长方体和正方体的表面积奥数题

合集下载

长方体与正方体奥数题及答案

长方体与正方体奥数题及答案

1、一个长方体的棱长之和是80厘米,如果把这个长方体平均截成两段,就成了两个大小相等的正方体,求:这个长方体的表面积和体积。

80÷2÷8=5(cm) 表面积:5X5X5X2=250(平方厘米)体积:5X5X5=125(立方厘米)答:这个长方体的表面积是250平方厘米,体积是125立方2、把3个完全相等的正方体拼成一个长方体,这个长方体的表面积是350平方厘米,每个正方体的表面积是多少平方厘米?350÷14X6=150(平方厘米)答:每个正方体的表面积是150平方厘米?3、把一个长方体的木块截成两段,就成了两个完全相等的正方体,这两个正方体的棱长之和比原来那个长方体的棱长之和增加40厘米,原来那个长方体的体积是多少立方厘米?40÷8=5(厘米)5X2=10(厘米)5X5X10=250(平方厘米)答:原来那个长方体的体积是250立方厘米4、把一个长、宽、高分别是7厘米、6厘米、5厘米的长方体截成两个长方体,使这两个长方体的表面积之和最大,这时表面积之和是多少平方厘米?(7X6+7X5+6X5)X2=214(平方厘米)214+6X7X2=298(平方厘米)答:这时表面积之和是298平方厘米5、一个长方体,前面和上面的面积之和是290平方厘米,这个长方体的长宽高都是质数,这个长方体的体积和表面积各是多少?290=29X10=29X(7+3)体积:29X7X3=609(立方厘米)表面积:(29X7+29X3+7X3)=672(平方厘米)答:这个长方体的体积j 609立方厘米,表面积是672平方厘米6、一个长方体的表面积是78平方厘米,底面积是15平方厘米,底面周长是16厘米,求长方体的体积。

78-15-15=48(平方厘米)48÷16=3(厘米)15×3=45(立方厘米)答:长方体的体积是45立方厘米7、一个长方体水箱,从里面量,长20厘米,宽30厘米,深35厘米,箱中水面高5厘米,放进一个棱长20厘米的正方体的铁块后,铁块顶面仍高于水面,这时水面的高多少厘米?20×30×5=3000(立方厘米)20×30-20×20=200(平方厘米)3000÷200=15(厘米)答:这时水面的高15厘米8、一个长方体木块,从下部和上部分别截去3厘米和2厘米的长方体后,成了一个正方体,表面积减少了120平方厘米,原长方体的体积是多少立方厘米?120÷(3+2)=24(平方厘米)24÷4=6(厘米)6+3+2=11(厘米)6×6×11=369(立方厘米)答:原长方体的体积是369立方厘米。

长方体正方体奥数题精编版

长方体正方体奥数题精编版

25.看图计算,如图是长方体纸箱的展开图,请你根据有关数据,求出纸箱的体积.(单位:分米)29.有一个长方体,从上面截下一个高是2厘米的长方体后正好得到一个正方体,如图,正方体的表面积比原长体的表面积减少了48平方厘米,求原来长方体的体积.练习十二1.一个长方体,正好可以切成6个棱长3厘米的正方体,求原长方体的表面积。

2.把一个棱长4厘米的正方体木块如下图切割,共切成12块大小不一的长方体,那么这12块长方体的表面积和是多少?3.王老师买了一批书,如下图打包成长方体,每个结口处有3厘米重叠,求共用了多少米打包带?4.现在有6个礼品盒,每个礼品盒的长是16厘米,宽15厘米,高6厘米,现在将它们包装在一起,至少需要多少平方厘米的包装纸?5.一个长方体高减少了2厘米,长减少了4厘米,得到一个棱长6厘米的正方体,求原长方体的体积6.现在有2730块棱长1厘米的正方体,全部用完拼成一个大长方体,求这个大长方体的表面积最小是多少?7.下面的立体图形是用棱长1厘米的小正方体拼成的,求它的表面积。

8.一个长方体容器中注满了水,现在有大、中、小三块石头。

第一次把小石头沉入水中,再取出来。

第二次再把中石头沉入水中,再捞起来。

第三次再把大、小石头一起沉入水中。

每次溢出水的情况是,第二次是第一次的2倍,第三次是第一次溢出水的3倍,求大石头的体积是小石头的多少倍?9.大正方体的棱长是小正方体棱长的2倍,大正方体的体积比小正方体体积多21立方分米,求大小正方体的体积。

