工原理与化工机械课程设计(可编辑)

分离乙醇-水混合液的筛板精馏塔设计_化工原理与化工机械课程设计(可编辑)

化工原理-化工设备机械基础课程设计设计题目分离乙醇-水混合液的筛板精馏塔设计化工原理?化工设备机械基础课程设计任务书设计题目分离乙醇?水混合液的筛板精馏塔设计二. 原始数据及条件生产能力:年处理量8万吨(开工率300天/年),每天工作24小时;原料:乙醇含量为20%(质量百分比,下同)的常温液体;分离要求:塔顶,乙醇含量不低于90%,塔底,乙醇含量不高于 8%;塔顶压强进料热状况回流比塔釜加热蒸汽压力单板压降建厂地址4 KPa(表压) 饱和液体1.5 Rmin 0.5MPa(表压) ≤0.7KPa 重庆操作条件: 三. 设计要求:(一)编制一份设计说明书,主要内容包括:1. 前言2. 设计方案的确定和流程的说明3. 塔的工艺计算4. 塔和塔板主要工艺尺寸的设计 a. 塔高、塔径及塔板结构尺寸的确定 b. 塔板的流体力学验算c. 塔板的负荷性能图5. 附属设备的选型和计算6. 设计结果一览表7. 注明参考和使用的设计资料8. 对本设计的评述或有关问题的分析讨论。

(二)绘制一个带控制点的工艺流程图(2#图)(三)绘制精馏塔的工艺条件图(1#图纸) 四. 设计日期:2013年 11月25日至 2013年12 月15日推荐教材及主要参考书:1.王国胜, 裴世红,孙怀宇化工原理课程设计. 大连:大连理工大学出版社,20052.?贾绍义,柴诚敬. 化工原理课程设计. 天津:天津科学技术出版社,2002.3、马江权,冷一欣. 化工原理课程设计. 北京:中国石化出版社,2009.4、《化工工艺设计手册》,上、下册;5、《化学工程设计手册》;上、下册;6、化工设备设计全书编辑委员会.化工设备设计全书-塔设备;化学工业出版社:北京. 2004,017、化工设备设计全书编辑委员会.化工设备设计全书-换热器;化学工业出版社:北京. 2004,018、化工设备设计全书编辑委员会.化工设备设计全书-管道;化学工业出版社:北京. 2004,019?陈敏恒. 化工原理第三版. 北京:化学工业出版社,2006摘要课程设计是化工原理课程的一个非常重要的实践教学内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新疆工程学院
化工原理课程设计说明书
题目名称:年产量为8000t的乙醇-水混合液
精馏塔的工艺设计
系部:化学与环境工程系
专业班级:化学工程与工艺13-1
学生姓名:杨彪
指导老师:杨智勇
完成日期: 2016.6.27
格式及要求
1、摘要
1)摘要正文
(小四,宋体)
摘要内容200~300字为易,要包括目的、方法、结果和结论。

2)关键词 XXXX;XXXX;XXXX (3个主题词)
(小四,黑体)
2、目录格式
目录(三号,黑体,居中)
1 XXXXX(小四,黑体) 1
1.l XXXXX(小四,宋体) 2
1.1.1 XXXXX(同上) 3
3、说明书正文格式:
1. XXXXX (三号,黑体)
1.1 XXXXX(四号,黑体)
1.1.1 XXXXX(小四,黑体)
正文:XXXXX(小四,宋体)
(页码居中)
4、参考文献格式:
列出的参考文献限于作者直接阅读过的、最主要的且一般要求发表在正式出版物上的文献。

参考文献的著录,按文稿中引用顺序排列。

参考文献内容(五号,宋体)
示例如下:
期刊——[序号]作者1,作者2…,作者n.题(篇)名,刊名(版本),出版年,卷次(期次)。

图书——[序号]作者1,作者2…,作者n..书名,版本,出版地,出版者,出版年。

5、.纸型、页码及版心要求:
纸型: A4,双面打印
页码:居中,小五
版心距离:高:240mm(含页眉及页码),宽:160mm
相当于A4纸每页40行,每行38个字。

6、量和单位的使用:
必须符合国家标准规定,不得使用已废弃的单位。

量和单位不用中文名称,而用法定符号表示。

新疆工程学院课程设计任务书
摘要
乙醇溶液是生活中常见的溶液,提高乙醇的纯度是化工工业中最重要的工艺,本次设计,为达到生产要求,通过物料衡算,物性参数的分析及乙醇溶液气液平衡图,设计出合理的板式精馏塔,以提高乙醇的纯度,并从流体力学和蒸馏原理出发,为精馏塔设计合适的冷凝器,泵,合适的塔板等,从经济方面考虑选用合适的塔板,计算并绘制塔板负荷性能图,全方面认识精馏塔。

