盾构机姿态人工测量方案
盾构隧道测量方案
盾构施工地面监测方案1、概况1.1、工程概况深圳地铁5号线土建2标盾构施工共包括三个区间,分别是:翻身站~灵芝公园站、灵芝公园站~大浪站、大浪站~同乐站。
翻身站~灵芝公园站设计起止里程CK4+196.34~CK5+461.66。
其中左右线CK4+196.34~CK4+410各213.66m为矿山法施工暗挖隧道;左线盾构区间CK4+410~CK5+461.66,长1265.32m;右线盾构区间CK4+410~CK5+461.66,长1252.68m; 灵芝公园站~大浪站起点里程为CK5+686.661,左线隧道设计终点里程为CK6+265.602,长578.941m;右线设计终点里程为CK6+109.605,长422.944m; 大浪站~同乐站区间起点里程为CK6+588.140,左线隧道设计终点里程为CK7+201.660,长613.520m;右线设计终点里程为CK7+241.200,长653.060m。
1.2、施工总体方案投入两台海瑞克复合式土压平衡盾构机(配备保压泵碴装置),两台从同乐明挖区间盾构井站先左线、后右线下井始发,由北向南沿创业路掘进;至大浪站,过站;再从大浪站南端始发、掘进,进入灵芝公园站北端头井吊出转场。
两台分别再从翻身站北端始发,通过矿山法隧道,由南向北掘进,至灵芝公园站南端头井吊处,退场。
为了确保盾构机从同乐~大浪~灵芝站和翻身~灵芝站三个区间顺利准确的进行掘进施工,对翻身~同乐站三区间的地面导线点联测控制导线测量,地面高程测量为盾构机掘进前施工奠定基础。
2、编制依据《地下铁道、轻轨交通工程测量规范GB50308-1999》《广州地铁三号线工程施工测量管理细则》《工程测量规范》(GB500026-93)《城市测量规范》(CJJ8-99)《铁路测量规范》(TBJ101-85)3、仪器设备配置4、施工测量组织机构整个区间施工中,项目经理部设测量主管一名,负责具体的施工测量工作管理及安排;专职测量工程师二名,负责现场施工测量放样及内业资料的整理;专职测量工三名。
盾构-12-盾构姿态测量
编号:盾构-12
序号
工序名称
作业控制要点
1
测量准备
1、确定盾构姿态需要的参数,盾首三维坐标、盾构轴线平面偏角、倾角、旋角。
2、通过给定资料计算管片中心坐标,并建立隧道线形。
3、安装自动测量系统,通过不同手段进行复测,确保盾构零位姿态正确。
2
布点
1、盾构机上安装3个不在一个平面的三棱镜,以便来自过对该棱镜测量反算盾构中心坐标。
角的偏转(全站仪发出的激光束方位角已知);利用盾构机上安装的测斜仪自动测量盾构机的倾角和旋角。
2、利用全站仪直接测量盾构机上安装的3个不在一个平面上的测量参考点,获得其地面三维坐标(X、Y、Z),通过坐标方程解算(3个以上点可以利用平差方法)就可以直接得到盾构机盾头、盾尾的三维坐标,利用盾头-盾尾矢量确定姿态参数。
2、在管片上设置吊篮以便设置测站和后视,吊篮安装要稳定,且距离不宜距离盾构机过近,以减小施工扰动。
3
测量方法
1、盾构机三维坐标用全站仪测定,仪器在已知三维坐标的测站上首先后视地下控制点,然后测量前方盾构机上的参考点,即可确定盾构机的三维坐标;在该参考点上配激光标靶,该标靶能够根据激光测量仪器射出的激光束,利用折射角和反射角来确定盾构机的平面方位
盾构测量方案
目录一、编制及测量依据........................................................................................................ - 1 -二、工程概况.................................................................................................................... - 1 -三、测量任务和内容........................................................................................................ - 2 -四、施工测量技术方案.................................................................................................... - 2 -4.1施工首级测量控制网的检测 (3)4.2施工控制网的加密测量 (3)4.3联系测量 (6)4.4地下施工控制导线测量 (8)4.5施工放样测量 (9)4.6盾构施工测量 (10)4.7隧道贯通测量 (14)4.8隧道竣工测量 (14)4.9隧道沉降测量 (14)五、测量误差分析.......................................................................................................... - 15 -5.1隧道测量误差分析 (15)5.2隧道贯通误差预计 (16)六、测量人员和测量仪器配备...................................................................................... - 19 -6.1主要测量人员配备表及职责划分细则 (19)6.2职责划分细则 (21)6.3主要测量仪器配备 (21)七、测量工作管理.......................................................................................................... - 22 -7.1测量人员管理 (22)7.2仪器管理 (22)7.3资料管理 (22)八、测量质量保证措施.................................................................................................. - 23 -九、施工测量复核程序图.............................................................................................. - 25 -一、编制及测量依据(1)《城市轨道交通工程测量规范》(GB50308-2008);(2)《城市测量规范》(GJJ8-99);(3)《地下铁道工程施工及验收规范》(GB50299-1999)(4)《工程测量规范》(GB50026-2007);(5)《建筑变形测量规范》(JGJ/T8-2007);(6)《地下铁道设计规范》(GB50299-1999);(7)《国家一、二等水准测量规范》(GB12897-2006);(8)上海市轨道交通十三号线5标区间设计资料。
地铁盾构施工人工测量方法探讨
地铁盾构施工人工测量方法探讨摘要:本文结合合肥地铁项目,讲述了地面控制测量、联系测量盾构机人工测量和管片测量关键词:地铁;盾构;人工测量盾构法具有施工速度快、机械化程度高、人员配备少、不影响地面交通等优点,所以在地铁区间施工中得到广泛应用。
盾构施工测量是盾构施工中最重要的环节之一。
现以合肥市地铁一号线9标南宁路站~贵阳路站盾构区间(以下简称南贵区间)介绍盾构施工人工测量方法。
一、控制测量1、地面控制测量地面控制测量分为地面平面控制测量和地面高程控制测量,本工程控制点是合肥轨道公司提供的覆盖线路的整体控制网。
2、联系测量首先测设近井点。
根据地面控制点在贵阳路站区间布设两个近井点,形成闭合导线,导线变数4条。
高程按照二等水准进行加密。
通过近井点用两井定向把控制点加密到贵阳路站底板。
为提高精度,盾构始发点采用强制对中装置(如图1所示)。
高程传递采用吊钢尺的方法。
从始发到接收共做了三次联系测量,三次测量方位角差值不到1″(表1所示)。
3、洞内导线测量本工程隧道长度582米,则隧道导线加密采用支导线往返测的方法进行。
二、盾构机始发前测量1、在盾构机始发前利用联系测量控制点,满足盾构机组装、反力架、轨道安装的需要。
其三维坐标值测设值与设计值较差小于3毫米。
2、盾构机姿态测量。
在盾构始发前测设盾构机初始位置和盾构机姿态。
盾构机自身导向系统成果必须和人工测量结果一致。
本工程使用的是力信RMS-D导向系统。
盾构初始姿态我们利用特征点发和分中发分别独立测量了,两次结果一致。
盾构初始姿态测量,是盾构测量独有的测量。
三、盾构管片测量盾构机在推进过程中,利用力信RMS-D导向系统,控制盾构机本身姿态。
但是管片测量也不可忽视。
可以利用管片测量结果观察隧道推进情况。
做到多重复合。
人工测量管片使用的是标尺法(如图2所示),测设出反射片的三维坐标,根据隧道半径算出隧道中心。
现已310环隧道导向系统测量姿态和人工测量管片姿态为例进行比较。
盾构测量专项方案
盾构施工测量专项方案一、工程概况本标段包括一站两区间,即西湖公园站、西湖公园站~金星路站盾构区间、金星路站~望城坡站盾构区间。
区间全长4672.131m ,三个联络通道(其中两个带泵房)。
新购两台中轨生产的土压平衡盾构机。