10.有一个长方体和一个正方体,正好可以拼成一个新的长方体、新长方体的表面积比原长方体的表面积增加60平方厘米,求正方体的表面积。

11.一个长方体,表面积为184平方厘米,底面积是20平方厘米,底面周长是18厘米,求这个长方体的体积。

12.一个底面是正方形的水箱(如下图),如果把它的侧面展开,正好得到一个边长为40厘米的正方形,现在水箱内装有半箱水,求没有与水接触的面的面积。

五年级奥数之长方体和正方体的表面积

五年级奥数之长方体和正方体的表面积

五年级奥数之长方体和正方体的表面积例1:一个长方体的棱长之和是48厘米,长是5厘米,宽是4厘米,求它的表面积。

这个长方体的高可以用48减去长和宽的和(5+4=9)得到,即39厘米。

根据长方体表面积的公式,它的表面积为2×(5×4+5×39+4×39)=518平方厘米。

例2:一个零件形状大小如下图,求它的表面积。

由于这个零件由一个长方体和两个正方体组成,可以分别计算它们的表面积再相加。

长方体的表面积为2×(5×4+5×3+4×3)=94平方厘米,正方体的表面积为6×(3×3)=54平方厘米,因此这个零件的表面积为94+54=148平方厘米。

例3:有一个长方体形状的零件。

中间挖去一个正方体的孔(如下图)。

求它的表面积。

(单位:厘米)由于这个零件由一个长方体和一个正方体孔组成,可以先计算长方体的表面积,再减去正方体孔的表面积。

长方体的表面积为2×(8×6+8×2+6×2)=208平方厘米,正方体孔的表面积为6×2×2=24平方厘米,因此这个零件的表面积为208-24=184平方厘米。

例4:下图中的立体图形是由14个棱长为5cm的立方体组成的,求这个立体图形的表面积。

首先可以将这个立体图形分解为一个长方体和两个正方体。

长方体的长、宽、高分别为5、5、10,表面积为2×(5×5+5×10+5×10)=300平方厘米。

正方体的边长为5,表面积为6×(5×5)=150平方厘米。

因此这个立体图形的表面积为300+150+150=600平方厘米。

例5:一个正方体的表面积为54平方厘米,如果一刀把它切成两个长方体,那么,这两个长方体表面积的和是多少平方厘米?一个正方体的表面积为6a^2,其中a为边长。

(完整word版)五年级奥数《长方体与正方体的表面积与体积》

(完整word版)五年级奥数《长方体与正方体的表面积与体积》

长方体和正方体的表面积和体积一、方法讲解我们学习了长方体和正方体,运用长方体和正方体的表面积和体积公式一般可以简单长方体和正方体问题,解决较复杂的立体图形问题要注意几点:1、必须以基本概念和方法为基础,同时吧构成几何图形的诸多条件融合贯通起来。

2、依赖已经积累的空间观念,观察经过割、补后物体的表面积或体积所发生的变化。

3、求一些不规则的物体的体积时,可以通过变形的方法来解决。

二、例题讲解1、一个零件形状大小如右图所示:算一算,它的体积是多少立方厘米?表面积是多少平方厘米?(单位:厘米)2、有一个长方体形状的零件,中间挖去一个正方体的孔(如图所示),你能算出它的体积和表面积吗?(单位:厘米)3、一个长方体沿着长的方向切掉一个小正方体,剩下的长方体的表面积比原来减少24平方厘米,求所切下的正方体的表面积是多少平方厘米?4、长方体不同的三个面的面积分别为10平方厘米、15平方厘米和6平方厘米。

这个长方体的体积是多少立方厘米?5、一个凌长为6厘米的正方体木块,如果把它锯成凌长为2厘米的正方体若干块,表面积增加多少平方厘米?三、达标练习1、一个长5厘米、宽1厘米、高3厘米的长方体,被切去一块后(如图所示),剩下部分的表面积和体积各是多少?2、把一根长2米的长方体木料锯成1米长的两段,表面积增加了2平方分米,求这根木料原来的体积.3、有一个长8厘米、宽1厘米、高3厘米的长方体,在它的左右两个角各切掉一个正方体(如图所示),求切掉正方体后的表面积和体积各是多少?4、有一个形状如上图所示的零件,求它的体积和表面积。

(单位:厘米)5、如果把上题中挖下的小正方体粘在另一个面上,(如图所示)那么得到的物体的体积和表面积各是多少?6、一个正方体和一个长方体刚好拼成新的长方体,其表面积比原来的长方体的表面积增加了60平方厘米,原来正方体的表面积是多少立方厘米?7、一根长1米,宽和高都是8厘米的长方体钢材,从钢材的一端锯下一个最大的正方体后,它的表面积减少了多少平方厘米?8、把两个完全相同的长方体木块拼成一个正方体,表面积比原来两个长方体的表面积的和减少了40 平方厘米,求原来每个长方体的表面积是多少平方厘米?9 。

小学六年级奥数试题详解 长方体和正方体

小学六年级奥数试题详解 长方体和正方体

第五讲长方体和正方体长方体和正方体在立体图形中是较为简单的,也是我们较为熟悉的立体图形.如下图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱。

在六个面中,两个对面是全等的,即三组对面两两全等(叠放在一起能够完全重合的两个图形称为全等图形.两个全等图形的面积相等,对应边也相等).长方体的表面积和体积的计算公式是:长方体的表面积:S长方体=2(ab+bc+ac);长方体的体积:V长方体=abc.正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形.如果它的棱长为a,那么:S正方体=62a,V正方体=3a例1 有一个长方体,它的底面是一个正方形,它的表面积是190平方厘米,如果用一个平行于底面的平面将它截成两个长方体,则两个长方体表面积的和为240平方厘米,求原来长方体的体积.解:设原来长方体的底面边长为a厘米,高为h厘米,则它被截成两个长方体后,两个截面的面积和为22a平方厘米,而这也就是原长方体被截成两个长方体的表面积的和比原长方体的表面积所增加的数值,因此,根据题意有:190+22a=240,可知,2a=25,故a=5(厘米).又因为22a+4ah=190,解得19022545h-⨯=⨯=7(厘米)所以,原来长方体的体积为:V=2a h=25×7=175(立方厘米).例2 如下图,一个边长为3a厘米的正方体,分别在它的前后、左右、上下各面的中心位置挖去一个截口是边长为a厘米的正方形的长方体(都和对面打通).如果这个镂空的物体的表面积为2592平方厘米,试求正方形截口的边长。

解:原来正方体的表面积为:6×3a×3a=6×92a(平方厘米).六个边长为a的小正方形的面积为:6×a×a=62a(平方厘米);挖成的每个长方体空洞的侧面积为:3a×a×4=122a(平方厘米);三个长方体空洞重叠部分的校长为a的小正方体空洞的表面积为:a×a×4=42a(平方厘米).根据题意:6×92a-62a+3(122a-42a)=2592,化简得:542a-62a+242a=2592,解得2a=36(平方厘米),故a=6厘米.即正方形截口的边长为6厘米.例3 有一些相同尺寸的正方体积木,准备在积木的各面上粘贴游戏所需的字母和数目字.但全部积木的表面总面积不够用,还需增加一倍,请你想办法,在不另添积木的情况下,把积木的各面面积的总和增加一倍。

