概率论与数理统计第一二部分作业题

合集下载

概率论与数理统计练习题(含答案)

概率论与数理统计练习题(含答案)

第一章 随机事件及其概率练习: 1. 判断正误(1)必然事件在一次试验中一定发生,小概率事件在一次试验中一定不发生。

(B )(2)事件的发生与否取决于它所包含的全部样本点是否同时出现。

(B )(3)事件的对立与互不相容是等价的。

(B ) (4)若()0,P A = 则A =∅。

(B )(5)()0.4,()0.5,()0.2P A P B P AB ===若则。

(B ) (6)A,B,C 三个事件至少发生两个可表示为AB BC AC ⋃⋃(A ) (7)考察有两个孩子的家庭孩子的性别,{()Ω=两个男孩(,两个女孩),(一个男孩,}一个女孩),则P{}1=3两个女孩。

(B )(8)若P(A)P(B)≤,则⊂A B 。

(B ) (9)n 个事件若满足,,()()()i j i j i j P A A P A P A ∀=,则n 个事件相互独立。

(B )(10)只有当A B ⊂时,有P(B-A)=P(B)-P(A)。

(A ) 2. 选择题(1)设A, B 两事件满足P(AB)=0,则©A. A 与B 互斥B. AB 是不可能事件C. AB 未必是不可能事件D. P(A)=0 或 P(B)=0 (2)设A, B 为两事件,则P(A-B)等于(C)A. P(A)-P(B)B. P(A)-P(B)+P(AB)C. P(A)-P(AB)D. P(A)+P(B)-P(AB) (3)以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为(D)A. “甲种产品滞销,乙种产品畅销”B. “甲乙两种产品均畅销”C. “甲种产品滞销”D. “甲种产品滞销或乙种产品畅销”(4)若A, B 为两随机事件,且B A ⊂,则下列式子正确的是(A) A. P(A ∪B)=P(A) B. P(AB)=P(A) C. P(B|A)=P(B) D. P(B-A)=P(B)-P(A) (5)设(),(),()P A B a P A b P B c ⋃===,则()P AB 等于(B)A. ()a c c + B . 1a c +-C.a b c +- D. (1)b c -(6)假设事件A 和B 满足P(B|A)=1, 则(B)A. A 是必然事件 B . (|)0P B A = C. A B ⊃ D. A B ⊂ (7)设0<P(A)<1,0<P(B)<1, (|)(|)1P A B P A B += 则(D)A. 事件A, B 互不相容B. 事件A 和B 互相对立C. 事件A, B 互不独立 D . 事件A, B 互相独立8.,,.,,.D ,,.,,.,,1419.(),(),(),(),()37514131433.,.,.,.,37351535105A B A AB A B B AB A B C AB A B D AB A B P B A P B A P AB P A P B A B C φφφφ≠=≠====对于任意两个事件必有(C )若则一定独立;若则一定独立;若则有可能独立;若则一定不独立;已知则的值分别为:(D)三解答题1.(),(),(),(),(),(),().P A p P B q P AB r P A B P AB P A B P AB ===设求下列事件的概率:解:由德摩根律有____()()1()1;P A B P AB P AB r ⋃==-=-()()()();P AB P B AB P B P AB q r =-=-=-()()()()(1)()1;P A B P A P B P AB p q q r r p ⋃=+-=-+--=+-________()()1[()()()]1().P AB P A B P A P B P AB p q r =⋃=-+-=-+-2.甲乙两人独立地对同一目标射击一次,命中率分别是0.6和0.5,现已知目标被命中,求它是甲射击命中的概率。

概率论与数理统计习题答案1-2

概率论与数理统计习题答案1-2

第一章 事件与概率1.1 写出下列随机试验的样本空间及表示下列事件的样本点集合。

(1)10件产品中有1件是不合格品,从中任取2件得1件不合格品。

(2)一个口袋中有2个白球、3个黑球、4个红球,从中任取一球,(ⅰ)得白球,(ⅱ)得红球。

解 (1)记9个合格品分别为 921,正正正,, ,记不合格为次,则,,,,,,,,,)()()(){(1913121次正正正正正正正 =Ω,,,,,,,,,)()()()(2924232次正正正正正正正 ,,,,,,,)()()(39343次正正正正正 )}()()(9898次正次正正正,,,,,,=A ){(1次正,,,,)(2次正)}(9次正,,(2)记2个白球分别为1ω,2ω,3个黑球分别为1b ,2b ,3b ,4个红球分别为1r ,2r ,3r ,4r 。

则=Ω{1ω,2ω,1b ,2b ,3b ,1r ,2r ,3r ,4r } (ⅰ) =A {1ω,2ω} (ⅱ) =B {1r ,2r ,3r ,4r }1.2 在数学系的学生中任选一名学生,令事件A 表示被选学生是男生,事件B 表示被选学生是三年级学生,事件C 表示该生是运动员。

(1) 叙述C AB 的意义。

(2)在什么条件下C ABC =成立?(3)什么时候关系式B C ⊂是正确的?(4) 什么时候B A =成立?解 (1)事件C AB 表示该是三年级男生,但不是运动员。

(2) C ABC = 等价于AB C ⊂,表示全系运动员都有是三年级的男生。

(3)当全系运动员都是三年级学生时。

(4)当全系女生都在三年级并且三年级学生都是女生时`。

1.3 一个工人生产了n 个零件,以事件i A 表示他生产的第i 个零件是合格品(n i ≤≤1)。

用i A 表示下列事件:(1)没有一个零件是不合格品;(2)至少有一个零件是不合格品;(3)仅仅只有一个零件是不合格品;(4)至少有两个零件是不合格品。

解 (1) n i i A 1=; (2) n i i n i i A A 11===; (3) n i n ij j j i A A 11)]([=≠=;(4)原事件即“至少有两个零件是合格品”,可表示为 nj i j i j i A A ≠=1,;1.4 证明下列各式:(1)A B B A ⋃=⋃;(2)A B B A ⋂=⋂(3)=⋃⋃C B A )()(C B A ⋃⋃;(4)=⋂⋂C B A )()(C B A ⋂⋂(5)=⋂⋃C B A )(⋃⋂)(C A )(C B ⋂ (6) ni i n i i A A 11===证明 (1)—(4)显然,(5)和(6)的证法分别类似于课文第10—12页(1.5)式和(1.6)式的证法。

概率论与数理统计配套习题

概率论与数理统计配套习题

Z
=
1, 0,
如果 X + Y 为零或偶数; 如果 X + Y 为奇数.
第三章 连续型随机变量及其分布 第五次作业
3.1 设随机变量 X 服从二项分布 B(2,0.4) .试求 X 的分布函数,并作出它的图像.
8
学号
专业
姓名
作业号
3.4
cx3, 已知随机变量 X 的密度函数为 f (x) =
0 < x < 1; 确定常数 c 的值,并求出 P(−1 < X < 0.5) 与分布函数.

数为 λ p 的泊松分布.[提示: P(Y= k=) ∑ P( X= n)P(Y= k X= n) .] n=k
7
学号
专业
姓名
作业号
2.26 已知 X 与Y 的联合概率函数如下.(1)分别求U = max{X ,Y},V = min{X ,Y}的概率函数;(2)试
求U 与V 的联合概率函数.
X
Y -2 -1 0 1 4
1.27 已知甲袋中装有 a 只红球, b 只白球;乙袋中装有 c 只红球, d 只白球.试求下列事件的概率:(1)合并 两只口袋,从中随机地取一只球,该球是红球;(2)随机地取一只袋,再从该袋中随机地取一只球,该球是红 球;(3)从甲袋中随机地取出一只球放人乙袋,再从乙袋中随机地取出一只球,该球是红球.
1.15 某商店出售晶体管,每盒装 100 只,且已知每盒混有 4 只不合格品.商店采用“缺一赔十”的销售方 式:顾客买一盒晶体管,如果随机地取 1 只发现是不合格品,商店要立刻把 10 只合格品的晶体管放在盒子 中,不合格的那只晶体管不再放回.顾客在一个盒子中随机地先后取 3 只进行测试,试求他发现全是不合格 品的概率.

概率论与数理统计第一章习题解答

概率论与数理统计第一章习题解答

概率论与数理统计第一章习题解答《概率论与数量统计》第一章习题解答1、写出下列随机试验的样本空间:(1)记录一个班一次数学考试的平均分数(设以百分制记分)。

(2)生产产品直到有10件正品为止,记录生产产品的总件数。

(3)对某工厂出厂的产品进行检查,合格的产品记上“正品”,不合格的记上“次品”,如连续查出了2件次品就停止检查,或检查了4件产品就停止检查,记录检查的结果。

(4)在单位圆内任意取一点,记录它的坐标。

解:(1)设该班有n人,则该班总成绩的可能值是0,1,2,……,100n。

故随机试验的样本空间S={i/n|i=0,1,2,……,100n}。

(2)随机试验的样本空间S={10,11,12,……}。

(3)以0表示检查到一个次品,1表示检查到一个正品,则随机试验的样本空间S={00,0100,0101,0110,0111,100,1010,1011,1100,1101,1110,1111}。

(4)随机试验的样本空间S={(x,y)|x2+y2<1}。

2、设A,B,C为三个事件,用A,B,C的运算关系表示下列各事件:(1)A发生,B 与C都不发生。

(2)A与B都发生,而C不发生。

(3)A,B,C中至少有一个发生。

(4)A,B,C都发生。

(5)A,B,C都不发生。

(6)A,B,C中不多于一个发生。

(7)A,B,C中不多于两个发生。

(8)A,B,C中至少有两个发生。

解:(1)A B C(2)AB C(3)A∪B∪C (4)ABC(5)A B C(6)A B C∪A B C∪A B C∪A B C(7)S-ABC (8)ABC∪AB C∪A B C∪A BC3、(1)设A,B,C为三个事件,且P(A)=P(B)=P(C)=1/4,P (AB)=P(BC)=0,P(AC)=1/8,求A,B,C至少有一个发生的概率。

(2)已知P(A)=1/2,P(B)=1/3,P(C)=1/5,P(AB)=1/10,P(AC)=1/15,P(BC)=1/20,P(ABC)=1/30,求A∪B,A B,A∪B∪C,A B C,A B C,A B∪C的概率。

《概率论与数理统计》习题及答案

《概率论与数理统计》习题及答案

概率论与数理统计 第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。

2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。

3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率为 。

4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。

5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。

6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。

7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。

8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。

9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率为 。

10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A{}Y X B >=,则=)|(A B P 。

11、设B A ,是两事件,则B A ,的差事件为 。

12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。

13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。

14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。

15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。

16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P 。

17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。

考研数学概率论与数理统计第一章测试题(含答案)

考研数学概率论与数理统计第一章测试题(含答案)