199m 标段终点里程YDK3+181.0001081.6m 178m 1253.3m 265m YDK2+982.000西湖公园站起点里程YDK0+469.100标段起点里程YDK1+722.400金西区间起点里程YDK1+900.400望金区间终点里程图1-1 工程范围示意图【西湖公园站~金星路站区间】起讫里程DK1+900.400~DK2+982.000,右线隧道长度1081.6m ,左线长1073.118m (短链8.482m )。
本区间从西湖公园站始发,从龙头山脚下穿越,下穿西湖渔场、猎鹰驾校,以800m 曲线半径侧穿望麓桥、下穿龙王港河道、下穿金星路进入金星大道站。
区间设置V 型坡,出金星路站后分别以23‰及5.449‰(左线)5.66‰(右线)下坡,而后以3.8‰及23‰上坡至望城坡站。
区间最低点YDK2+447.500处设联络通道兼泵房图1-2 西湖公园站~金星路站区间平面图区间穿越龙王港最小覆土厚度2.6m ,下穿西湖渔场段覆土厚度3.5~4.0m ,最大覆土厚度19m。
穿越的地层主要为淤泥质粘土、粉质粘土、强风化、中风化板岩。
图1-3 西湖公园站~金星路站区间纵断面图【金星路站~望城坡站区间】起讫里程DK1+722.400~DK0+469.100,右线隧道长度1253.3m,左线长1264.113m(长链10.813m)。
本区间从金星路站始发,以450m曲线半径进入枫林一路,侧穿财专望舒1、2号楼进入财专高等专科学校,而后下穿密集的城乡居民区,以1500曲线穿越望兴锦园、望城坡老干所,穿越西二环后进入望城坡站。
区间设置V型坡,出西湖公园站后分别以27.475‰(右线)27.73‰(左线)及6‰下坡,而后以3‰及28‰上坡至金星路站。
盾构机姿态人工测量方案
盾构机姿态人工测量方案由于ELS靶被送往德国进行例行的检修,大汉盾构区间右线暂时无法使用SLS-T 导向系统,为保证盾构日常掘进的需要,确保盾构机按设计轴线前进,拟采用人工测量的办法测量出盾构机当前的姿态,以指导盾构机的掘进。
以下对盾构机姿态的人工测量方案进行说明:§1原理盾构机在出厂时,开发SLS-T导向系统的VMT公司就根据盾构机的设计与加工尺寸,在盾构机中体的隔板上布置了12~16个测点,所有的测点都在出厂前详细测设了每一个测点与刀盘中心的相对位置。
盾构机姿态人工测量就是利用人工直接采用控制导线的测量办法详细测出这些测点中的部分点位的绝对坐标,然后根据测点与刀盘中心的空间关系,反算出刀盘中心坐标,最后根据设计线路参数与刀盘中心的绝对坐标的空间关系推算出盾构机的三维控制姿态。
§2适用范围2.1盾构机始发姿态测量盾构机始发姿态便是由人工测量出的盾构机姿态。
盾构机始发定位时需精确测定ELS靶相对于盾构机主机的相对位置关系,其方法便是根据人工测量出的盾构机姿态,在SLS-T导向系统的微机中调整ELS靶的位置参数,以改变微机上显示的盾构机姿态,当盾构机上显示的姿态与人工测量出的盾构机姿态一致时,便可认为当前ELS靶的位置参数是正确的,ELS靶始发定位调试顺利完成。
2.2对S L S-T导向系统的复核在掘进施工中,利用人工测量的办法测量出盾构机当前的姿态,与SLS-T导向系统显示的盾构机姿态进行比较,来复核导向系统的测量成果。
2.3盾构掘进施工测量利用人工测量出的盾构机姿态可指导盾构机的掘进施工,保证盾构机按设计轴线前进。
盾构掘进施工中,人工测量盾构机姿态的测量频率为每环1次。
§3实例以大汉盾构区间右线所用的S180盾构机为例,盾构机中体的隔板上布置了12个测点,这些测点与刀盘中心的相对位置如下表:3.1右线始发姿态测量在始发姿态测量时利用控制导线测出的测点绝对坐标见下表:根据这些测点与刀盘中心的位置关系,推算出刀盘中心的绝对坐标,然后根据刀盘中心绝对坐标和隧道设计中线的空间关系推算出盾构机始发姿态如下:刀盘(mm) 后体(mm) 趋势(mm/m) 里程(m)水平方向-12.7 43.4 12 15883.9569竖直方向31.7 31 0旋转:0.6mm/m 坡度:-1.9mm/m3.2当前盾构机姿态测量利用控制导线测出的当前测点的绝对坐标见下表:根据这些测点与刀盘中心的位置关系,推算出刀盘中心的绝对坐标,然后根据刀盘中心绝对坐标和隧道设计中线的空间关系推算出盾构机当前姿态如下:刀盘(mm) 后体(mm) 趋势(mm/m) 里程(m)水平方向27 26 0 15705.102竖直方向11 4 1旋转:-4 mm/m 坡度: 5 mm/m§4测量仪器与测量精度所用仪器为徕咔TCA1103全站仪采用此方法进行人工测量,测量精度可以达到如下标准:平面偏差±5mm;高程偏差±5mm;纵向坡度偏差1‰;盾构机旋转偏差1‰;盾构机刀盘里程偏差±10mm。