而这一设计过程中的主要内容有:物料衡算,热量衡算,塔体工艺设计,塔板工艺设计,塔板负荷性能图以及精馏工艺流程图的绘制,塔附属设备设计及选取。

关键词:乙醇溶液板式精馏塔工艺计算
目录
任务书 (1)
一、前言 (2)
1.设计简介 (2)
2.设备选型 (2)
3.工艺流程确定 (4)
4.设计方案 (6)
二、设备工艺条件的计算 (7)
1.精馏塔物料衡算 (7)
1.1物料衡算 (7)
1.2求得F t,D t,W t (7)
1.3平均摩尔质量 (9)
2.理论塔板数的确定 (9)
2.1相对挥发度 (9)
2.2回流比 (10)
2.3操作线方程 (10)
2.4实际塔板数 (12)
3.物性参数 (12)
3.1密度 (12)
3.2混合物粘度 (13)
3.3表面张力 (13)
三、塔和塔板主要工艺结构尺寸的计算 (14)
1.塔径的确定 (14)
2.精馏塔有效高度的计算 (15)
3.塔板主要工艺尺寸的计算 (16)
3.1 溢流装置计算 (16)
3.2弓形降液管宽度W d和截面积A f (16)
3.4 降液管底隙高度h o (17)
3.5 塔板布置 (17)
4.筛板的流体力学验算 (18)
4.1 塔板压降 (18)
4.2液面落差 (19)
4.3 液沫夹带 (19)
4.4 漏液 (20)
4.5 液泛 (20)
5.塔板负荷性能图 (21)
5.1漏液线 (21)
5.2 液沫夹带线 (21)
5.3液相负荷下限线 (22)
5.4液相负荷上限线 (23)
5.5 液泛线 (23)
四、附属设备 (25)
五、精馏塔参数汇总图表 (26)
总结 (28)
参考文献 (29)
任务书
(一)设计题目:乙醇-水混合液板式精馏塔设计
年产量:8000吨
料液初温:25℃
料液浓度::40%(质量分率)
塔顶产品浓度:94% (质量分率)
乙醇回收率:99%
每天实际生产天数:330天
冷却水温度:30℃
(二)操作条件
(1)操作压力:常压
(2)进料热状态:自选
(3)回流比:1.5R min
(4)塔底加热:连续蒸汽加热
(5)单板压降≤0.7 KPa
(三)设计内容
1设计说明书的内容
(1)精馏塔的物料衡算;
(2)塔板数的确定;
(3)精馏塔的工艺条件及有关物性数据的计算;
(4)精馏塔的塔体工艺尺寸计算;
(5)塔板主要工艺尺寸的计算;
(6)塔板的流体力学验算;
(7)塔板的负荷性能图;
(8)塔顶全凝器设计计算:热负荷,载热体用量,选型
(9)精馏塔接管尺寸计算;
(10)对设计过程的评述和有关问题的讨论。

2、设计图纸要求:
(1)绘制精馏塔装置图;
(2)相关图表
一、前言
1.设计简介
蒸馏是工业上应用最广的液体混合物分离操作,广泛用于石油、化工、轻工、食品、冶金等部门。

精馏操作按不同方法进行分类。

根据操作方式,可分为连续精馏和间歇精馏。

本设计主要研究连续精馏。

塔设备是炼油、石油化工、精细化工、生物化工、食品、医药及环保部门等生产过程中广泛采用的气液传质设备。

根据塔内气液接触构件的结构形式可分为板式塔和填料塔两大类。

板式塔内设置一定数量的塔板,气体以鼓泡或喷射形式穿过板上的液层,液体横向流过塔板,而气体垂直穿过液层,气液两相成错流流动,进行传质与传热,但对整个板来说,两相基本上成逆流流动。

在正常操作下,气相为分散相,液相为连续相,气相组成呈阶梯变化,属逐级接触逆流操作过程。

填料塔内装有一定高度的填料层,液体自塔顶沿填料表面下流,气体逆流向上(有时也采用并流向下)流动,气液两相密切接触进行传质与传热。

在正常操作条件下,气相为连续相,液相为分散相,气相组成呈连续变化,属微分接触逆流操作。

板式塔的空塔速度较高,因而生产能力较高,本设计目的是分离乙醇-水混合液,处理量大;尽管塔板的流动阻力大,塔板效率不及高效填料塔高,但板式塔的效率稳定,造价低,检修、清理方便,故选板式塔。

2.设备选型
板式塔在工业上最早使用的是泡罩塔、筛板塔,其后,特别是在本世纪五十年代以后,随着石油、化学工业生产的迅速发展,相继出现了大批新型塔板,如S型板、浮阀塔板、多降液管筛板、舌形塔板、穿流式波纹塔板、浮动喷射塔板及角钢塔板等。

目前从国内外实际使用情况看,主要的塔板类型为浮阀塔、筛板塔及泡罩塔,而前两者使用尤为广泛。

相关文档
最新文档