23不等式的解集与区间
二元二次不等式解法步骤_概述及解释说明
二元二次不等式解法步骤概述及解释说明1. 引言1.1 概述二元二次不等式是数学中常见的一类不等式,其形式为ax^2 + bxy + cy^2 + dx + ey + f > 0 或者ax^2 + bxy + cy^2 + dx + ey + f < 0。
解决这类不等式需要运用特定的解法步骤,以得出满足条件的变量取值范围。
本文将介绍二元二次不等式解法步骤,并详细解释其基本原理和概念。
1.2 文章结构本文分为五个部分,每个部分内容各有侧重。
首先在引言部分进行概述,介绍文章的结构和目标。
接下来,在第2部分探讨二元二次不等式的定义、解法步骤的概述以及基本原理说明。
第3部分会详细介绍方法一:因式分解与区间判断法,并提供相关示例演示与实例分析。
在第4部分中,我们将介绍方法二:图像法与辅助函数法,并对比两种方法的优缺点以及适用情况进行讨论。
最后,在第5部分进行总结回顾并展望可能的拓展方向。
1.3 目的本文旨在帮助读者更好地理解和掌握二元二次不等式的解法步骤。
通过对问题背景和基本原理的介绍,读者将能够学会使用因式分解与区间判断法以及图像法与辅助函数法来解决这类不等式问题。
文章也将探讨两种方法的优缺点及其适用情况,以帮助读者选择最合适的解题方法。
通过阅读本文,读者将能够提升对二元二次不等式解法步骤的理解和运用能力,并在实际问题中更加灵活地应用所学知识。
2. 二元二次不等式解法步骤的基本原理和概念2.1 二元二次不等式的定义二元二次不等式是具有一般形式Ax^2 + Bxy + Cy^2 + Dx + Ey + F > 0(或< 0)的不等式,其中A、B、C、D、E 和F 是实数系数,而x 和y 是变量。
2.2 解法步骤概述解决二元二次不等式的一般步骤可以总结如下:(a) 将不等式表达式整理为标准形式,即将项排列顺序调整,并保持主项为正(负)。
(b) 将一元项进行配方,使问题转化为一元二次不等式。
不等式的解集与区间教学设计人教版
此外,还需要准备一些教学工具,如黑板、粉笔、投影仪等,以便进行课堂教学的演示和讲解。同时,确保每位学生都有足够的学习空间,可以准备一些桌椅,以适应不同的教学活动需求。
二、新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解不等式的解集和区间的基本概念。不等式的解集是……(详细解释概念),它能够表示所有满足不等式的实数构成的集合。区间是……(解释其概念和表示方法),它用于表示不等式解集的一种图形化表示方法。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了不等式的解集和区间在实际中的应用,以及它们如何帮助我们解决问题。
5.请将不等式2x^2+x+1<0的解集用区间表示出来。
答案:
1.解集为{x | x>3或x<1}
2.解集为{x | x<1或x>2}
3.解集为{x | 1<x<3}
4.解集为{x | x>-1或x<-3}
5.解集为{x | -1<x<-3}
不等式的解集与区间教学设计人教版
授课内容
授课时数
授课班级
授课人数
授课地点
授课时间
教材分析
本节课的教学内容是“不等式的解集与区间教学设计”,所使用的是人教版教材。本节课的主要内容是让学生理解不等式的解集及其表示方法,掌握区间的概念及其表示方法,能够将实际问题转化为不等式,并求出其解集和区间。
本节课的教学对象是初中二年级的学生,他们已经掌握了不等式的基本性质,具备了一定的代数基础。在学习本节课的内容时,他们需要将已有的知识与新的知识进行整合,形成系统的不等式知识体系。
2020年高考数学(文)母题题源解密23 不等式选讲(全国Ⅱ专版原卷版)
专题23 不等式选讲【母题来源一】【2020年高考全国Ⅱ卷文数】已知函数2()|21|f x x a x a =-+-+. (1)当2a =时,求不等式()4f x 的解集; (2)若()4f x ≥,求a 的取值范围. 【答案】(1)32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭;(2)(][),13,-∞-+∞.【分析】(1)分别在3x ≤、34x <<和4x ≥三种情况下解不等式求得结果; (2)利用绝对值三角不等式可得到()()21f x a ≥-,由此构造不等式求得结果. 【解析】(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤;当34x <<时,()4314f x x x =-+-=≥,无解;当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥; 综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭.(2)()()()()22222121211f x x a x a x ax a aa a =-+-+≥---+=-+-=-,当且仅当221a x a -≤≤时取等号,()214a ∴-≥,解得:1a ≤-或3a ≥,a ∴的取值范围为(][),13,-∞-+∞.【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于常考题型. 【母题来源二】【2019年高考全国Ⅱ卷文数】已知()|||2|().f x x a x x x a =-+-- (1)当1a =时,求不等式()0f x <的解集; (2)若(,1)x ∈-∞时,()0f x <,求a 的取值范围. 【答案】(1)(,1)-∞;(2)[1,)+∞【解析】(1)当a =1时,()=|1| +|2|(1)f x x x x x ---.当1x <时,2()2(1)0f x x =--<;当1x ≥时,()0f x ≥.所以,不等式()0f x <的解集为(,1)-∞. (2)因为()=0f a ,所以1a ≥.当1a ≥,(,1)x ∈-∞时,()=() +(2)()=2()(1)<0f x a x x x x a a x x -----. 所以,a 的取值范围是[1,)+∞.【名师点睛】本题主要考查含绝对值的不等式,熟记分类讨论的方法求解即可,属于常考题型. 【母题来源三】【2018年高考全国Ⅱ卷文数】设函数()5|||2|f x x a x =-+--. (1)当1a =时,求不等式()0f x ≥的解集; (2)若()1f x ≤,求a 的取值范围.【答案】(1){|23}x x -≤≤;(2)(,6][2,)-∞-+∞.【解析】(1)当1a =时,24,1,()2,12,26, 2.x x f x x x x +≤-⎧⎪=-<≤⎨⎪-+>⎩可得()0f x ≥的解集为{|23}x x -≤≤. (2)()1f x ≤等价于|||2|4x a x ++-≥.而|||2||2|x a x a ++-≥+,且当2x =时等号成立. 故()1f x ≤等价于|2|4a +≥. 由|2|4a +≥可得6a ≤-或2a ≥, 所以a 的取值范围是(,6][2,)-∞-+∞.【命题意图】1.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式: (1)a b a b +≤+. (2) a b a c c b -≤-+-.(3)会利用绝对值的几何意义求解以下类型的不等式:; ; ax b c ax b c x a x b c +≤+≥-+-≥.2.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.3.主要考查逻辑推理能力、运算求解能力,考查分类讨论、数形结合思想方法,考查逻辑推理、数学运算等核心素养. 【命题规律】从近三年高考情况来看,此类知识点以解答题的形式出现,主要考查绝对值不等式的解法、不等式的证明、求最值问题等. 【方法总结】(一)解绝对值不等式的常用方法有:(1)公式法:对于形如|f (x )|>g (x )或|f (x )|<g (x ),利用公式|x|<a ⇔−a<x<a (a>0)和|x|>a ⇔x>a 或x<−a (a>0)直接求解不等式;(2)平方法:对于形如|f (x )|≥|g (x )|,利用不等式两边平方的技巧,去掉绝对值,需保证不等式两边同正或同负,即|f (x )|≥|g (x )|⇔f (x )2≥g 2(x );(3)零点分段法:对于形如|f (x )|±|g (x )|≥a ,|f (x )|±|g (x )|≤a ,利用零点分区间法脱去绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解;(4)几何法:对于形如|x±a|±|x±b|≤c ,|x±a|±|x±b|≥c ,利用绝对值三角不等式的性质求解,即 ①定理1:如果a ,b 是实数,则|a+b|≤|a|+|b|,当且仅当ab ≥0时,等号成立.②定理2:如果a ,b ,c 是实数,那么|a−c|≤|a−b|+|b−c|,当且仅当(a−b )(b−c )≥0时,等号成立. ③推论1:||a|−|b||≤|a+b|. ④推论2:||a|−|b||≤|a−b|.(5)图象法:对于形如|f (x )|+|g (x )|≥a 可构造y=|f (x )|+|g (x )|−a 或y=|f (x )|+|g (x )|与y=a ,在直角坐标系中作出不等式两边所对应的两个函数的图象,利用函数图象求解或通过移项构造一个函数. (二)含绝对值不等式的恒成立问题的常见类型及其解法:(1)分享参数法运用“max min ()(),()()f x a f x a f x a f x a ≤⇔≤≥⇔≥”可解决恒成立中的参数范围问题.求最值的思路:利用基本不等式和不等式的相关性质解决;将函数解析式用分段函数形式表示,作出函数图象,求得最值;利用性质“||||||||||||a b a b a b -≤±≤+”求最值.(2)更换主元法不少含参不等式恒成立问题,若直接从主元入手非常困难或不可能解决时,可转换思维角度,将主元与参数互换,常可得到简捷的解法.(3)数形结合法在研究曲线交点的恒成立问题时,若能数形结合,揭示问题所蕴含的几何背景,发挥形象思维和抽象思维各自的优势,可直接解决问题. (三)不等式的证明(1)比较法证明不等式最常用的是差值比较法,其基本步骤是:作差—变形—判断差的符号—下结论.其中“变形”是证明的关键,一般通过因式分解或配方将差式变形为几个因式的积或配成几个代数式平方和的形式,当差式是二次三项式时,有时也可用判别式来判断差值的符号.个别题目也可用柯西不等式来证明.(2)基本不等式:如果a ,b>0,那么2a b+≥,当且仅当a=b 时,等号成立.用语言可以表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数.