长方体和立方体奥数题

长方体和立方体奥数题

长方体和立方体班级:姓名:得分:一、填空。

1、长方体有( 6 )个面,( 12 )条棱,( 8 )个顶点,相对的棱长度(),相对的面()。

2、一个长方体的长5厘米,宽3厘米,高2厘米,它的最大的一个面是()面,面积是()。

这个长方体的表面积是(),体积是()。

3、一个正方体的棱长总和是48厘米,它的表面积是( 96 ),体积是( 64 )。

4、把三个棱长为1分米的正方体拼成一个长方体,这个长方体的表面积是(),体积是()。

5、把一个棱长是a米的正方体木材,任意截成两个小长方体后,表面积比原来多()。

6、把一个棱长为4厘米的正方体,分割成两个长方体,这两个长方体表面积总和是()。

7、一个正方体的棱长扩大到原来的5倍,则表面积扩大到原来的()倍,它的体积扩大到原来的()倍。

8、一个长方体各条棱长和是96厘米,并且它的长是宽的2倍,宽与高相等,那么这个长方体的体积是()立方厘米。

9、将两块棱长相等的正方体木块拼成一个长方体,已知长方体的棱长总和是48厘米。

则这个长方体的体积是()10、将一个表面涂有红色的长方体分割成若干个体积为1立方厘米的小正方体,其中一点红色没有涂的小立方体只有3块。

原来长方体的体积是()立方厘米。

二、判断。

1、正方体是特殊的长方体。

()2、一个长方体可能有8条棱的长度都相等。

()3、棱长是6分米的正方体,它的表面积和体积相等。

()4、正方体的棱长缩小一半后,体积比原来少一半。

()5、一个正方体的棱长扩大a倍,那么它的体积扩大a2倍。

()6、用三个长3厘米,宽2厘米,高1厘米的长方体拼成一个大的长方体,这个大长方体的表面积最大是62平方厘米,最小是54平方厘米.三、基础题。

1、一个零件形状大小如下图:算一算,它的体积是多少立方厘米,表面积是多少平方厘米?2、把一根长2米的长方体木料锯成1米长的两段,表面积增加2平方分米,求这根木料原来的体积。

- 2 -3、有一个长8厘米,宽1厘米,高3厘米的长方体木块,在它的左右两角各切掉一个正方体(如下图),求切掉正方体后的表面积和体积各是多少?4、 有一个长方体形状的零件。

五年级奥数-立体图形问题

五年级奥数-立体图形问题

课程五立体图形问题1.长方体、正方体表面积的计算 2。

长方体、正方体的切割问题 3。

长方体、正方体的体积4。

不规则物体的体积计算长方体和正方体的表面积应注意的问题(1)找出必备条件(长、宽、高或棱长),如题中没有直接给出,则 先求出必备条件,再求表面积(有盖还是无盖)。

(2)统一计量单位,单位不统一的,一般要通过化、聚,使单位统一 后再计算。

(3)求所需用的面积材料时,一般用“进一法“取近似值. (4)用同样多的立体拼图,由于拼法不同,重叠的次数不同,表面积 就会发生变化,每重叠一次,就减少两个面;每切一刀,就增加两个面。

1.长方体和正方体的体积概念及其计算公式 (1)长方体体积=长×宽×高 V 长方体=abc(2) 正方体体积=棱长×棱长×棱长 V 正方体=a 3 2.求不规则物体的体积水中物体的体积=容器的底面积×水上升或下降的高度。

水上升或下降的高度=水中物体的体积÷容器的底面积容器的底面积=水中物体的体积÷水上升或下降的高度例1有一个长15厘米,宽10厘米,高8厘米的长方体,现在要在这个长方体中挖去一个棱长为5厘米的小正方体,那么剩下部分的表面积是多少?学习目标重 点总 结(1) (2) (3)分析与解法根据长方体的特征我们可以知道,挖去小正方体的位置有3种情况,可能是在面上,如图(1),可能在顶点上,如图(2),可能在棱上,如图(3).在面上时,可以用长方体的表面积+小正方体4个面的面积;在角上时,正好等于长方体的表面积;在棱上时,要用长方体的表面积+小正方体2个面的面积。

解:原长方体表面积为:(15×10+15×8+10×8) ×2=700(平方厘米) 在角上时,剩下部分的表面积是700(平方厘米); 在面上时,剩下部分的表面积是: 700+5×5×4=800(平方厘米)在棱上时,剩下部分的表面积是:700+5×5×2=750(平方厘米)所以剩下部分的表面积是700平方厘米,或800平方厘米,或750平方厘米。

长方体正方体奥数题

长方体正方体奥数题

For personal use only in studyand research; not forcommercial use25.看图计算,如图是长方体纸箱的展开图,请你根据有关数据,求出纸箱的体积.(单位:分米)29.有一个长方体,从上面截下一个高是2厘米的长方体后正好得到一个正方体,如图,正方体的表面积比原长体的表面积减少了48平方厘米,求原来长方体的体积.练习十二1.一个长方体,正好可以切成6个棱长3厘米的正方体,求原长方体的表面积。

2.把一个棱长4厘米的正方体木块如下图切割,共切成12块大小不一的长方体,那么这12块长方体的表面积和是多少?3.王老师买了一批书,如下图打包成长方体,每个结口处有3厘米重叠,求共用了多少米打包带?4.现在有6个礼品盒,每个礼品盒的长是16厘米,宽15厘米,高6厘米,现在将它们包装在一起,至少需要多少平方厘米的包装纸?5.一个长方体高减少了2厘米,长减少了4厘米,得到一个棱长6厘米的正方体,求原长方体的体积6.现在有2730块棱长1厘米的正方体,全部用完拼成一个大长方体,求这个大长方体的表面积最小是多少?7.下面的立体图形是用棱长1厘米的小正方体拼成的,求它的表面积。

8.一个长方体容器中注满了水,现在有大、中、小三块石头。

第一次把小石头沉入水中,再取出来。

第二次再把中石头沉入水中,再捞起来。

第三次再把大、小石头一起沉入水中。

每次溢出水的情况是,第二次是第一次的2倍,第三次是第一次溢出水的3倍,求大石头的体积是小石头的多少倍?9.大正方体的棱长是小正方体棱长的2倍,大正方体的体积比小正方体体积多21立方分米,求大小正方体的体积。

