第七章模拟乘法器电路

合集下载

模拟乘法器实验报告

模拟乘法器实验报告

模拟乘法器实验报告模拟乘法器实验报告引言:模拟乘法器是电子电路领域中非常重要的一种电路设计,它能够实现数字信号的乘法运算。

在本次实验中,我们将学习并实现一种基于模拟电路的乘法器设计,并对其性能进行评估。

一、实验目的本次实验的主要目的是通过设计和实现模拟乘法器电路,加深对模拟电路设计原理的理解,并通过实际测量和分析,评估乘法器的性能。

二、实验原理模拟乘法器是通过电压的乘法运算来实现的。

在本次实验中,我们采用了一种基于差分放大器和电流镜电路的乘法器设计。

其基本原理是利用差分放大器的非线性特性,将输入信号进行放大和非线性变换,从而实现乘法运算。

三、实验步骤1. 设计乘法器电路的基本框架,包括差分放大器、电流镜等电路元件的选择和连接。

2. 根据设计要求,选择适当的电阻和电容值,并进行电路元件的布局和连线。

3. 使用示波器和信号发生器,分别输入模拟的乘数和被乘数信号,并观察输出信号。

4. 调整输入信号的幅值和频率,记录输出信号的变化情况,并进行分析和比较。

5. 对乘法器电路进行性能评估,包括增益、非线性失真、带宽等方面的指标。

四、实验结果与分析通过实验测量和分析,我们得到了乘法器电路的性能数据。

首先,我们观察到输出信号的幅值与输入信号的幅值成正比关系,表明乘法器电路的放大倍数与输入信号的幅值相关。

其次,我们发现输出信号的频率与输入信号的频率一致,说明乘法器电路能够正确地传递输入信号的频率特性。

此外,我们还对乘法器电路的非线性失真进行了评估,发现在输入信号较大的情况下,输出信号存在一定的非线性畸变,这可能是由于差分放大器的非线性特性引起的。

五、实验总结通过本次实验,我们深入学习了模拟乘法器的原理和设计方法,并通过实际测量和分析,对乘法器的性能进行了评估。

实验结果表明,所设计的乘法器电路能够较好地实现乘法运算,并具有一定的线性范围。

然而,在实际应用中,我们还需要考虑乘法器电路的稳定性、功耗等因素,并进一步优化电路设计,以满足不同应用场景的需求。

实验七-集成电路模拟乘法器的应用

实验七-集成电路模拟乘法器的应用

实验报告实验名称 集成电路模拟乘法器的应用成绩姓名 马晓恬 专业班级 电信081 实验日期 学号指导教师刘富强提交报告日期12.19一、实验目的1、了解模拟乘法器(MC1496)的工作原理,掌握其调整与特性参数的测量方法。

2、掌握利用乘法器实现混频,平衡调幅,同步检波,鉴频等几种频率变换电路的原理及方法。

二、实验内容1、 改变模拟乘法器外部电路,实现混频器电路,观察输出点波形,并测量输出频率。

2、 改变模拟乘法器外部电路,实现平衡调幅电路,观察输出点波形。

3、 改变模拟乘法器外部电路,实现同步检波电路,观察输出点波形。

4、 改变模拟乘法器外部电路,实现鉴频电路,观察输出点波形。

三、实验仪器1、双踪示波器一台2、频率特性扫频仪(选项)一台四、实验原理及电路1、集成模拟乘法器的内部结构集成模拟乘法器是完成两个模拟量(电压或电流)相乘的电子器件。