考研数学概率论与数理统计第一章测试题(含答案)一、单项选择题(每小题2分,共20分)1.对于任意二事件A 和B ,与B B A = 不等价...的是 ( ) (A)B A ⊂ (B)A B ⊂ (C)φ=B A (D)φ=B A2.设事件A 与事件B 互不相容,则 ( ) (A)0)(=B A P (B))()()(B P A P AB P = (C))(1)(B P A P -= (D)1)(=B A P3.对于任意二事件A 和B ,则以下选项必然成立的是 ( )(A)若φ≠AB ,则B A ,一定独立 (B)若φ≠AB ,则B A ,有可能独立(C)若φ=AB ,则B A ,一定独立 (D)若φ=AB ,则B A ,一定不独立4.设A 和B 是任意两个概率不为零的不相容事件,则下列结论中肯定正确的是 ( ) (A)A 与B 互不相容 (B)A 与B 相容 (C))()()(B P A P AB P = (D))()(A P B A P =-5.设B A ,为任意两个事件,且B A ⊂,0)(>B P ,则下列选项必然成立的是 ( )(A))|()(B A P A P < (B))|()(B A P A P ≤ (C))|()(B A P A P > (D))|()(B A P A P ≥6.设B A ,为两个随机事件,且0)(>B P ,1)|(=B A P ,则必有 ( )(A))()(A P B A P > (B))()(B P B A P >(C))()(A P B A P = (D))()(B P B A P =7.已知1)(0<<B P ,且)|()|(]|)[(2121B A P B A P B A A P += ,则下列选项成立的是( ) (A))|()|(]|)[(2121B A P B A P B A A P += (B))()()(2121B A P B A P B A B AP += (C))|()|()(2121B A P B A P A A P += (D))|()()|()()(2211A B P A P A B P A P B P +=8.将一枚硬币独立地掷两次,引进事件:=1A {掷第一次出现正面},=2A {掷第二次出现正面},=3A {正、反面各出现一次},=4A {正面出现两次},则事件 ( )(A)321,,A A A 相互独立 (B)432,,A A A 相互独立(C)321,,A A A 两两独立 (D)432,,A A A 两两独立9.某人向同一目标独立重复射击,每次射击命中目标的概率为p (10<<p ),则此人第4射击恰好第2次命中目标的概率为 ( )(A)2)1(3p p - (B)2)1(6p p - (C)22)1(3p p - (D)22)1(6p p -10.设C B A ,,是三个相互独立的随机事件,且1)()(0<<<C P AC P ,则在下列给定的四对事件中不.相互独立的是 ( ) (A)B A 与C (B)AC 与C (C)B A -与C (D)AB 与C二、填空题(每小题2分,共14分)1.“C B A ,,三个事件中至少有两个发生”,这一事件可以表示为___2.若事件B A ,满足()()1>+B P A P ,则A 与B 一定____________3.在区间)1,0(中随机地取两个数,则两数之差的绝对值小于21的概率为 4.在一次试验中,事件A 发生的概率为p 。

考研概率论与数理统计章节训练题

考研概率论与数理统计章节训练题

第一章 随机事件与概率一、选择题。

1、设,A B 为随机事件,且()0,(|)1P B P A B >=,则必有( ) (A )()()P A B P A > (B )()()P A B P B > (C )()()P AB P A = (D )()()P A B P B =2、将一枚硬币独立地掷两次,引进事件:1A ={掷第一次出现正面},2A ={掷第二次出现正面}3A ={正、反面各出现一次}, 4A ={正面出现两次},则事件有( )(A )123,,A A A 相互独立 (B )234,,A A A 相互独立 (C )123,,A A A 两两独立 (D )234,,A A A 两两独立 3、对于任意二事件A 和B ,则( )(A )若AB ≠Φ,则,A B 一定独立 (B )若AB ≠Φ,则,A B 有可能独立 (C )若AB =Φ,则,A B 一定独立 (D )若AB =Φ,则,A B 一定不独立 4、A ,B 是两随机事件,当A ,B 发生时事件C 发生,则以下正确的是( )A )、)()(C P AB P ≥ B )、)()()(AB PC P AB C P -=- C )、)()(C P B A P ≤⋃D )、)()(C P B A P ≥⋃5、A ,B ,C 是三个随机事件,其中1)(),(),(0<<C P B P A P ,且已知)|()|()|(C B P C A P C B A P +=⋃,则以下正确的是( )A )、)|()|()|(CB PC A P C B A P +=⋃ B )、)()()(AB P AC P AB AC P +=⋃ C )、)()()(B P A P B A P +=⋃D )、)|()()|()()(B C P B P A C P A P C P += 6、A ,B ,C 是三个随机事件,设以下条件概率均有意义,则以下不正确的是( )A )、)|(1)|(C A P C A P -=B )、1)|()|(=+C A P C A P C )、)|()|()|()|(C AB P C B P C A P C B A P -+=⋃D )、)|()|()|()|()|(C B A P C B P BC A P C B P C A P +=7、A ,B 是两个随机事件,其中0)(,0)(≠≠B P A P ,则以下正确的是( )A )、φ≠AB ,A ,B 一定独立 B )、φ≠AB ,A ,B 不一定独立C )、φ=AB ,A ,B 一定独立D )、φ=AB ,A ,B 不一定独立8、甲袋中有2个白球3个黑球,乙袋中全是白球,今从甲袋中任取2球,从乙袋中任取1球混合后,从中任取1球为白球的概率()A 15 ()B 25()C35()D459、10台洗衣机中有3台二等品,现已售出1台,在余下的9台中任取2台发现均为一等品,则原先售出1台为二等品的概率为()A 310()B28 ()C 210()D3810、若A,B 为任意两个随机事件,则 ( )(A) ()()()P AB P A P B ≤ (B) ()()()PAB P A P B ≥(C) ()()()2P A P B P AB +≤ (D) ()()()2P A P B P AB +≥11、某人向同一目标独立重复射击,每次射击命中目标的概率为,则此人第4次射击恰好第2次命中目标的概率为 ( )(A)(B)(C)(D)12、设是两个随机事件,且则必有( )(A)(B) (C) (D)二、填空题1、A ,B 是两随机事件,5.0)(=A P ,7.0)(=B P ,则 ≤≤)(AB P 。

概率论与数理统计习题集与答案

概率论与数理统计习题集与答案

《概率论与数理统计》作业集及答案第1章 概率论的基本概念§1 .1 随机试验及随机事件1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ;(2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ;2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= .(2) 一枚硬币连丢2次, A :第一次出现正面,则A= ;B :两次出现同一面,则= ;C :至少有一次出现正面,则C= . §1 .2 随机事件的运算1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件:(1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: .(3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: .(5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: .2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则(1)=⋃B A ,(2)=AB ,(3)=B A ,(4)B A ⋃= ,(5)B A = 。

§1 .3 概率的定义和性质1. 已知6.0)(,5.0)(,8.0)(===⋃B P A P B A P ,则(1) =)(AB P , (2)()(B A P )= , (3))(B A P ⋃= .2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = .§1 .4 古典概型1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率,(2)最多有2个女同学的概率,(3) 至少有2个女同学的概率.2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率.§1 .5 条件概率与乘法公式1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。

概率论与数理统计作业与解答

概率论与数理统计作业与解答

概率论与数理统计作业及解答第一次作业 ★ 1.甲.乙.丙三门炮各向同一目标发射一枚炮弹•设事件ABC 分别表示甲.乙.丙 击中目标.则三门炮最多有一门炮击中目标如何表示• 事件E 丸事件A, B,C 最多有一个发生},则E 的表示为E =ABC ABC ABC ABC;或工 ABU AC U B C;或工 ABU ACU BC;或工 ABACBC ;或工 ABC_(AB C ABC A BC ).(和 A B 即并AU B,当代B 互斥即AB 二'时.AU B 常记为AB)2. 设M 件产品中含m 件次品.计算从中任取两件至少有一件次品的概率★ 3.从8双不同尺码鞋子中随机取6只.计算以下事件的概率A 二{8只鞋子均不成双}, B={恰有2只鞋子成双}, C 珂恰有4只鞋子成双}.C 6 (C 2 )6 32C 8C 4(C 2)4 800.2238, P(B) 8 皆 0.5594,P(A) 8/143★ 4.设某批产品共50件.其中有5件次品•现从中任取3件•求 (1) 其中无次品的概率-(2)其中恰有一件次品的概率‘ /八 C 5 1419 C :C 5 99⑴冷0.724.⑵虫产0.2526. C 50 1960C 503925. 从1〜9九个数字中•任取3个排成一个三位数•求 (1) 所得三位数为偶数的概率-(2)所得三位数为奇数的概率•4(1) P {三位数为偶数} = P {尾数为偶数}=-,9⑵P {三位数为奇数} = P {尾数为奇数} = 5,9或P {三位数为奇数} =1 -P {三位数为偶数} =1 -彳=5.9 96. 某办公室10名员工编号从1到10任选3人记录其号码 求(1)最小号码为5的概率 ⑵ 最大号码为5的概率 记事件A ={最小号码为5}, B={最大号码为5}.1 12 C m C M m C mm(2M - m -1)M (M -1)6 —C 16143P(C)二 C 8CJC 2)300.2098.143C 16C 2 iC 2⑴ P(A)=# 詁;(2) P(B )X =C 10 12C 107. 袋中有红、黄、白色球各一个 每次从袋中任取一球.记下颜色后放回 共取球三次 求下列事件的概率:A={全红} B ={颜色全同} C ={颜色全不同} D ={颜色不全同} E ={无 黄色球} F ={无红色且无黄色球} G ={全红或全黄}.1 11A 3!2 8P (A)=3^2?P (B )=3P (A )=9, P(C^#=?=9, P(DH ^P(BH?28 1 1 2P(E)亏方P(F)亏审 P(G r 2P(A)盲☆某班n 个男生m 个女生(m^n 1)随机排成一列•计算任意两女生均不相邻的概率☆ •在[0 ■ 1]线段上任取两点将线段截成三段•计算三段可组成三角形的概率14第二次作业1.设 A B 为随机事件 P(A)=0.92 ■ P(B)=0.93 P(B|Z)=0.85 求 ⑴ P(A|B) (2) P (AU B) ■ (1) 0.85 =P(B| A) =P(A B )P (AB ),P (A B )=0.85 0.08=0.068,P(A) 1-0.92P(AB)二 P(A) -P(AB)二 P(A) - P(B) P(AB) = 0.92 -0.93 0.068 = 0.058,P(A| B): = P(AB) = 0.。

概率论与数理统计练习题附答案详解

概率论与数理统计练习题附答案详解

第一章《随机事件及概率》练习题一、单项选择题1、设事件A 与B 互不相容,且P (A )>0,P (B )>0,则一定有( )(A )()1()P A P B =-; (B )(|)()P A B P A =;(C )(|)1P A B =; (D )(|)1P A B =。

2、设事件A 与B 相互独立,且P (A )>0,P (B )>0,则( )一定成立 (A )(|)1()P A B P A =-; (B )(|)0P A B =;(C )()1()P A P B =-; (D )(|)()P A B P B =。

3、设事件A 与B 满足P (A )>0,P (B )>0,下面条件( )成立时,事件A 与B 一定独立(A )()()()P AB P A P B =; (B )()()()P A B P A P B =;(C )(|)()P A B P B =; (D )(|)()P A B P A =。

4、设事件A 和B 有关系B A ⊂,则下列等式中正确的是( )(A )()()P AB P A =; (B )()()P AB P A =;(C )(|)()P B A P B =; (D )()()()P B A P B P A -=-。

5、设A 与B 是两个概率不为0的互不相容的事件,则下列结论中肯定正确的是( ) (A )A 与B 互不相容; (B )A 与B 相容;(C )()()()P AB P A P B =; (D )()()P A B P A -=。