10.有一个长方体和一个正方体,正好可以拼成一个新的长方体、新长方体的表面积比原长方体的表面积增加60平方厘米,求正方体的表面积。

11.一个长方体,表面积为184平方厘米,底面积是20平方厘米,底面周长是18厘米,求这个长方体的体积。

长方体正方体奥数题

长方体正方体奥数题

25.看图计算,如图是长方体纸箱的展开图,请你根据有关数据,求出纸箱的体积.(单位:分米)29.有一个长方体,从上面截下一个高是2厘米的长方体后正好得到一个正方体,如图,正方体的表面积比原长体的表面积减少了48平方厘米,求原来长方体的体积.练习十二1.一个长方体,正好可以切成6个棱长3厘米的正方体,求原长方体的表面积。

2.把一个棱长4厘米的正方体木块如下图切割,共切成12块大小不一的长方体,那么这12块长方体的表面积和是多少?3.王老师买了一批书,如下图打包成长方体,每个结口处有3厘米重叠,求共用了多少米打包带?4.现在有6个礼品盒,每个礼品盒的长是16厘米,宽15厘米,高6厘米,现在将它们包装在一起,至少需要多少平方厘米的包装纸?5.一个长方体高减少了2厘米,长减少了4厘米,得到一个棱长6厘米的正方体,求原长方体的体积6.现在有2730块棱长1厘米的正方体,全部用完拼成一个大长方体,求这个大长方体的表面积最小是多少?7.下面的立体图形是用棱长1厘米的小正方体拼成的,求它的表面积。

8.一个长方体容器中注满了水,现在有大、中、小三块石头。

第一次把小石头沉入水中,再取出来。

第二次再把中石头沉入水中,再捞起来。

第三次再把大、小石头一起沉入水中。

每次溢出水的情况是,第二次是第一次的2倍,第三次是第一次溢出水的3倍,求大石头的体积是小石头的多少倍?9.大正方体的棱长是小正方体棱长的2倍,大正方体的体积比小正方体体积多21立方分米,求大小正方体的体积。

10.有一个长方体和一个正方体,正好可以拼成一个新的长方体、新长方体的表面积比原长方体的表面积增加60平方厘米,求正方体的表面积。

11.一个长方体,表面积为184平方厘米,底面积是20平方厘米,底面周长是18厘米,求这个长方体的体积。

12.一个底面是正方形的水箱(如下图),如果把它的侧面展开,正好得到一个边长为40厘米的正方形,现在水箱内装有半箱水,求没有与水接触的面的面积。

小学五年级长方体正方体的奥数题

小学五年级长方体正方体的奥数题

小学五年级长方体正方体的练习题1、把一张长20厘米,宽16米的长方形纸裁成同样大小,面积尽可能大的正方形,纸没剩余,最多可裁多少个?2、两车同时从甲乙两地相对开出,甲每小时行48千米,乙车每小时行54千米,相遇时两车离中点36千米,甲乙两地相距多少千米?3、一块长40厘米、宽30厘米的长方形铁板,把它的四个角分别切掉边长为4厘米的正方形,然后焊接成一个无盖的盒子。

它的容积是多少升?4、楼房外壁用于流水的水管是长方体。

如果每节长15分米,横截面是一个长方形,长1分米,宽0.6分米。

做一节水管,至少要用铁皮多少平方分米?5.把一根长2米的长方体木料,平均截成3段,表面积增加了12平方米,原来长方体木料的体积是多少立方分米?6.一个长方体长16分米,高6分米,沿水平方向横切成俩个小长方体,表面积增加160平方分米,求原长方体体积?7.一个长方体如果高减少3厘米,正好成为一个正方体,表面积少36平方厘米,原长方体的体积?8.一个长方体高减2厘米成一个正方体,面积减少24平方厘米.原长方体的体积是多少立方厘米9.一个长方体木块,从上部和下部分别截去高为3厘米和2厘米的长方体,便成为一个正方体,表面积减少了120平方厘米,原来长方体的体积是多少立方厘米?10.一个长方体,如果高增加2厘米就成了一个正方体,而且表面积增加56平方厘米,求原长方体的体积?11.一段长方体木料,长1.2米如果锯短2厘米,它的体积就减少40立方厘米,求原长方体的体积?12.一个长方体,表面积是70平方分米,底面积是9.8平方分米,底面周长是12.6分米,这个长方体的高是多少?体积是多少?13.一个长方体的表面积为16000平方分米,底面是边长为40厘米的正方形,求长方体的体积是多少?14.将一块棱长20厘米的正方体铁块锻压成一块,100厘米长,2厘米厚的铁板,这个铁板的宽是多少?15.把一棱长30厘米的正方体钢坯,锻压成高和宽都是5厘米的长方体钢材.能锻造多长?16.把一个棱长5厘米的正方体钢材,锻压成长5厘米,宽4厘米的长方体钢材,钢材厚多少厘米?17、用两个长5cm,宽3cm,高4cm的长方体拼成一个大的长方体。

小学奥数4-5-2 长方体与正方体(二).专项练习及答案解析

小学奥数4-5-2 长方体与正方体(二).专项练习及答案解析

对于小学几何而言,立体图形的表面积和体积计算,既可以很好地考查学生的空间想象能力,又可以具体考查学生在公式应用中处理相关数据的能力,所以,很多重要考试都很重视对立体图形的考查.如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.cba HGFEDCBA①在六个面中,两个对面是全等的,即三组对面两两全等. (叠放在一起能够完全重合的两个图形称为全等图形.) ②长方体的表面积和体积的计算公式是: 长方体的表面积:2()S ab bc ca =++长方体; 长方体的体积:V abc =长方体.③正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形. 如果它的棱长为a ,那么:26S a =正方体,3V a =正方体.长方体与正方体的体积不规则形体的体积常用方法: ①化虚为实法 ②切片转化法 例题精讲长方体与正方体(二)④实际操作法⑤画图建模法【例1】一个长方体的棱长之和是28厘米,而长方体的长宽高的长度各不相同,并且都是整厘米数,则长方体的体积等于立方厘米。