在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。

采用集成模拟乘法器实现上述功能比采用分立器件如二极管和三极管要简单的多,而且性能优越。

所以目前在无线通信、广播电视等方面应用较多。

集成模拟乘法器的常见产品有BG314、F1595、F1596、MC1495、MC1496、LM1595、LM1596等。

下面介绍MC1496集成模拟乘法器。

(1)MC1496的内部结构MC1496是双平衡四象限模拟乘法器。

其内部电路和引脚如图7-1(a)(b)所示。

其中1VT 、2VT 与3VT 、4VT 组成双差分放大器,5VT 、6VT 组成的单差分放大器用以激励1VT ~4VT 。

7VT 、8VT 及其偏置电路组成差分放大器5VT 、6VT 的恒流源。

引脚8与10接输入电压U X ,1与4接另一输入电压U y ,输出电压U 0从引脚6与12输出。

引脚2与3 外接电阻R E ,对差分放大器5VT 、6VT 产生串联电流负反馈,以扩展输入电压U y 的线性动态范围。

《模拟电子技术基础》教学课件 7.2模拟乘法器及其应用

《模拟电子技术基础》教学课件 7.2模拟乘法器及其应用

T4 -UEE
7.2 模拟乘法器及其应用 2. 在运算电路中的基本应用
(1)乘法运算
(2)乘方运算
uO kuI1uI2
实际的模拟乘法器k常为+0.1V-1或-0.1V-1。
若uI 2Ui sin t 则uO 2kUi2 sin2 t 2kUi2 (1 cos2 t)
uO k uI2
实现了对正弦电压的二倍频变换
7.2 模拟乘法器及其应用
(3)除法运算
i2
i1
运算电路中集成运放必须引入负反馈!
为使电路引入的是负反馈,k和uI2的极性应如何?
i1 i2 uI1 uO' R1 R2
uO'
R2 R1
uI1
k uI2uO
uO
R2 R1
uI1 k uI2
7.2 模拟乘法器及其应用
(4)平方根运算电路
ui>0时平方根运算电路
7.2 模拟乘法器及其应用 7.2.1模拟乘法器的基本概念
1.模拟乘法器的定义 模拟乘法器,就是实现两个模拟信号相乘功能的非线性电子器件。 2.模拟乘法器的符号
uO kuXuY
3.模拟乘法器的分类 按照输入电压信号允许的极性,分为变跨导式二象限和双平衡式四象限。
7.2 模拟乘法器及其应用
7.2.2 模拟乘法器的工作原理
ui<0时平方根运算电路
uo1
=
-
R2 R1
ui
uo1 = Kuo2
uo =
- R2 KR1
ui
7.2 模拟乘法器及其应用
3. 调制解调器 (1)调制
(2)解调
在调制过程中,音频信号需要用高频信号来运载, 解调是调制的逆过程。 高频信号称为载波信号,音频信号称为调制信号。 即从调幅波提取调制信号的过程称为解调。

702模拟乘法器(一般了解)

702模拟乘法器(一般了解)

第七章 信号的运算和处理
1. 模拟乘法器简介
uI1 uI2 uO
uo = KuI1uI2
模拟乘法器符号
图 7.3.1
输出电压正比于两个输入电压之积 如果比例系数 K 为正值——同相乘法器; 为正值 同相乘法器; 同相乘法器 为负值——反相乘法器。 反相乘法器。 如果比例2.理想模拟乘法器具备的条件 理想模拟乘法器具备的条件
1. ri1和ri2为无穷大; 为无穷大; 2. ro为零; 为零; 3. k值不随信号幅值而变化,且不 值不随信号幅值而变化, 值不随信号幅值而变化 随频率而变化; 随频率而变化; 4.当uX或uY为零时 o为零,电路没 当 为零时u 为零, 有失调电压、噪声。 有失调电压、噪声。
第七章 信号的运算和处理
7.2模拟乘法器及其在运算电路中的应用 模拟乘法器及其在运算电路中的应用 (一般了解 一般了解) 一般了解 • 什么是模拟乘法器?模拟乘法器可以用来 什么是模拟乘法器? 做什么? 做什么? • 画出模拟乘法器的符号及其等效电路。 画出模拟乘法器的符号及其等效电路。 • 理想模拟乘法器应具备哪些条件? 理想模拟乘法器应具备哪些条件? • 按照允许输入信号的极性不同,可以将模 按照允许输入信号的极性不同, 拟乘法器分为哪几种? 拟乘法器分为哪几种?
uI2 − uBE3 uI2 I= ≈ Re Re Rc uO ≈ − uI1uI2 = KuI1uI2 2 ReU T
须大于零。 须大于零。故图 7.3.4 为两象限模拟乘法器
uI1可正可负,但uI2必 可正可负,
两象限模拟乘法器 两象限模拟乘法器
第七章 信号的运算和处理
5.四象限变跨导型模拟乘法器 四象限变跨导型模拟乘法器
则:
R2 uI1 uO = − R1 K uI 2

模拟乘法器及其应用讲解

模拟乘法器及其应用讲解

模拟乘法器及其应用摘要集成模拟乘法器是继集成运算放大器后最通用的模拟集成电路之一,是一种多用途的线性集成电路。

可用作宽带、抑制载波双边平衡调制器,不需要耦合变压器或调谐电路,还可以作为高性能的SSB乘法检波器,AM调制/解调器、FM解调器、混频器、倍频器、鉴相器等,它与放大器相结合还可以完成许多的数学运算,如乘法、除法、乘方、开方等。

The integrated analog multiplier is the second one of the analog integrated circuitoperational amplifier after the general linear integrated circuits, is a multi use. Can be usedas broadband, suppressed carrier double balanced modulator, does not require a coupling transformer or tuning circuit, also can be used as SSB multiplication detector of high performance, AM modulator / demodulator, FM demodulator, mixer, multiplier, the phasedetector, and it can also complete theamplifier combining mathematical operation many, such as multiplication division,involution, evolution, etc..一、实验目的1.了解模拟乘法器的工作原理2.掌握利用乘法器实现AM调制、DSB调制、同步检波、倍频等几种频率变换电路的原理3.学会综合地、系统地应用已学到模、数字电与高频电子线路技术的知识,通过MATLAB掌握对AM调制、DSB调制、同步检波、倍频电路的制作与仿真技术,提高独立设计高频单元电路和解决问题的能力。

模拟乘法器及其在运算电路中的应用

模拟乘法器及其在运算电路中的应用

ui
Kxy
x y
uo1 Ku2 i
x y
Kxy
uo Ku
2
i
uo K 2 u 3 i
当ux = uy时,乘法器实现平方运算,其输出与输入信号 之间为非线性关系。
K ux uy uo
ux =UREF
uo = Kux uy = KU REF uy
9.4
模拟乘法器
ux uy
K
K
uo
(a) 国标符号
ux uy
uo
(b) 常用符号 模拟乘法器符号
比例因子K具有V-1的量纲。
uo =Kux uy
9.4
ux uy
模拟乘法器
uo =Kux uy
K
K
uo
ux uy
uo
uy (II) ux<0 uy>0 ux<0 (III) uy<0 O ux>0 (I) uy>0 ux>0 uy<0 (IV) ux
9.4.1 模拟乘法器的基本原理
1. 变跨导型模拟乘法器
+VCC
Rc Rs
ic1
+
+
uo
Rc
-
ic2
VT1
-
Rs
ux
-
+
u BE1
VT 2
-
u+ BE2
+
ic3 Io VT3
Re -VEE
uy
-
变跨导型模拟乘法器
2. 对数反对数型模拟乘法器
ux
k1lnux
对数运算电路
uy
对数运算电路
k1lnuy
加 法 运 算

