北理工自动控制理论实验报告

合集下载

北理工自动控制理论实验报告

北理工自动控制理论实验报告

北理工自动控制理论实验报告摘要:本实验主要研究和探索自动控制理论在北理工的应用。

通过实验验证控制系统在不同环境下的稳定与准确性,并针对实验结果进行分析和总结。

引言:自动控制理论是近年来快速发展的学科之一,广泛应用于工业自动化系统、航空航天、交通运输等领域。

在北理工学习自动控制理论的过程中,本实验通过搭建实验系统,验证了自动控制理论的实际应用。

实验目的:1.验证控制系统的稳定性;2.检测不同环境下控制系统的输出准确性;3.分析控制系统参数的优化方法。

实验原理:本实验使用PID控制器来实现对控制系统的控制。

PID控制器是一种常见且广泛应用的控制方式,具有简单且高效的优点。

PID控制器的原理是根据系统测量值与期望值的误差计算出一个综合的控制值,通过反馈作用对系统进行调整。

其中,P项(比例项)、I项(积分项)和D项(微分项)表示了系统的偏差、系统稳定性和系统响应速度。

实验装置:实验所需的装置包括一台控制系统、传感器和执行器。

控制系统通过传感器获取反馈信号,将其与期望值进行比较,并通过执行器调节控制系统的输出。

实验步骤:1.搭建实验系统,包括控制器、传感器和执行器;2.设定期望值,将期望值输入控制系统;3.设置控制器参数,并将其与控制系统连接;4.开始实验,记录系统的输出值;5.对实验结果进行分析和总结。

实验结果:实验中记录了不同环境下控制系统的输出值,并与期望值进行比较。

结果表明,控制系统在不同环境下都能保持稳定,且输出值与期望值的误差在可接受范围内。

通过分析实验结果,总结出了一些优化控制系统参数的方法,如调整P、I、D参数的比例,根据实际需求对系统进行调整等。

结论:本实验通过对自动控制理论的实际应用进行研究和探索,验证了控制系统在不同环境下的稳定性和准确性。

实验结果表明,自动控制理论在北理工的应用具有较高的实效性和可行性。

本实验的结果对进一步优化控制系统参数和提高系统稳定性具有一定的指导意义。

[1]张三.自动控制理论与应用[M].北京:XXXX。

北京理工大学自动控制理论实验报告一

北京理工大学自动控制理论实验报告一

自动控制理论实验报告(一)班级:姓名:学号:一、实验目的1、了解和掌握各典型环节以及二阶系统模拟电路的构成方法、传递函数表达式及输出时域函数表达式。

2、观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响。

3、研究I型二阶闭环系统的结构参数——无阻尼振荡频率和阻尼比对过渡过程的影响。

4、观察和分析I型二阶闭环系统在欠阻尼、临界阻尼、过阻尼的瞬态响应曲线及在阶跃信号输入时的动态性能指标、值,并与理论计算值作对比。

二、实验内容1、比例环节的模拟电路比例环节的模拟电路:比例环节的阶跃响应曲线:2、惯性环节的模拟电路惯性环节的模拟电路:惯性环节的阶跃响应曲线:3、积分环节的模拟电路积分环节的模拟电路:积分环节的阶跃响应曲线:4、比例积分环节的模拟电路比例积分环节的模拟电路:比例积分环节的阶跃响应曲线:5、比例微分环节的模拟电路比例微分环节的模拟电路:比例微分环节的阶跃响应曲线:6、比例积分微分环节的模拟电路比例积分微分环节的模拟电路:比例积分微分环节的阶跃响应曲线:以下实验内容均在典型I 型二阶单位反馈闭环系统下进行。

该系统结构框图如图:该系统模拟电路如图:该二阶系统由积分环节和惯性环节构成,其积分时间常数为:111i T R C s=⨯=可变电阻惯性时间常数为:220.1T R C s=⨯=故,该系统的开环传递函数为:()(0.11)KG s s s =+其中,2100R K R R== 所以,该系统的闭环传递函数为:2()10()1()1010G s K s G s s s K φ==+++故,自然频率为:n ω=阻尼比为:ξ=7、4R k =Ω时的欠阻尼响应为实现欠阻尼响应,须有:01ξ<<,首先,电路参数选为:4R k =Ω。

此时, 增益:25K =; 传递函数:2()250()1()10250G s s G s s s φ==+++;自然频率:15.81n ω=;阻尼比:0.316ξ==。

自动控制理论实验报告4

自动控制理论实验报告4

H a r b i n I n s t i t u t e o f T e c h n o l o g y姓名:学号:课程名称:实验名称:实验序号:实验日期:实验室名称:同组人:实验成绩:总成绩:教师评语:教师签字:年月日采用PI 的串联校正、具有微分负反馈的反馈校正实验一、实验目的:1.了解和观测校正装置对系统稳定性及瞬态特性的影响; 2.验证频率法校正是否满足性能要求;3.按给定性能指标,对固有模拟对象运用并联校正对数频率特性的近似作图法,进行反馈校正;4.用实验验证理论计算结果;5. 熟悉期望开环传递函数为典型I型的参数计算及微分反馈校正调节器的实现。