【考点】长方体与正方体【难度】2星【题型】填空【关键词】希望杯, 6年级,第16题,6分【解析】由题意知长、宽、高的和为2847÷=,又根据题意长、宽、高各不相同,且是整数,所以只能是1、2、4,所以体积为8立方厘米【答案】8【例2】将几个大小相同的正方体木块放成一堆,从正面看到的视图是图(a),从左向右看到的视图是图(b),从上向下看到的视图是图(c),则这堆木块最多共有___________块。

【考点】长方体与正方体【难度】2星【题型】填空【关键词】希望杯,4年级,初赛,8题【解析】对于图c来说,每个小方块都摞了2层,最多有6块。

【答案】6【例3】一根长方体木料,体积是0.078立方米.已知这根木料长1.3米.宽为3分米,高该是多少分米?孙健同学把高错算为3分米.这样,这根木料的体积要比0.078立方米多多少?【考点】长方体与正方体【难度】2星【题型】解答【关键词】小数报,决赛【解析】0.078(1.30.3)0.2÷⨯=(米).0.2米=2分米.⨯⨯-=(立方米).1.30.30.30.0780.039所以这根木料的高是2分米;算错后,这根木料的体积比0.078立方米多0.039立方米.【答案】0.039【例4】如图,两个同样的铁环连在一起长28厘米,每个铁环长16厘米。

小学数学六年级奥数题长方体与正方体知识点习题训练解答

小学数学六年级奥数题长方体与正方体知识点习题训练解答

小学数学六年级长方体与正方体知识点及难题练习解答(一)长方体和正方体的特征形体面顶点棱关系长方体6个相对面完全相同,至少4个面是长方形8个12条相对的4条棱长度相等正方体是特殊的长方体正方体6个6个面完全相同,都是正方形8个12条12条棱长度都相等(二)长方体和正方体的棱长总和(三)长方体和正方体的表面积1.概念:长方体或正方体6个面的总面积,叫做它们的表面积。

2.计算公式:重点提示:不足6个面的实际问题根据具体情况计算,例如鱼缸、无盖纸盒等。

(四)长方体和正方体的体积、容积2.体积(容积)单位进率换算:1立方米=1000立方分米1立方分米=1000立方厘米1升=1000毫升1立方分米=1升1立方厘米=1毫升奥数练习题【难题1】:一个长方体,如果从它的高度方向锯掉3厘米的一段,正好得到一个正方体,但表面积减少了72平方厘米,原来长方体的体积是多少?【分析】:从长方体高度方向锯掉3厘米的一段,表面积减少部分就是高3厘米的长方体的四个侧面和一个上面,同时表面积又增加了一个切面,切面面积正好与原长方体上面的面积相等,互相抵消。

因此,剩下正方体表面积比原长方体表面积减少的72平方厘米,就是高3厘米的长方体的侧面积。

所以长方体的底面周长为:72÷3﹦24(厘米)。

剩下部分是个正方体,即长方体底面是正方形,所以长方体的底面边长即所得正方体的棱长为:24÷4﹦6(厘米)。

所以原长方体的体积为:6×6×(6+3)﹦324(立方厘米)。

【难题2】:一块长方形铁片(厚度不计),四个角剪去边长为2.8分米的正方形,焊成一个长方体铁皮盒,可以盛水546升。

已知这块长方形铁皮的长是21.2分米,求长方形铁皮的面积。

【分析】:546升﹦546立方分米,即焊成的铁皮盒的容积为546立方分米。

厚度不计,铁皮盒的容积也就相当于它的体积。

铁皮盒的体积为546立方分米,铁片盒的高为2.8分米,铁皮盒底面的长为:21.2-2.8×2﹦15.6(分米)。

五年级几何知识奥数题

五年级几何知识奥数题

五年级几何知识奥数题五年级几何知识奥数题小学五年级奥数长方体和正方体几何知识经典例题详解:1、一个零件形状大小如下图:算一算,它的体积是多少立方厘米,表面积是多少平方厘米?【思路导航】(1)可以把零件沿虚线分成两部分来求它的体积,左边的长方体体积是10×4×2=80(立方厘米),右边的长方体的体积是10×(6-2)×2=80(立方厘米),整个零件的体积是80+80=160(立方厘米)。

10×4×2+10×(6-2)×2=160(立方厘米)(2)求这个零件的表面积,看起来比较复杂,其实,朝上的两个面的面积和正好与朝下的一个面的面积相等;朝右的两个面的面积和正好与朝左的一个面的面积相等。

因此,此零件的表面积就是:(10×6+10×4+4×2×2)×2=232(平方厘米)练习(1)一个长5厘米、宽1厘米、高3厘米的长方体,被切去一块后(如下图),剩下部分的表面积和体积各是多少?练习(2)把一根长2米的长方体木料锯成1米长的两段,表面积增加2平方分米,求这根木料原来的体积。

练习(3)有一个长8厘米,宽1厘米,高3厘米的长方体木块,在它的左右两角各切掉一个正方体(如下图),求切掉正方体后的表面积和体积各是多少?2、有一个长方体形状的零件。

中间挖去一个正方体的孔(如下图)。

你能算出它的体积和表面积吗?(单位:厘米)【思路导航】(1)先求出长方体的体积,8×5×6=240(立方厘米),由于挖去一个孔,所以体积减少2×2×2=8(立方厘米),这个零件的体积是240-8=232(立方厘米)(2)长方体完整的表面积是(8×5+8×6+5×6)×2=236(平方厘米),但由于挖去一个孔,它的表面积减少了一个(2×2)平方厘米的面积,同时又增加了凹进去的5个(2×2)平方厘米的面,因此,这个零件的表面积是236+(2×2)×4=252(平方厘米).练习(1)有一个形状如下图的零件,求它的体积和表面积。