6、设A 、B 为两个对立事件,且P (A )≠0,P (B ) ≠0,则下面关系成立的是( ) (A )()()()P AB P A P B =+; (B )()()()P A B P A P B ≠+;(C )()()()P AB P A P B =; (D )()()()P AB P A P B =。

7、对于任意两个事件A 与B ,()P A B -等于( )(A )()()P A P B - (B )()()()P A P B P AB -+; (C )()()P A P AB -; (D )()()()P A P B P AB +-。

(完整版)概率论与数理统计课程第一章练习题及解答

(完整版)概率论与数理统计课程第一章练习题及解答

概率论与数理统计课程第一章练习题及解答一、判断题(在每题后的括号中 对的打“√”错的打“×” )1、若1()P A =,则A 与任一事件B 一定独立。

(√)2、概率论与数理统计是研究和揭示随机现象统计规律性的一门数学学科。

(√)3、样本空间是随机现象的数学模型。

(√)4、试验中每个基本事件发生的可能性相同的试验称为等可能概型。

(×)5、试验的样本空间只包含有限个元素的试验称为古典概型。

(×)6、实际推断原理就是“概率很小的事件在一次试验中实际上几乎是不发生的”。

(√)7、若S 为试验E 的样本空间,12,,,n B B B L 为E 的一组两两互不相容的事件,则称12,,,n B B B L 为样本空间S 的一个划分。

(×)8、若事件A 的发生对事件B 的发生的概率没有影响,即()()P B A P B =,称事件A 、B 独立。

(√) 9、若事件12,,,(2)n B B B n ≥L 相互独立,则其中任意(2)k k n ≤≤个事件也是相互独立的。

(√)10、若事件12,,,(2)n B B B n ≥L 相互独立,则将12,,,n B B B L 中任意多个事件换成它们的对立事件,所得的n 个事件仍相互独立。

(√)二、单选题1.设事件A 和B 相互独立,则()P A B =U ( C )A 、()()P A PB + B 、()()P A P B +C 、1()()P A P B -D 、1()()P A P B -2、设事件A 与B 相互独立,且0()1,0()1P A P B <<<<,则正确的是( A )A 、A 与AB +一定不独立 B 、A 与A B -一定不独立C 、A 与B A -一定独立D 、A 与AB 一定独立3、设当事件A 与B 同时发生时,事件C 必发生,则( B )A 、1()()()P C P A PB ≤+- B 、1()()()PC P A P B ≥+-C 、()()P C P AB =D 、()()P C P A B =U4、在电炉上安装了4个温控器,其显示温度的误差是随机的,在使用过程中,只要有两个温控器显示的温度不低于临界温度0t ,电炉就断电,以E 表示事件“电炉断电”,而(1)(2)(3)(4)T T T T ≤≤≤为4个温控器显示的按递增顺序排列的温度值,则事件E 等于( )A 、(1)0{}T t ≥B 、(2)0{}T t ≥C 、(3)0{}T t ≥D 、(4)0{}T t ≥分析 事件(4)0{}T t ≥表示至少有一个温控器显示的温度不低于临界温度0t ;事件(3)0{}T t ≥表示至少有两个温控器显示的温度不低于临界温度0t ,即(3)0{}E T t =≥,选C 。

概率论与数理统计第一章习题及答案【范本模板】

概率论与数理统计第一章习题及答案【范本模板】

概率论与数理统计习题 第一章 概率论的基本概念习题1-1 设C B A ,,为三事件,用C B A ,,的运算关系表示下列各事件.(1)A 发生,B 与C 不发生,(2)A 与B 都发生,而C 不发生,(3)C B A ,,中至少有一个发生,(4)C B A ,,都发生,(5)C B A ,,都不发生, (6)C B A ,,中不多于一个发生, (7)C B A ,,中不多于两个发生, (8)C B A ,,中至少有两个发生,解(1)A 发生,B 与C 不发生表示为C B A 或A - (AB+AC )或A - (B ∪C ) (2)A ,B 都发生,而C 不发生表示为C AB 或AB -ABC 或AB -C (3)A ,B ,C 中至少有一个发生表示为A+B+C (4)A ,B ,C 都发生,表示为ABC(5)A ,B ,C 都不发生,表示为C B A 或S - (A+B+C )或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生,相当于C A C B B A ,,中至少有一个发生。

故 表示为:C A C B B A ++。

(7)A ,B ,C 中不多于二个发生相当于C B A ,,中至少有一个发生。

故表示为ABC C B A 或++(8)A,B ,C 中至少有二个发生.相当于AB ,BC ,AC 中至少有一个发生.故表示为AB +BC +AC习题1-2 设B A ,为两事件且6.0)(=A P ,7.0)(=B P ,问(1)在什么条件下)(AB P 取得最大值,最大值是多少?(2)在什么条件下)(AB P 取得最小值,最小值是多少?解 由P (A ) = 0.6,P (B ) = 0。

7即知AB ≠φ,(否则AB = φ依互斥事件加法定理, P (A ∪B )=P (A )+P (B )=0。

6+0。

7=1.3〉1与P (A ∪B )≤1矛盾).从而由加法定理得P (AB )=P (A )+P (B )-P (A ∪B )(*)(1)从0≤P (AB )≤P (A )知,当AB =A ,即A ∩B 时P (AB )取到最大值,最大值为 P (AB )=P (A )=0。