(3)算术平均—几何平均定理(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均数不小于它们的几何平均数,即12nn a a a n+++≥当且仅当a 1=a 2=…=a n 时,等号成立.1.(2020·山西省高三)已知函数()|1||2|f x x x a =++-. (1)若1a =,解不等式()4f x <;(2)对任意的实数m ,若总存在实数x ,使得224()m m f x -+=,求实数a 的取值范围.2.(2020·四川省泸县第二中学高三二模)已知函数()211f x x x =-++. (1)求不等式()2f x x ≤+的解集;(2)若函数()y f x =的最小值记为m ,设0a >,0b >,且有a b m +=.求1212a b +++的最小值. 3.(2020·深圳市宝安中学(集团)高三月考)已知定义在R 上的函数()|1||2|f x x x =++-的最小值为a .(1)求a 的值.(2)若p ,q ,r 为正实数,且p q r a ++=,求证:2223p q r ++≥.4.(2020·江西省高三)已知函数()221f x x x =-+-. (1)求不等式()6f x <的解集;(2)若函数()f x 的最小值为m ,且实数a ,b 满足222a b m +=,求34a b +的最大值. 5.(2020·山西省高三月考)已知函数()|1|2|2|)(R f x x x x =-+-∈,记()f x 得最小值为m . (1)解不等式()5f x ≤;(2)若2a b m +=,求22a b +的最小值.6.(2020·吉林省高三)已知函数()12f x x x =-+(1)在平面直角坐标系中作出函数()f x 的图象,并解不等式()2f x ≥; (2)若不等式()15f x x k +-≥-对任意的x ∈R 恒成立,求证:65k k+≥.7.(2020·山西省高三)已知函数()12f x x x a =++-. (1)若1a =,解不等式()4f x <;(2)对任意的实数m ,若总存在实数x ,使得()224m m f x -+=,求实数a 的取值范围.8.(2020·山西省太原五中高三月考)已知函数()1211f x x x =-+++ (1)求不等式()8f x <的解集;(2)若x R ∀∈,函数()2log f x a ≥恒成立,求实数a 的取值范围.9.(2020·全国高三)设函数()|2|f x x x =+-+,集合M 为不等式()0f x <的解集. (1)求集合M ;(2)当m ,n M ∈时,证明:3mn n ++.10.(2020·山西省高三)已知不等式23x x -<与不等式()20,x mx n m n R -+<∈的解集相同.(1)求m n -;(2)若(),,0,1a b c ∈,且ab bc ac m n ++=-,求222a b c ++的最小值. 11.(2020·重庆高三)已知函数f (x )=|2x ﹣1|﹣3|x +1|,设f (x )的最大值为M . (1)求M ;(2)若正数a ,b 满足3311a b +=Mab ,证明:a 4b +ab 443≥. 12.(2020·福建省高三)已知函数()1f x x a x =-+-. (1)当0a =时,求不等式()1f x ≤的解集A . (2)设()32f x x ≤-的解集为B ,若A B ⊆,求这数a 的值. 13.(2020·福建省高三)已知函数()12f x x x =-+-. (1)求不等式()3f x <的解集I ;(2)当a ,b ,c I ∈时,求证:11191111114333abb cc a++≤+++---.14.(2020·山西省高三)已知函数()2f x x =.(1)求不等式()1f x >的解集; (2)若正数,,a b c 满足24923a b c f ⎛⎫++=+⎪⎝⎭,求149a b c ++的最小值. 15.(2020·山西省太原五中高三月考)已知函数()()0, 0f x x a x b a b =-++>>. (1)当1a b ==时,解不等式()2f x x <+;(2)若()f x 的值域为[)3,+∞,证明:()224281a b b a b +++≥+.16.(2020·山西省高三)已知函数()()220f x x a x a a =-++>. (1)求不等式()3f x a ≥的解集;(2)若()f x 的最小值为()20b b ->17.(2020·陕西省西安中学高三)已知,,a b c R +∈,x R ∀∈,不等式|1||2|x x a b c ---≤++恒成立.(1)求证:22213a b c ++≥(2)求证 18.(2020·江苏省高三)已知x ,y ,z 均为正数,且11131112x y z ++≤+++,求证:4910x y z ++≥. 19.(2019·四川省高三月考)已知函数f (x )=|2x ﹣1|﹣|x +1|. (1)求不等式f (x )≤﹣1的解集M ;(2)结合(1),若m 是集合M 中最大的元素,且a +b =m (a >0,b >0),求+ 20.(2020·广东省高三月考) 已知函数()()20,0f x x a x b a b =-++>>. (1)当1a b ==时,解不等式()2f x x ≥-;(2)若函数()f x 的值域为[)2,+∞,求2242a b b a+的最小值. 21.(2020·宁夏回族自治区银川一中高三)已知()12f x x x =-+-. (1)求使得()2f x >的x 的取值集合M ;(2)求证:对任意实数a ,()0b a ≠,当R x C M ∈时,()a b a b a f x ++-≥恒成立. 22.(2020·河南省高三三模)已知是a ,b ,c 正实数,且21a b c ++=.()1求111abc++的最小值;()2求证:22216a b c ++≥. 23.(2020·江西省高三三模)已知()|||1|.f x k x x =+- (Ⅰ)若2k =,解不等式()5f x ≤.(Ⅱ)若关于x 的不等式()|1||22|f x x x ≤++-的充分条件是1,22x ⎡∈⎤⎢⎥⎣⎦,求k 的取值范围.24.(2020·河北省高三)已知a ,b ,c 为正实数,且a+b+c=1. (Ⅰ)证明:1111118a b c ⎛⎫⎛⎫⎛⎫---≥ ⎪⎪⎪⎝⎭⎝⎭⎝⎭; (Ⅱ)证明:32a b c b c a c a b ++≥+++. 25.(2020·南昌市新建一中高三)已知函数()21f x x x =---,函数()421g x x x m =---+-. (1)当()0f x >时,求实数x 的取值范围;(2)当()g x 与()f x 的图象有公共点时,求实数m 的取值范围. 26.(2020·四川省高三三模)已知函数()||f x x a =-.(1)当1a =时,求不等式11()x f x +>的解集; (2)设不等式|21|()x f x x -+的解集为M ,若1,12M ⎡⎤⊆⎢⎥⎣⎦,求实数a 的取值范围. 27.(2020·福建省高三)已知函数()212f x x x =--+,()221g x x m x =-++. (1)求不等式()2f x <的解集;(2)若存在1x ,2x ∈R ,使得()()120f x g x +=,求m 的取值范围. 28.(2020·青海省高三)设函数()21|1|f x x x =---. (1)求不等式()3f x <的解集;(2)若方程2()f x x ax =+有两个不等实数根,求a 的取值范围. 29.(2020·贵州省高三)设函数()16f x x x a =++--. (1)当2a =时,求不等式()0f x ≤的解集; (2)若()23f x a ≥-,求a 的取值范围.30.(2020·重庆高三)已知函数()22f x x x =+-的最小值为m . (1)求m 的值;(2)若实数a ,b 满足22a b m +=,求221112a b+++的最小值. 31.(2020·广州市天河外国语学校高三月考)已知函数()123f x x x =--+. (1)求不等式()1f x <的解集;(2)若存在实数x ,使得不等式()230m m f x --<成立,求实数m 的取值范围. 32.(2020·广东省高三)已知函数()1=-f x x . (1)解不等式()(1)4f x f x ++≥;(2)当0x ≠,x ∈R 时,证明:1()()2f x f x-+≥.33.(2020·福建省高三)已知函数2()1,()|||21|,f x x g x x a x a R =+=---∈.(1)当12a =时,解不等式27()2g x <-;(2)对任意12,x x R ∈,若不等式12()()f x g x ≥恒成立,求实数a 的取值范围. 34.(2020·湖北省高三)已知函数()|4||24|f x x x =--+. (1)解不等式()3f x ;(2)若()f x 的最大值为m ,且2a b c m ++=,其中0a ,0b ,3c >,求(1)(1)(3)a b c ++-的最大值.35.(2020·辽宁省高三三模)已知a ,b ,c 均为正数,设函数f (x )=|x ﹣b |﹣|x +c |+a ,x ∈R . (1)若a =2b =2c =2,求不等式f (x )<3的解集; (2)若函数f (x )的最大值为1,证明:14936a b c++≥. 36.(2020·广西柳城县中学高三)设函数()133f x x x a a =-+-+,x ∈R . (1)当1a =时,求不等式()7f x >的解集; (2)对任意m R +∈,x ∈R 恒有()49f x m m≥--,求实数a 的取值范围. 37.(2020·安徽相山淮北一中高三月考)已知函数()|2|f x ax =-. (Ⅰ)当4a =时,求不等式()|42|8f x x ++≥的解集;(Ⅱ)若[2,4]x ∈时,不等式()|3|3f x x x +-≤+成立,求a 的取值范围. 38.(2020·河南高三月考)已知函数()21f x x x =--+.(1)解不等式()2f x <;(2)若正实数m ,n 满足3m n +=,试比较122m n +与()32f x -的大小,并说明理由. 39.(2020·湖南衡阳市八中高三)已知实数正数x ,y 满足1x y +=.(1)解关于x 的不等式522x y x y ++-≤; (2)证明:2211119x y ⎛⎫⎛⎫--≥ ⎪⎪⎝⎭⎝⎭. 40.(2020·湖南雨花雅礼中学高三)已知函数()33f x x a x =-++. (1)若3a =,解不等式()6f x ≤;(2)若不存在实数x ,使得()162f x a x ≤--+,求实数a 的取值范围. 41.(2020·湖北黄州黄冈中学高三)已知()3f x x x =+-. (1)求不等式()5xf x x>的解集; (2)若()f x 的最小值为M ,且22a b c M ++=(a ,b ,c ∈R ),求证:2221a b c ++≥. 42.