奥数题长正方体)

奥数题长正方体)
10、号码分别为37、57、77、和97的四名运动员进行乒乓球比赛,规定每两人比赛的盘数是他们号码的和除以3的余数,那么打球盘数最多的运动员是几号?他打了多少盘?
11.一部书,甲、乙两个打字员需要10天完成,两人合打8天后,余下的由乙单独打,若这部书由甲单独打需要28天完成。问乙又干了几天完成?
12.在300米长的环形跑道上,甲、乙两人同时同向并排起跑,甲平均每秒跑5米,乙平均每秒跑4.4米。两人起跑后的第一次相遇在起跑线前多少米?
8、一个整数除以84的余数是46,那么他分别除以3、4、7所得的三个余数之和是多少?
9、甲、乙、丙、丁四个旅行团分别有游客69人、85人、93人、97人。现在要把四个旅行团分别进行分组,使每组都是A名游客,以便乘车前往参观旅游。已知甲、乙、丙三个团分成每组A人的若干组后,所剩下的人数相同,问丁旅行团分成每组A人的若干组后还剩下几人?
洗葱,切葱花
打蛋
搅拌蛋液和葱花
洗锅
烧热锅
烧热油
烧菜
1分钟
半分钟
1分钟
半分钟
半分钟
半分钟
2分钟
小晴做好这道菜至少需要分钟。
9、一项特殊的工作必须日夜有人值守,如果安排8人轮流值班,当值班人员为3人,那么,平均每人每天工作小时。
10、甲、乙两商店中某种商品的定价相同。甲商店按定价销售这种商品。销售额是7200
9、有一个棱长为9厘米的正方体,在每两个对面的中央钻一个边长为2厘米的正方形孔,且穿透,所得立体的体积是多少?
10、有甲、乙、丙三个正方体水池,它们内边长分别是5米、3米、1米,把两堆碎石分别沉没在乙、丙两个水池的水里,它们的水面分别升高了4厘米和2厘米。如果将这两堆碎石都沉没在甲水池的水里,甲水池的水面升高了多少厘米?

(完整)三年级长方体和正方体的表面积奥数题训练

(完整)三年级长方体和正方体的表面积奥数题训练

(完整)三年级长方体和正方体的表面积奥数题训练三年级长方体和正方体的表面积奥数题训练- 题目一:长方体的长、宽和高分别为6厘米、4厘米和3厘米,求其表面积。

解答:长方体的表面积可以通过公式2*(长*宽 + 长*高 + 宽*高)来求得。

带入具体数值,表面积=2*(6*4 + 6*3 + 4*3) = 2*(24 + 18 + 12) = 2*(54) = 108平方厘米。

- 题目二:正方体的边长为5厘米,求其表面积。

解答:正方体的表面积可以通过公式6*边长^2来求得。

带入具体数值,表面积=6*5^2 = 6*25 = 150平方厘米。

- 题目三:长方体的表面积为96平方厘米,其中长为8厘米,宽和高之积为12平方厘米,求宽和高的值。

解答:假设宽为x,高为y,则由题意得 x*y = 12。

长方体的表面积可以用公式2*(长*宽+ 长*高+ 宽*高)来表示。

带入具体数值,96 = 2*(8*x + 8*y + x*y) = 2*(8*x + 8*y + 12) = 16x + 16y + 24。

化简得 16x + 16y = 96 - 24 = 72。

又由 x*y = 12 得 x = 12/y,代入上式,16*(12/y) + 16y = 72,化简得 192 + 16y^2 - 72y = 0,移项得 16y^2 - 72y + 192 = 0,化简得 y^2 - 4.5y + 12 = 0。