模拟乘法器及其在运算电路中的应用

模拟乘法器及其在运算电路中的应用

加 法 运 算
k2k1ln(uxuy)
k3k2k1(uxuy) 反对数运算电路
uo
对数反对数型模拟乘法器
uO Kuxuy
比例因子 K k1k2 k3
9.4.3 模拟乘法器的应用
1. 乘法运算
ux U1 cos(1t 1 )
uO = Ku X uY
K ux uy uo
uy U 2 cos(2t 2 )
模拟乘法器的工作区域
ui
Kxy
x y
ui
Kxy
x y
uo1 Ku2 i
x y
Kxy
uo Ku
2
i
uo K 2 u 3 i
当ux = uy时,乘法器实现平方运算,其输出与输入信号 之间为非线性关系。
K ux uy uo
ux =UREF
uo = Kux uy = KU REF uy
KU1U2 uo = cos cos 1 2 t 1 2 1 2 t 1 2 2


接入低通滤波器,抑制高频分量
1 2
1 uo KU1U 2 cos 1 2 2
2. 除法运算
Kuy
K
K
uo
(a) 国标符号
ux uy
uo
(b) 常用符号 模拟乘法器符号
比例因子K具有V-1的量纲。
uo =Kux uy
9.4
ux uy
模拟乘法器
uo =Kux uy
K
K
uo
ux uy
uo
uy (II) ux<0 uy>0 ux<0 (III) uy<0 O ux>0 (I) uy>0 ux>0 uy<0 (IV) ux

模拟乘法器-PPT

模拟乘法器-PPT

对 uX 也可以采用线性动态范围扩展电路,使之线 性动态范围大于UT,MC1595集成模拟乘法器就属于这种 类型。其内部电路由两部分组成:一部分为双差分对模
拟乘法器,与MC1496电路相同;另一部分为 uX 线性动
态范围扩展电路。MC1595外接电路 R5 及外形图如图
6.1.4所示。 4、8脚为uX输入端,9、12脚为uY输入端,
uO
R CIC3 2 U T
uX
R CIC3 2UT
uX
RC 2R E UT
uX uY
KuX uY
(6.1.4)
其中
K
RC 2R E U T
(6.1.5)
在室温下,K 为常数,可见输出电压uO与输入电压
uX、uY的乘积成比例,就是说图6.1.2所示差分放大电
路具有乘法功能。但uY必须为正才能正常工作,故为
6.2.2 倍频、混频与鉴相 一、倍频电路
当图6.2.1所示平方运算电路输入相同的余弦波信 号uI=uX=uY=Uimcosωt时,则由式(6.2.1)可得
输只可u 要入见O在信 ,图号K 这U (6i 的时m 6.2 .2二乘c 2.o .1次s 法7的2 )谐器 输t 波输出 成出端1 2 分电接K U 12压一i m2 中K( 隔1 U含直 im有2c 电o c直s 容o2 流 ,st 成2便)分可t12得,K因到U i此二m 2 次和,
2、14 脚为输出端,其输出电压uO表示式为
uO
4RC RXRYIO
uXuY
KuXuY
(6.1.9)
图 6.1.4 MC1595外接电路及外形图
其增益系数
K 4RC R X R YIO
(6.1.10)
通过调节IO′的大小(由微调R3的阻值实现)可以改 变增益系数,MC1595增益系数的典型值为0.1V-1。 RX、 RY 为负反馈电阻,用以扩大uX、uY的线性动态范围,uX、 uY的线性动态范围分别为

7.3 模拟乘法器及其在运算电路中的应用

7.3  模拟乘法器及其在运算电路中的应用

′ uO
uI3
R2 100k R1 N uI1 10k P +A uI2 R1 R2
uO
ห้องสมุดไป่ตู้
§7.3
模拟乘法器及其 在运算电路中的应用
一、模拟乘法器简介
模拟乘法器有两个输入端,一个输出端, 模拟乘法器有两个输入端,一个输出端,输入 及输出均对“ 而言。 及输出均对“地”而言。模拟乘法器的符号如图所 输入的两个模拟信号是互不相关的物理量, 示。输入的两个模拟信号是互不相关的物理量,输 出电压是它们的乘积, 出电压是它们的乘积,即
uX uY uO
uo=kuXuY
理想模拟乘法器应具备的条件: 理想模拟乘法器应具备的条件: 1、 ri1和ri2为无穷大; 、 为无穷大; 2、 ro为零; 、 为零;
+ ∆u X ro + ∆uO -
+ ∆uY - -
ri2
ri1
k ∆uX ∆uY
3、k值不随信号幅值而变化,且不随频率变化; 、 值不随信号幅值而变化 且不随频率变化; 值不随信号幅值而变化, 4、当uX或uY为零时, uo为零,电路没有失调电压、 、 为零时, 为零,电路没有失调电压、 电流和噪声。 电流和噪声。
i2 A + R3
uI2
uO
i1 = i2
′ uO kuI 2 uO uI 1 =− =− R1 R2 R2
R2 uI 1 uO = − kR1 uI 2
3、开方运算电路
在运算电路中, 在运算电路中,必须 R2 + - R1 保证电路引入的是负反 uI 馈。所以uI小于零。 所以 小于零。 i
′ uO
二、变跨导型模拟乘法器的工作原理(自学) 变跨导型模拟乘法器的工作原理(自学)