(2020·湖北黄州黄冈中学高三)已知1()||f x x a x a=++-. (1)当1a =时,求不等式()6f x 的解集M ; (2)若a M ∈,求证:10()3f x . 43.(2020·河北桃城衡水中学高三三模)已知函数()11f x x a x =+--. (1)当2a =-时,解不等式()5f x >; (2)若()3f x a x ≤+,求a 的最小值.44.(2020·宁夏原州固原一中高三)已知函数()|3|2f x x =+-. (1)解不等式|()|4f x <;(2)若x R ∀∈,2()|1|41f x x t t ≤--+-恒成立,求实数t 的取值范围. 45.(2020·河南郑州一中高三)已知a ,b ,c 为正实数,且满足a +b +c =1.证明:(1)|a 12-|+|b +c ﹣1|12≥; (2)(a 3+b 3+c 3)(222111a b c ++)≥3. 46.(2020·贵州贵阳一中高三)已知函数()3f x x x a =--.(1)当0a =时,求解关于x 的不等式2()10f x x +->的解集;(2)当[]2,3x ∈时,该不等式()1f x ≥-恒成立,求a 的取值范围.47.(2020·云南红河高三)已知函数()|1||1|f x x x =++-.(Ⅰ)求不等式()8f x ≤的解集M ;(Ⅱ)若m 为M 中的最大元素,正数a ,b 满足.12m a b +=,证明2142a b ab ++≥.48.(2020·重庆九龙坡高三)已知函数()f x =(1)求()f x 的最大值;(2)若关于x 的不等式()|1|f x a -有解,求实数a 的取值范围.49(2019·河北辛集中学高三月考)已知函数()43f x x x =-++.(1)解不等式()9f x <;(2)若不等式()21f x a <-+在实数R 上的解集不是空集,求正数a 的取值范围.50.(2020·河南南阳高三二模)已知a ,b ,c 均为正实数,函数222111()4f x x x a b c =+-++的最小值为1.证明:(1)22249a b c ++≥;(2)111122ab bc ac++≤. 51.(2020·河南高三)已知函数()221f x x x =-++.(1)求不等式()4f x ≤的解集;(2)若函数()1y f x x =++的最小值为k ,求()220km m m+>的最小值. 52.(2020·安徽六安一中高三)已知()()2f x x m m m R =-+∈.(1)若不等式()2f x ≤的解集为13,22⎡⎤⎢⎥⎣⎦,求m 的值; (2)在(1)的条件下,若a ,b ,c +∈R ,且4a b c m ++=,求证:4436ac bc ab abc ++≥. 53.(2020·辽宁实验中学高三)设函数()|21|f x x =-.(1)设()(1)5f x f x ++<的解集为A ,求集合A ;(2)已知m 为(1)中集合A 中的最大整数,且a b c m ++=(其中a ,b ,c 为正实数),求证:1118a b c a b c---⋅⋅≥. 54.(2020·安徽芜湖高三一模)设,,x y z ∈R ,且1x y z ++=.(1)证明:22213x y z ++≥; (2)求()()()222111x y z -++++的最小值.55.(2020·河南高三)已知函数()2f x x a x =-++.(1)当1a =时,求不等式()7f x ≤的解集;(2)若0x R ∃∈,()03f x a ≤-,求实数a 的取值范围.56.(2020·河南开封高三二模)已知函数()2231f x x x =+--.(1)求函数()f x 的最大值M ;(2)已知0a >,0b >,4a b M +=,求2221a b a b +++的最大值. 57.(2020·福建高三)已知函数()12f x x x =-+-.(1)求不等式()3f x <的解集I ;(2)当a ,b ,c I ∈时,求证:11191111114333a b b c c a ++≤+++---.58.(2020·湖南雅礼中学高三月考)已知不等式15|2|22x x -++≤的解集为M . (1)求集合M ; (2)设集合M 中元素的最大值为t .若0a >,0b >,0c >,满足111223t a b c ++=,求2993a b c ++的最小值.59.(2020·甘肃省静宁县第一中学高三)已知函数()211f x x x =++-. (1)解不等式()3f x ≥;(2)记函数()f x 的最小值为m ,若,,a b c 均为正实数,且122a b c m ++=,求222a b c ++的最小值. 60.(2020·广东东莞高三)已知函数1()|||3|2()2f x x k x k R =-++-∈. (1)当1k =时,解不等式()1f x ≤;(2)若()f x x 对于任意的实数x 恒成立,求实数k 的取值范围.。
数学(第一册)不等式22.2 区间
§2.2 区 间【教学目的】理解区间的概念,掌握用区间表示不等式解集的方法,并能在数轴上表示出来.【教学重点】各类区间的符号表示.【教学难点】对“∞”符号的理解.【教学过程】不等式(组)的解集也可以用区间来表示.介于两个实数之间的所有实数的集合叫做区间.这两个实数叫做区间的端点. 设a ,为任意两个实数,且,规定: 注:符号“”读作“无穷大”,它不是一个数,只是一个记号,“”表示可以无限制地增大,“-∞”表示可以无限制地减小.例1 用区间表示下列不等式的解:3113x x +≥-.解 移项得31103x x +-≥-,(问:能不能先去分母?) 整理得203x x +≥-.它可化为不等式组:(1) 2030x x +≥⎧⎨->⎩ 或 (2) 2030x x +≤⎧⎨-<⎩.解(1)得 3x >;解(2)得 2x ≤-. 所以,原不等式的解为 ()(,2]3,x ∈-∞-+∞.例2 求下列不等式的解集:⎩⎨⎧≤->+053062x x .解 解 ⎩⎨⎧≤->+053062x x 得353x x >-⎧⎪⎨≤⎪⎩,即533x -<≤. 则原不等式的解集为533x x ⎧⎫-<≤⎨⎬⎩⎭,用区间表示为53,3⎛⎤- ⎥⎝⎦. 课堂练习练习1:见书P35.练习2:1. 用区间表示下列数集:(1) 数集B 是大于等于1的实数; (2) 数集A 是大于0、不大于5的实数; 2.解不等式265x -<,并用区间表示不等式的解集.【小结与作业】课堂小结:本次课主要学习了用区间表示数集.理解区间概念,会用区间表示不等式(组)的数集.本课作业:习题2.2.。
不等式的基本性质与解法
不等式的基本性质与解法不等式是数学中常见的一种数学关系,它描述了两个数之间的大小关系。
在解决实际问题中,经常需要研究不等式的基本性质和解法。
本文将介绍不等式的基本性质以及解决不等式的方法,并且给出一些例子来说明。
一、不等式的基本性质1. 加减性性质:对于两个不等式,如果它们的左右两边分别相加或相减,那么它们的不等关系不变。
例如:对于不等式 2x < 6 和 3x > 9,我们可以将两个不等式的左右两边分别相加得到 2x + 3x < 6 + 9,即 5x < 15。
不等式的不等关系保持不变。
2. 乘除性性质:对于不等式,如果两边都乘以一个正数,则不等关系保持不变;如果两边都乘以一个负数,则不等关系发生改变。
例如:对于不等式 2x < 6,如果两边同时乘以一个正数 3,我们得到 3 * 2x < 3 * 6,即 6x < 18,不等关系保持不变。
但如果两边同时乘以一个负数 -3,我们得到 -3 * 2x > -3 * 6,即 -6x > -18,不等关系发生改变。
3. 反号性质:对于不等式,如果两边同时取负号,不等关系发生改变。
例如:对于不等式 2x < 6,如果两边同时取负号,我们得到 -2x > -6,不等关系发生改变。
4. 绝对值性质:对于不等式,如果绝对值符号"|" 出现在不等式中,我们需要分别讨论绝对值大于零和绝对值小于零的情况。
例如:对于不等式|2x - 4| < 6,我们可以将其分为两个部分来讨论。
当 2x - 4 > 0 时,不等式简化为 2x - 4 < 6,解得 x < 5;当 2x - 4 < 0 时,不等式简化为 -(2x - 4) < 6,解得 x > -1。
二、不等式的解法1. 图像法:对于一些简单的一元不等式,我们可以使用图像法来解决。
将不等式转化为图像表示,通过观察图像来确定不等式的解集。
不等式知识点大全
不等式知识点大全一、不等式的基本概念:1.不等式的定义:不等式是一个包含不等号(>,<,≥,≤)的数学语句。
2.不等式的解集:解集是满足不等式的所有实数的集合。
3.不等式的求解方法:解不等式的方法主要有代入法、分析法、图像法和区间法等。
二、一元一次不等式:1.一元一次不等式的定义:一元一次不等式是指只含有一个未知数的一次函数与一个实数的大小关系。
2.一元一次不等式的解集:一元一次不等式的解集可以用一个开区间或闭区间表示。
三、二次不等式:1.二次不等式的定义:二次不等式是指含有一个未知数的二次函数与一个实数的大小关系。
2.二次不等式的解集:二次不等式的解集可以用一个开区间、闭区间、半开半闭区间或不等式组表示。
四、绝对值不等式:1.绝对值不等式的定义:绝对值不等式是指含有绝对值符号的不等式。
2.绝对值不等式的解集:绝对值不等式的解集可以用一个开区间、闭区间、半开半闭区间或不等式组表示。
五、分式不等式:1.分式不等式的定义:分式不等式是指含有一个未知数的分式与一个实数的大小关系。
2.分式不等式的解集:分式不等式的解集可以用一个开区间、闭区间、半开半闭区间或不等式组表示。
六、三角不等式:1.三角不等式的定义:三角不等式是指三角函数与一个实数之间的大小关系。
2.三角不等式的解集:三角不等式的解集可以用一个开区间、闭区间、半开半闭区间或不等式组表示。
七、复合不等式:1.复合不等式的定义:复合不等式是由两个或多个不等式通过与或或连接构成的不等式。
2.复合不等式的解集:复合不等式的解集是满足所有不等式的实数的交集或并集。
八、常用的不等式:1.平均不等式:包括算术平均不等式、几何平均不等式、加权平均不等式等。
2.布尔不等式:包括与或非不等式和限制条件不等式等。
3.等价不等式:等式两边取绝对值后变为不等式。
4.单调性不等式:利用函数单调性性质证明不等式。
5.导数不等式:利用函数的导数性质证明不等式。
6.积分不等式:利用积分性质及定积分的性质来推导不等式。
2.2(2)一元二次不等式的解法
2.2(2)(3)一元二次不等式的解法一、教学目标设计掌握掌握用区间表示集合的方法;通过变式教学,学会用一元二次不等式解决几种类型的数学问题,体会数学知识之间的内在联系,形成逻辑思维能力;初步会用不等式解决一些简单的实际问题,增加数学学习的兴趣和用已学知识解决实际问题的意识。
二、教学重点及难点用区间表示不等式组的解集;会用不等式解决一些简单的实际问题。
