电子功能材料期末总结

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无方向的物理量,称为标量(也称零阶张量)。与方向有关的物理量,称为矢量(也称一阶张量)。电场强度、电位移、温度梯度等都是矢量。任何两个相互作用的矢量之间的线性比例关系都形成二阶张量。二阶对称张量:介电常数张量,介电极化率张量、应力张量、应变张量等等;三阶对称张量:压电系数张量、电光系数张量、非线性极化系数张量具有相同原点,且轴比例不变的直角坐标系之间的变换称为正交变换.任何一个二阶对称张量[Tij]在几何上都可以用二阶曲面形象地表示出来,该曲面就称为二阶对称张量的示性面。总之,二阶张量有两个下标,9个分量。标量和矢量也可以归于张量的范畴,标量无下标,称为零阶张量,仅有一个分量;矢量有一个下标,3个分量,称为一阶张量。诺埃曼(Neumann)原则:晶体物理性质的对称元素应当包含晶体的宏观对称元素(即点群的对称元素),也就是说,晶体物理性质的对称性可以高于晶体点群的对称性,但不能低于晶体点群的对称性,而至少二者是一致的。根据晶体的对称性进行坐标系变换(对称变换)时,不仅晶体物理性质本身保持不变,而且对称变换前后的对应分量也保持不变,即变换前后的张量相等。具有对称中心的晶体,由二阶张量所描述的物理性质也是中心对称的。凡具有对称中心的晶体,都不存在由奇阶张量所描述的物理性质,但对偶阶张量都不施加额外的影响。正压电系数和反压电系数是统一的;热释电系数和电致热系数是统一的;热膨胀系数和压致热系数是统一的。晶体的弹性是指外力撤除后,晶体能消除形变恢复原状的性质。应变张量是描述晶体内的一点附近的形变情况的物理量。(应变张量是二阶对称张量)应力矢量是弹性体内任一截面上某点附近单位面积所受到的内力。(应力张量是二阶对称张量)当晶体未受外力作用时,各质点间的距离保持一定,r = r0,此时吸引力与排斥力相等,f=f斥+f吸=0,晶体处于平衡状态。当晶体受到外力作用时,原来的力学平衡状态遭到破坏,需要建立新的平衡状态。例如在拉力作用下,由于形变使质点间的吸引力占优势。这个力是反对质点间的距离继续增大的,而且它的数值随着距离的增大而增大,当其大到同拉力相等时,质点间的距离就不再增加,建立起新的力学平衡,晶体也就保持着一定的形变。这种由于形变而在晶体内部形成的相互作用力称为内力。在弹性范围内,当外力撤消后,这种内力就使晶体恢复原状。可见,晶体的内力与形变同时发生和发展的。正是由于存在这种与形变有关的内力,晶体才具有弹性。晶体的弹性形变服从虎克定律:在弹性限度范围内,应力和应变成正比。

原子中的几种磁矩:1.核磁矩和核四极矩2.中子磁矩3.电子轨道磁矩和电子自旋磁矩

不论是自旋磁矩,还是轨道磁矩,都是玻尔磁子M B的整数倍在晶场中的3d过渡金属的磁性离子的原子磁矩仅等于电子自旋磁矩,而电子的轨道磁矩没有贡献。此现象称为轨道角动量冻结。H=H w + H λ+ H v + H s + H w H w : 原子内的库仑相互作用,如用n ,l,,m表征的电子轨道只能容纳自旋相反的两个电子,在一个轨道上这两个电子的库仑相互作用能表征的电子轨道只能容纳自旋相反的两个电子,在一个轨道上这两个电子的库仑相互作用能( 相互排斥,能量提高)。。H λ: 自旋- 轨道相互作用能。H v : 晶场对原子中电子相互作用。H s :用与周边原子间的磁相互作用(交换相互作用和磁偶极相互作用交换相互作用和磁偶极相互作用)。H h : 外部磁场对电子的作用( 塞曼能)。

物质磁性分类的原则:A. 是否有固有原子磁矩?B. 是否有相互作用?C. 是什么相互作用?