盾构机姿态的人工测量原理
( )
偏差。 1 ) 在圆曲线隧道上掘进时 ①设盾首平面偏差的曲线改正为 ε 盾首 , 如图 3 ,根据三 角形余弦定理有: a2 + R2 - ( R + ε 盾首 ) 2 b b /2 = cos ( π - γ ) = , cosγ = 2 aR R 2R 2 由此,可以推出: ε 盾首 + 2 Rε 盾首 = a × ( a + b) , 因为 ε 盾首 远 小于 R,故有: a × ( a + b) 2 Rε 盾首 = a × ( a + b ) ε 盾首 = ( 5) 2R ②设盾尾平面偏差的曲线改正为 ε 盾尾 , 如图 3 ,根据三 角形余弦定理有:
第 36 卷第 3 期 2011 年 05 月
测绘科学 Science of Surveying and Mapping
Vol. 36 No. 3 May
盾构机姿态的人工测量原理
黄小斌 ① ,区兆铭 ① ,张永超 ② ,蒋样明 ③
( ①浙江省大成建设集团有限公司, 杭州 310012 ; ②成都市国土规划地籍事务中心, 成都 610074 ; ③中国科学院遥感应用研究所,北京 100101 ) 【摘 要】 本文针对地铁隧道盾构法施工中盾构机的导向方法,提出盾构机姿态的人工测量原理,通过在 Excel 中 编辑的盾构掘进姿态解算程序来计算盾构机的实时掘进姿态,及时指导盾构机纠偏,确保盾构机按照设计的线路 进行掘进。 【关键词】 城市地铁; 盾构机姿态; 人工测量原理 【中图分类号】 U45 ; TP31 【文献标识码】 A 【文章编号】 10092307 ( 2011 ) 03002504
主要参数定义: 设前尺到盾首的水平距离为 a,前、后 尺的水平距离为 b,后尺到盾尾的水平距离为 c,前尺底部 后尺底部中心到盾构 中心到盾构机中心的垂直距离为 L 前尺 , L , 后尺平面 机中心的垂直距离为 后尺 前尺平面偏差为 δ 前尺 , 偏差为 δ 后尺 ,盾首平面偏差为 δ 盾首 ,盾尾平面偏差为 δ 盾尾 , 盾首垂直偏差为 h 盾首 ,盾尾垂直偏差为 h 盾尾 。 这里分为盾 构机平面偏差和垂直偏差两个方面来考虑 。 3. 1 盾构机平面偏差 根据盾构机后尺安装位置的不同,我们分为后尺在盾 尾内和后尺在盾尾外两种情况来考虑 。 3. 1. 1 后尺在盾尾内 我们先计算前、后尺的平面偏差。 3. 1. 1. 1 前尺平面偏差 δ 前尺 = S 前尺 × tanβ 前尺 - L 前尺 × sin ( θ 回转 - θ 初始 ) ( 1 ) 式中: S前尺 为经纬仪到前尺中心的设计距离,且: S前尺 = 其中: ( x经纬仪 , - x前尺 ) 2 + ( y经纬仪 - y前尺 ) 2 , y经纬仪 ) 为经 纬仪坐标,( x 前尺 , y 前尺 ) 为前尺中心设计坐标。 这里需要指
盾构施工测量施工方案
盾构施工测量施工方案一、引言在盾构施工过程中,测量是一项非常重要的工作。
盾构施工测量旨在确保隧道的准确位置和尺寸,以便保证隧道的安全和质量。
本文档将详细介绍盾构施工测量的方案和流程。
二、测量设备和工具在盾构施工测量中,需要使用以下设备和工具:1.全站仪:用于进行地面控制点的测量,可以实现高精度的角度和距离测量。
2.探测器:用于检测盾构机的推进位置,并确定盾构机的准确位置。
3.激光测距仪:用于测量隧道的长度和宽度。
4.水准仪:用于确定隧道的坡度和高程。
5.GPS定位系统:用于测量盾构机的实时位置和导航数据。
三、测量流程盾构施工测量的流程如下:1.建立地面控制点:根据设计要求,在施工现场周围建立地面控制点。
使用全站仪测量地面控制点的坐标,并将其记录在施工测量控制表中。
2.盾构机的起始位置确定:在盾构机开始推进之前,需要确定盾构机的起始位置。
使用探测器对盾构机进行测量,并确定盾构机的准确位置。
记录盾构机的起始位置坐标。
3.推进位置测量:在盾构机推进过程中,需要定期对盾构机的位置进行测量,以确保盾构机推进的准确性。
使用探测器对盾构机的位置进行测量,并将测量结果记录在施工测量控制表中。
4.隧道尺寸测量:在盾构施工过程中,隧道的尺寸是非常关键的。
使用激光测距仪对隧道的长度和宽度进行测量,并记录在施工测量控制表中。
5.坡度和高程测量:使用水准仪对隧道的坡度和高程进行测量,并将测量结果记录在施工测量控制表中。
6.盾构机位置监控:使用GPS定位系统对盾构机的实时位置进行监控,并实时记录盾构机的位置。