三、教学流程设计四、教学过程设计一、 学习如何用区间来表示不等式的解集1. 用区间来表示不等式的解集设a ,b 都为实数,并且a<b,我们规定:(1) 集合{x b x a ≤≤}叫做闭区间,表示为[]b a ,;(2) 集合{x b x a <<}叫做开区间,表示为()b a ,;(3) 集合{x b x a <≤}或{x b x a ≤<}叫做半开半闭区间,分别表示为[)b a ,或(]b a ,。
(4) 把实数集R 表示为(-∞,+∞);把集合{x a x ≥}表示为[a ,+∞);把集合{x a x >}表示为(a,+∞);把集合{x b x ≤}表示为(-∞,b];把集合{x b x <}表示为(-∞,b );在上述所有的区间中,a ,b 叫做区间的端点,以后我们可以用区 间表示不等式的解集。
2.区间在数轴上的表示[a ,b] (a ,b )[a ,b )(a ,b][a ,+∞)a,+∞)-∞,(-∞,b )3.练习将上节课中不等式的解集用区间表示。
二、典型例题例1.解不等式组:3x 2-7x-10≤0, ①2x 2-5x+2>0 ②解:由不等式①的解集为⎥⎦⎤⎢⎣⎡-310,1,不等式②的解集为⎪⎭⎫ ⎝⎛∞-21,⋃()+∞,2,可知原不等式组的解集为⎥⎦⎤⎝⎛⋃⎪⎭⎫⎢⎣⎡-310,221,1,它在数轴上的表示如图:以将解集表示在同一条数轴上,这样更直观和清晰。
能否在数轴上准确的找到几个解集的公共部分,对一部分学生解决这个问题有一定的困难。
不等式的性质和解法
不等式的性质和解法一、不等式的性质1.不等式的定义:表示两个数之间的大小关系,用“>”、“<”、“≥”、“≤”等符号表示。
2.不等式的基本性质:(1)传递性:如果a>b且b>c,那么a>c。
(2)同向相加:如果a>b且c>d,那么a+c>b+d。
(3)同向相减:如果a>b,那么a-c>b-c。
(4)乘除性质:如果a>b且c>0,那么ac>bc;如果a>b且c<0,那么ac<bc。
二、不等式的解法1.解不等式的基本步骤:(1)去分母:将不等式两边同乘以分母的最小正整数,使分母消失。
(2)去括号:将不等式两边同乘以括号内的正数,或者将不等式两边同除以括号内的负数,使括号内的符号改变。
(3)移项:将不等式中的常数项移到一边,将含有未知数的项移到另一边。
(4)合并同类项:将不等式两边同类项合并。
(5)化简:将不等式化简到最简形式。
2.解一元一次不等式:(1)ax+b>c(a≠0):移项得ax>c-b,再除以a得x>(c-b)/a。
(2)ax+b≤c(a≠0):移项得ax≤c-b,再除以a得x≤(c-b)/a。
3.解一元二次不等式:(1)ax2+bx+c>0(a>0):先求出方程ax2+bx+c=0的解,然后根据a的符号确定不等式的解集。
(2)ax2+bx+c≤0(a>0):先求出方程ax2+bx+c=0的解,然后根据a的符号确定不等式的解集。
4.不等式的组:(1)解不等式组的步骤:先解每个不等式,再根据不等式的解集确定不等式组的解集。
(2)不等式组解集的表示方法:用区间表示,例如:[x1, x2]。
三、不等式的应用1.实际问题中的不等式:例如,距离、温度、速度等问题。
2.不等式在生活中的应用:例如,购物、制定计划、比较大小等问题。
3.不等式在其他学科中的应用:例如,在物理学中描述物体的运动状态,在经济学中描述市场的供求关系等。
不等式的解法和应用
不等式的解法和应用不等式是数学中常见的一种数值关系表示方式,用于描述数值之间的大小关系。
解不等式是求出使得不等式成立的数值范围,而应用不等式则是将不等式的概念和解法应用到实际问题中。
本文将介绍不等式的解法和其在实际应用中的具体应用案例。
一、不等式的解法不等式的解法主要有两种:图像法和代数法。
1. 图像法图像法是一种直观的解不等式的方法,通过在数轴上绘制不等式所代表的图像,从图像中读出不等式的解集。
以一元不等式为例,我们可以根据不等式的符号确定数轴上的标记方向,并在数轴上标出不等式中的系数和常数,最终找出数轴上与不等式相符的区间。
当不等式为一次不等式时,这种图像法也可以用来解决。
2. 代数法代数法是一种以代数运算为基础的解不等式方法。
根据不等式的性质和规律,通过代数运算,推导出不等式的解集。
对于一元线性不等式,我们可以通过移项、合并同类项等代数运算,得到解的范围。
对于一元二次不等式,我们可以通过构建不等式的二次函数图像,或者分析二次函数的性质,进而确定不等式的解集。
对于更高次的不等式,也可以利用代数运算的性质进行推导。
二、不等式的应用不等式不仅仅是数学领域中的概念,也被广泛应用于实际问题中。
以下是一些常见的应用案例:1. 经济学中的不等式应用经济学中的供求关系、利润最大化等问题,往往可以用不等式来描述和求解。
比如,假设某公司每个产品的生产成本为C,售价为P,销售数量为x,那么该公司的总利润可以表示为P*x-C*x的形式。
我们可以通过求解不等式P*x-C*x>0,来确定该公司的盈利范围以及最佳销售数量。
2. 工程中的不等式应用在工程设计中,不等式常用于描述和限制各种参数或变量的取值范围。
比如,在建筑工程中,柱子的承重能力应该大于或等于楼层的总负荷,可以用不等式来表示。
通过求解这个不等式,我们可以确定柱子的最小断面积或最小截面尺寸。
3. 统计学中的不等式应用在统计学中,不等式可以用来描述概率分布、置信区间等概念。
不等式组的解集与区间
{x| x≥3 }
{x| x>3 } {x| x≤2 } {x| x<2 }
(3)x-2≥0
x-3≤0 (4)x-2>0
{x| 2≤x≤3 }
{x| 2<x<3 } {x| 2≤x<3 } {x| 2<x≤3 }
x-3<0
(5)x-2≥0
练习:解不等式组
2( x 1) 5 x 5 x 3 3x 1
(1) (2)
1、一元一次不等式(组)的解集
2、一元一次不等式(组)的解集的表示方法
(1)集合描述法 (2)区间:闭区间 开区间 半开半闭区间 无限区间
x-3<0
(6)x-2>0 x-3≤0
区间是指一定范围内的所有实数所 构成的集合。也就是数轴上某一“段” 所有的点所对应的所有实数。
设a,b是两个实数,而且a<b.我们规定
(1)满足不等式a ≤ x ≤ b 的实数x的集 合叫做以 a , b 为端点的闭区间,记作[a,b]
数轴表示
a
b
x
设a,b是两个实数,而且a<b.我们规定
b
x
在实数集R中,有没有 最大的数和最小的数?
实数集R 用区间表示为( -∞,+∞ )
-∞ 读作: 负无穷大
+∞ 读作: 正无穷大
x
填
表:
区间表示 数轴表示 a a b b x x x x
解集表示
{x|x≥a}
[a,+ ∞) (a,+ ∞)
{x|x > a} {x|x≤b}
{x|x<b}
( -∞,b]
(- ∞ ,-1]∪[2,+∞)
专题23 不等式选讲-备战2022年高考数学(理)母题题源解密(全国乙卷)(解析版)
专题23 不等式选讲【母题来源】2021年高考乙卷【母题题文】已知函数()3f x x a x =-++.(1)当1a =时,求不等式()6f x ≥的解集;(2)若()f x a >-,求a 的取值范围.【答案】(1)(][),42,-∞-+∞.(2)3,2⎛⎫-+∞ ⎪⎝⎭.【试题解析】(1)当1a =时,()13f x x x =-++,13x x -++表示数轴上的点到1和3-的距离之和, 则()6f x ≥表示数轴上的点到1和3-的距离之和不小于6,当4x =-或2x =时所对应的数轴上的点到13-,所对应的点距离之和等于6, ∴数轴上到13-,所对应的点距离之和等于大于等于6得到所对应的坐标的范围是4x ≤-或2x ≥, 所以()6f x ≥的解集为(][),42,-∞-+∞.(2)依题意()f x a >-,即3a x a x -+>-+恒成立,333x a x x a a x -++-+=≥++,当且仅当()()30a x x -+≥时取等号,()3min f x a ∴=+, 故3a a +>-,所以3a a +>-或3a a +<, 解得32a >-.所以a的取值范围是3,2⎛⎫-+∞ ⎪⎝⎭.【点睛】解绝对值不等式的方法有零点分段法、几何意义法.解含有两个绝对值,且其中的x的系数相等时,可以考虑利用数轴上绝对值的几何意义求解;利用绝对值三角不等式求最值也是常见的问题,注意表述取等号的条件.【命题意图】1.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式:(1)a b a b+≤+.(2)a b a c c b-≤-+-.(3)会利用绝对值的几何意义求解以下类型的不等式:; ;ax b c ax b c x a x b c+≤+≥-+-≥.2.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.3.主要考查逻辑推理能力、运算求解能力,考查分类讨论、数形结合思想方法,考查逻辑推理、数学运算等核心素养.【命题方向】从近三年高考情况来看,此类知识点以解答题的形式出现,主要考查绝对值不等式的解法、不等式的证明、求最值问题等.【得分要点】(一)解绝对值不等式的常用方法有:(1)公式法:对于形如|f(x)|>g(x)或|f(x)|<g(x),利用公式|x|<a⇔−a<x<a(a>0)和|x|>a⇔x>a或x<−a(a>0)直接求解不等式;(2)平方法:对于形如|f(x)|≥|g(x)|,利用不等式两边平方的技巧,去掉绝对值,需保证不等式两边同正或同负,即|f(x)|≥|g(x)|⇔f(x)2≥g2(x);(3)零点分段法:对于形如|f(x)|±|g(x)|≥a,|f(x)|±|g(x)|≤a,利用零点分区间法脱去绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解;(4)几何法:对于形如|x±a|±|x±b|≤c,|x±a|±|x±b|≥c,利用绝对值三角不等式的性质求解,即①定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.②定理2:如果a ,b ,c 是实数,那么|a−c|≤|a−b|+|b−c|,当且仅当(a−b )(b−c )≥0时,等号成立.③推论1:||a|−|b||≤|a+b|.④推论2:||a|−|b||≤|a−b|.(5)图象法:对于形如|f (x )|+|g (x )|≥a 可构造y=|f (x )|+|g (x )|−a 或y=|f (x )|+|g (x )|与y=a ,在直角坐标系中作出不等式两边所对应的两个函数的图象,利用函数图象求解或通过移项构造一个函数.(二)含绝对值不等式的恒成立问题的常见类型及其解法:(1)分享参数法运用“max min ()(),()()f x a f x a f x a f x a ≤⇔≤≥⇔≥”可解决恒成立中的参数范围问题.求最值的思路:利用基本不等式和不等式的相关性质解决;将函数解析式用分段函数形式表示,作出函数图象,求得最值;利用性质“||||||||||||a b a b a b -≤±≤+”求最值.