概率论与数理统计第一章答案

概率论与数理统计第一章答案

概率论与数理统计第⼀章答案习题1-21. 选择题(1) 设随机事件A ,B 满⾜关系A B ?,则下列表述正确的是( ). (A) 若A 发⽣, 则B 必发⽣. (B) A , B 同时发⽣.(C) 若A 发⽣, 则B 必不发⽣. (D) 若A 不发⽣,则B ⼀定不发⽣.解根据事件的包含关系, 考虑对⽴事件, 本题应选(D).(2) 设A 表⽰“甲种商品畅销, ⼄种商品滞销”, 其对⽴事件A 表⽰( ). (A) 甲种商品滞销, ⼄种商品畅销. (B) 甲种商品畅销, ⼄种商品畅销. (C) 甲种商品滞销, ⼄种商品滞销.(D) 甲种商品滞销, 或者⼄种商品畅销.解设B 表⽰“甲种商品畅销”,C 表⽰“⼄种商品滞销”,根据公式B C B C = , 本题应选(D).2. 写出下列各题中随机事件的样本空间:(1) ⼀袋中有5只球, 其中有3只⽩球和2只⿊球, 从袋中任意取⼀球, 观察其颜⾊; (2) 从(1)的袋中不放回任意取两次球, 每次取出⼀个, 观察其颜⾊; (3) 从(1)的袋中不放回任意取3只球, 记录取到的⿊球个数; (4) ⽣产产品直到有10件正品为⽌, 记录⽣产产品的总件数. 解 (1) {⿊球,⽩球}; (2) {⿊⿊,⿊⽩,⽩⿊,⽩⽩}; (3) {0,1,2};(4) 设在⽣产第10件正品前共⽣产了n 件不合格品,则样本空间为{10|0,1,2,n n += }.3. 设A, B, C 是三个随机事件, 试以A, B, C 的运算关系来表⽰下列各事件: (1) 仅有A 发⽣;(2) A , B , C 中⾄少有⼀个发⽣; (3) A , B , C 中恰有⼀个发⽣; (4) A , B , C 中最多有⼀个发⽣; (5) A , B , C 都不发⽣;(6) A 不发⽣, B , C 中⾄少有⼀个发⽣. 解 (1) ABC ; (2)A B C ; (3) ABC ABC ABC ;(4) ABC ABC ABC ABC ; (5) ABC ; (6) ()A B C .4. 事件A i 表⽰某射⼿第i 次(i =1, 2, 3)击中⽬标, 试⽤⽂字叙述下列事件: (1) A 1∪A 2; (2) A 1∪A 2∪A 3; (3)3; (4) A 2-A 3;(5)23A A ; (6)12A A .解 (1) 射⼿第⼀次或第⼆次击中⽬标;(2) 射⼿三次射击中⾄少击中⽬标;(3) 射⼿第三次没有击中⽬标;(4) 射⼿第⼆次击中⽬标,但是第三次没有击中⽬标;(5) 射⼿第⼆次和第三次都没有击中⽬标;(6) 射⼿第⼀次或第⼆次没有击中⽬标.习题1-31. 选择题 (1) 设A, B 为任⼆事件, 则下列关系正确的是( ).(A)()()()P A B P A P B -=-. (B)()()()P A B P A P B =+ .(C)()()()P AB P A P B =. (D)()()()P A P AB P AB =+.解由⽂⽒图易知本题应选(D).(2) 若两个事件A 和B 同时出现的概率P (AB )=0, 则下列结论正确的是 ( ).(A) A 和B 互不相容. (B) AB 是不可能事件.(C) AB 未必是不可能事件. (D) P (A )=0或P (B )=0. 解本题答案应选(C).2. 设P (AB )=P (AB ), 且P (A )=p ,求P (B ).解因()1()1()()()()P AB P A B P A P B P AB P AB =-=--+= ,故()()1P A P B +=. 于是()1.P B p =-0.4P A =,()0.3P B =,()0.4P A B = , 求()P AB .解由公式()()()()P A B P A P B P AB =+- 知()0.3P AB =. 于是()()()0.1.P AB P A P AB =-=4. 设A , B 为随机事件,()0.7P A =,()0.3P A B -=, 求()P AB .解由公式()()()P A B P A P AB -=-可知,()0.4P AB =. 于是()0.6P AB =.5. 设A , B 是两个事件, 且()0.6P A =, ()0.7P B =.问: (1) 在什么条件下()P AB 取到最⼤值, 最⼤值是多少? (2) 在什么条件下()P AB 取到最⼩值, 最⼩值是多少?解 ()()()()P AB P A P B P A B =+- =1.3()P A B - .(1) 如果A B B = , 即当A B ?时, P B A P =)( ()B =0.7, 则()P AB 有最⼤值是0.6 .(2) 如果)(B A P =1,或者A B S = 时, ()P AB 有最⼩值是0.3 .6. 已知1()()()4P A P B P C ===,()0P AB =, 1()()12P AC P BC ==, 求A , B , C 全不发⽣的概率.解因为ABCAB ?,所以0()P ABC P AB ≤≤()=0, 即有()P ABC =0.由概率⼀般加法公式得()()()()()()()()7.12P A B C P A P B P C P AB P AC P BC P ABC =++---+= 由对⽴事件的概率性质知A ,B , C 全不发⽣的概率是5()()1()12P ABC P A B C P A B C ==-=.习题1-41. 选择题在5件产品中, 有3件⼀等品和2件⼆等品. 若从中任取2件, 那么以0.7为概率的事件是( ).(A) 都不是⼀等品. (B) 恰有1件⼀等品. (C) ⾄少有1件⼀等品. (D) ⾄多有1件⼀等品.解⾄多有⼀件⼀等品包括恰有⼀件⼀等品和没有⼀等品, 其中只含有⼀件⼀等品的113225C C C ?, 没有⼀等品的概率为023225C C C ?, 将两者加起即为0.7. 答案为(D ).2. 从由45件正品、5件次品组成的产品中任取3件. 求: (1) 恰有1件次品的概率; (2) 恰有2件次品的概率; (3) ⾄少有1件次品的概率; (4) ⾄多有1件次品的概率; (5) ⾄少有2件次品的概率.解 (1) 恰有1件次品的概率是12545350C C C ;(2) 恰有2件次品的概率是21545350C C C ; (3 )⾄少有1件次品的概率是1-03545350C C C ; (4) ⾄多有1件次品的概率是03545350C C C +12545350C C C ; (5) ⾄少有2件次品的概率是21545350C C C +30545350C C C .3. 袋中有9个球, 其中有4个⽩球和5个⿊球. 现从中任取两个球. 求:(1) 两个球均为⽩球的概率;(2) 两个球中⼀个是⽩的, 另⼀个是⿊的概率; (3)⾄少有⼀个⿊球的概率.解从9个球中取出2个球的取法有29C 种,两个球都是⽩球的取法有24C 种,⼀⿊⼀⽩的取法有1154C C 种,由古典概率的公式知道(1) 两球都是⽩球的概率是2924C C ;(2)两球中⼀⿊⼀⽩的概率是115429C C C ;(3)⾄少有⼀个⿊球的概率是12924C C -.4. 在区间(0, 1)中随机地取两个数, 求下列事件的概率:(1) 两数之和⼩于6 5;(2) 两数之积⼩于14;(3) 以上两个条件同时满⾜;(4) 两数之差的绝对值⼩于12的概率.解设X , Y 为所取的两个数, 则样本空间S = {(X , Y )|0(1) P {X +Y <65}=1441172550.68125-??=≈;(2) P {XY <14}=11411111ln 40.64444dx x+=+≈?;(3) P {X +Y <65, XY <14} =0.2680.932110.2680.932516161()()5545x dx dx x dx x ?+-++-≈0.593.(4) 解设x , y 为所取的两个数, 则样本空间Ω = {(x , y )|012}. 参见图1-1.图1-1 第2题样本空间故 111123222()14AS P A S Ω-===, 其中 S A , S Ω分别表⽰A 与Ω的⾯积.习题1-51. 选择题(1) 设随机事件A , B 满⾜P (A |B )=1, 则下列结论正确的是( )(A) A 是必然事件. (B) B 是必然事件. (C) AB B =. (D)()()P AB P B =.解由条件概率定义可知选(D).(2) 设A , B 为两个随机事件, 且0()1P A <<, 则下列命题正确的是( ).(A) 若()()P AB P A =, 则A , B 互斥.(B) 若()1P BA =, 则()0P AB =. (C) 若()()1P AB P AB +=, 则A , B 为对⽴事件. (D) 若(|)1P B A =, 则B 为必然事件.解由条件概率的定义知选(B ).2. 从1,2,3,4中任取⼀个数, 记为X , 再从1,2,…,X 中任取⼀个数, 记为Y ,求P {Y =2}. 解解 P {Y =2}=P {X =1}P {Y =2|X =1}+P {X =2}P {Y =2|X =2}+P {X =3}P {Y =2|X =3}+P {X =4}P {Y =2|X =4}=41×(0+21+31+41)=4813.3. ⼝袋中有b 个⿊球、r 个红球, 从中任取⼀个, 放回后再放⼊同颜⾊的球a 个. 设B i ={第i 次取到⿊球}, 求1234()P B B B B .解⽤乘法公式得到)|()|()|()()(32142131214321B B B B P B B B P B B P B P B B B B P =.32ar b a r a r b r a r b a b r b b +++?++?+++?+=注意, a = 1和a = 0分别对应有放回和⽆放回抽样.4. 甲、⼄、丙三⼈同时对某飞机进⾏射击, 三⼈击中的概率分别为0.4, 0.5, 0.7. 飞机被⼀⼈击中⽽被击落的概率为0.2, 被两⼈击中⽽被击落的概率为0.6, 若三⼈都击中, 飞机必定被击落. 求该飞机被击落的概率.解⽬标被击落是由于三⼈射击的结果, 但它显然不能看作三⼈射击的和事件. 因此这属于全概率类型. 设A 表⽰“飞机在⼀次三⼈射击中被击落”, 则(0,1,2,3)i B i =表⽰“恰有i 发击中⽬标”.i B 为互斥的完备事件组. 于是没有击中⽬标概率为0()0.60.50.30.09P B =??=, 恰有⼀发击中⽬标概率为1()0.40.50.30.60.50.30.60.50.70.36P B =??+??+??=,恰有两发击中⽬标概率为2()0.40.50.30.60.50.70.40.50.70.41P B =??+??+??=,恰有三发击中⽬标概率为3()0.40.50.70.14P B =??=.⼜已知 0123(|)0,(|)0.2,(|)0.6,(|)1P A B P A B P A B P A B ====, 所以由全概率公式得到 3()()(|)0.360.20.410.60.1410.458.iii P A P B P A B ===?+?+?=∑5. 在三个箱⼦中, 第⼀箱装有4个⿊球, 1个⽩球; 第⼆箱装有3个⿊球, 3个⽩球; 第三箱装有3个⿊球, 5个⽩球. 现任取⼀箱, 再从该箱中任取⼀球.(1) 求取出的球是⽩球的概率;(2) 若取出的为⽩球, 求该球属于第⼆箱的概率.解 (1)以A 表⽰“取得球是⽩球”,i H 表⽰“取得球来⾄第i 个箱⼦”,i =1,2,3. 则P (i H )=13, i =1,2,3, 123115(|),(|),(|)528P A H P A H P A H ===. 由全概率公式知P (A )=112233()(|)()(|)()(|)P H P A H P H P A H P H P A H ++=12053. (2) 由贝叶斯公式知 P (2|H A )=222()()(|)20()()53P AH P H P A H P A P A ==6. 某⼚甲、⼄、丙三个车间⽣产同⼀种产品, 其产量分别占全⼚总产量的40%, 38%, 22%, 经检验知各车间的次品率分别为0.04, 0.03, 0.05. 现从该种产品中任意取⼀件进⾏检查.(1) 求这件产品是次品的概率;(2) 已知抽得的⼀件是次品, 问此产品来⾃甲、⼄、丙各车间的概率分别是多少?解设A 表⽰“取到的是⼀件次品”, i B (i =1, 2, 3)分别表⽰“所取到的产品来⾃甲、⼄、丙⼯⼚”. 易知,123,,B B B 是样本空间S 的⼀个划分, 且122()0.4,()0.38,()0.22P B P B P B ===,12(|)0.04,(|)0.03P A B P A B ==,3(|)0.05P A B =.(1) 由全概率公式可得112233()(|)()(|)()(|)()P A P A B P B P A B P B P A B P B =++0.40.040.380.030.220.0384.=?+?+?=.(2) 由贝叶斯公式可得111(|)()0.40.045(|)()0.038412P A B P B P B A P A ?===,222(|)()0.380.0319(|)()0.038464P A B P B P B A P A ?===,333(|)()0.220.0555(|)()0.0384192P A B P B P B A P A ?===.习题1-61. 选择题(1) 设随机事件A 与B 互不相容, 且有P (A )>0, P (B )>0, 则下列关系成⽴的是( ).(A) A , B 相互独⽴. (B) A , B 不相互独⽴.(C) A , B 互为对⽴事件. (D) A , B 不互为对⽴事件. 解⽤反证法, 本题应选(B).(2) 设事件A 与B 独⽴, 则下⾯的说法中错误的是( ).(A) A 与B 独⽴. (B) A 与B 独⽴. (C)()()()P AB P A P B =. (D) A 与B ⼀定互斥.解因事件A 与B 独⽴, 故A B 与,A 与B 及A 与B 也相互独⽴. 因此本题应选(D).(3) 设事件A 与 B 相互独⽴, 且0(A)(|)()P A B P A =. (B) ()()()P AB P A P B =.(C) A 与B ⼀定互斥. (D)()()()()()P A B P A P B P A P B =+- .解因事件A 与B 独⽴, 故A B 与也相互独⽴, 于是(B)是正确的. 再由条件概率及⼀般加法概率公式可知(A)和(D)也是正确的. 从⽽本题应选(C).2.设A , B 是任意两个事件, 其中A 的概率不等于0和1, 证明 P (B |A )=)(A BP 是事件A 与B 独⽴的充分必要条件.证由于A 的概率不等于0和1, 故题中两个条件概率都存在.充分性. 因事件A 与B 独⽴, 知事件A 与B 也独⽴, 因此()(),()()P B A P B P B A P B ==,从⽽()()P B A P B A =.必要性. 已知()()P BA PB A =, 由条件概率公式和对⽴事件概率公式得到()()()()()1()()P AB P AB P B P AB P A P A P A -==-,移项得[]()1()()()()(),P AB P A P A P B P A P AB -=-化简得 P (AB )=P (A )P (B ), 因此A 和B 独⽴.3. 设三事件A , B 和C 两两独⽴, 满⾜条件:,ABC =?1()()()2P A P B P C ==<, 且9()16P A B C =,求()P A .解根据⼀般加法公式有()()()()()()()()P A B C P A P B P C P AC P AB P BC P ABC =++---+ .由题设可知 A , B 和C 两两相互独⽴, ,ABC =?1()()()2P A P B P C ==<, 因此有2()()()[()],()()0,P AB P AC P BC P A P ABC P ====?=从⽽29()3()3[()]16P A B C P A P A =-=,于是3()4P A =或1()4P A =, 再根据题设1()2P A <, 故1()4P A =.4.某⼈向同⼀⽬标独⽴重复射击, 每次射击命中⽬标的概率为p (0解 “第4次射击恰好第2次命中” 表⽰4次射击中第4次命中⽬标, 前3次射击中有⼀次命中⽬标. 由独⽴重复性知所求概率为1223(1)C p p -.5. 甲、⼄两⼈各⾃向同⼀⽬标射击, 已知甲命中⽬标的概率为 0.7, ⼄命中⽬标的概率为0.8. 求:(1) 甲、⼄两⼈同时命中⽬标的概率;(2) 恰有⼀⼈命中⽬标的概率; (3) ⽬标被命中的概率.解甲、⼄两⼈各⾃向同⼀⽬标射击应看作相互独⽴事件. 于是(1) ()()()0.70.80.56;P AB P A P B ==?=(2)()()0.70.20.30.80.38;P AB P AB +=?+?=(3) ()()()()()0.70.80.560.94.P A B P A P B P A P B =+-=+-=总习题⼀1. 选择题:设,,A B C 是三个相互独⽴的随机事件, 且0()1P C <<, 则在下列给定的四对事件中不相互独⽴的是( ).(A)A B 与C . (B)AC 与C .(C) A B -与C . (D) AB 与C .解由于A , B , C 是三个相互独⽴的随机事件, 故其中任意两个事件的和、差、交、并与另⼀个事件或其逆是相互独⽴的, 根据这⼀性质知(A), (C), (D)三项中的两事件是相互独⽴的, 因⽽均为⼲扰项, 只有选项(B)正确..2. ⼀批产品由95件正品和5件次品组成, 先后从中抽取两件, 第⼀次取出后不再放回.求: (1) 第⼀次抽得正品且第⼆次抽得次品的概率; (2) 抽得⼀件为正品, ⼀件为次品的概率.解 (1) 第⼀次抽得正品且第⼆次抽得次品的概率为9551910099396?=.(1) 抽得⼀件为正品,⼀件为次品的概率为95559519.10099198+= 3. 设有⼀箱同类型的产品是由三家⼯⼚⽣产的. 已知其中有21的产品是第⼀家⼯⼚⽣产的, 其它⼆⼚各⽣产41. ⼜知第⼀、第⼆家⼯⼚⽣产的产品中有2%是次品, 第三家⼯⼚⽣产的产品中有4%是次品. 现从此箱中任取⼀件产品, 求取到的是次品的概率.解从此箱中任取⼀件产品, 必然是这三个⼚中某⼀家⼯⼚的产品. 设A ={取到的产品是次品},B i ={取到的产品属于第i 家⼯⼚⽣产}, i =1, 2, 3. 由于B i B j =?(i ≠j, i , j =1, 2, 3)且B 1∪B 2∪B 3=S , 所以B 1, B 2, B 3是S 的⼀个划分. ⼜ P (B 1)=21, P (B 2) =41, P (B 3)=41,P (A | B 1)=1002, P (A | B 2)=1002, P (A | B 3)=1004,由全概率公式得P (A )=P (B 1)P (A |B 1)+P (B 2)P (A |B 2)+P (B 3)P (A | B 3)=100441100241100221?+?+?=0.025. 4. 某⼚⾃动⽣产设备在⽣产前须进⾏调整. 假定调整良好时, 合格品为90%; 如果调整不成功,则合格品有30%. 若调整成功的概率为75%, 某⽇调整后试⽣产, 发现第⼀个产品合格. 问设备被调整好的概率是多少?解设A ={设备调整成功}, B ={产品合格}. 则全概率公式得到()()(|)()(|)0.750.90.250.30.75P B P A P B A P A P B A =+=?+?=.由贝叶斯公式可得()0.750.9(|)0.9()0.75()(|)()P AB P A B P B P A P B A P B ?====.5. 将两份信息分别编码为A 和B 传递出去. 接收站收到时, A 被误收作B 的概率为0.02,⽽B 被误收作A 的概率为0.01, 信息A 与信息B 传送的频繁程度为2:1. 若接收站收到的信息是A , 问原发信息是A 的概率是多少?解以D 表⽰事件“将信息A 传递出去”,以D 表⽰事件“将信息B 传递出去”,以R 表⽰事件“接收到信息A ”,以R 表⽰事件“接收到信息B ”.已知21()0.02,()0.01,(),()33P R D P R D P D P D ====.由贝叶斯公式知()()()196()()197()()()()P R D P D P DR P D R P R P R D P D P R D P D ===+.。