四、施工测量控制表样例测量项目起始位置(坐标)推进位置(坐标)长度(米)宽度(米)坡度高程1 (X1, Y1, Z1) (X2, Y2, Z2) 100 10 1/100 02 (X2, Y2, Z2) (X3, Y3, Z3) 200 12 1/150 23 (X3, Y3, Z3) (X4, Y4, Z4) 300 15 1/200 5 …………………五、安全注意事项在进行盾构施工测量时,需要注意以下安全事项:1.使用测量设备和工具时,需要严格按照使用说明进行操作,并遵守相关安全规定。
盾构(TBM)施工测量要求
关于盾构(TBM)施工测量的若干技术要求各盾构(TBM)项目部(工区):近年来,随着盾构(TBM)法施工的工地不断增多,与其相配套的施工测量技术也逐渐成熟,但因测量人员经验及素质原因和导向系统设备原因、加上洞内施工和环境的影响、盾构(TBM)和导向系统之间设计配套、以及隧道平纵线形设计因素、地质因素等客观原因,部分工地出现了导向系统故障多、误差大、影响掘进时间长、一些工地甚至多次出现了较大的掘进偏差等现象。
为使施工测量工作更好地服务于现场,高可靠性、高精度地实时提供盾构(TBM)姿态数据,使盾构(TBM)按照设计轴线精确掘进,各项建筑能够满足设计、限界要求,现根据相关测量规范、导向系统工作特点及各工地施工测量经验总结,列出以下盾构(TBM)施工测量若干要求,请各项目部根据本工地实际情况参照执行:一、盾构(TBM)初始姿态测量与人工导向1、机器初始位置测量盾构(TBM)组装完成/始发前,必须用人工测量方法测定机器盾壳或内部精密结构件特征点,计算机器姿态数据:包括刀盘切口里程、切口处平面、高程偏差、盾尾处平面、高程偏差、偏航角、俯仰角、滚动角等。
对于新机器,需要自行安装或要求导向系统技术服务人员安装若干个人工测量点,然后测量、计算人工测量点在盾构独立坐标系中的坐标并妥善保存,建立掘进过程中的人工导向系统。
对于旧机器,也需恢复、测量并计算复核人工检查点既有数据。
人工测量点位布置原则:(1)人工测量点位应布置在与TBM掘进轴线相对位置不会发生变动的地方,能够真实反应机器姿态;(2)点位之间尽可能拉大距离,提高推算刀盘切口姿态数据的精度. (3)在掘进过程中,置镜同一地方应至少能够观测到三个以上符合以上两条要求的点位,可多设几个检查点以备选择;同时根据掘进时通视条件,在机器上合适位置焊接仪器强制对中钢板(保证在人工测量过程中不发生移动即可)。
2、导向系统导向系统测量结果与人工测量结果进行对比,较差不大于导向系统中误差的2倍(导向系统中误差由项目部测量组根据不同的机器和导向系统,以及设计文件和相关规范规定的掘进偏差中误差确定),如超出限差时应查找原因。
地铁盾构施工测量技术
地铁盾构施工测量技术在进行盾构机组装时,VMT公司的测量工程师就已经在盾体上布置了盾构姿态测量的参考点(共21个),如图9。
并精准测定了各参考点在TBM坐标系中的三维坐标。
咱们在进行盾构姿态的人工检测时,能够直接利用VMT公司提供的相关数据来进行计算。
其中盾体前参考点及后参考点是虚拟的,实际是不存在的):图9 S267盾构机参考点的布置盾构姿态人工检测的测站位置选在盾构机第一节台车的连接桥上,此处通视条件超级理想,而且专门好架设全站仪。
只要在连接桥上的中部焊上一个全站仪的连接螺栓就能够够了。
测量时,应依照现场条件尽可能使所选参考点之间连线距离大一些,以保证计算时的精度,最好保证左、中、右各测量一两个点,如此就能够够提高测量计算的精度。
例如在咱们在选择S267盾构机的参考点时,即是选择的一、10、21三点作为盾构姿态人工检测的参考点。
盾构姿态的计算盾构姿态的计算原理盾构机作为一个近似的圆柱体,在开挖掘进进程中咱们不能直接测量其刀盘的中心坐标,只能用间接法来推算出刀盘中心的坐标。
图10盾构姿态计算原理图如图A 点是盾构机刀盘中心,E 是盾构机中体断面的中心点,即AE 连线为盾构机的中心轴线,由A 、B 、C 、D 、四点组成一个四面体,测量出B 、C 、D 三个角点的三维坐标(x i ,y i , z i ),依照三个点的三维坐标(x i , y i , z i )别离计算出L AB , L AC , L AD , L BC , L BD ,L CD , 四面体中的六条边长,作为以后计算的初始值,在盾构机掘进进程中L i 是不变的常量,通过对B 、C 、D 三点的三维坐标测量来计算出A点的三维坐标。
同理,B 、C 、D 、E 四点也组成一个四面体,相应地求得E 点的三维坐标。
由A 、E 两点的三维坐标就能够计算出盾构机刀盘中心的水平偏航,垂直偏航,由B 、C 、D 三点的三维坐标就能够确信盾构机的仰俯角和转动角,从而达到检测盾构机姿态的目的。
盾构测量方案.