模拟乘法器作用及电路

模拟乘法器作用及电路

摘要随着电子技术的发展,集成模拟乘法器应用也越来越广泛。

用集成模拟乘法器可以构成性能优良的调幅和检波电路,其电路元件参数通常采用器件典型应用参数值。

作调幅时,高频信号加到输入端,低频信号加到Y输入端;作解调时,同步信号加到X输入端,已调信号加到Y输入端。

集成模拟乘法器是实现两个模拟信号相乘的器件,它广泛用于乘法、除法、乘方和开方等模拟运算,同时也广泛用于信息传输系统作为调幅、解调、混频、鉴相和自动增益控制电路,是一种通用性很强的非线性电子器件,目前已有多种形式、多品种的单片集成电路,同时它也是现代一些专用模拟集成系统中的重要单元。

作调幅时,高频信号加到输入端,低频信号加到Y输入端;作检波时,同步信号加到X输入端,已调信号加到Y输入端。

调试时,首先检查器件各管脚直流电位应符合要求,其次调节调零电路,使电路达到平衡。

还需注意:(1)Y 端输入信号幅度不应超过允许的线性范围,其大小与反馈电阻R有关,否则输出Y波形会产生严重失真;(2)X端输入信号可采用小信号(小于26mV)或者大信号(大于260mV),采用大信号可获得较大的调幅或解凋信号输出。

信息传输系统中,检波是用以实现电信号远距离传输及信道复用的重要手段。

由于低频信号不能实现远距离传输,若将它装载在高频信号上,就可以进行远距离传输,当使用不同频率的高频信号,可以避免各种信号之间的干扰,实现多路复用。

关键词:模拟乘法器,调幅器,检波器,MC1496目录第一章、集成模拟乘法器的工作原理 (2)第一节、模拟乘法器的基本特性 (2)一、模拟乘法器的类型 (2)第二节、变跨导模拟乘法器的基本工作原理 (2)第三节、单片集成模拟乘法器 (3)第二章、集成模拟乘法器的应用 (4)第一节、基本运算电路 (4)一、平方运算 (4)二、除法运算器 (5)三、平方根运算 (5)四、压控增益 (5)第二节、倍频、混频与鉴相 (6)一、倍频电路 (6)二、混频电路 (6)三、鉴相电路 (6)第三节、调幅与解调 (7)一、信息传输的基本概念 (7)二、调幅原理 (8)三、采用乘法器实现解调(检波) (10)第三章、MC1496模拟乘法器构成的振幅器 (10)第一节、振幅调制的基本概念 (10)第二节、抑制载波振幅调制 (13)第三节、有载波振幅调制 (14)第四章、MC1496模拟乘法器构成的同步检波器 (14)总结 (17)参考文献 (18)附录 (18)第一章、集成模拟乘法器的工作原理第一节、模拟乘法器的基本特性模拟乘法器是实现两个模拟量相乘功能的器件,理想乘法器的输出电压与同一时刻两个输入电压瞬时值的乘积成正比,而且输入电压的波形、幅度、极性和频率可以是任意的。

7.2 模拟乘法器及其在运算电路中的应用 7.3有源滤波电路

7.2 模拟乘法器及其在运算电路中的应用 7.3有源滤波电路

第七章 信号的运算和处理
三、三种类型的有源低通滤波器
滤波器的品质因数Q,也称为滤波器的截止特性系数。 其值决定于 f = f0 附近的频率特性。 按照 f = f0 附近频率特性的特点,可将滤波器分为:
巴特沃思(Butterworth) Q=0.707
切比雪夫(Chebyshev) Q=1 贝塞尔(Bessel) Q=0.56
三、无源滤波电路和有源滤波电路
• 无源元件:电阻、电容、电感 • 若滤波电路仅由无源元件组成,则称为无源滤 波电路。
• 有源元件:双极型管、单极型管、集成运放 • 若滤波电路由无源元件和有源元件共同组成, 则称为有源滤波电路。
模拟电子技术多媒体课件
第七章 信号的运算和处理
1. 无源低通滤波器:
频率趋于零,电容 容抗趋于无穷大。
可加大幅频特性的衰减斜率。
RF
U o ( s ) RF U p ( s ) Au ( s ) 1 U i ( s ) R1 U i ( s ) RF 1 1 R 1 3sRC ( sRC )2 1
图7.3.7 简单二阶低通电路
UT rbe rbb (1 ) I EQ
当电路参数对称时, I EQ UT 所以:rbe 2(1 ) I Rc Rc uO uI1 I uI1 I gm Rc uI1 2(1 )U T 2U T
1 I 2 I I EQ gm U T 2U T
模拟电子技术多媒体课件
第七章 信号的运算和处理
7.2 模拟乘法器及其在运算电路中的应用
模拟乘法器可用来实现乘、除、乘方和开方运算电路。 在电子系统之中用于进行模拟信号的处理。