二、实验要求:1.观测未校正系统的稳定性及瞬态响应;2.观测校正后系统的稳定性极瞬态响应。

三、实验原理、内容及步骤(一)采用PI 的串联校正实验1.原系统的原理方块图 校正前系统的方框图如图1所示图1校正前系统的方框图要求设计PI 串联校正装置,校正时使期望特性开环传递函数为典型II 型并使系统满足下列指标:%25≤pMSt s84.0≤校正网络的传递函数为:CSR CS R s G c 011)(+=校正后系统的方框图如图2所示图2 校正后的方框图2.系统校正前后的模拟电路图图3 系统校正前的模拟电路图图4系统校正后的模拟电路图3.实验内容及步骤(1)测量未校正系统的性能指标。

准备:将模拟电路输入端R(t)与信号源单元(U1 SG)的输出端OUT端相连接;模拟电路的输出端C(t)接至示波器。

步骤:按图3接线;加入阶跃电压,观察阶跃响应曲线,并测出超调量Mp和调整时间Ts,记录曲线及参数。

(2)测量校正后系统的性能指标。

准备:设计校正装置参数;由)1(4.016.0-+=r p M M ,25.0%25==p M ,可得225.1=r M ,464.2)1(5.2)1(5.122=-+-+=r r M M Ks rad t k s c 2.984.014.3*464.2==∏=ω1089.91225.11225.111≈=-+=-+=r r M M h67.11102.9*2121=+=+=h c ωω 7.1610*67.112===h ωω36.152.9*67.11===∂c K ωω)106.0()16.0(36.15)1()1(K 2221++=++=∂s s s s T s s T G 期望)106.0(50+=s s G 原有sC R s C R K s s G G G w 1011)1()16.0(31.0+=+==原有期望校正取545.1110=C R ,其中K R 1000=,则u C 47.61= K C R 7.926.011==2.0545.131.023===w K R R 取R 2=250K ,则有R 3=50K 因此各参数的取值分别为:R 1= 92.7KC=6.47u R 2= 250K R 3=50K步骤:按图4接线,加入阶跃电压,观察阶跃响应曲线,并测出超调量Mp 和调整时间Ts ,看是否达到期望值,若未达到,请仔细检查接线、参数值并适当调节参数值。

北理工:自动控制实验实验报告汇总

北理工:自动控制实验实验报告汇总

北理工:自动控制实验实验报告汇总控制理论基础实验(基于MATLAB)控制理论基础实验班级:05611001 学号:1120211327 姓名:付予实验时间:周五下午7、8节指导教师:范哲意1控制理论基础实验(基于MATLAB)实验一:控制系统的模型建立一、实验目的1. 掌握利用MATLAB 建立控制系统模型的方法。

2. 掌握系统的各种模型表述及相互之间的转换关系。

3. 学习和掌握系统模型连接的等效变换。

二、实验原理1.系统模型的MATLAB描述 1)传递函数(TF)模型 2)零极点增益(ZPK)模型 3)状态空间(SS)模型 4)三种模型之间的转换2. 系统模型的连接在实际应用中,整个控制系统是由多个单一的模型组合而成,基本的组合方式有串联连接、并联连接和反馈连接。

三、实验内容1. 已知控制系统的传递函数如下2s2?18s?40G(s)?3 2S?5s?8s?6试用MATLAB 建立系统的传递函数模型、零极点增益模型及系统的状态空间方程模型,并绘制系统零极点图。

实验代码: >> num=[2,18,40]; >> den=[1,5,8,6];>> gtf=tf(num,den) >> gzpk=zpk(gtf)2控制理论基础实验(基于MATLAB)>> gss=ss(gtf) >> pzmap(gzpk)实验结果:传递函数模型: gtf =x1 -5 -2 -1.5 x2 4 0 0 >> grid on2 s^2 + 18 s + 40 --------------------- s^3 + 5 s^2 + 8 s + 6零极点增益模型: gzpk =2 (s+5) (s+4) -------------------- (s+3) (s^2 + 2s + 2)状态空间方程模型: gss = a =x1 x2 x3零极点图形:x3 0 1 0 b = u1 x1 4 x2 0 x3 0 c =x1 x2 x3 y1 0.5 1.125 2.5 d = u1 y1 0 3控制理论基础实验(基于MATLAB)2.已知控制系统的状态空间方程如下?0100??0??0010??0??x???ux???0001??0? ????-1-2-3-4???1?y??10200?x试用MATLAB 建立系统的传递函数模型、零极点增益模型及系统的状态空间方程模型,并绘制系统零极点图。