盾构机始发初始状态测量(1)盾构机导轨定位测量盾构机导轨测量主要控制导轨的中线与设计隧道中线偏差不能超限,导轨的前后高程与设计高程不能超限,导轨下面是否坚实平整等。
(2)反力架定位测量反力架定位测量包括反力架的高度、俯仰度、偏航等,反力架下面是否坚实、平整。
反力架的稳定性直接影响到盾构机始开掘进是否能正常按照设计的方位进行。
(3) 演算工房导向系统初始测量盾构机姿态盾构机姿态初始测量包括测量水平偏航、俯仰度、扭转度。
盾构机的水平偏航、俯仰度是用来判断盾构机在以后掘进过程中是否在隧道设计中线上前进,扭转度是用来判断盾构机是否在容许范围内发生扭转。
(4) 人工复测盾构姿态为了保证导向系统的正确性和可靠性,在盾构机始发前,应进行盾构姿态的人工检测。
.2盾构机姿态测量原理〔1〕演算工房导向系统①导向系统介绍在掘进隧道的过程中,为了防止盾构机发生意外的运动及方向的突然改变, 必须对盾构机的位置和隧道设计轴线的相对位置关系进行持续地监控测量,使盾构机能够按照设计路线精确地推进。
日本株式会社的演算工房就是为此而开发,该系统为使盾构机沿设计轴线(理论轴线)掘进提供所有重要的数据信息。
该系统是由激光全站仪(天宝5600) 、中央控制箱、ESL靶、控制盒和计算机及掘进软件组成。
其组成见图1。
图1 盾构机导向系统组成②导向根本原理洞内控制导线是支持盾构机掘进导向定位的根底。
激光全站仪安装在位于盾构机尾部右上侧管片的拖架上,后视一基准点(后视靶棱镜)定位后。
全站仪自动掉过方向来,搜寻ELS靶, ELS接收入射的激光定向光束,即可获取激光站至ELS 靶间的方位角、竖直角,通过ELS棱镜和激光全站仪就可以测量出激光站至ELS 靶间的距离。
盾构机的仰俯角和滚动角通过ELS靶内的倾斜计来测定。
ELS靶将各项测量数据传向主控计算机,计算机将所有测量数据汇总,就可以确定盾构机在坐标系统中的精确位置。
将前后两个参考点的三维坐标与事先输入计算机的隧道设计轴线比拟,就可以显示盾构机的推进姿态。
盾构姿态人工测量方法
盾构姿态人工测量方法隧道公司哈尔滨地铁项目部王维鹏摘要:本文以哈尔滨地铁哈-南区间两台维尔特盾构机盾构姿态人工复核方法为例,运用布设特征点、在CAD中建立特征模型等方式,总结出了在盾构施工中人工检查盾构机姿态的方法。
关键词:盾构机姿态人工复核Auto CAD在盾构法隧道施工中,为了确定盾构推进过程中盾构机的实时姿态,需要在其推进时实时的进行测量,为此一般盾构机上都配有自动导向系统。
根据施工中的实际情况,无论盾构机有没有配备导向系统,对盾构姿态进行人工复核都是非常必要的。
在哈尔滨地铁哈东站—>南直路区间施工中,由于我公司两台维尔特盾构机的导向系统PPS经过了长途运输并多次拆解安装,原有的机械参数都不同程度的发生了变化,我们在该区间始发时对导向系统进行了全面的检修,并自主进行了导向系统硬件及软件的安装,并在此基础上摸索出一套简单的人工对盾构机姿态进行复核的方法。
下面分步骤进行简述。
1.概述盾构机装完成始发前,实地或运用相对局部坐标系,或直接用大地坐标系,在统一的坐标系统下用一定测量方法测出盾构机中轴线及特征点的空间三维坐标。
这些三维坐标之间的关系本身就代表了特征点与盾构机中轴线之间的关系。
而这一关系即是我们建立特征模型的基础。
一般我们将盾构机定义为一个刚性圆柱体,其前端面圆心O2与后端面圆心O1的连线O2O1定义为盾构机的中轴线。
2.特征模型的建立2.1特征点的制作根据盾构机导向系统本身的特点,特征点有时候需要我们自己根据盾构机的特征进行制作,布设。
最简单的方法就是用反射贴片直接贴在盾体的刚性结构上,粘贴位置根据通视情况而定。
当然也可以采用螺杆焊接的方法,制作一些特殊装置可以将棱镜安装在上面,如图一所示。
a、反射贴片特征点示意b 、螺杆焊接特征点制作简图 图1 盾构机特征点制作简图2.2 盾构机中轴线及特征点坐标测量5图2 特征断面及测量点位分布图盾构机的中轴线一般采用测切口及盾尾两个截面的几何中心求得,如图2所示,一般在特征断面(如切口和盾尾)上等距的测量如上图中若干点位的三维坐标(X,Y,Z )。
盾构机姿态的人工复测方法
盾构机姿态的人工复测方法作者:黄小斌方杰俞海林来源:《城市建设理论研究》2013年第17期【摘要】针对地铁隧道盾构法施工中盾构机的自动导向方法,提出盾构机姿态的人工复测方法,通过在Excel中编辑盾构掘进坐标解算程序来计算盾构机掘进时的三维坐标,使通过自动导向系统指导盾构施工的隧道在质量上得到了强有力的保证,保证隧道的顺利贯通。