利用求根公式,得y ≈ 2.61 或y ≈ 1.84。

根据题意,宽和高的值应为正数,所以取y ≈ 2.61。

代入x = 12/y ≈ 4.59。

因此,宽和高的值约为4.59和2.61。

以上是关于三年级长方体和正方体的表面积奥数题训练的解答。

来源:数学奥数题。

小学奥数:长方体与正方体(一).专项练习及答案解析

小学奥数:长方体与正方体(一).专项练习及答案解析

对于小学几何而言,立体图形的表面积和体积计算,既可以很好地考查学生的空间想象能力,又可以具体考查学生在公式应用中处理相关数据的能力,所以,很多重要考试都很重视对立体图形的考查.如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.cba H GF ED CB A①在六个面中,两个对面是全等的,即三组对面两两全等.(叠放在一起能够完全重合的两个图形称为全等图形.)②长方体的表面积和体积的计算公式是:长方体的表面积:2()S ab bc ca =++长方体;长方体的体积:V abc =长方体.③正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形.如果它的棱长为a ,那么:26S a =正方体,3V a =正方体.板块一 长方体与正方体的表面积【例 1】 右图中共有多少个面?多少条棱?后面前面右面左面上面【考点】长方体与正方体 【难度】1星 【题型】解答【解析】 如右图所示,可以分前、后、左、右、上、下六个方向看这个立体图形.前、后看各有1个面,左面看有1个面,右面看有2个面,上面看有2个面,下面看有1例题精讲长方体与正方体(一)个面.所以共有1112218+++++=(个)面.前后方向的棱有6条,左右方向的棱有6条,上下方向的棱也有6条,所以共有棱66618++=(条).【答案】8个面,18条棱【巩固】右图中共有多少个面?多少条棱?【考点】长方体与正方体【难度】1星【题型】解答【解析】9个面,21条棱.【答案】9个面,21条棱【例 2】如右图,在一个棱长为10的立方体上截取一个长为8,宽为3,高为2的小长方体,那么新的几何体的表面积是多少?【考点】长方体与正方体【难度】2星【题型】解答【解析】我们从三个方向(前后、左右、上下)考虑,新几何体的表面积仍为原立方体的表面积:10⨯10⨯6=600.【答案】600【巩固】在一个棱长为50厘米的正方体木块,在它的八个角上各挖去一个棱长为5厘米的小正方体,问剩下的立体图形的表面积是多少?【考点】长方体与正方体【难度】2星【题型】解答【解析】对于和长方体相关的立体图形表面积,一般从上下、左右、前后3个方向考虑.变化前后的表面积不变:50⨯50⨯6=15000(平方厘米).【答案】15000【例 3】如右图,有一个边长是5的立方体,如果它的左上方截去一个边分别是5,3,2的长方体,那么它的表面积减少了多少?【考点】长方体与正方体【难度】2星【题型】解答【解析】原来正方体的表面积为5⨯5⨯6=150.现在立体图形的表面积减少了前后两个面中的部分面,它们的面积为(3⨯2)⨯2=12,所以减少的面积就是12.【答案】12【例 4】如图,有一个边长是5的立方体,如果它的左上方截去一个边分别是5,3,2的长方体,那么它的表面积减少了百分之几?【考点】长方体与正方体【难度】2星【题型】解答【关键词】奥林匹克,初赛,10题【解析】原来正方体的表面积为 5 ×5×6=150,现在立体图形的表面积截了两个面向我们的侧面,它们的面积为(3×2)×2=12,12÷150=0.08=8%.即表面积减少了百分之八.【答案】百分之八【例 5】右图是一个边长为4厘米的正方体,分别在前后、左右、上下各面的中心位置挖去一个边长l厘米的正方体,做成一种玩具.它的表面积是多少平方厘米?(图中只画出了前面、右面、上面挖去的正方体)【考点】长方体与正方体【难度】2星【题型】解答【解析】原正方体的表面积是4⨯4⨯6=96(平方厘米).每一个面被挖去一个边长是1厘米的正方形,同时又增加了5个边长是1厘米的正方体作为玩具的表面积的组成部分.总的来看,每一个面都增加了4个边长是1厘米的正方形.从而,它的表面积是:96+4⨯6=120平方厘米.【答案】120【例 6】如图,有一个边长为20厘米的大正方体,分别在它的角上、棱上、面上各挖掉一个大小相同的小立方体后,表面积变为2454平方厘米,那么挖掉的小立方体的边长是多少厘米?【考点】长方体与正方体【难度】2星【题型】解答【解析】大立方体的表面积是20⨯20⨯6=2400平方厘米.在角上挖掉一个小正方体后,外面少了3个面,但里面又多出3个面;在棱上挖掉一个小正方体后,外面少了2个面,但里面多出4个面;在面上挖掉一个小正方体后,外面少了1个面,但里面多出5个面.所以,最后的情况是挖掉了三个小正方体,反而多出了6个面,可以计算出每个面的面积:(2454-2400)÷6=9平方厘米,说明小正方体的棱长是3厘米.【答案】3【例 7】下图是一个棱长为2厘米的正方体,在正方体上表面的正中,向下挖一个棱长为1厘米的正方体小洞,接着在小洞的底面正中向下挖一个棱长为12厘米的正方形小洞,第三个正方形小洞的挖法和前两个相同为14厘米,那么最后得到的立体图形的表面积是多少平方厘米?【考点】长方体与正方体【难度】3星【题型】解答【解析】我们仍然从3个方向考虑.平行于上下表面的各面面积之和:2⨯2⨯2=8(平方厘米);左右方向、前后方向:2⨯2⨯4=16(平方厘米),1⨯1⨯4=4(平方厘米),1 2⨯12⨯4=1(平方厘米),14⨯14⨯4=14(平方厘米),这个立体图形的表面积为:816++4+1+14=1294(平方厘米).【答案】1 294【例 8】从一个棱长为10厘米的正方形木块中挖去一个长10厘米、宽2厘米、高2厘米的小长方体,剩下部分的表面积是多少?(写出符合要求的全部答案)【考点】长方体与正方体【难度】3星【题型】解答【关键词】小学生数学报【解析】按图1所示沿一条棱挖,为592平方厘米;按图2所示在某一面上挖,为632平方厘米;按图3所示在某面上斜着挖,为648平方厘米;按图4所示挖通两个对面,为672平方厘米.图1 图2 图3 图4【答案】按图1所示沿一条棱挖,为592平方厘米;按图2所示在某一面上挖,为632平方厘米;按图3所示在某面上斜着挖,为648平方厘米;按图4所示挖通两个对面,为672平方厘米.图1 图2 图3 图4【例 9】一个正方体木块,棱长是15.从它的八个顶点处各截去棱长分别是1、2、3、4、5、6、7、8的小正方体.这个木块剩下部分的表面积最少是多少?