1. 抗磁性:没有固有原子磁矩

2. 顺磁性:有固有磁矩,没有相互作用

3. 铁磁性:有固有磁矩,直接交换相互作用

4. 反铁磁性:有磁矩,直接交换相互作用

5. 亚铁磁性:有磁矩,间接交换相互作用

6. 自旋玻璃和混磁性:有磁矩,RKKY相互作用

7. 超顺磁性:磁性颗粒的磁晶各向异性与热激发的竞争

一、抗磁性在与外磁场相反的方向诱导出磁化强度的现象称抗磁性。它出现在没有原子磁矩的材料中,其抗磁磁化率是负的,且很小,χ~10-5

产生的机理:外磁场穿过电子轨道时,引起的电磁感应使轨道电子加速。根据楞次定律,由轨道电子的这种加速运动所引起的磁通,总是与外磁场变化相反,故磁化率是负的。二、顺磁性顺磁性物质的原子或离子具有一定的磁矩,这些原子磁矩耒源于未满的电子壳层(例如过渡族元素的3d壳层)。在顺磁性物质中,磁性原子或离子分开的很远,以致它们之间没有明显的相互作用,因而在没有外磁场时,由于热运动的作用,原子磁矩是无规混乱取向。当有外磁场作用时,原子磁矩有沿磁场方向取向的趋势,从而呈现出正的磁化率,其数量级为c=10-5∼10-2

金属自由电子的磁性小结:1)金属的抗磁性和顺磁性都耒自于费密面附近的少数电子;2)抗磁性耒源于自由电子在磁场作用下做螺旋运动;3)顺磁性耒源于磁场的作用使自旋向上、向下的态密度发生变化;4)它们都只能用量子力学耒解释;磁化率与温度无关。三、铁磁性物质具有铁磁性的基本条件:(1)物质中的原子有磁矩;(2)原子磁矩之间有相互作用。四、反铁磁性在反铁磁性中,近邻自旋反平行排列,它们的磁矩因而相互抵消。因此反铁磁体不产生自发磁化磁矩,显现微弱的磁性。反铁磁的相对磁化率χ的数值为10-5到10-2。与顺磁体不同的是自旋结构的有序化。五、亚铁磁性在亚铁磁体中,A和B次晶格由不同的磁性原子占据,而且有时由不同数目的原子占据,A和B位中的磁性原子成反平行耦合,反铁磁的自旋排列导致一个自旋未能完全抵消的自发磁化强度,这样的磁性称为亜铁磁性。六、自旋玻璃与混磁性自旋玻璃态出现在磁稀释的合金中,在那里磁性原子的自旋被振荡的RKKY交换相互作用无规地冻结。混磁性:在非磁性基体中,掺杂磁性原子的浓度大于自旋玻璃的浓度,各种交换相互作用混合的自旋系统。七、超顺磁性铁磁性颗粒比单畴临界尺寸更小时,热运动对粒子影响很大,在一定温度下,粒子的行为类似于顺磁性,如果不加外磁场,它们将很快的失去剩磁状态,这个現象称为超顺磁性。磁有序的各种相互作用:1.经典偶极子相互作用2.交换相互作用3.超交换相互作用4.RKKY相互作用5.双交换相互作用6.库伦相互作用

磁晶各向异性:磁性物质中,自发磁化主要来源于自旋间的交换作用,这种交换作用本质上是各向同性的,如果没有附加的相互作用存在,在晶体中,自发磁化强度可以指向任意方向而不改变体系的内能。实际上在磁性材料中,自发磁化强度总是处于一个或几个特定方向,该方向称为易轴。当施加外场时,磁化强度才能从易轴方向转出,此现象称为磁晶各向异性。磁晶各向异性常数的测量方法:转矩磁强计磁晶各向异性机理:1、自旋对模型(自旋对模型对金属和合金是适用的。对氧化物和化合物不适用)2、单离子模型磁致伸缩:铁磁性物质的形状在磁化过程中发生形变的现象。磁致伸缩的测量方法:应变片技术感生磁各向异性:1.磁退火效应2.形状各向异性3.交换各向异性4.光感生磁各向异性5.轧制磁各向异性制备非晶态材料的基本原理:高速固化

磁畴的形成:在铁磁体中,交换作用使整个晶体自发磁化到饱和,磁化强度的方向沿着晶体内的易磁化轴,这样就使铁磁晶体内交换能和磁晶各向异性能都达到极小值。但因晶体有一定的大小与形状,整个晶体均匀磁化的结果,必然产生磁极,磁极的退磁场,增加了退磁能(1/2)NIS2。