实验 模拟乘法器电路

实验   模拟乘法器电路

实验模拟乘法器电路一、实验目的和要求1.掌握模拟乘法器的基本概念与特性,NI multisim 10模拟乘法器。

2.掌握模拟乘法器组成的乘法与平方运算电路、除法与开平方运算电路、函数发生电路电路与计算机仿真设计与分析方法。

二、实践内容或原理1.NI multisim 10模拟乘法器在NI multisim 10模拟乘法器模型中,输出电压U=K[X K(U X+X off)·Y K(U X+X off)]+O ff(1.1)out式中,U out为在Z(K*XY)端的输出电压;U X为在X端的输入电压;U Y为在Y端的输入电压;K为输出增益,默认值1V/V;O ff为输出补偿,默认值0V;Y off为Y 补偿,默认值0V;X off 为X补偿,默认值0V;Y K为Y增益,默认值1V/V;X K为X增益,默认值1V/V。

单击Sources→CONTROL-FUNCTION→ MULTIPLLER,即可取出一个乘法器放置在电路工作区中,双击乘法器图标,即可弹出乘法器属性对话框,可以在对应的窗口中对乘法器的参数值、标识符等进行修改。

2.乘法与平方运算电路当两个输入电压U X(图2.1中的V1)和U Y(图2.1中的V2)加到乘法器X 和Y端时,乘法器输出端的输出电压U O可表示为U=KU X U Y (2.1)O图2.1 乘法电路从图2.1仿真分析结果可见,K =1,U X (V1)=2V ,V Y (V2)=4.3V ,输出电压U O =8.6V ,满足U O =KU X U Y 关系。

从图2.2仿真分析结果可见,当K =1,U X (V1)=U Y (V2)=2V 时,输出电压U O =4V ,满足U O =KU 2X =KU 2Y 关系,即平方运算关系。

图2.2 平方运算电路3.反相输入除法运算电路一个二象限反相输入除法运算电路如图3.1所示,它由运放3554AM 和接于负反馈支路的乘法器A1构成。

模拟乘法器

模拟乘法器

模拟乘法器及其应用学院:信息工程专业班级:电信1206姓名:李嘉辛学号: 0121209310603摘要模拟乘法器是一种普遍应用的非线性模拟集成电路。

模拟乘法器能实现两个互不相关的模拟信号间的相乘功能。

它不仅应用于模拟运算方面,而且广泛地应用于无线电广播、电视、通信、测量仪表、医疗仪器以及控制系统,进行模拟信号的变换及处理。

在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。

采用集成模拟乘法器实现上述功能比采用分立器件如二极管和三极管要简单的多,而且性能优越。

Analog multiplier is a kind of widely used nonlinear analog integrated circuits.Analog multiplier can be achieved between two unrelated analog multiplication function.It is not only applied in the simulation operation aspect, and widely used in radio, television, communications, measuring instruments, medical equipment and control system, the analog signal conversion and processing.In the high frequency electronic circuit, amplitude modulation, synchronous detection, mixing, frequency doubling, frequency, modulation and demodulation process, the same as can be seen as two signal multiplication or contain multiplication process.The function is realized by using integrated analog multiplier than using discrete components such as diodes and transistors are much more simple, and superior performance.一、实验目的1.了解模拟乘法器的工作原理2.掌握利用乘法器实现AM调制、DSB调制、同步检波、倍频等几种频率变换电路的原理3.学会综合地、系统地应用已学到模、数字电与高频电子线路技术的知识,通过MATLAB掌握对AM调制、DSB调制、同步检波、倍频电路的制作与仿真技术,提高独立设计高频单元电路和解决问题的能力。

实验七 模拟乘法器电路

实验七 模拟乘法器电路

实验七 模拟乘法器电路一、实验目的和要求1.掌握模拟乘法器的基本概念与特性,NI multisim 10模拟乘法器。

2.掌握模拟乘法器组成的乘法与平方运算电路、除法与开平方运算电路、函数发生电路电路与计算机仿真设计与分析方法。

模拟乘法器是构成应用电路的基础,注意模拟乘法器与运算放大器的结合,以及将模拟乘法器连接在运算放大器的输入回路和负反馈回路上对电路功能的影响。

二、实践内容或原理1.通用模拟乘法器(P162)2.NI multisim 10模拟乘法器模拟乘法器能实现两个互不相关的模拟信号间的相乘功能,是一种普遍应用的非线性模拟集成电路。

在NI multisim 10模拟乘法器模型中,输出电压U out =K [X K (U X +X off )·Y K (U X +X off )]+O ff式中,U out 为在Z (K*XY )端的输出电压;U X 为在X 端的输入电压;U Y 为在Y 端的输入电压;K 为输出增益,默认值1V/V ;O ff 为输出补偿,默认值0V ;Y off 为Y 补偿,默认值0V ;X off 为X 补偿,默认值0V ;Y K 为Y 增益,默认值1V/V ;X K 为X 增益,默认值1V/V 。

单击Sources→CONTROL -FUNCTION→ MULTIPLLER ,即可取出一个乘法器放置在电路工作区中,双击乘法器图标,即可弹出乘法器属性对话框,可以在对应的窗口中对乘法器的参数值、标识符等进行修改。