【考点】长方体与正方体【难度】4星【题型】解答【关键词】迎春杯【解析】截去一个小正方体,表面积不变,只有在截去的小正方体的面相重合时,表面积才会减少,所以要使木块剩下部分的表面积尽可能小,应该在同一条棱的两端各截去棱长7与8的小正方体(如图所示),这时剩下部分的表面积比原正方体的表面积减少最多.剩下部分的表面积最小是: 15⨯15⨯6-7⨯7⨯2=1252.想想为什么不是15⨯15⨯6-7⨯7-8⨯8 ?【答案】1252【例 10】 从一个长8厘米、宽7厘米、高6厘米的长方体中截下一个最大的正方体(如下图),剩下部分的表面积之和是 平方厘米.68766【考点】长方体与正方体 【难度】3星 【题型】填空【解析】 可以将这个图形看作一个八棱柱,表面积和为:87662616661787292⨯-⨯⨯+⨯+++++++=()()(平方厘米).也可以这样想:由于截去后原来的长方体的表面少了3个66⨯的正方形,而新图形凹进去的部分恰好是3个66⨯的正方形,所以新图形的表面积与原图形的表面积相等,为()8786762292⨯+⨯+⨯⨯=(平方厘米).【答案】292【巩固】一个长、宽、高分别为21厘米、15厘米、12厘米的长方形,现从它的上面尽可能大的切下一个正方体,然后从剩余的部分再尽可能大的切下一个正方体,最后再从第二次剩余的部分尽可能大的切下一个正方体,剩下的体积是多少平方厘米?【考点】长方体与正方体 【难度】3星 【题型】解答【解析】 本题的关键是确定三次切下的正方体的棱长.由于21:15:127:5:4=,为了方便起见.我们先考虑长、宽、高分别为7厘米、5厘米、4厘米的长方体.因为754>>,容易知道第一次切下的正方体棱长应该是4厘米(如图),第二次切时,切下棱长为3厘米的正方体符合要求.第三次切时,切下棱长为2厘米的正方体符合要求. 剩下的体积应是()33321151212961107⨯⨯-++=(平方厘米).【答案】1107【例 11】 一个正方体木块,棱长是1米,沿着水平方向将它锯成2片,每片又锯成3长条,每条又锯成4小块,共得到大大小小的长方体24块,那么这24块长方体的表面积之和是多少?【考点】长方体与正方体 【难度】3星 【题型】解答【解析】 锯一次增加两个面,锯的总次数转化为增加的面数的公式为:锯的总次数⨯2=增加的面数.原正方体表面积:1⨯1⨯6=6(平方米),一共锯了(2-1)+(3-1)+(4-1)=6次, 6+1⨯1⨯2⨯6=18(平方米).【答案】18【巩固】如右图,一个正方体形状的木块,棱长l米,沿水平方向将它锯成3片,每片又锯成4长条,每条又锯成5小块,共得到大大小小的长方体60块.那么,这60块长方体表面积的和是多少平方米?【考点】长方体与正方体【难度】3星【题型】解答【解析】我们知道每切一刀,多出的表面积恰好是原正方体的2个面的面积.现在一共切了(3-1)+(4-1)+(5-1)=9刀,而原正方体一个面的面积1⨯l=1(平方米),所以表面积增加了9⨯2⨯1=18(平方米).原来正方体的表面积为6⨯1=6(平方米),所以现在的这些小长方体的表积之和为6+18=24(平方米).【答案】24【巩固】一个表面积为256cm的长方体如图切成27个小长方体,这27个小长方体表面积的和是2cm.【考点】长方体与正方体【难度】3星【题型】填空【关键词】走美杯,六年级,初赛【解析】每一刀增加两个切面,增加的表面积等于与切面平行的两个表面积,所以每个方向切两刀后,表面积增加到原来的3倍,即表面积的和为2⨯=.563168(cm)【答案】168【例 12】右图是一个表面被涂上红色的棱长为10厘米的正方体木块,如果把它沿虚线切成8个正方体,这些小正方体中没有被涂上红色的所有表面的面积和是多少平方厘米?【考点】长方体与正方体【难度】3星【题型】解答【解析】10⨯10⨯6=600(平方厘米).【答案】600【例 13】 有n 个同样大小的正方体,将它们堆成一个长方体,这个长方体的底面就是原正方体的底面.如果这个长方体的表面积是3096平方厘米,当从这个长方体的顶部拿去一个正方体后,新的长方体的表面积比原长方体的表面积减少144平方厘米,那么n 为多少?【考点】长方体与正方体 【难度】3星 【题型】解答【解析】 由于堆成的长方体的底面就是原来正方体的底面,说明这个长方体是由这些正方体一字排开组成的,从这个长方体的顶部拿去一个正方体,减少的面积相当于侧面的四个正方形的面积,所以正方体每个面的面积是144436÷=(平方厘米).所堆成的长方体的表面积,包含底面的2个正方形和侧面的4n 个正方形,所以(3096362)14421n =-⨯÷=.【答案】21【例 14】 边长分别是3、5、8的三个正方体拼在一起,在各种拼法中,表面积最小多少?【考点】长方体与正方体 【难度】3星 【题型】解答【解析】 三个正方体两两拼接时,最多重合3个正方形面,其中边长为3的正方体与其它两个正方体重合的面积不超过边长为3的正方形,边长为5和边长为8的正方体的重合面面积不超过边长为5的正方形,三个正方形表面积和为6⨯3⨯3+6⨯5⨯5+6⨯8⨯8-2⨯2⨯3⨯3-2⨯5⨯5=502.【答案】502【例 15】 如图,25块边长为1的正方体积木拼成一个几何体,表面积最小是多少?25块积木【考点】长方体与正方体 【难度】3星 【题型】解答【解析】 当小积木互相重合的面最多时表面积最小.设想27块边长为1的正方形积木,当拼成一个333⨯⨯的正方体时,表面积最小,现在要去掉2块小积木,只有在两个角上各去掉一块小积木,或在同一个角去掉两块相邻的积木时,表面积不会增加,该几何体表面积为54.【答案】54【例 16】 由六个棱长为1的小正方体拼成如图所示立体,它的表面积是 .【考点】长方体与正方体 【难度】3星 【题型】填空【关键词】走美杯,4年级,决赛,第3题,8分【解析】 三视图法:表面积为:()454226++⨯=【答案】26【例 17】 将15个棱长为1的正方体堆放在桌子上,喷上红色后再将它们分开。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、在一个棱长是6分米的正方体上放一个棱长为3分米的小正方体,求这个立方体的表面积?
五、一个正方体形状的木块,棱长为1米,沿着水平方向将它锯成3片,每片又按任意尺寸锯成4条,每条又任意按尺寸锯成3块,共得到大大小小的长方体36块,问这36块长方体表面积的和是多少平方米?
长方体和正方体的表面积奥数题
一、将两个都是7厘米,宽都是5厘米,高都是3厘米的长方体拼成一个大长方体。那么大长方体表面积最大是多少平方厘米?
二、有一个长方体,长是12厘米,宽是9厘米,高是6厘米,把它米?
三、正方体木块的表面积是96平方分米,把它沿虚线截成体积相等的8个正方体木块,这时表面积增加多少平方米?
相关文档
最新文档