(2)更换主元法不少含参不等式恒成立问题,若直接从主元入手非常困难或不可能解决时,可转换思维角度,将主元与参数互换,常可得到简捷的解法.(3)数形结合法在研究曲线交点的恒成立问题时,若能数形结合,揭示问题所蕴含的几何背景,发挥形象思维和抽象思维各自的优势,可直接解决问题.(三)不等式的证明(1)比较法证明不等式最常用的是差值比较法,其基本步骤是:作差—变形—判断差的符号—下结论.其中“变形”是证明的关键,一般通过因式分解或配方将差式变形为几个因式的积或配成几个代数式平方和的形式,当差式是二次三项式时,有时也可用判别式来判断差值的符号.个别题目也可用柯西不等式来证明.(2)基本不等式:如果a ,b>0,那么2a b +≥a=b 时,等号成立.用语言可以表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数.(3)算术平均—几何平均定理(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均数不小于它们的几何平均数,即123n n n a a a a n +++≥,当且仅当a 1=a 2=…=a n 时,等号成立.1.(2021·全国高三其他模拟(理))已知函数()()1a x a x x f =-++∈R .(1)当6a =时,解不等式()9f x ≥;(2)若()220f x a -≥对任意x ∈R 成立,求实数a 的最大值. 【答案】(1)(][),27,-∞-+∞;(2)1. 【分析】 (1)根据题意,讨论去绝对值即可求解;(2)由题意得,()2min 2f x a ≥,结合绝对值的三角不等式即可求出()min f x ,进而可得实数a 的最大值. 【详解】(1)当6a =时,()6161f x x x x x =-++=-++,此时不等式()9f x ≥为619x x -++≥,∴6,619x x x >⎧⎨-++≥⎩或16,619x x x -≤≤⎧⎨-++≥⎩或1,619x x x <-⎧⎨---≥⎩, 解得7x ≥或2x -≤,即所求不等式解集为(][),27,-∞-+∞. (2)∴11a x x a x x -++≥-++, ∴11a x x a -++≥+,又()220f x a -≥对任意x ∈R 成立, ∴212a a +≥,∴112a -≤≤, ∴所求实数a 的最大值为1.2.(2021·新安县第一高级中学高三其他模拟(理))已知函数()|21||2|,()|1|||f x x x g x x x a a =-++=+--+.(1)解不等式f (x )>3;(2)对于∀x 1,x 2∈R ,使得f (x 1)>g (x 2)成立,求a 的取值范围.【答案】(1)2(,0),3⎛⎫-∞⋃+∞ ⎪⎝⎭;(2)34a ≤. 【分析】 (1)通过讨论x 的范围得到关于x 的不等式组,解出即可;(2)依题意即()()min max f x g x ≥,所以求出()min f x 和()max g x ,得到关于a 的不等式,解出即可.【详解】解:(1)由2313x x ≤-⎧⎨-->⎩或12233x x ⎧-<<⎪⎨⎪-+>⎩或12313x x ⎧≥⎪⎨⎪+>⎩,解得0x <或23x >, ∴()3f x >的解集为()2,0,3⎛⎫-∞+∞ ⎪⎝⎭. (2)因为()|21||2|,()|1|||f x x x g x x x a a =-++=+--+所以()|21||2|f x x x =-++函数图象如下所示:所以当12x =时,()min 52f x =; ()()()|1|||11g x x x a a x x a a a a =+--+≤+--+=++当且仅当()()10x x a +-≥时成立,即()max 1g x a a =++.由题意,得()()min max f x g x ≥,即512a a ++≤,即512a a +≤-, ∴225025(1)()2a a a ⎧-⎪⎪⎨⎪+-⎪⎩,解得34a ≤. ∴的取值范围是3,4⎛⎤-∞ ⎥⎝⎦. 3.(2021·甘肃白银市·高三其他模拟(理))已知函数()|6||8|f x x x =---.(1)解不等式()1f x >;(2)记()f x 的最大值为t ,若||,||m t n t <<,求证:42mn m n+>+. 【答案】(1)15,2⎛⎫+∞⎪⎝⎭;(2)证明见解析. 【分析】 (1)由()1f x >,得到|6||8|1x x --->,分类讨论,即可求解;(2)由绝对值三角不等式,求得()2f x ≤,得到2t =,即||2,||2m n <<,要证42mn m n+>+,只需证22(4)4()mn m n +>+,结合比较法,即可求解.【详解】(1)由题意,函数()|6||8|f x x x =---,因为()1f x >,即|6||8|1x x --->,可得6681x x x ≤⎧⎨-+->⎩或68681x x x <<⎧⎨-+->⎩或8681x x x ≥⎧⎨--+>⎩, 解得x 无实根或1582x <<或8x ≥, 综上可得,不等式()1f x >的解集为15,2⎛⎫+∞ ⎪⎝⎭.(2)由()|6||8||68|2f x x x x x =---≤--+=,当且仅当(6)(8)0x x --≥,且|6||8|x x ->-,即8x ≥时取等号,所以2t =,即||2,||2m n <<, 要证42mn m n+>+, 只需证|4|2||mn m n +>+,即证22(4)4()mn m n +>+,(22222(4)4()8164mn m n m n mn m +-+=++-+)22n mn +()()222222441644m n m n m n =--+=--.又224,4m n <<,所以()()22440m n -->, 所以22(4)4()mn m n +>+,即|4|2||mn m n +>+,所以42mn m n+>+. 4.(2021·四川遂宁市·高三三模(理))已知函数()|1||2|f x x x =-++∣(1)求不等式()9f x ≤的解集;(2)当()f x 取最小值时,求使得21mx m x -=+成立的正实数m 的取值范围.【答案】(1)[]5,4-;(2)10,4⎛⎤ ⎥⎝⎦. 【分析】(1)根据零点分段讨论法进行分类讨论解不等式;(2)利用绝对值不等式的性质求出当()f x 取最小值时x 的取值范围,并对式子21mx m x -=+进行变形,从而可求正实数m 的取值范围.【详解】(1)由不等式()9f x ≤,可得()129f x x x =-++≤,可化为2129x x x <-⎧⎨---≤⎩或21129x x x -≤≤⎧⎨-++≤⎩或1129x x x >⎧⎨-++≤⎩, 解,得52x -≤<-或21x -≤≤或14x <≤,综上知不等式的解集为[]5,4-.(2)因为()1212123f x x x x x x x =-++=-++≥-++=,当且仅当(1)(2)0x x -+≤,即21x -≤≤时,等号成立.故当21x -≤≤时,min ()3f x =,法一:当()f x 取最小值时,21mx m x -=+,即211m x m +=-, 所以021211m m m >⎧⎪+⎨-≤≤⎪-⎩,即021212111m m m m m ⎧⎪>⎪+⎪≥-⎨-⎪+⎪≤⎪-⎩,解得104m <≤, 故所求m 的取值范围10,4⎛⎤ ⎥⎝⎦. 法二:13122x m x x +==+-- 因为21x -≤≤,所以421x -≤-≤-,所以11124x -≤≤--, 所以33324x -≤≤--,即312124x -≤+≤-,所以104m <≤, 故所求m 的取值范围10,4⎛⎤ ⎥⎝⎦ 5.(2021·安徽池州市·池州一中高三其他模拟(理))已知函数()()21f x x a x a R =-++∈. (1)当2a =时,解不等式()4f x <;(2)记关于x 的不等式()5f x x ≤+的解集为M ,若[]1,2M -⊆,求a 的取值范围. 【答案】(1)71,3⎛⎫ ⎪⎝⎭;(2)[]0,1. 【分析】(1)分类讨论去绝对值符号,然后解不等式即可;(2)首先根据x 的范围,确定10x +≥,50x +>,然后解不等式得到22a x a -≤≤+.,进而根据集合的包含关系得到不等式组,解不等式组即可.【详解】解:(1)当2a =时,()221f x x x =-++,原不等式可化为14214x x x <-⎧⎨---<⎩,或124214x x x -≤≤⎧⎨-++<⎩或22414x x x >⎧⎨-++<⎩,解得x ∈∅或12x <≤或723x <<, ∴原不等式的解集为71,3⎛⎫⎪⎝⎭. (2)若()5f x x ≤+的解集包含[]1,2-,即当[]1,2x ∈-时,215x a x x -++≤+恒成立,由于在[]1,2-上,10x +≥,50x +>, ∴11x x +=+,55x x +=+, ∴()5f x x ≤+,等价于24x a -≤, 即2x a -≤,22x a -≤-≤,∴22a x a -≤≤+.由于当[]1,2x ∈-时该不等式恒成立,∴21a -≤-且22a +≥,∴01a ≤≤,即a 的取值范围为[]0,1.6.(2021·河南高三其他模拟(理))已知函数()32x x a f a =-+.(1)当1a =-时,求不等式()5f x ≤的解集;(2)设函数()1g x x =-,当x ∈R 时,()()39f x g x +≥,求a 的取值范围.【答案】(1)823x x ⎧⎫-≤≤⎨⎬⎩⎭;(2)[)4,+∞. 【分析】(1)将所求不等式变形为317x +≤,解此不等式即可得解;(2)利用三角不等式可得()()min 3f x g x +⎡⎤⎣⎦,可得出关于实数a 的不等式,由此可解得实数a 的取值范围.【详解】(1)当1a =-时,()312f x x =+-. 由3125x +-≤,得317x +≤,整理得7317x -≤+≤,解得823x -≤≤, 因此不等式()5f x ≤的解集为823x x ⎧⎫-≤≤⎨⎬⎩⎭; (2)当x ∈R 时,()()33233333232f x g x x a a x x a x a a a +=-++-≥--++=-+. 所以当x ∈R 时,()()39f x g x +≥等价于329a a -+≥.∴当3a ≤时,∴等价于39a +≥,无解;当3a >时,∴等价于329a a -+≥,解得4a ≥.所以a 的取值范围是[)4,+∞.7.(2021·黑龙江高三其他模拟(理))设函数()121f x x x =--+的最大值为m . (1)作出函数()f x 的图像;(2)若22223a c b m ++=,求2ab bc +的最大值.【答案】(1)图像见详解;(2)34 【分析】(1)去绝对值将函数写成分段函数的形式,接着画出函数图像即可;(2)由(1)知32m =,接着利用基本不等式求2ab bc +的最大值即可.