《概率论与数理统计》试卷第一二章.doc

《概率论与数理统计》试卷第一二章.doc

贵州财经大学2014—2015学年第一学期期末考试模拟卷(一)试卷名称:概率论与数理统计(第一、二章)一、单项选择题(每题2分,共20分)1.甲,乙两人进行射击,分别表示甲,乙两人击屮目标,则AU5表示()A.二人都没有击中B.二人都击中C.二人没有都击中D.至少有一个人击中2.设人5两个事件,P(A)*P(B)〉(),且A] B,则下列必成立的是()A. P(A|fi) = l B . P(B | A) = 1 C.尸(A |B)二1 D • P(B \A) = \3.设两个互逆事件,且^/^、(^^^、(^则下列结论正确的是门A. P(B | A) > 0B. P(A\B) = P(A)C. P(A\B) = OD. P(AB)= P(A)P(B)4.某人打靶的命中率为0.8,现独立的射击5次,则5次中有2次命中的概率是()2A. O.82xO.23B. O.82C. -x().82D. C s3O.82xO.2;5 55.设A,B两个互不相容事件,则()y4. P(AB) = Q B. P(AB) = P(A)P(B) C. P(A) = \- P(B) D. P(JUB) = 16.设随机变量X的分布律为则F(2.5) = ()A 0.3 B. 0.2 C. 0.34 D. 0.7A. €B. c — [C. +1D.9. 设随机变量x: 2V(/Z ,C72),若要使y: yv(o ,i)则()X-uX -uA. Y = crX +juB. Y =——已C. Y =——已(7 (T 210. 没随机变量X : £(|),贝IJ 尸(3< JV <9)=()A F(i)-f(x)士4) c•士4二、填空题(每题2分,共24分)1. 设随机试验£:将一枚硬币连抛两次,观察正面出现的次数,则试验£所对应的样本空间为()2. 有6本中文书和4本外文书任意的放在书架上,则4本外文书放在一起的概率为()3. 设P(A) =P(B)= P(C)=丄,P(AB) = Q, P(AC)= P(BC) =丄,则人 B,C 全不发生的概率()4 8,至少有一个发生的概率()4. 己知 P(A) = 0.3, P(8) = 0.4, P(AB) = 0.5,则条件概率P (召 | A U B)=()5. 三个人独立地去破译一份密码,己知各人能译出的概率分别是1/5,1/4,1/3,则这份密码被 译出的概率()6•设是两个相互独立的事件,gP(A) = 0.7,P(B) = 0.4jJjP(AB) = ()7. 设射手每次击中目标的概率为0.7,连续射击10次,则击中目标次数X 的概率分布( )8. 设某城市在一周内发生交通事故的次数服从参数/1=0.3的泊松分布,则在一周内恰好发生 2次事故的概率()和至少发生1次事故的概率()9. 某产品15件,其中次品2件。

概率论与数理统计练习题第一章答案

概率论与数理统计练习题第一章答案

概率论与数理统计练习题 (公共)系 专业 班 姓名 学号第一章 随机事件及其概率(一)一.选择题1.对掷一颗骰子的试验,在概率论中将“出现奇数点”称为 [ C ](A )不可能事件 (B )必然事件 (C )随机事件 (D )样本事件 2.甲、乙两人进行射击,A 、B 分别表示甲、乙射中目标,则A B ⋃表示 [ C ] (A )二人都没射中 (B )二人都射中 (C )二人没有都射着 (D )至少一个射中3.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对应事件A 为. [ D ] \(A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销”; (C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销4.在电炉上安装了4个温控器,其显示温度的误差是随机的。

在使用过程中,只要有两个温控器显示的温度不低于临界温度0t ,电炉就断电。

以E 表示事件“电炉断电”,设(1)(2)(3)(4)T T T T ≤≤≤为4个温控器显示的按递增排列的温度值,则事件E 等于 (考研题2000) [ C ](A )(1)0{}T t ≥ (B )(2)0{}T t ≥ (C )(3)0{}T t ≥ (D )(3)0{}T t ≥ 5.掷两颗均匀的骰子,事件“点数之和为3”的概率是[ B ] (A )136 (B )118 (C )112 (D )1116.A 、B 为两事件,若()0.8,()0.2,()0.4P A B P A P B ⋃===,则[ B ](A )()0.32P A B = (B )()0.2P A B = (C )()0.4P B A -= (D )()0.48P B A =7.有6本中文书和4本外文书,任意往书架摆放,则4本外文书放在一起的概率是 [ D ] ` (A )4!6!10!⋅ (B )710 (C )410 (D )4!7!10!⋅二、填空题:1.设1()()()4P A P B P C ===,1()0,()()8P AB P AC P BC ===,则A 、B 、C 全不发生的概率为 1/2 。

概率论与数理统计作业卷及参考答案

概率论与数理统计作业卷及参考答案

本科概率论与数理统计作业卷(一)一、填空题.____)(.6.03.0,4.0,.1=B A P B A B B B A B A 的概率件的对立事件,那么积事表示若和的概率分别是及其和事件设随机事件).(1)()()()()()()()()()()()(,C ,C B P A P B A P B P A P C P AB P B P A P B A P AB P C P C AB B A 所以应选所以又由因此必发生就意味着事件同时发生时与因为事件解++≥-+≥-+=≥⊂.____)(,)()()(.2===B P p A P B A P AB P B A 则且,两个事件满足条件、已知.11)(,1)()()(1)(1)()()()()(,p pB P B P A P B A P B A P B A P AB P B P A P B A P B A B A --==+∴-=-=-+==所以应填即又解 .______,,,81)()(0)(,41)()()(.3概率为都不发生的则事,设C B A BC P AC P AB P C P B P A P ======.127,127)(,0)(,,0)(),().()()()()()()()(),(1)(),(故应填通过计算得即有注意到于是问题归结为求而来,由概率性质有为了与已知条件联系起问题是求分析==⊂=+---++=-=ABC P ABC P AB ABC AB P ABC P ABC P BC P AC P AB P C P B P A P C B A P C B A P ABC P ABC P ._____310.4本书放在一起的概率为则其中指定的本书随意放在书架上,把 .151!10!8!3373应填本书放在一起的概率为本全排列,则指定的本书视为一组,与另外把解⋅二、选择题1)()()()D (1)()()()C ()()()()B ()()()A (.1-+≤-+≥==B P A P C P B P A P C P B P A P C P AB P C P C B A 确的是必发生,则下列结论正同时发生时,事件与当事件).(1)()()()()()()()()()().()(,C ,C B P A P B A P B P A P C P AB P B P A P B A P AB P C P C AB B A 所以应选所以又由因此必发生就意味着事件同时发生时与因为事件解++≥-+≥-+=≥⊂74)D (52)C (61)B (41)A (2.2的概率为是掷两枚骰子,则最小点 .413699C C 1,222,36661412===⋅+=⨯P ,故、另一个点大于或一个点为两点皆为事件总数为解 的大小,无法比较,则回,此时记若依次取出,取后不放不放回,此时记若依次取出,取后,此时记若依次取出,取后放回取出三个数依次为红依次取出三个数,记在数集21212121211)D ()C ()B ()A ()()II ();()II ();()I (".3,2,1"}5,4,3,2,1{.3p p p p p p p p A P p A P p A P p A >=<====.513451)(,51)().(,.).(1323121p A P p A P p A P P A A =>⨯⨯====<事实上,选择此于“取后不放回”,因试验的基本事件总数多而“取后放回”的基本事件只有一个无论哪一种取法有利于解43)D (32)C (21)B (41)A (5532.4超过一角的概率为个,则总币值中个壹分的硬币,任取其个贰分,个伍分,袋中装有.21510272312=⋅⋅=C C C C p 解三、计算证明题个全非废品的概率。

概率论与数理统计第一章习题参考解答

概率论与数理统计第一章习题参考解答
Bi 为事件“i 接点闭合”,i=1,2,…5
P( A) = P( A | B3)P(B3) + P( A | B3)P(B3) 其中 P( A | B3) = P((B1 ∪ B4 )(B2 ∪ B5 ))
= P(B1 ∪ B4 )P(B2 ∪ B5 )
= [1 − P(B1)P(B4 )][1 − P(B2 )P(B5 )] = [1 − (1 − p)2 ]2 = p2 (2 − p)2
片”。验证
P(AB) = P(A)P(B),P( AC) = P( A)P(C),P(BC) = P(B)P(C)
P(A)P(B)P(C) ≠ P(ABC)
解:显然 P( A) = P(B) = P(C) = 1 , P( AB) = 1 , P(BC) = 1 , P( ABC) = 1 ,
2
4
4
首位偶 : A41 A41 A82
A140
10 ⋅9 ⋅8⋅ 7 90
解法二 分末位 0 和末位不为 0 两种,组成一个偶数四位数有 C41C81A82 + A93 种
∴ P( A) = C41C21 A82 + A93 = 41
A140
90
错误:认为样本空间也为四位数,实际只要求是一列.
10、求 10 人中至少有两人出生于同一月份的概率。
里选三个,所求概率为 C53 C130
1
=
12
9、在 0,1,2,3,…..,9 共 10 个数字中,任取 4 个不同数字排成一列,求这 4 个数字能 组成一个偶数四位数的概率。
解:设事件“组成一个偶数四位数”为 A
任取 4 个不同数字排成一列共有: A140 种 解法一 组成一个偶数四位数有