例如对一个单轴各向异性的钴单晶。( a )图是整个晶体均匀磁化,退磁场能最大( 如果设Is≈103高斯,则退磁能≈106尔格/厘米3 )。从能量的覌点出发,分为两个或四个平行反向的自发磁化的区域( b ),( C )可以大大减少退磁能。

如果分为n个区域(即n个磁畴),能量约可减少1/n,但是两个相邻的磁畴间的畴壁的存在,又增加了一部分畴壁能。因此自发磁化区域(磁畴)的形成不可能是无限的,而是畴壁能与退磁场能的和为极小值为条件。

形成如图d,e的封闭畴将进一步降低退磁能,但是封闭畴中的磁化强度方向垂直单轴各向异性方向,因此将增加各向异性能。

PPT.3.5 磁畴与技术磁化(22)复制不下来,但是挺重要的。矫顽力是材料在正向加磁场使磁化强度达到饱和,然后去掉磁场,再反向加磁场直到磁化强度为零,其相对应的磁场称为矫顽力。磁滞损耗:在低频区域最重要的损耗是磁滞损耗(磁滞回线所包围的面积磁滞回线所包围的面积)。磁化强度的幅值很小,对应于瑞利区,即由磁滞损耗决定的损耗因子,依赖于磁场的幅值。在高频区,作为磁滞损耗的主要耒源,不可逆的畴壁位移被阻尼,而由磁化强度的转动所替代。涡流损耗:该类型的功率损耗与频率的平方成正比。减小涡流损耗的一种方法是在与磁化强度垂直的一个或两个方向上减小材料的尺寸。提高材料电阻率是减小涡流损耗最有效的方法。

极化的主要机理有三种:电子位移极化、离子位移极化和固有电矩的转向极化。有极性分子的离子位移极化率和离子半径的立方应具有相同的数量级,亦即在数量级上接近离子的电子极化率α e 。电场很大,温度很低时,固有偶极矩几乎完全转向电场方向。当P 0 E <<kT 时,固有偶极矩在电场方向的分量平均值与电场时,固有偶极矩在电场方向的分量平均值与电场 E 成正比,与温度T 成反比。在静电场下测得的介电常数称为静态介电常数;在交变电场下测得的介电常数称为动态介电常数。

电介质在电场作用下,都要经过一段时间,极化强度才能达到相应的值。这种现象称为极化弛豫,所经过的这段时间称为弛豫时间。

正压电效应:没有电场作用,只有由于形变而产生电极化的现象逆压电效应:由电场产生形变的现象。压电常数张量是三阶张量,凡是具有中心对称的晶类都不可能具有压电性。机电耦合系数:指压电材料中,与压电效应相联系的弹-电相互作用能密度(亦称压电能密度)与弹性能密度和介电能密度乘积的几何平均值之比。

主要压电材料有钛酸钡(BaTiO3)、钛酸铅(PbTiO3)、钛锆酸铅(PbTi x Zr1-X O3),简称PZT、聚偏氟乙烯(PVF2)

热释电性:因温度变化而产生极化的现象电生热效应(逆热释电效应):对热释电晶体绝热施加电场时,晶体的温度将生变化的种现象。

非线性热释电材料(如锆钛酸铅陶瓷PZT和聚偏二氟乙烯PVF2等)

只有极轴与单向相一致的晶体,才能具有热释电性。具有热释电效应的材料:硫酸三甘肽(TGS)、钽酸锂(LiTaO3)、铌酸锶钡(SBN)、肽酸铅(PbTiO3)和聚偏氟乙烯(PVF2)