【详解】 (1)12,21()1213,122,1x x f x x x x x x x ⎧+≤-⎪⎪⎪=--+=--<<⎨⎪--≥⎪⎪⎩, 作出函数()f x 的图像如下:(2)由(1)可知:函数()121f x x x =--+的最大值为13()22m f =-=, 所以()22222223232242m a c b a b c b ab bc ==++=+++≥+, 当且仅当12a b c ===时等号成立, 所以3242ab bc ≥+,即324ab bc +≤, 所以2ab bc +的最大值为34. 8.(2021·正阳县高级中学高三其他模拟(理))已知函数()42f x x m x m =---,m ∈R . (1)若2m =,求不等式()1f x x >+的解集;(2)若关于x 的不等式()23f x m ≤-恒成立,求m 的取值范围. 【答案】(1)(),3-∞;(2)(][),33,-∞-+∞.【分析】 (1)分4x <、48x ≤≤、8x >讨论去绝对值,解不等式可得答案;(2)利用a b a b -≤-解不等式可得答案.【详解】(1)当2m =时,不等式()1f x x >+,即841x x x --->+,∴当4x <时,841x x x -+->+,解得3x <,故3x <;∴当48x ≤≤时,841x x x --+>+,解得113x <,故此时无解; ∴当8x >时,841x x x --+>+,解得5x <-,故此时无解;综上,不等式()1f x x >+的解集为(),3-∞.(2)∴()42422f x x m x m x m x m m =---≤--+=,∴由不等式()23f x m ≤-恒成立,得223m m ≤-, 即2230m m --≥,即3m ≥,解得3m ≥或3m ≤-.∴实数m 的取值范围为(][),33,-∞-+∞.9.(2021·吉林高三其他模拟(理))已知0a >,函数()12f x x x a =++-,()g x ax a =+ (1)当1a =时,解不等式()2f x ≤;(2)若函数()y f x =的图象恒在()y g x =的图象的上方,求实数a 的取值范围.【答案】(1)20,3⎡⎤⎢⎥⎣⎦;(2)(]0,1. 【分析】(1)由零点分区间法和绝对值的意义,去绝对值,解不等式,求并集,可得所求解集;(2)由题意可得不等式()120x x a ax a a ++->+>恒成立.去绝对值,结合不等式恒成立思想和一次函数的单调性,解不等式可得所求范围.解:【详解】(1)当1a =时,不等式()2f x ≤即为1212x x ++-≤, 等价为11122x x x ≤-⎧⎨--+-≤⎩或1121122x x x ⎧-<<⎪⎨⎪++-≤⎩或121212x x x ⎧≥⎪⎨⎪++-≤⎩, 解得x ∈∅或102x ≤<或1223x ≤≤,所以原不等式的解集为20,3⎡⎤⎢⎥⎣⎦; (2)若函数()y f x =的图象恒在()y g x =的图象的上方, 则不等式()120x x a ax a a ++->+>恒成立.当1x ≤-时,12x a x ax a --+->+,即为()13a x ->+恒成立,可得()13a ->-+,解得2a >-,则0a >; 当12a x -<<时,12x a x ax a ++->+,即为()11a x >+恒成立, 可得()112a a +⋅≥,解得20a -≤≤,则01a <≤; 由上面可得01a <≤, 又当2a x ≥时,12x x a ax a ++->+,即为()123a a x ->-恒成立, 由于01a <≤,30a -<,可得()()332a a x a --≤, 则()1232a a a ->-, 解得21a -≤≤,则01a <≤.所以,a 的取值范围是(]0,1.10.(2021·河南商丘市·高三月考(理))已知,,a b c 均为正数,且满足 1.abc =证明:(1)3ab bc ca ++;(2)333a b c ab bc ac ++++.【答案】(1)证明见解析;(2)证明见解析.【分析】(1)由基本不等式可以直接证出;(2)由基本不等式得33333313,13,13a b ab b c bc a c ac ++++++,再用不等式得基本性质即可证得.【详解】(1)由基本不等式可知322233ab bc ac a b c ++=,当且仅当1a b c ===时,等号成立.(2)因为33333313,13,13a b ab b c bc a c ac ++++++,所以三式相加可得()()33323 3.a b c ab bc ac ++++-故只需证明()()332ab bc ac ab bc ac ++-++,即证 3.ab bc ac ++由(1)可知上式成立,故不等式333a b c ab bc ac ++++当且仅当1a b c ===时,等号成立. 11.(2021·黑龙江佳木斯市·佳木斯一中高三三模(理))已知函数()222f x x x =+--.(1)解不等式()6f x ≥.(2)已知0a >,0b >,()()1g x f x x =-+的最大值m ,11m a b +=,求22a b +的最小值. 【答案】(1){10x x ≤-或}2x ≥;(2)最小值为89. 【分析】(1)分2x >,12x -≤≤和1x <-三种情况解不等式;(2)先利用绝对值三角不等式求出()g x 的最大值为3m =,从而得113a b+=,所以()222221119a b a b a b ⎛⎫+=+⋅+ ⎪⎝⎭,化简后利用基本不等式求解即可 【详解】解:(1)函数()4,22223,124,1x x f x x x x x x x +>⎧⎪=+--=-≤≤⎨⎪--<-⎩,当2x >时,不等式()6f x ≥即为46+≥x ,解得2x ≥,所以2x >;当12x -≤≤时,不等式()6f x ≥即为36x ≥,解得2x ≥,所以2x =;当1x <-时,不等式()6f x ≥即为46x --≥,解得10x ≤-,所以10x ≤-.综上所述,不等式()6f x ≥的解集为{10x x ≤-或}2x ≥;(2)()()()()112123=-+=+--≤+--=g x f x x x x x x ,所以()g x 的最大值为3m =, 则113a b+=, 故()222222222111122299⎛⎫⎛⎫+=+⋅+=++++ ⎪ ⎪⎝⎭⎝⎭b a a b a b a b a b a b b a18299⎛≥+= ⎝, 当且仅当2222a b b a=且22a b b a =,即23a b ==时取等号, 故22a b +的最小值为89. 12.(2021·福建省永春第一中学高三其他模拟)已知函数()|22||1|f x x x =++-.(1)在图中的坐标系中画出()y f x =的图象;(2)若()y f x =的最小值为m ,当正数a ,b 满足22a b m +=,证明:2a b ab +≥.【答案】(1)函数图象见解析;(2)证明见解析;【分析】(1)将函数解析式转化成分段函数,再根据函数解析式画出函数图象;(2)由(1)可得2m =,再利用基本不等式和不等式的传递性,即可得证.【详解】解:(1)()31,12213,1131,1x x f x x x x x x x --<-⎧⎪=++-=+-⎨⎪+>⎩,其图象如图所示(2)由(1)可知,()(1)2min f x f =-=,2m ∴=所以222a b +=,0a >,0b >,因为222a b ab +,所以1ab ,2a b ab +,则12, 即有122ababa b +,当且仅当a b =时,取等号. 所以2a b ab +.13.(2021·全国高三其他模拟(理))已知函数f (x )=|x ﹣m |+|x +2m |.(1)当m =﹣1时,求不等式f (x )≤7的解集;(2)若不等式f (x )≤9有解,求实数m 的取值范围.【答案】(1)[﹣3,4];(2)[﹣3,3].【分析】(1)代入m 的值,用零点分段讨论法求解即可;(2)用三角不等式求得()f x 的最小值,进而可得结果.【详解】(1)m =﹣1时,f (x )=|x +1|+|x ﹣2|=21,23,1212,1x x x x x -⎧⎪-<⎨⎪-<-⎩,∴ x ≥2时,2x ﹣1≤7,解得:2≤x ≤4,x <﹣1时,1﹣2x ≤7,解得:﹣3≤x <﹣1,﹣1≤x <2时,3<7成立,解得:﹣1≤x <2,故不等式的解集是[﹣3,4];(2)因为()2()(2)33f x x m x m x m x m m m =-++≥--+=-=, 所以min ()3f x m =,依题意可得39m ≤,解得33m -≤≤,即实数m 的取值范围是[3,3]-.【点睛】结论点睛:对于不等式有解问题,常用到以下两个结论:(1)()a f x ≥有解min ()a f x ⇔≥;(2)()a f x ≤有解max ()a f x ⇔≤.14.(2021·黑龙江高三其他模拟(理))已知函数()|2|||f x x x a =---.(1)当1a =时,求不等式()3f x ≥的解集;(2)若()1f x ≤,求a 的取值范围.【答案】(1)空集;(2)[1,3].【分析】(1)根据零点分段法即可解出;(2)根据绝对值三角不等式求出函数()f x 的最大值为|2|a -,再解不等式|2|1a -≤即可求出.【详解】(1)1a =时,()|2||1|f x x x =---当2x ≥时,()|2||1|1f x x x =---=-当12x ≤≤时,()|2||1|21323f x x x x x x =---=--+=-≥,无解当1x ≤时,()|2||1|1f x x x =---=不等式()3f x ≥的解集是空集;(2)若()1f x ≤,()|2||||(2)()||2|f x x x a x x a a =---≤---=-所以max ()|2|f x a =-,即有|2|112113a a a -≤⇔-≤-≤⇔≤≤a 的取值范围是[1,3].15.(2021·山西太原市·太原五中高三二模(理))已知函数())||2|1|(f x x a x a R =-++∈.(1)当4a =时,解不等式()8f x <;(2)记关于x 的不等式()2|3|f x x ≤-的解集为M ,若[4,1]M --⊆,求a 的取值范围.【答案】(1)()2,2-;(2)[]9,4-.【分析】(1)当4a =时23,1()6,1432,4x x f x x x x x -<-⎧⎪=+-≤≤⎨⎪->⎩,进而分类讨论求解即可;(2)根据题意得当[4,1]x ∈--时,2123x a x x -++≤-恒成立,进而得||8x a -≤恒成立,再结合[4,1]x ∈--即可得答案.【详解】解:(1)当4a =时,()421f x x x =-++,不等式可转化为23,1()6,1432,4x x f x x x x x -<-⎧⎪=+-≤≤⎨⎪->⎩,若()8f x <,1238x x <-⎧⎨-<⎩或1468x x -≤≤⎧⎨+<⎩或4328x x >⎧⎨-<⎩ 解得:21x -<<-或12x -≤<或x ∈∅,综上,不等式的解集是()2,2-.(2)若[]4,1M --⊆,()23f x x ≤-,即当[]4,1x ∈--时,2123x a x x -++≤-恒成立,在[4,1]--上,10x +≤,30x -≤, |1|1x x ∴+=--,|3|3x x -=-,()23f x x ∴≤-等价于8x a -≤,即88x a -≤-≤,当[]4,1x ∈--时该不等式恒成立, 1848a a --≤⎧∴⎨--≥-⎩,解得94a -≤≤. 即a 的范围是[]9,4-.【点睛】本题考查分类讨论解绝对值不等式,根据解集求参数,考查运算求解能力,回归转化思想,是中档题.本题第二问解题的关键在于根据题意,将解不等式转化为恒成立问题求解.。