概率论与数理统计第一章习题参考答案

概率论与数理统计第一章习题参考答案

1第一章 随机事件及其概率1.解:(1){}67,5,4,3,2=S (2){} ,4,3,2=S (3){} ,,,TTH TH H S =(4){}6,5,4,3,2,1,,T T T T T T HT HH S = 2.解:81)(,21)(,41)(===AB P B P A P\)()()()(AB P B P A P B A P -+= 85812141=-+=)()()(AB P B P B A P -==838121=-= 87811)(1)(=-=-=AB P AB P)])([(AB B A P )]()[(AB B A P -=)()(AB P B A P -= )(B A AB Ì 218185=-=3.解:用A 表示事件“取到的三位数不包含数字1” 2518900998900)(191918=´´==C C C A P4、解:用A 表示事件“取到的三位数是奇数”,用B 表示事件“取到的三位数大于330330””(1)455443)(2515141413´´´´==A C C C C A P =0.482)455421452)(251514122512´´´´+´´=+=A C C C A C B P =0.485、解:用A 表示事件“表示事件“44只中恰有2只白球,只白球,11只红球,只红球,11只黑球”, 用B 表示事件“表示事件“44只中至少有2只红球”, 用C 表示事件“表示事件“44只中没有只白球”只中没有只白球” (1)412131425)(C C C C A P ==495120=338(2)4124838141)(C C C C B P +-==16567495201= 或16567)(4124418342824=++=C C C C C C B P(3)99749535)(41247===CC C P6.解:用A 表示事件“某一特定的销售点得到k 张提货单”张提货单” nkn k n MM C A P --=)1()(7、解:用A 表示事件“表示事件“33只球至少有1只配对”,用B 表示事件“没有配对”表示事件“没有配对” (1)3212313)(=´´+=A P 或321231121)(=´´´´-=A P(2)31123112)(=´´´´=B P8、解、解 1.0)(,3.0)(,5.0)(===AB P B P A P(1)313.01.0)()()(===B P AB P B A P ,515.01.0)()()(===A P AB P A B P7.01.03.05.0)()()()(=-+=-+=AB P B P A P B A P)()()()()()]([)(B A P AB P B A P AB A P B A P B A A P B A A P ===757.05.0==717.01.0)()()()])([()(====B A P AB P B A P B A AB P B A AB P1)()()()]([)(===AB P AB P AB P AB A P AB A P(2)设{}次取到白球第i A i = 4,3,2,1=i则)()()()()(32142131214321A A A A P A A A P A A P A P A A A A P =0408.020592840124135127116==´´´=9、解: 用A 表示事件表示事件“取到的两只球中至少有“取到的两只球中至少有1只红球”,用B 表示事件表示事件“两只都是红球”“两只都是红球”方法1651)(2422=-=C C A P ,61)(2422==C C B P ,61)()(==B P AB P516561)()()(===A P AB P A B P方法2 在减缩样本空间中计算在减缩样本空间中计算在减缩样本空间中计算 51)(=A B P1010、解:、解:A 表示事件“一病人以为自己得了癌症”,用B 表示事件“病人确实得了癌症”表示事件“病人确实得了癌症” 由已知得,%40)(%,10)(%,45)(%,5)(====B A P B A P B A P AB P (1)B A AB B A AB A 与,=互斥互斥5.045.005.0)()()()(=+=+==\B A P AB P B A AB P A P同理同理15.01.005.0)()()()(=+=+==B A P AB P B A AB P B P (2)1.05.005.0)()()(===A P AB P A B P(3)2.05.01.0)()()(,5.05.01)(1)(====-=-=A P B A P A B P A P A P(4)17985.045.0)()()(,85.015.01)(1)(====-=-=B P B A P B A P B P B P(5)3115.005.0)()()(===B P AB P B A P1111、解:用、解:用A 表示事件“任取6张,排列结果为ginger ginger””92401)(61113131222==A A A A A A P1212、、解:用A 表示事件“A 该种疾病具有症状”,用B 表示事件“B 该种疾病具有症状”由已知2.0)(=B A P3.0)(=B A P 1.0)(=AB P (1),B A AB B A B A S=且B A AB B A B A ,,,互斥互斥()6.01.03.02.0)()()(=++=++=\AB P B A P B A P B A P4.06.01)(1)()(=-=-==B A P B A P B A P ()()()4.0)(1=---=AB P B A P B A P B A P(2)()()()6.01.03.02.0)(=++=++=AB P B A P B A P AB B A B A P(3)B A AB B =, B A AB ,互斥互斥4.03.01.0)()()()(=+=+==B A P AB P B A AB P B P )()()(])[()(B P AB P B P B AB P B AB P ==414.01.0==1313、解:用、解:用i A 表示事件“讯号由第i 条通讯线输入”,,4,3,2,1=i B 表示“讯号无误差地被接受”接受”;2.0)(,1.0)(,3.0)(,4.0)(4321====A P A P A P A P9998.0)(1=A B P ,9999.0)(2=A B P ,,9997.0)(3=A B P 9996.0)(4=A B P 由全概率公式得由全概率公式得9996.02.09997.01.09999.03.09998.04.0)()()(41´+´+´+´==å=ii iA B P A P B P99978.0=1414、、解:用A 表示事件“确实患有关节炎的人”,用B 表示事件“检验患有关节炎的人”由已知由已知1.0)(=A P ,85.0)(=A B P ,04.0)(=A B P , 则9.0)(=A P ,85.0)(=A B P ,96.0)(=A B P , 由贝叶斯公式得由贝叶斯公式得 017.096.09.015.01.015.01.0)()()()()()()(=´+´´=+=A B P A P A B P A P A B P A P B A P1515、解:用、解:用A 表示事件“程序交与打字机A 打字”,B 表示事件“程序交与打字机B 打字”, C 表示事件“程序交与打字机C 打字”;D 表示事件“程序因计算机发生故障被打坏”坏”由已知得由已知得6.0)(=A P ,3.0)(=B P ,1.0)(=C P ; 01.0)(=A D P ,05.0)(=B D P ,04.0)(=C D P由贝叶斯公式得由贝叶斯公式得)()()()()()()()()(C D P C P B D P B P A D P A P A D P A P D A P ++=24.025604.01.005.03.001.06.001.06.0==´+´+´´=)()()()()()()()()(C D P C P B D P B P A D P A P B D P B P D B P ++=6.05304.01.005.03.001.06.005030==´+´+´´=)()()()()()()()()(C D P C P B D P B P A D P A P C D P C P D A P ++=16.025604.01.005.03.001.06.004.01.0==´+´+´´=1616、解:用、解:用A 表示事件“收到可信讯息”,B 表示事件“由密码钥匙传送讯息”表示事件“由密码钥匙传送讯息”由已知得由已知得 95.0)(=A P ,05.0)(=A P ,1)(=A B P ,001.0)(=A B P由贝叶斯公式得由贝叶斯公式得999947.0001.005.0195.0195.0)()()()()()()(»´+´´=+=A B P A P A B P A P A B P A P B A P1717、解:用、解:用A 表示事件“第一次得H ”,B 表示事件“第二次得H ”, C 表示事件“两次得同一面”表示事件“两次得同一面”则,21)(,21)(==B P A P ,21211)(2=+=C P ,4121)(2==AB P ,4121)(2==BC P ,4121)(2==AC P )()()(),()()(),()()(C P A P AC P C P B P BC P B P A P AB P ===\C B A ,,\两两独立两两独立而41)(=ABC P ,)()()()(C P B P A P ABC P ¹C B A ,,\不是相互独立的不是相互独立的1818、解:用、解:用A 表示事件“运动员A 进球”,B 表示事件“运动员B 进球”, C 表示事件“运动员C 进球”,由已知得由已知得5.0)(=A P ,7.0)(=B P ,6.0)(=C P 则5.0)(=A P ,3.0)(=B P ,4.0)(=C P (1){})(C B A C B A C B A P P =恰有一人进球)()()(C B A P C B A P C B A P ++= (C B A C B A C B A ,,互斥)互斥) )()()()()()()()()(C P B P A P C P B P A P C P B P A P ++=相互独立)C B A ,,(29.06.03.05.04.07.05.04.03.05.0=´´+´´+´´=(2){})(C B A BC A C AB P P =恰有二人进球)()()(C B A P BC A P C AB P ++= (C B A BC A C AB ,,互斥)互斥) )()()()()()()()()(C P B P A P C P B P A P C P B P A P ++= 相互独立)C B A ,,(44.06.03.05.06.07.05.04.07.05.0=´´+´´+´´= (3){})(C B A P P =至少有一人进球)(1C B A P -= )(1C B A P -=)()()(1C P B P A P -=相互独立)C B A ,,( 4.03.05.01´´-=94.0= 1919、解:用、解:用i A 表示事件“第i 个供血者具有+-RHA 血型”, ,3,2,1=iB 表示事件“病人得救”表示事件“病人得救”,4321321211A A A A A A A A A A B=4321321211,,,A A A A A A A A A A 互斥,i A ( ,3,2,1=i )相互独立)相互独立 ()()(1P A P B P +=\+)21A A )()(4321321A A A A P A A A P +8704.04.06.04.06.04.06.04.032=´+´+´+=2020、解:设、解:设i A 表示事件“可靠元件i ” i=1,2,3,4,5 ,B 表示事件“系统可靠”由已知得p A P i =)(1,2,3,4,5)(i = 54321,,,,A A A A A 相互独立相互独立法1:54321A A A A A B =)()(54321A A A A A P B P =\()()()()()()542154332154321A A A A P A A A P A A A P A A P A P A A P ---++=()54321A A A A A P +543322p p p p p p p +---++= ()相互独立54321,,,,A A A A A543222p p p p p +--+=法2:)(1)(54321A A A A A P B P -=)()()(154321A A P A P A A P -= ()相互独立54321,,,,A A A A A()()]1][1)][(1[154321A A P A P A A P ----=()()()]1][1)][()(1[154321A P A P A P A P A P ----=()相互独立54321,,,,A A A A A()()()221111pp p----=543222p p p p p +--+=2121、解:令、解:令A :“产品真含杂质”,A :“产品真不含杂质”“产品真不含杂质” 则4.0)(=A P ,6.0)(=A P2.08.0)|(223´´=C A B P 9.01.0)|(223´´=C A B P \)()|()()|()(A P A B P A P A B P B P +=6.09.01.04.02.08.0223223´´´+´´´=C C\)()|()()|()()|()()()|(A P A B P A P A B P A P A B P B P AB P B A P +==905.028325660901********.02.08.0223223223»=´´´+´´´´´´=C C C第二章习题答案 1、{}()4.04.011´-==-k k Y Pk=1,2,… 2、用个阀门开表示第i A i))()()()()(())((}0{32321321A P A P A P A P A P A A A P X P -+=== 072.0)2.02.02.02.0(2.0=´-+=23213218.02.0)04.02.02.0(8.0])([}1{´+-+===A A A A A A P X P416.0=512.08.0)(}2{3321====A A A P X P 3、()2.0,15~b X{}kkk C k X P -´==15158.02.0 k=0,1,2,……,15(1){}2501.08.02.03123315=´==C X P(2){}8329.08.02.08.02.01214115150015=´-´-=³C C X P(3){}6129.08.02.08.02.08.02.031123315132215141115=´+´+´=££C C C X P(4){}0611.08.02.01551515=´-=>å=-k kkk C X P4、用X 表示5个元件中正常工作的个数个元件中正常工作的个数9914.09.01.09.01.09.0)3(54452335=+´+´=³C C X P5、设X={}件产品的次品数8000 则X~b(8000,0.001)由于n 很大,P 很小,所以利用)8(p 近似地~X {}3134.0!8768==<å=-k k k eX P6、(1)X~p (10){}{}0487.09513.01!101151151510=-=-=£-=>\å=-k k k eX P X P (2)∵ X~p ( l ) {}{}!01010210ll --==-=>=\e X P X P{}210==\X P21=\-le7.02ln ==\l {}{}1558.08442.01!7.0111217.0=-=-=£-=³\å=-k k k eX P X P或{}{}{}2ln 2121!12ln 21110122ln -=--==-=-=³-e X P X P X P 7、)1( )2(~p