3.反相输入除法运算电路一个二象限反相输入除法运算电路如图7.1所示,它由运放3554AM 和接于负反馈支路的乘法器A1构成。

根据运放线性应用时的特点及乘法器的特性,不难推理出输出电压U o 与输入信号U i (V2)、U r (V1)的关系。

因为,211211i A A i U R R V R V R U -=⇒-=又因为,1o r A V KV V =所以,21i o r U R R V KV =故 ri o U U R R K U 121-=当取R 1=R 2时,U o 为ri d r i o U U K U U K U -=-=1 (7.1) 式中相除增益K d 为乘法器相乘增益K 的倒数。

模拟乘法器

模拟乘法器

模拟乘法器的原理与运用一.实验目的1. 了解模拟乘法器的构成和工作原理。

2. 掌握模拟乘法器在运算电路中的运用。

二.实验原理集成模拟乘法器是实现两个模拟信号相乘的器件,它广泛用于乘法、除法、乘方和开方等模拟运算,同时也广泛用于信息传输系统作为调幅、解调、混频、鉴相和自动增益控制电路,是一种通用性很强的非线性电子器件,目前已有多种形式、多品种的单片集成电路,同时它也是现代一些专用模拟集成系统中的重要单元。

1. 模拟乘法器的基本特性模拟乘法器是一种完成两个模拟信号(连续变化的电压或电流)相乘作用的电子器件,通常具有两个输入端和一个输出端,电路符号如图1所示。

图1 模拟乘法器的电路符号 若输入信号为x u , y u ,则输出信号o u 为:o u =k y u x u式中: k 为乘法器的增益系数或标尺因子,单位为V 1.根据两个输入电压的不同极性,乘法输出的极性有四种组合,用图2所示的工作象限来说明。

图2 模拟乘法器的工作象限若信号x u 、y u 均限定为某一极性的电压时才能正常工作,该乘法器称为单象限乘法器;若信号x u 、y u 中一个能适应正、负两种极性电压,而另一个只能适应单极性电压,则为二象限乘法器;若两个输入信号能适应四种极性组合,称为四象限乘法器。

2. 集成模拟乘法器集成模拟乘法器的常见产品有BG314、F1595、F1596、MC1495、MC1496、LM1595、LM1596等。

下面介绍BG314集成模拟乘法器。

(1) BG314内部结构如图3所示,外部电路如图4所示:图3 内部结构图图4 外部结构图输出电压o u =k x u y u 式中 k=yx ox cR R I R 2为乘法器的增益系数。

(2) 内部结构分析a 当反馈电阻x R 和y R 足够大时,输出电压o u 与输入电压x u 、y u 的乘积成正比,具有接近于理想的相乘作用; b 输入电压x u 、y u 均可取正或负极性,所以是四象限乘法器;c 增益系数k 由电路参数决定,可通过调整电流源电流ox I 进行调节,BG314增益系数的典型值为k=0.1V 1;d k 与温度无关,因此温度稳定性较好。

模拟乘法器设计____模拟电路课程设计

模拟乘法器设计____模拟电路课程设计

径/Next开始自动安装过程。

(3)以后出现的对话框均选“否”或“确定”,/关闭记事本/一直到Finish。

(4)回到Electronics Workbench MULTISMv7.0文件夹下/双击破解CRACK文件夹。

(5)将文件夹里的multisim文件复制到刚才安装好的Multisim7文件夹中,弹出是否要复盖已经存在的multisim文件对话框?选择“是”。

(6)双击Multisim7文件夹中的multisim.exe文件或点击开始/程序/Multisim7,即可运行Multisim7。

此设计是利用Multisim10.0.1设计的乘法运算电路并且进行仿真分析。

Multisim10.0.1不但提供了强大的元件库用来模拟实际器件,使我们可以在计算机上画出要进行仿真分析的电路,代替传统的实验室搭接硬件电路的实验发法;同时又提供了许多的分析命令和虚拟仪器,使我们可以用它们来分析电路,确定电路工作的性能。

如图2所示为Multisim的开始工作界面图2 multisim开始工作界面2.2 元器件清单表1元件清单如下表:图4 multisim的仿真(1)整流,滤波电路用四个整流二极管组成单相桥式整流电路,将交流电压U2变成脉动的直流电压,再经滤波电容C1滤除纹波,输出直流电压Ui ,U I =1.2U2两个二极管分别与LM7812和LM7912反向并联,起到保护电路的作用。

(2)稳压电路稳压电路中用三端固定稳压器组成固定电压输出电路,电容C为抗干扰电容,用以旁路在输入导线过长时窜入的高频干扰脉冲,后面的电容C是用来改善输出瞬变特性和防止电路产生自激振荡.所接的二极管对稳压器起保护作用,防止输入端短路时C2和C2上电荷对稳压器内部放电使内部输出管击穿而损坏.三端固定式集成稳压器构成稳压电路时要求输入电压Ui不能过低,Ui—U>3V2.3.2 乘法运算电路部分电路原理图如下图5所示:IsRU U Uo I T 1ln 1-≈IsRU U Uo T 2ln 2-≈()221213ln)(R I U U U U U U S I I T O O O ≈+-=图5 乘法运算电路原理图RI u u R I u S I I U u T21S O 03e-=-=总原理图如下图6所示:图6 总电路图 电路由三部分组成:第一部分为两个对数运算电路公式如下,电路原理图如图7所示:U -u o1T =RI SI u 1lnU -u o2T =RI SI u 2ln;图7 对数原理图图7 对数原理图第二部分由一个加法运算电路组成。