一元二次不等式的解集表示
一元二次不等式的解集表示一、引言在数学中,一元二次不等式是指一个包含未知数的二次多项式不等式,形式为ax^2 + bx + c >0(或 <0)。
求解该不等式的解集表示是解决不等式问题的关键步骤之一。
本文将介绍一元二次不等式的解集表示方法,以及一些常见的例子和应用。
二、一元二次不等式解集表示方法1. 一元二次不等式的标准形式一元二次不等式的标准形式为 ax^2 + bx + c > 0(或 < 0),其中 a、b、c 为实数且a ≠ 0。
在求解解集时,首先需要将不等式转化为标准形式。
2. 一元二次不等式的解集表示一般采用数轴上的表示方法,即将解集表示在数轴上的某个区间。
对于 a > 0 的不等式,解集表示为左右两个开区间的并集;对于 a < 0 的不等式,解集表示为左右两个开区间的交集。
例如,对于不等式 x^2 - 3x + 2 > 0,可以通过以下步骤求解解集表示:1) 将不等式转化为标准形式:x^2 - 3x + 2 > 0;2) 求出不等式的判别式:Δ = b^2 - 4ac = (-3)^2 - 4 * 1 * 2 = 9 - 8 = 1;3) 判别式大于零,所以不等式的解集表示为实数集中左右两个开区间的并集;即解集表示为 x ∈ (-∞,1) ∪ (2,+∞)。
3. 特殊情况的解集表示在求解一元二次不等式时,也会出现一些特殊的情况,需要特殊的解集表示。
a) 一元二次不等式无解当一元二次不等式无解时,解集表示为∅(空集)。
例如,不等式 x^2 + 1 > 0 在实数集中没有解,因此解集表示为∅。
b) 一元二次不等式有无穷解当一元二次不等式的判别式为零时,不等式有无穷多解。
例如,不等式 x^2 - 2x + 1 > 0 的判别式为Δ = (-2)^2 - 4 * 1 * 1 = 0,即判别式为零。
因此,不等式的解集表示为实数集中的全体实数,即解集表示为 x ∈ (-∞,+∞)。
最新23不等式的解集与区间
a
x
a
x
{x|xa } 或 a ,) {x|xa}或 (a, )
a
x
{x|xa}或 ( ,a]
பைடு நூலகம்
ax
{x|xa}或 (, a)
三、学习例题
例1:用区间记法表示下列不等式的解集:
(1)、 9x10
(2)、x0.4
解:(1) [9,10] (2) ( ,0.4]
例2:用集合描述法表示下列区间: (1)[-4,0] (2)(-8,7]
解 :(1)x {|4x0} (2){ x|8x7}
例3、在数轴上表示集合 {x|x2或 x1}
解:
-2
01
x
课堂练习:
1、用区间法表示下列集合:
(1){x|4x2} (2){ x|5x2}
(3){ x|x4} (4){x|x4}
2、用区间法表示下列不等式的解集,并在 数轴上表示这些区间。
(1)5x3 (2 )4x4 (3)x3 (4) 2x4
3、做书本练习B第一题
小结: (1)会用集合表示不等式的解集 (2)会用区间法表示不等式的解集 (3)会在数轴上表示不等式的解集
布置作业:练习A第2、3
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
不等式的性质和求解方法
不等式的性质和求解方法不等式在数学中占据重要地位,它与方程一样,是数学中研究的基本对象之一。
不等式的理论及求解方法在实际问题中具有广泛的应用,尤其在函数、几何和优化等领域。
本文将介绍不等式的性质以及常用的求解方法。
一、不等式的基本性质1. 不等式的传递性对于不等式 A < B 和 B < C,根据传递性可知,A < C。
这意味着如果一个不等式的两边分别与另一个不等式的两边相等,那么这两个不等式可以合并为一个不等式。
例如,对于不等式组 x < 4 和 4 < y,我们可以将其合并为 x < y。
2. 不等式的加减性对于不等式 A < B 和 C > 0,根据加减性质可知,A+C < B+C。
即不等式两边同时加上或减去一个正数,不等式的方向不变。
例如,对于不等式 x < 4,我们可以将其变形为 x+3 < 7。
3. 不等式的乘除性对于不等式 A < B 和 C > 0,根据乘除性质可知,AC < BC。
即不等式两边同时乘以或除以一个正数,不等式的方向不变。
当乘以或除以一个负数时,不等式的方向则相反。
例如,对于不等式 2x < 6,我们可以将其变形为 x < 3。
二、不等式的求解方法1. 图像法图像法是一种直观且常用的求解不等式的方法,特别适用于线性不等式。
其基本思想是将不等式转化为图像,并通过观察图像中的区域来确定不等式的解集。
并表示在数轴上小于3的所有实数。
2. 辅助方程法辅助方程法是一种将不等式转化为方程来求解的方法。
通过构造一个与原不等式等价的方程,然后求解该方程,最后根据方程的解来确定不等式的解集。
例如,对于不等式 x^2 - 4 > 0,我们可以构造辅助方程 x^2 - 4 = 0,并求解该方程得到 x = -2 或 x = 2。
根据辅助方程的解,我们可以确定原不等式的解集为 x < -2 或 x > 2。
不等式的解法
不等式的解法不等式是数学中常见的一种数值关系表达式,描述了数值之间的大小关系。
解不等式就是确定使不等式成立的数值范围,也就是找到不等式的解集。
一、线性不等式的解法线性不等式是指变量之间的关系是一次函数的不等式,可以分为一元线性不等式和多元线性不等式。
解线性不等式的方法如下:1. 利用乘法和除法性质:当不等式两侧同乘或同除一个正数时,不等号的方向不变;当不等式两侧同乘或同除一个负数时,不等号的方向反转。
2. 利用加法和减法性质:当不等式两侧同加或同减一个数时,不等号的方向不变。
3. 将不等式转化为方程:将不等式两边相等的地方标记,再在标记的点处进行讨论,确定不等式成立的范围。
4. 图解法:将不等式对应的线性函数图像进行绘制,通过观察图像的部分确定不等式的解集。
5. 区间表示法:将解集用区间表示,例如[a, b]表示解集的范围在a 到b之间。
二、二次不等式的解法二次不等式是指变量之间的关系是二次函数的不等式,解二次不等式的方法如下:1. 将二次不等式转化为标准形式:将不等式的所有项移项,使得一边为零。
2. 利用乘法性质:当不等式两侧同乘一个正数时,不等式的方向不变;当不等式两侧同乘一个负数时,不等式的方向反转。
3. 利用根的位置和形状:通过求解二次函数的根来确定二次不等式的解集。
4. 图解法:将二次不等式对应的二次函数图像进行绘制,通过观察图像的部分确定不等式的解集。
5. 区间表示法:将解集用区间表示。
三、绝对值不等式的解法绝对值不等式是指变量的绝对值与一个数之间的大小关系的不等式,解绝对值不等式的方法如下:1. 利用绝对值的定义:讨论变量的取值范围,将绝对值不等式转化为对应的条件不等式。
2. 利用绝对值的性质:当绝对值不等式中的绝对值对应的表达式大于等于0时,可以去掉绝对值符号;当绝对值不等式中的绝对值对应的表达式小于0时,不等式无解。
3. 将绝对值不等式转化为分段函数形式:将绝对值不等式分成多个条件不等式,讨论每个条件不等式的解集。
2.2一元二次不等式的解法(2)
2.2一元二次不等式的解法 (2)成功的要领(学习要求):1.通过阅读,使学生理解区间的概念,并能用区间来表示不等式的解集.2.通过变式教学,学会用一元二次不等式解决几种类型的数学问题,体会数学知识之间的内在联系,形成逻辑思维能力;3.初步学会用不等式解决一些简单的实际问题,培养学生的分析能力和解决实际问题的能力.4.培养学生的逆向思维能力和创造能力.成功的准备(课前预习):(一)、用区间来表示不等式的解集1. 用区间来表示不等式的解集设a ,b 都为实数,并且a<b,我们规定:(1) 集合{x b x a ≤≤}叫做闭区间,表示为 ;(2) 集合{x b x a <<}叫做开区间,表示为 ;(3) 集合{x b x a <≤}或{x b x a ≤<}叫做半开半闭区间,分别表示为 ;(4) 把实数集R 表示为 ;把集合{x a x ≥}表示为 ;把集合{x a x >}表示为 ;把集合{x b x ≤}表示为 ;把集合{x b x <}表示为 ;在上述所有的区间中,a ,b 叫做区间的 ;2. 区间在数轴上的表示X x [a ,b] (,b )X x[a ,b ) (a ,b]X x[a ,+∞) (a ,+∞)X x(-∞,b] (-∞,b )(二)、一元二次不等式()20(0)0ax bx c a ++><>的解集:设一元二次方程20ax bx c ++=的两根为2121x x x x ≤且、,ac b 42-=∆,成功的探索(电子笔记):例1.解不等式组:3x 2-7x-10≤0, ①2x 2-5x+2>0 ②例2.(1)写出一个一元二次不等式,使它的解集为(-1,3).(2)若不等式ax 2+bx+3>0的解为-21<x<3,求实数a,b 的值.例3.当k 为何值时,关于x 的一元二次不等式x 2+(k-1)x+4>0的解集为(-∞,+∞)?例4.国家为了加强对烟酒生产的宏观管理,除了应用税收外,还征收附加税。
不等式的解集与区间
其中a是左端点,b是右端点,a<b
实数集R可以用区间表示为 记号“∞”读作 “无穷大”
(-∞, +∞) 正无穷大 无限 区间
-∞ 为 负无穷大 ,+∞ 为
集合表示 {x x<a} {x x≤a} {x x>a} {x x≥a}
区间表示 (-∞, a) (-∞, a] (a , +∞) [a , +∞)
设a,b是两个实数,而且a<b, 我们规定: (1)满足不等式a≤x≤b的实数x的集合叫 做闭区间,表示为 [a,b] (2)满足不等式a<x<b的实数x的集合叫做 开区间,表示为 (a,b) (3)满足不等式a≤x<b的实数x的集合叫做 左闭右开区间,表示为 [a,b) (4)满足不等式a<x≤b的实数x的集合叫做 左开右闭区间,表示为 (a,b]
LOGO
LOGO
解集为
(1)x-3 ≤ 0 (2)x-2 ≥ 0
(3 ) x-2≥0
{x| x ≤ 3 }
{x|
x≥2 }
{x-3≤0
{x| 2 ≤ x ≤3 }
除了用集合的方法表 示解集外还有没有其 他的表示方法呢?