探测器的信号输出与温度的变化率、而不是温度的实际改变成正比

铁电晶体是自发极化可以随外加电场的反向而反向的热释电晶体。凡是铁电晶体必定具有热释电效应,但热释电晶体不一定是铁电晶体。

目前,热释电效应已广泛应用于热探测领域、电子领域, 如红外探测器、功能器件等。

电畴是铁电晶体中自发极化的分子电矩方向排列一致的小区域。

铁电晶体的基本宏观特征:1. 铁电晶体的极化强度P与外加电场E间呈非线性的电滞回线关系2. 铁电体的另一重要特性是存在一个被称作居里点的结构相变温度T C。3. 临界特性,指铁电体的介电性质、弹性性质、光学性质和热学性质,在居里点附近都要出现反常现象.霍尔效应的产生是由于电子在磁场作用下,产生横向移动的结果,离子的质量比电子大得多,磁场作用不足以使它产生横向位移,因而纯离子电导不呈现霍尔效应。利用霍尔效应可检验材料是否存在电子电导。超导现象物质在一定的温度Tc以下时,电阻为零, 并完全排斥磁场(即磁力线不能进入其内部)的现象。超导材料:具有超导现象的材料超导体的宏观性质: 1.零电阻及其临界转变温度, 若在超导体环路内感生一电流,然后在一段时间内观测电流的降低情况,发现其降低程度可表示为,式中,R为环路电阻值,L为环路自感,为观察时间内感生的电流。若R<10-26Ω·CM,则视为零电阻物质由正常导电态转变为超导态的温度为临界转变温度。2、完全抗磁性和临界磁场强度:超导体处于外界磁场中时,外加的磁场会被排斥在超导体之外,这种现象称为迈斯纳(Meissner)效应,即超导体的完全抗磁性。由于这种抗磁性,当超导体处在外磁场中时,在它表面会形成屏蔽电流。若磁场强度增加,屏蔽电流也会增加。当屏蔽电流密度增加到JC后,超导体便会被破坏而恢复到正常导电态。此时的磁场强度称为临界磁场强度,电流密度JC称为临界电流密度。超导材料的特征及临界参数:转变温度Tc:在一定的温度Tc以下时,电阻为零。临界磁场Bc:当磁场强度超过某一个临界值Bc时, 超导体就转回常态,临界电流密度Jc:当电流密度超过某一个临界值Jc时, 超导体也开始有电阻。

双折射现象:一束自然光射入晶体之后分为两束光的现象.其中一束遵守一般的折射定律,称为常光(o光),另一束不遵守一般的折射定律,称为非常光(e光).

电光效应:外电场使晶体折射率改变的现象。比较常用的电光晶体:(1)KDP型晶体(2)ABO3型晶体(LiNbO3和LiTaO3)。(3)AB型化合物(ZnS,CdS,GaAs,CuCl)

弹光效应:因机械应力或应变引起晶体折射率发生改变,从而产生人工双折射的现象。

声光效应:当对介质注入超声波时,介质中便有声弹性波传播。在声传播过程中,组成介质的粒子将随超声波的起伏而产生周期性压缩或伸长,这相当于介质中存在着时空作周期性变化的弹性应变。这种应变通过弹光效应使介质各点的折射率随该点的弹性应变而发生相应的周期性变化,从而对光在该介质中传播的特性产生影响,光束在通过这样的介质时将发生衍射或散射现象。声光效应是弹光效应的一种表现形式声光晶体材料:钼酸铅(PbMoO4)和氧化碲(TeO2)磁光效应中应用最多的是法拉第效应和克尔效应。

磁光材料:钇铁石榴石Y3Fe3O12简称(YIG)电光晶体:如磷酸二氘钾、氯化亚铜、钽铌酸钾晶体光折变晶体:如铌酸钾、钛酸钡、铌酸锂、铌酸锶钡等晶体

非线性光学过程的相位匹配:量子系统应服从能量守恒和动量守恒定律。通过角度相位匹配(利用折射率曲面)或温度相位匹配常见的非线性光学效应:1.光混频(和频,差频,倍频)2.光参量振荡3.晶体的光折变效应光折变效应(光致折射率变化效应):指电光材料的折射率在空间调制光强或非均匀光强的辐照下发生相应的变化的现象非线性光学晶体磷酸二氢钾晶体磷酸钛氧钾偏硼酸钡晶体热膨胀的物理本质:温度变化时材料原子间结合力发生变化。原子间结合力越强,熔点越高,热膨胀系数越低。

按膨胀系数大小又将其分为三种:(1) 低膨胀合金(亦称因瓦合金)。主要用于仪器仪表中随温度变化尺寸近似恒定的元件,如精密天平的臂、标准钟摆杆、摆轮、长度标尺、大地测量基准尺、谐振腔、微波通讯的波导管、标准频率发生器等。还用作热双金属的被动层。FeNi36因瓦合金,Fe-Ni-Co系超因瓦合金,不锈因瓦合金:如FeCo54Cr9,Fe-Co-Zr系非晶合金,Ni36、Ni42、Ni50(2) 定膨胀合金。由于这种合金与玻璃、陶瓷或云母等的膨胀系数接近,可与之匹配(或非匹配)封接,所以又称为封接合金。被广泛地应用于电子管、晶体管、集成电路等电真空器件中作封接、引线和结构材料。Ni29Co18、

相关文档
最新文档