实验七、模拟乘法器及调幅与检波电路

实验七、模拟乘法器及调幅与检波电路

实验七、模拟乘法器及调幅与检波电路一、实验原理:实验前要求预习有关模拟乘法器、调幅与检波的基本概念和主要元器件参数的设计要点及电路性能指标的测试方法,分析下页图中模拟乘法器外接器件的作用及取值大小的出发点。

二、实验元件与设备:1. 传感器实验主板;2 . MC1496(2片);3. 电阻、电容、二极管若干(参考电路图)。

三、基本实验内容:图7-1 调制电路图7-2 解调电路1. 调制电路测试(1)、按上图接好调制部分电路(不插入集成块),首先检查各端点的直流电平,使电路正常无误后插入集成块,再检查各点直流电平,并使电路工作正常。

(2)、在Uc1端加入载波信号(Vpp=500mV,fc=15KHz),先使Ux端的Vx信号幅度(fs=1kHz)为零,调节调幅级电位器,使输出载波为零,然后逐渐增加Vx信号幅度,从DRVI中观察输出端双边带抑制载波的调幅信号Uy,并测出上述条件下,最大不失真的V o1的pp值及此时的Vx幅度值。

(3)、输入载波信号(Vpp=500mV,fc=15KHz),调节调幅级电位器,使V o1输出中有载波,然后输入fs=1kHz的调制信号,从DRVI中观察输出端Uy的AM 信号,并注意它与抑制载波的双边带调幅信号的区别。

调节Vs的大小与电位器的位置,使输出端AM信号的V o1pp值为1V,调制度为100%,测出此时的Vx 幅度值。

2. 检波电路测试:(1)接好检波部分电路,检查电路无误,直流电平正常后,插入集成块,检查集成块各引出脚直流电平,使电路工作正常。

(2)在检波器的Uc2输入端输入载波信号(Vpp=500mV,fc=15KHz),Y2端输入信号为零,调节检波级电位器,使输出载波为零,即电路平衡。

(3)在检波器的Uy输入端输入fc=15KHz、fs=1kHz调制度为100%的AM 信号(已连接),在Uc2输入端输入载波信号(Vpp=500mV,fc=15KHz),观察输出端解调出来的调制信号,调节W2电位器,使输出V o的幅度最大,失真最小,并测出此时的V o值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