区间
区间的概念:
介于两个实数之间的所有实数的集合叫做区间, 这两个实数叫做区间的端点。
用集合的性质描述法表示下列区间,并在 数轴上表示: (1) [4,12] (2) (-∞,-6)
利用数轴来表示下列不等式的解集. (1)x>-1
-1
0
1
练一练
(2)x<
1 2
0
1
2
变 式: 已知x的取值范围如图所示,你能写出x的 取值范围吗?
-2
-1
0
《不等式的解集》课标解读
《不等式的解集》课标解读教材分析本节的主要内容是求不等式的解集、不等式组的解集、绝对值不等式的解集,除此之外还介绍了数轴上的两点之间的距离公式和中点坐标公式的内容.不等式是一种重要的解题手段,求不等式的解集更是学生需要掌握的一项常规技能,是十分重要的一项内容.本节的重点是求不等式的解集,难点是利用绝对值的几何意义求绝对值不等式的解集,突破重点与难点的关键有两点,首先要理解其含义,其次要结合具体实例进行体会,要结合数轴的直观意义去理解.本节内容所涉及的主要数学核心素养有:直观想象、数学抽象、数学运算等. 学情分析对学生而言,前面已经学习了一元一次不等式的解、绝对值的定义,在初中已经掌握了这些内容的基础上,再来学习不等式的解集以及绝对值的几何意义的应用,有了前面的基础,学生学习起来还是比较感兴趣的.学生学习本节内容时可能会在绝对值的几何意义的应用方面感到困难,因此在学习过程中,要多举例,让学生自己尝试探索求解.教学建议不等式是中学学习的主要内容之一,解一元一次不等式主要考查运算能力,是集合知识的应用和巩固,为以后学习不等式内容打下基础,体现了数学运算的数学核心素养.解含有绝对值的不等式的基本思想是去掉绝对值符号,化归为不含绝对值符号的不等式去解,而去绝对值的方法主要有:几何法、分区间讨论法、平方法,本节主要学习几何法和分区间讨论法,体现了直观想象的数学核心素养.由于数轴应用是体现绝对值几何意义的直观载体,因此,在本节教学时可以充分使用信息技术创设教学情境,以利于学生更好地理解绝对值的几何意义. 学科核心素养目标与素养1.结合实例,理解不等式(组)的解集的定义,并会依据不等式的性质探究一元一次不等式(组)的解法过程,达到数学运算核心素养学业质量水平一的层次.2.通过实例,理解||x a <(或||x a >)(0a >)的解法及解集;掌握||ax b c +<与||(0,0)ax b c a c +>≠>的解法,达到数学运算核心素养学业质量水平二的层次.3.能够借助数轴理解两点之间的距离公式和中点坐标公式,达到直观想象核心素养学业质量水平一的层次.情境与问题通过求解简单的一元一次不等式和解简单的含绝对值的方程,体会相关内容,为本节课的学习打下基础.内容与节点解不等式是解决数学问题的重要工具,在很多问题中都有应用,需要熟练掌握.过程与方法1.理解运用由特殊到一般,由具体到抽象,经历用集合符号语言表达不等式解集的过程,发展学生的数学抽象素养.2.理解绝对值的几何意义,体会绝对值的几何意义在解绝对值不等式中的作用,掌握解绝对值不等式的方法,发展学生的数学运算素养.3.通过求解两点之间的距离和中点坐标的过程,掌握相关公式的使用情况,提升直观想象素养.教学重点难点重点1.不等式(组)的解集的定义.2.||x a <(或||x a >)(0a >)的解法及解集.3.||ax b c +<与||(0,0)ax b c a c +>≠>型不等式的解法.难点在解绝对值不等式时,选择合适的方法去掉绝对值的符号.。
不等式的解集
B. x=3是2x>1的唯一解
C. x=3不是2x>1的解 D. x=3是2x>1的解集
4.不等式解集的表示方法 第一种:用式子(如x>2),即用最简形式的不等式(如 x>a或x<a)来表示.
第二种:用数轴,标出数轴上某一区间,其中的点对 应的数值都是不等式的解.
例1. 用数轴表示下列不等式的解集:
什么叫不等式? 常用的不等号有哪些? 什么叫方程? 什么是方程的解?
用不等式表示: (1)x的3倍大于1; (2) y与5的差小于零; (3) x与3的和不大于6; (4) x不小于2.
(5)一个两位数的十位数字是x,个位数字 比十位数字小4,这个两位数不小于55。
1 当x的值分别取-1、0、 、2、3、 2 3.5、5时,
(2)(2) x不小于-2;
(3) a是正数;
(4) b是非负数.
收获和体会
不等式的解 不等式的解集 不等式解集的表示方法
⑴ x>-1; ⑵ x≥ -1; ⑶ x< -1; ⑷ x≤ -1.
解:
○ ●
-1 ⑴
○
0
-1 ⑵
●
0
-1 ⑶
0
-1 ⑷
0
总结: ①用数轴表示不等式的解集的步骤:
第一步:画数轴;
第二步:定界点;
第三步:定方向.
②用数轴表示不等式的解集,应记住下面的规律: 大于向右画,小于向左画;
有等号(≥ ,≤)画实心点,无等号(>,<)画空心圆.
能使不等式x-3>0成立吗?
能使不等式成立的未知数的值 叫做不等式的解
例如,x=3.5、5都是不等式 1 x-3>0的解; 2
不等式解集的数轴表示方法
不等式解集的数轴表示方法在数学中,不等式是描述数值关系的一种表达方式,而解集则是不等式所有满足条件的实数的集合。
为了更直观地表示不等式的解集,我们通常使用数轴来进行图示。
本文将介绍如何使用数轴来表示不等式的解集,并通过具体例子进行说明。
一、数轴的基本概念数轴是一条直线,用于表示实数的有序集合。
常用的数轴上,将原点规定为0,正方向为向右,负方向为向左。
数轴上的每个点都对应一个实数,点的位置与实数的大小有关。
二、不等式的解集表示当我们遇到一个不等式时,首先需要确定该不等式的解集是一个区间还是一个离散集合,然后再将解集在数轴上进行表示。
1. 区间解集当不等式的解集是一个区间时,我们可以通过在数轴上绘制一条线段来表示解集。
具体操作如下:(1)确定不等式的方向。
根据不等式的符号,确定不等式的解集是大于、小于、大于等于还是小于等于某个数。
(2)找到数轴上对应的数值点。
根据不等式中的数值,找到数轴上对应的点,并标记出来。
(3)绘制线段。
根据不等式的方向,确定线段的方向,并在数轴上绘制出线段。
2. 离散解集当不等式的解集是一个离散集合时,我们可以通过在数轴上绘制点来表示解集。
具体操作如下:(1)找到数轴上对应的数值点。
根据不等式中的数值,找到数轴上对应的点,并标记出来。
(2)绘制点。
在数轴上绘制出所找到的点。
三、案例分析为了更好地理解不等式解集的数轴表示方法,下面通过几个具体的案例进行分析。
1. 一元一次不等式例如,我们需要表示不等式2x > 4的解集。
(1)确定不等式的方向。
不等式中的符号是大于号,表示解集是大于某个数的实数。
(2)找到数轴上对应的数值点。
根据不等式中的数值,我们可以得到x > 2。
(3)绘制线段。
从数轴上2的位置开始,向右绘制一条无限延伸的线段。
2. 一元二次不等式再例如,我们需要表示不等式x^2 - 3x < 0的解集。
(1)确定不等式的方向。
不等式中的符号是小于号,表示解集是小于某个数的实数。