X 1353.0!02}0{22====--e e X P )2( 00145.0)1()(24245=-=--eeC p)3( 52)!2(å¥=-=k kk e p8、(1) 由33)(11312k x k dx kx dx x f ====òò¥+¥- 3=\k(2){}()2713331331231====£òò¥-xdx x dx x f X P(3)64764181321412141321412=-===þýüîí죣òxdx x X P(4)271927813)(321323132232=-====þýüîíì>òò¥+xdx x dx x f X P9、方程有实根04522=-++X Xt t ,则,则 0)45(4)2(2³--=D X X 得.14£³X X 或 有实根的概率有实根的概率937.0003.0003.0}14{104212=+=£³òòdx x dx x X X P10、)1( 005.01|100}1{200110200200122»-=-==<---òeedx ex X P x x)2(=>}52{X P 0|100200525220020052222»-=-=-¥--¥òeedx exx x)3( 25158.0}20{}26{}20|26{200202002622==>>=>>--ee X P X P X X P 11、解:、解: (1){}()275271942789827194491)(12132121=+--=÷øöçèæ-=-==>òò¥+x x dx x dx x f X P(2)Y~b(10,275){}kk kC k Y P -÷øöçèæ´÷øöçèæ==10102722275k=0,1,2,……,10(3){}2998.027*******2210=÷øöçèæ´÷øöçèæ==C Y P{}{}{}1012=-=-=³Y P Y P Y P 5778.027222752722275191110100210=÷øöçèæ÷øöçèæ-÷øöçèæ´÷øöçèæ-=C C 12(1)由()()òòò++==-+¥¥-10012.02.01dy cy dy dy y f24.0)22.0(2.01201c y c y y +=++=-2.1=\c ()ïîïíì£<+£<-=\其它102.12.0012.0y yy y f ()()ïïïïîïïïïíì³+<£++<£--<==òòòòòò--¥-¥-12.12.0102.12.02.0012.010)()(100011y dyy y dy y dy y dt y dtdt t f y F y yyyYïïîïïíì³<£++<£-+-<=11102.02.06.0012.02.0102y y y y y y y{}()()25.02.05.06.05.02.02.005.05.002=-´+´+=-=££F F Y P {}()774.01.06.01.02.02.011.011.02=´-´--=-=>F Y P {}()55.05.06.05.02.02.015.015.02=´-´+-=-=>F Y P{}{}{}{}{}7106.0774.055.01.05.01.01.0,5.01.05.0==>>=>>>=>>\Y P Y P Y P Y Y P Y Y P(2) ()()ïïïîïïïíì³<£+<£<==òòòò¥-41428812081002200x x dtt dt x dt x dt t f x F xxxïïïîïïïíì³<£<£<=4142162081002x x x x xx{}()()167811691331=-=-=££F F X P{}()16933==£F X P{}{}{}9716916733131==£££=£³\X P X P X X P 13、解:{}111,-´===n nj Y i X Pn j i j i ,¼¼=¹,2,1,,{}0,===i Y i X P 当n=3时,(X ,Y )联合分布律为)联合分布律为14、)1(2.0}1,1{===Y X P ,}1,1{}0,1{}1,0{}0,0{}1,1{==+==+==+===££Y X P Y X P Y X P Y X P Y X P42.020.004.008.010.0=+++= )2( 90.010.01}0,0{1=-===-Y X P)3(}2,2{}1,1{}0,0{}{==+==+====Y X P Y X P Y X P Y X P60.030.020.010.0=++= }0,2{}1,1{}2,0{}2{==+==+====+Y X P Y X P Y X P Y X P28.002.020.006.0=++= 15、()()()88104242c ee cdxdy ce dx x f yx y x =-×-===+¥-+¥-+¥+¥+-+¥¥-òòò8=\c{}()()()4402042228,2-+¥-+¥-+¥+-+¥>=-×-===>òòòòe ee dy edxdxdy y x f X P yyxx y x xY X 1 2 31 0 1/6 1/62 1/6 0 1/6 31/6 1/6 0D :xy x ££¥<£00{}()òò>=>yx dxdy y x f Y X P ,()()dx e e dy edxx yx xy x 0402042028-+¥-+-+¥-×==òòò()ò¥++¥----=÷øöçèæ-=+-=2626323122x x xxe e dx eeD :xy x -££££101{}()dy edxY X P xyx òò-+-=<+10421081 ()()òò------=-=1422101042222dx eedx eex xx yx()()22104221----=--=e e ex x16、(1)61)2(122=-=òdx x x s , îíìÎ=其他,0),(,6),(G y x y x f(2)îíì<<==ò其他,010,36)(2222x x dy x f x xXïïïîïïíì<£-=<<-==òò其他,0121),1(66210),2(66),(12y y yY y y dx y y y dx y x f17、(1)Y X0 1 2 P{X=x i } 0 0.10 0.08 0.06 0.24 1 0.04 0.20 0.14 0.38 20.02 0.06 0.300.38 P{Y=y i } 0.16 0.34 0.501(2)D :+¥<£+¥<£y x x 0或:yx y <£+¥<£00()()ïîïíì£>==\òò+¥-¥+¥-00,x x dye dy y xf x f xy Xîíì£>=-00x x e x()()ïîïíì£>==òò-¥+¥-00,0y y dxe dx y xf y f yy Yîíì£>=--00y y ye y22、(1)Y 1 Y 2 -11-14222qq q =×()q q-124222qq q =×()q q-12()21q -()q q-1214222qq q =×()q q-124222qq q =×且{}{}{}{}1,10,01,121212121==+==+-=-===Y Y P Y Y P Y Y P Y YP()12234142222+-=+-+=q qqqq(2){}10.00,0===Y X P{}{}0384.000==×=Y P X P 又 {}0,0==Y X P {}{}00=×=¹Y P X P∴X 与Y 不相互独立不相互独立23、()1,0~U X ()ïîïíì<<=其它2108y yy f Y且X 与Y 相互独立相互独立则()()()ïîïíì<<<<=×=其它0210,108,y x yy f x f y x f Y XD :1210<£<£x y y32|)384()8(8}{21032212=-=-==>òòò>y y dy y y ydxdy Y X P yx24X-2-11 3 k p51 61 51151301112+=X Y 52 1 2 10Y 12 510k p5115161+513011即Y 12 5 10 k p5130751301125、U=|X|,当0)|(|)()(0=£=£=<y X P y Y P y F y U时,1)(2)()()()|(|)()(0-F =--=££-=£=£=³y y F y F y X y P y X P y Y P y F y X X U 时,当故ïîïíì<³==-0,00,2)(||22y y e y f X U y U p的概率概率密度函数为26、(1)X Y =,当0)()()(0=£=£=<y X P y Y P y F y Y 时,)()()()()(022y F y X P y X P y Y P y F y X Y =£=£=£=³时,当故 ïîïíì<³==-0,00,2)(2y y ye y f X Y y Y 的概率概率密度函数为(2))21(+=X Y ,当0)21()()(0=£+=£=£y X P y Y P y F y Y 时,1)(1)12()12()21()()(01=³-=-£=£+=£=>>y F y y F y X P y X P y Y P y F y Y X Y 时,当时,当故 ïîïíì>>=+=其他的概率概率密度函数为,001,21)(21y y f X Y Y(3)2X Y =,当0)()()(02=£=£=£y X P y Y P y F y Y 时,)()()()()()(02y F y F y X y P y XP y Y P y F y X X Y --=££-=£=£=>时,当故 ïîïíì£>==-0,00,21)(22y y e yy f X Y y Y p 的概率概率密度函数为27、()()ïîïíì<<+=其它201381x x x f X()()p p 4,02,02Î=ÞÎx y x 当y 0£时,()0=y F Yp 40<<y (){}þýüîí죣-=£=p p p y X yP y X P y F Y2()()òò+==-pppyyyx dx x dx x f 01381p 4³y()()113812=+=þýüîí죣-=òdx x y X yP y F Y p p时当p 4,0¹¹\y y ()()ïîïíì><<<×÷÷øöççèæ+×==pp p p 4,0040211381'y y y y yy F y f Y Y()ïîïíì<<+=\其它40161163p p p y yy f Y28、因为X 与 Y 相互独立,且服从正态分布),0(2s N2222221)()(),(sp sy x Y X ey f x f y x f +-==由知,22Y XZ+=0)(0=£z f z Z 时,当时,当0>z òò----=xxx z x z Z z F 2222)(2222221spsy x e+-dydx=2222220202121sspq p sz r zedr rd e---=òòïîïíì³=-其他,0,)()2(222z ez z f z Z ss29、ïîïíì<<-=其他,011,21)(x x f X))1arctan()1(arctan(21)1(21)()()(112--+=+=-=òò+-¥¥-z z dy y dy y f y z f z f z z Y X Z pp30、0)(0=£z f z Z时,当时当0>z2)()()(2302)(z e dy ye edy y f y z f z f zyzyz YX Zll l l l l ----¥¥-==-=òò31、îíì<<=其他,010,1)(x x f X , íì<<=其他,010,1)(y y f Y ,ïïîïïí죣-=<£==-=òòò-¥¥-其他,021,210,)()()(110z zY X Z z z dy z z dy dy y f y z f z f32 解(1)()()îíì£>=ïîïíì£>==---¥+¥-òò00030023,3203x x e x x dye dy y xf x fxxX()()ïîïí죣=ïîïí죣==òò¥+-¥+¥-其它其它20212023,03y y dx e dx y x f y f xY(2)()()îíì>-£=ïîïíì>£==--¥-òò100030303x e x x dt e x dt t f x F xx txX X()()ïïîïïíì³<£<=ïïîïïíì³<£<==òò¥-21202121202100y y yy y y dt y dt t f y F y yY Y ()(){}()()Z F Z F Z Y X P Z FY X ×=£=\,max max ()ïïîïïíì³-<£-<=--21201210033z e z z ez Z z(3)()÷øöçèæ-=þýüîíìì£<211121max max F F Z P ()21121121233×÷÷øöççèæ---=--e e 233412141--+-=ee33、(1)ïîïíì<<=其他率密度为)上服从均匀分布,概,在(,00,1)(10l x lx f X X(2)两个小段均服从上的均匀分布),0(l ,ïîïíì<<=其他,010,1)(1x lx f X),m i n (21X X Y =, 2)1(1)(ly y F Y --=ïîïíì<<-=其他,00,)(2)(2l y l y l y f Y 34、(1)U 的可能取值是0,1,2,31201}2,3{}1,3{}0,3{}3{12029}2,1{}2,0{}2,2{}1,2{}0,2{}2{32}1,1{}0,1{}1,0{}1{121}0,0{}0{===+==+=======+==+==+==+=======+==+=========Y X P Y X P Y X P U P Y X P Y X P Y X P Y X P Y X P U P Y X P Y X P y X P U P Y X P U P U 0 1 2 3 P12132120291201(2) V 的可能取值为0,1,2}2{4013}1,3{}1,2{}2,1{}1,1{}1{4027}0,3{}0,2{}0,1{}2,0{}1,0{}0,0{}0{=====+==+==+=======+==+==+==+==+====V P Y X P Y X P Y X P Y X P V P Y X P Y X P Y X P Y X P Y X P Y X P V PV 0 1 2 P40274013(3) W 的可能取值是0,1,2,3,4,5 0}5{}4{121}2,1{}1,2{}0,3{}3{125}2,0{}1,1{}0,2{}2{125}1,0{}0,1{}1{121}0,0{}0{=======+==+=======+==+=======+=========W P W P Y X P Y X P Y X P W P Y X P Y X P Y X P W P Y X P Y X P W P Y X P W PW 0 1 2 3 P121125125121概率统计第三章习题解答1、52}7{,51}6{}5{}4{========X P X P X P X P529)(=X E2、2914}7{,296}6{,295}5{,294}4{========Y P Y P Y P Y P29175)(=Y E 3、设X 为取到的电视机中包含的次品数,为取到的电视机中包含的次品数, 2,1,0,}{3123102===-k CC C k X P kkX 0 1 2 p k 221222922121)(=X E4、设X 为所得分数为所得分数 5,4,3,2,1,61}{===k k X P 12,11,10,9,8,7,361}{===k k X P1249)(=X E5、(1)由}6{}5{===X P X P ,则,则l l l l --=e e !6!565 解出6=l ,故6)(==l X E(2)由于åå¥=-¥=--=-11212211)1(66)1(k k k k kkkpp 不是绝对收敛,则)(X E 不存在。