若带通滤波器中心频率为ω l − ω s,带宽大于2Ω, 1 则有uo = KU SmU Lm (1 + m cos Ωt ) cos(ω l − ω s )t 2
电子线路
五 倍频
us
x y K
uo'
高通滤波器
uo
us = U
'
Sm
cos ω s t
2 Sm
u o = KU
cos ω s t
2 2
uo'
带通滤波器
uo
u = KUsm cosωst ⋅ mcos Ωt 1 1 = KmUsm cos(ωs +Ω)t + KmUsm cos(ωs −Ω)t 2 2
电子线路
单边带调幅
1 u o = KmU sm cos(ω s + Ω )t 2 1 or u o = KmU sm cos(ω s − Ω )t 2
1 ui1 + ui 2 uo = − ⋅ A uy
多个输入除法电路
电子线路
三 平方根运算电路
vO1 vX =− R1 R2
2 vO1 = KvO来自所以有 vO = 1 R2 (−vX) K R1
显然,vO是- vI平方根。因此只有当vI为负值 时才能开平方,也就是说vI为负值电路才能实现 负反馈的闭环。图中的二极管即为保证这一点而 接入的。
电子线路
五 函数发生电路
R2 x
x
K=1 y
uo1 R1 f(x)
R3 R4
R2 2 R2 R4 f ( x) = − x + (1 + ) x R1 R 3 + R 4 R1
电子线路
Uiy 运算电路
ui y
lg
lgu i ×
y lgu i
lg -1
u o=u i y
电子线路
§3 乘法器在通信系统中的应用
使一个信号的幅度受另一个信号幅度的 控制, 幅度调制也称调幅 调幅, 表示。 控制, 幅度调制也称调幅,用AM表示。 表示
频率调制 调制
使一个信号的频率受另一个信号幅度的 控制;频率调制也称调频 调频, 表示。 控制;频率调制也称调频,用FM表示。 表示
相位调制 电子线路
使一个信号的相位受另一个信号幅度的 控制。相位调制也称调相 调相, 表示。 控制。相位调制也称调相,用PM表示。 表示
电子线路
四 混频器
采用超外差式的调幅广播的接收设备中, 采用超外差式的调幅广播的接收设备中, 对所接收的高频调幅波先经过变频后再进 行检波, 行检波,用固定调谐放大器对中频调谐波 进行放大, 进行放大,从而大大提高接收机的灵敏度 和选择性。 和选择性。
频谱搬移
电子线路
电子线路
us
x y K
' uo 带通滤波器
一 通信系统基本模型
信源 变换器 信道 反变换器 消息
语言 文字 图像等 非电量
换能 调制 放大 滤波
电缆 光纤 电磁波等 传递媒质
解调 (扬声 器显 像管)
语言 文字 图像
电子线路
调制是由带有信息的电信号控制高频振荡信号的某一参 使该参数按电信号的规律变化, 数,使该参数按电信号的规律变化,低频带有信息的信 号称为调制信号 高频振荡信号称为载波信号 调制信号, 载波信号, 号称为调制信号,高频振荡信号称为载波信号,经调制后 调制波。 带有调制信号信息的高频振荡信号称为调制波 带有调制信号信息的高频振荡信号称为调制波。 幅度调制
解调 是调制的反过程, 是调制的反过程,解调也 称为检波 检波。 称为检波。如把调幅信号中 的载波去掉, 的载波去掉,把调制信号即 包络线取出, 包络线取出,即为调幅波的 解调。还有鉴频、鉴相。 解调。还有鉴频、鉴相。
电子线路
振幅调制:普通调幅 二 振幅调制:普通
调制信号:uΩ = U Ωm cos Ωt 高频载波:us = U sm cos ωs t
第七章 模拟乘法器电路
§1 概述
模拟乘法器的工作象限: 模拟乘法器的工作象限:一、二、四象限
电子线路
原理
对数—反对数型 对数 反对数型 晶体管可变跨导型
电子线路
变跨导型模拟乘法器
电子线路
在室温下,K为常数,可见输出电压uO与输入电压 uy、ux的乘积成正比,所以差分放大电路具有乘法 功能。但uy必须为正才能正常工作,故为二象限乘 法器。当 uY 较小 时,相乘结果误差较大, IC3 随 uY 而变,其比值为电导量,称变跨导乘法器。
电子线路
均方根运算电路
电子线路
四 开立方运算电路
2 vO1 = Kv O 3 vO2 = Kv O1 vO = K 2 vO
vO2 vX =− R1 R2
3
为正值时, 为负值, 当vI为正值时,vO为负值, 为负值时, 为正值。 当vI为负值时,vO为正值。
vO =
R2 − v 2 X R1 K
电子线路
三 同步检波
ui
uR 限幅放大
x y K
uo'
低通滤波器
C
uo
ui = U sm (1 + m cos Ωt ) cos ω s t u R =U Rmcos ω s t
电子线路
uo ' = KuiuR = KUsmURm(1+ mcosΩt) cos2 ωst 1 1 = KUsmURm(1+ mcosΩt)( + cos2ωst) 2 2 1 1 1 1 = KUsmURm( + cos2ωst + mcosΩt + mcosΩt cos2ωst) 2 2 2 2 1 1 1 = KUsmURm[ + cos2ωst + mcosΩt 2 2 2 1 1 + mcos(2ωs + Ω)t + mcos(2ωs − Ω)t] 4 4
1 + m U sm cos(ω s − Ω ) t 2
电子线路
(a) 调幅波的时域波形 电子线路
(b)调幅波的频域谱线
fc
称为载频
fc + F
称为上边频 称为下边频
BW = 2 F
称为频带
fc − F
调幅波的上下边带 电子线路
抑制载波双边带调幅
Usm cosωs t
m cosΩ t
' o
x y K
U cosω t sm s
1+m cosΩ t
x y K=1
uo'
带通滤波器
uo
调幅波 u o = U sm (1 + m cos Ω t ) cos ω s t
'
ω s >> Ω
U Ωm 调幅系数:m = U sm
= U sm cos ω s t + m U sm cos Ω t cos ω s t = U sm 1 cos ω s t + m U sm cos(ω s + Ω ) t 2
1 = KU 2 1 u o = KU 2
电子线路
Sm
(1 + cos 2 ω s t ) cos 2 ω s t
2 Sm
利用三角函数等式 , 实现四倍频电路 cos 4ωt = 8 cos ωt − 8 cos ωt + 1
4 2
cos ωt
x y
cos 2 ωt K=1
1V x y K=1 R
电子线路
§2 乘法器在模拟运算中的应用
一、乘积和乘方运算电路
平方运算电路 电子线路
立方运算电路
二 除法运算电路
i1 = i 2
vO1 vX =− R1 R2
vO1 = KvOvY
R2 vX vO = − KR1 vY
Vy>0 ,保证运放工作于 负反馈状态
vX 令K= R2 / R1则 vO = − vY
电子线路
0 − ui ui − Kuxuo = R2 R1
R2
R1
x K y
ux>0
R1 ui ⇒ uo = (1+ ) R2 Kux
uo ui
同相除法电路
电子线路
uz R u i1 u i2 R R
×
uy
ui1 ui 2 uz + + =0 R R R Auou y = uz

- + +
RP uo
4
8R R + _A 8R UO
cos ωt
电子线路
§4 其他应用
ui E
x y K
uo
可控增益 放大器
电子线路
uo = ( KE )ui
绝对值电路
ui x y -K
uo
A
uo'
电子线路
压控方波三角波发生器
C Uc
UZ
u o1 = ± KU CU Z
可改变积分电容的充放电速率,从而通过模 拟乘法器首先频率可调 电子线路
uo
ul
u s = U Sm (1 + m cos Ω t ) cos ω s t -高频调幅波 u l =U cos ω l t − 本机振荡电压, 为一高频正弦波
电子线路
Lm
uo ' = Kusul = KUSmULm (1+ mcosΩt) cosωst cosωl t 1 = KUSmULm (1+ mcosΩt) cos( l −ωs )t ω 2 1 + KUSmULm (1+ mcosΩt) cos( l + ωs )t ω 2
相关文档
最新文档