【关键词】城市地铁;盾构法施工;人工复测方法Shield construction machine posture of the artificial reeated measure methodAbstract:In shield tunnel construction of shield construction machine automatic orientation method, put forward the shield construction machine posture of the artificial reeated measure method, through the in Excel shield tunneling coordinates editor for calculating program to calculate shield construction machine tunneling of three-dimensional coordinates, make through the automatic orientation system of shield tunnel construction guidance in quality get the powerful guarantee, ensure the smooth tunnel breakthrough.Key words:urban subway; shield tunneling; artificial reeated measure method中图分类号:F291.1 文献标识码:A 文章编号:目前,在国内盾构法施工中,盾构机的导向方法既有人工测量法,也有自动导向法。
地铁盾构施工中人工测量盾构机姿态的方法
27 884. 503 1
- 21. 440 1
8
37 555. 273 2
27 884. 765
- 21. 193 6
9
37 554. 912 9
27 885. 383 8
- 20. 849
10
37 554. 291 4
27 886. 14
- 20. 823 6
11
37 553. 895 1
27 886. 622 4
文献标识码 :A
随着城市建设的飞速发展 ,我国在各大城市都开展了地铁建设 , 为了满足盾构掘进按设计要求贯通 (贯通误差必须小于 ±50 mm) , 必须研究每一步测量工作所带来的误差 ,包括地面控制测量 ,竖 井联系测量 ,地下导线测量 ,盾构机姿态定位测量 4 个阶段 。
1 盾构机自动导向系统的组成与功能
任意三个点 (最好取左 、中 、右三个点) 的实际三维坐标 ,就可以计 算盾构机的姿态 (但在实际操作中 ,我们往往会多测量几个点 ,以
便剔除粗差与检核) 。对于以盾构机轴线为坐标系的局部坐标来 说 ,无论盾构机如何旋转和倾斜 ,这些参考点与盾构机的盾首中 心和盾尾中心的空间距离是不会变的 ,它们始终保持一定的值 , 这些值我们可以从它的局部坐标计算出来 。
行养护 。
4 质量控制 4. 1 施工作业条件
1) 屋面结构层和挡土墙施工完成 ,已办理验收手续和隐蔽记 录 。2) 穿过屋面的各种管件根部及屋面构筑物 、伸缩缝 、天沟等 根部均已按设计要求施工完毕 。3) 屋面标高和排水坡度的基准 点和水平基准控制线已设置或标志 。4) 种植屋面所用材料已运 到现场 ,经复检材料质量符合要求 ; (细石混凝土) 配合比已经确 认 。5) 施工机具已备齐 ,水 、电已接通 。6) 气温不低于 5 ℃。
有关盾构机姿态人工测量及计算方法的论证
有关盾构机姿态人工测量及计算方法的论证引言:盾构机是一种用于隧道建设的工程设备,通过推进机身以及修建隧道衬砌的方式,能够在地下进行隧道的建造。
在盾构机的施工过程中,准确测量盾构机的姿态是非常重要的,因为它直接影响到隧道施工的质量与安全。
本文将论证有关盾构机姿态的人工测量及计算方法的可行性与可靠性。
一、盾构机姿态测量的重要性盾构机姿态测量的准确性对于隧道建设来说至关重要。
一方面,它直接影响到隧道的水平度和垂直度,这对于确保隧道的通畅和安全非常重要。
另一方面,姿态测量可以提供盾构机相关数据,对于控制推进方向和修建隧道衬砌都有重要意义。
因此,准确的姿态测量可以大大提高盾构机的施工效率和质量。
二、盾构机姿态的人工测量方法1.气泡水平仪测量法气泡水平仪是一种常见的测量工具,可以通过测量水平仪上的气泡位置来判断物体的水平度。
在盾构机的姿态测量中,可以将气泡水平仪固定在盾构机上,并通过观察气泡的位置来判断机身的水平度。
2.视觉测量法视觉测量是一种常见的测量方法,在盾构机姿态测量中也可以应用。
通过设置相机系统,拍摄盾构机姿态的照片,然后通过计算机软件对照片进行分析和处理,从而得到盾构机的姿态信息。
三、盾构机姿态的人工计算方法1.几何测量法几何测量法是通过测量多个参考点的位置和距离来计算盾构机的姿态。
可以根据盾构机特定的结构和设计,找到一些参考点,测量它们的位置和距离,并进行数学计算,从而得到盾构机的姿态。
2.运动学计算法运动学计算法是通过运动学原理和运动学方程来计算盾构机的姿态。
可以根据盾构机运动的轨迹和速度等信息,利用运动学定律进行计算,从而得到盾构机的姿态。
人工测量及计算方法对于盾构机姿态的准确性和可靠性具有一定的保障。
首先,人工测量可以选择合适的测量工具和方法,以提高测量的精度和准确性。
其次,计算方法可以根据盾构机的特点和施工条件进行合理的调整和优化,从而得到准确的姿态数据。
此外,人工测量及计算方法相对简单可行,不需要过于复杂的设备和系统,便于现场操作和实施。