《概率论与数理统计》第一章习题及答案

《概率论与数理统计》第一章习题及答案

《概率论与数理统计》第一章习题及答案习题1.11. 将一枚均匀的硬币抛两次,事件分别表C,示“第一次出现A,B正面”,“两次出现同一面”,“至少有一次出现正面”。

试写出样本空间及事件C,中的样本点。

A,B解:{=Ω(正,正),(正,反),(反,正),(反,反)} {=A(正,正),(正,反)};{=B(正,正),(反,反)} {=C(正,正),(正,反),(反,正)}2. 在掷两颗骰子的试验中,事件分别表D,,示“点数之和为A,BC偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。

试写出样本空间及事件D-+,-,,中AB-,ABCABCBCA的样本点。

解:{})6,6(,=Ω;),2,6(),1,6(,),2,1(),1,1(),6,2(,),2,2(),1,2(),6,1(,{})1,3(),2,2(),3,1(),1,1(AB;={})1,2(),2,1(),6,6(),4,6(),2,6(,+BA;=),5,1(),3,1(),1,1(A;C=Φ{})2,2(),1,1(BC;={})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(BA-DC-=-3. 以分别表示C,某城市居民订阅日报、晚报和体育报。

试用表A,B示以C,下事件:BA,(1)只订阅日报;(2)只订日报和晚报;(3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。

解:(1)C B A ; (2)C AB ;(3)C B A C B A C B A ++; (4)BC A C B A C AB ++;(5)C B A ++; (6)C B A ;(7)C B A C B A C B A C B A +++或C B C A B A ++ (8)ABC ; (9)C B A ++4. 甲、乙、丙三人各射击一次,事件分别表321,,A A A 示甲、乙、丙射中。

概率论与数理统计试题及答案1-2

概率论与数理统计试题及答案1-2

一、填空题(每题3分,共30分)1、设,,A B C 为3个事件,那么这三个事件中不多于两个发生可表示为.2、()0.8P A =,()0.6P B =,()0.7P A B =,那么()P AB = ? . 3、设随机变量X 的概率密度为+∞<<∞-+=x xAx f ,21)( 那么=A 1/pi .4、假设离散型随机变量X 的分布律为1231134kX x x x p a那么a = 5/12 .5、设~(0,1),~(3,4),X N Y N 且,X Y 相互独立,32,Z X Y =-那么()E Z = -6 ,()D Z = 25 .6、假设随机变量()~0,1X N ,那么{}0P X ≥= 0.5 .7、随机变量X 的概率密度为()012120xx f x x x ≤≤⎧⎪=-≤≤⎨⎪⎩其它那么{}1.5P X ≤= 0.875 .8、设X 与Y 是相互独立的随机变量,其概率密度分别为1,01()0,X x f x ≤<⎧=⎨⎩其它, ,0()0,0y Y e y f y y -⎧>=⎨≤⎩ 那么(,)X Y 的联合概率密度(,)f x y =.9、设随机变量2~(,),X N μσ2S 是容量为n 的样本方差,那么22(1)n S σ-服从自由度为 n-1的X^2 分布.10、设总体()2~,0.04X N μ,根据来自X 的容量为16的样本,测得样本均值为x =10.05,那么μ的置信水平为0.95的置信区间为((1.96)0.975Φ=).[解答]:1、ABC 或ABC ABC ABC ABC ABC ABC ABC ++++++ 2、0.1 3、1π4、5125、-6,256、0.57、0.8758、,01,0(,)0,y e x y f x y -⎧≤<>=⎨⎩其它 9、21,n χ- 10、()10.0304,10.0696二、(此题12分)两台机床加工同类型的零件,第一台出现废品的概率为0.03,第二台出现废品的概率为0.02,加工出来的零件放在一起,且各占一半.求 (1)从中任意取一件零件为合格品的概率;(2)假设取出的零件为废品,它是第二台机床加工的概率.三、(此题12分)设随机变量X 的概率密度为6(1)01()0,x x x f x -<<⎧=⎨⎩,其它求21Y X =+的概率密度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一部分作业题
1.将下列事件用A、B、C表示出来
(1)A发生,
(2)A与B都发生而C不发生,
(3)三个事件都发生,
(4)三个事件中至少有一个发生,
(5)三个事件中恰好有一个发生,
(6)三个事件中至少有两个发生,
(7)三个事件中恰好有两个发生,
2.一批产品由40件正品和10件次品组成,从中任取4件,问取得正品的概率多大.
3.在100件产品中有5件是次品,从中连续无放回地抽取3次,问第三次才取得次品的概率.
4.从自然数 1,2,...... N 中任取三个数,求以下事件的概率:
(1)第一次取的数恰好小于 K 而后两次取的数均大于 K 。

(2)其中有一个数恰好小于 K 而另两次取的数均大于 K 。

(这里 1 < K < N)
5.一袋中有十个质地、形状相同且编号分别为1、2、…、10的球.今从袋中任意取出三个球并记录球上的号码,求(1)最小号码为5的概率,(2)最大号码为5的概率,(3)一个号码为5,另外两个号码一个大于5,一个小于5的概率。

6.将3个球随机地放入4个杯子中去,求杯子中球的最大个数分别为1,2,3的概率。

7.已知,,,试求,,
,,
8.把 6 个小球随机投入 6 个盒子内,设球和盒均可识别,求前三个盒当中有空盒的概率。

9.袋中装有5枚正品硬币、3枚次品硬币(次品硬币两面均印有国徽)。

从袋中任取一枚硬币,将它投掷3次,已知每次均出现国徽,问这枚硬币是正品硬币的概率是多少?
10.甲、乙两人各自向同一目标射击,已知甲命中目标的概率为 0.7,乙命中目标的概率为0.8 求:
(1)甲、乙两人同时命中目标的概率;
(2)恰有一人命中目标的概率;
(3)目标被命中的概率.
11.甲、乙、丙三人同时对飞机进行射击, 三人击中的概率分别为0.4、0.5、0.7. 飞机被一人击中而击落的概率为0.2,被两人击中而击落的概率为0.6, 若三人都击中, 飞机必定被击落, 求飞机被击落的概率.
12.一批产品中有20%的次品,现进行重复抽样,共抽取5件样品,分别计算这5件样品中恰好有3件次品及至多有3件次品的概率.
第二部分作业题
1.盒中有10个合格品,3个次品,从盒中逐件抽取产品检验,每件检验后不再放回盒中,以X表示直到取到第一件合格品为止所需检验次数,求X的分布律,并求概率。

2.袋中装有编上号码1,2,…,9的九个性质相同的球,从袋中任取5个球,以X表示所取的5个球中偶数号球的个数,求X的分布律,并求其中至少有两个偶数号球的概率。

3.从某大学到火车站途中有六个路口,假设在各路口遇到红灯的事件相互独立,
且概率都是,(1)以X表示途中遇到的红灯次数,求X的分布律,(2)以
9Y表示汽车行驶途中在停止前所通过的路口数,求Y的分布律。

(3)求从该大学到火车站途中至少遇到一次红灯的概率。

4.对目标独立射击1000次,设每次命中率为0.001,求至少3次命中目标的概率。

5.某信息服务台在一分钟内接到的问讯次数X服从参数为 的泊松分布,已知任一分钟内无问讯的概率为e-6,求在指定的一分钟内至少有2次问讯的概率。

6.假设某汽车站在任何长为t(分)的时间内到达的候车人数N(t)服从参数为3t的泊松分布。

(1)求在相邻两分钟内至少来3名乘客的概率;(3)求在连续5分钟内无乘客到达的概率。

7.设随机变量X的所有可能取值为1,2,3,4,已知正比于k值,求X的分布律及分布函数,并求。

8.设连续型随机变量 X 的分布函数为,求
(1)(2)概率(3)X 的概率密度
9.某人上班地点离家仅一站路.他在公共汽车站候车时间为X(分钟),且X服从指数分布.其概率密度为
.次人每天要在车站候车4次,每次若候车时间超过5分钟,他就改为步行.求甲在一天内步行次数恰好是2次的概率
10.已知公共汽车车门的高度是按男子与车门顶碰头的机会在1%以下来设计的。

假设某城市的男子身高服从正态分布(单位:cm),问车门高度应为多少?
11.在电源电压不超过200v, 200~240v,和超过240v三种情况下,某电器损坏的概率分别为0.01,0.001,和0.1,假设电源电压服从正态分布,且知
电压在250v以下的概率为0.9,现该电器损坏,求损坏时电源电压在200~240v之间的概率.
12..已知X的概率分布为
X0π/2π
P k1/41/21/4
分别求的分布律.
13.设随机变量X的概率密度函数,且在处连续,试求:(1)常数A,B;(2)X的分布函数F(x);(3)的密度函数;
14.已知X的概率密度为,求Y=X2+1的分布函数和概率密度.。

相关文档
最新文档