盾构施工测量方案
目录一、VMT导向系统 (1)1、盾构施工的坐标系统 (1)2、定向系统的基本组成与功能 (2)3、定向基本原理 (3)二、盾构机始发掘进阶段测量 (4)1、始发定向测量 (4)2、观测要求及精度 (5)3、盾构机始发托架及反力架安装测量 (7)1)始发托架的高程控制 (7)2)始发托架的平面位置控制 (8)3)始发托架、基准环及反力架的检查 (9)4、始发掘进阶段测量 (9)1)、盾构机姿态人工复测 (10)2)、环片测量 (11)3)、盾构机姿态测量的误差分析 (12)三、隧道洞内施工测量 (12)1、激光站的移站 (12)1)、移站距离的确定 (13)2)、激光站的移站 (14)2、激光站的人工检查 (15)3、洞内精密导线网和水准网的测设 (16)4、盾构机姿态人工复测 (18)5、隧道环片测量 (18)四、贯通误差预计 (19)1.平面贯通误差分析 (19)⑴平面贯通误差的主要来源 (19)⑵各项误差源的分析 (19)⑶平面贯通测量误差预计 (23)2.高程贯通误差分析 (23)(1)高程贯通误差来源 (23)(2)各种误差源的分析 (24)(3)高程贯通误差的预计 (25)五、竣工测量 (25)1、贯通测量: (25)2、竣工验收测量: (26)六、测量技术保证措施 (26)一、VMT导向系统在掘进隧道的过程中,为了避免隧道掘进机(TBM)发生意外的运动及方向的突然改变, 必须对TBM的位置和DTA(隧道设计轴线)的相对位置关系进行持续地监控测量。
TBM能够按照设计路线精确地掘进,则对掘进各个方面都有好处(计划更精确,施工质量更高)。
这就是TBM采用“导向系统”(SLS)的原因。
德国VMT公司的SLS-T系统就是为此而开发,该系统为使TBM沿设计轴线(理论轴线)掘进提供所有重要的数据信息。
1、盾构施工的坐标系统(1)D TA坐标系DTA坐标系是盾构施工坐标系统,它是以线路设计中线为参照的一种三维坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
盾构机姿态人工测量方案
由于ELS靶被送往德国进行例行的检修,大汉盾构区间右线暂时无法使用SLS-T 导向系统,为保证盾构日常掘进的需要,确保盾构机按设计轴线前进,拟采用人工测量的办法测量出盾构机当前的姿态,以指导盾构机的掘进。
以下对盾构机姿态的人工测量方案进行说明:
§1原理
盾构机在出厂时,开发SLS-T导向系统的VMT公司就根据盾构机的设计与加工尺寸,在盾构机中体的隔板上布置了12~16个测点,所有的测点都在出厂前详细测设了每一个测点与刀盘中心的相对位置。
盾构机姿态人工测量就是利用人工直接采用控制导线的测量办法详细测出这些测点中的部分点位的绝对坐标,然后根据测点与刀盘中心的空间关系,反算出刀盘中心坐标,最后根据设计线路参数与刀盘中心的绝对坐标的空间关系推算出盾构机的三维控制姿态。
§2适用范围
2.1盾构机始发姿态测量
盾构机始发姿态便是由人工测量出的盾构机姿态。
盾构机始发定位时需精确测定ELS靶相对于盾构机主机的相对位置关系,其方法便是根据人工测量出的盾构机姿态,在SLS-T导向系统的微机中调整ELS靶的位置参数,以改变微机上显示的盾构机姿态,当盾构机上显示的姿态与人工测量出的盾构机姿态一致时,便可认为当前ELS靶的位置参数是正确的,ELS靶始发定位调试顺利完成。
2.2对S L S-T导向系统的复核
在掘进施工中,利用人工测量的办法测量出盾构机当前的姿态,与SLS-T导向系统显示的盾构机姿态进行比较,来复核导向系统的测量成果。
2.3盾构掘进施工测量
利用人工测量出的盾构机姿态可指导盾构机的掘进施工,保证盾构机按设计轴线前进。
盾构掘进施工中,人工测量盾构机姿态的测量频率为每环1次。
§3实例
以大汉盾构区间右线所用的S180盾构机为例,盾构机中体的隔板上布置了12个测点,这些测点与刀盘中心的相对位置如下表:
3.1右线始发姿态测量
在始发姿态测量时利用控制导线测出的测点绝对坐标见下表:
根据这些测点与刀盘中心的位置关系,推算出刀盘中心的绝对坐标,然后根据刀盘中心绝对坐标和隧道设计中线的空间关系推算出盾构机始发姿态如下:
刀盘(mm) 后体(mm) 趋势(mm/m) 里程(m)
水平方向-12.7 43.4 12 15883.9569
竖直方向31.7 31 0
旋转:0.6mm/m 坡度:-1.9mm/m
3.2当前盾构机姿态测量
利用控制导线测出的当前测点的绝对坐标见下表:
根据这些测点与刀盘中心的位置关系,推算出刀盘中心的绝对坐标,然后根据刀盘中心绝对坐标和隧道设计中线的空间关系推算出盾构机当前姿态如下:
刀盘(mm) 后体(mm) 趋势(mm/m) 里程(m)
水平方向27 26 0 15705.102
竖直方向11 4 1
旋转:-4 mm/m 坡度: 5 mm/m
§4测量仪器与测量精度
所用仪器为徕咔TCA1103全站仪
采用此方法进行人工测量,测量精度可以达到如下标准:
平面偏差±5mm;
高程偏差±5mm;
纵向坡度偏差1‰;
盾构机旋转偏差1‰;
盾构机刀盘里程偏差±10mm。