北理工自动控制理论实验报告

北理工自动控制理论实验报告

Gzpk = 2 (s+5) (s+4) -------------------(s+3) (s^2 + 2s + 2) Continuous-time zero/pole/gain model.
Gss = A= x1 x2 x3 B= x1 x2 x3 C= y1 D= u1 y1 0 Continuous-time state-space model. 系统零极点图 x1 x2 0.5 1.125 x3 2.5 u1 4 0 0 x1 -5 4 0 x2 x3 -2 -1.5 0 0 1 0
系统模型的连接
在实际应用中,整个控制系统是由多个单一的模型组合而成,基本的组合方式有串联连
接、并联连接和反馈连接。图 1-2 分别为串联连接、并联连接和反馈连接的结构框图和等效总 传递函数。
(a)串联系统
(b)并联系统
(c)反馈连接 在 MATLAB 中可以直接使用“*”运算符实现串联连接,使用“+”运算符实现并联连接。反馈系 统传递函数求解可以通过命令 feedback 实现,调用格式如下: T = feedback(G,H), T = feedback(G,H,sign) 其中,G 为前向传递函数,H 为反馈传递函数;当 sign = +1 时,GH 为正反馈系统传递函 数;当 sign = -1 时,GH 为负反馈系统传递函数;默认值是负反馈系统。
传递函数因式分解后可以写成:
式中 z1,z2,…,zm 称为传递函数的零点;P1,P2,…,Pn 称为传递函数的极点;k 为传递系数(系统增益) 。 在 MATLAB 中,直接用[z,p,k]矢量组表示系统,其中 z,p,k 分别表示系统的零极点及其 增益,即:z=[z1,z2,…,zm];p=[p1,p2,…,pn];k=[k]; 调用 zpk 函数可以创建 ZPK 对象模型,调用格式如下: Gzpk = zpk(z,p,k) 同样,MATLAB 提供了 zpkdata 命令用来提取系统的零极点及其增益,调用格式如下: [z,p,k] = zpkdata(Gzpk) 返回 cell 类型的零极点及增益 [z,p,k] = zpkdata (Gzpk,’v’) 返回向量形式的零极点及增益 函数 pzmap 用来求取系统的零极点或绘制系统得零极点图,调用格式如下:pzmap(G) 在 复平面内绘出系统模型的零极点图。 [p,z] = pzmap(G) 返回的系统零极点,不作图。 3) 状态空间(SS)模型

北京理工大学自动控制matlab实验报告

北京理工大学自动控制matlab实验报告

MATLAB软件工具在控制系统分析和综合中的应用实验班级:01811001学号:1120100209姓名:戚煜华一、试验目的:1.了解MATLAB 这种强大的数学软件的基本特点和语言特点。

2.掌握控制系统在MATLAB 中的描述。

3.学会用MATLAB 的Control 工具箱中提供的仿真函数,例如连续时间系统在阶跃输入激励下的仿真函数step (),脉冲激励下的仿真函数impulse ()等。

4掌握典型一阶、二阶系统中参数的变化对阶跃响应曲线的影响;5掌握使用MATLAB 绘制控制系统的根轨迹图,并了解附加开环零、极点对闭环根轨迹的影响。

6.学会使用MATLAB 绘制系统频率特性曲线—乃氏图和伯德图,并利用MATLAB 求出系统的稳定裕度。

7.掌握系统串联校正后,开环指标及时域响应指标的变化规律。

二、试验设备:一台装有MATLAB 软件的电脑三、试验内容:2.以传函11)(+=Ts s G 为例,令T=0.1,1,10,绘制其单位阶跃响应曲线,并总结给出惯性时间常数对阶跃响应影响的结论。

T=0.1时的单位阶跃响应曲线T=1时的单位阶跃响应曲线T=10时的单位阶跃响应曲线结论:惯性时间常数T越大,上升时间、调节时间和延迟时间越长。

3.以传函2222)(nn n s s s G ωξωω++=为对象,令n ω=1,ξ=0,0.2,0.5,1,1.5分别绘制阶跃响应曲线。

令ξ=0.7,n ω=0.1,1,10分别绘制阶跃响应曲线,进行ξ、n ω对二阶阶跃响应的影响分析。

n ω=1,ξ=0:分析:n ω=1时,ξ=0,零阻尼,响应为无阻尼等幅振荡;ξ=0.2和0.5,欠阻尼,随着ξ的增大,振荡幅值减小,响应速度变慢,超调量减小;ξ=1,临界阻尼,响应变慢,超调和振荡消失;ξ=1.5,过阻尼,系统没有超调,且过渡时间较长。

综上所述,ξ越大,振荡幅值越小,过渡时间越长;ξ>=1以后,系统没有了超调和振荡。

北理工自控实验三

北理工自控实验三

实验3 根轨迹分析一、实验目的1. 学习和掌握利用MATLAB 绘制根轨迹图的方法。

2. 学习和掌握利用系统根轨迹图分析系统的性能。

二、实验原理1. 根轨迹分析的 MATLAB 实现根轨迹是指系统某一参数变化时,闭环特征根在s 平面上运动的轨迹。

在MATLAB 中,提供了用于根轨迹分析的专门函数。

1)rlocus 函数该函数的使用方法如下:rlocus(sys) 绘制单输入单输出LTI 系统的根轨迹图。

rlocus(sys,k) 使用用户指定的根轨迹增益k 来绘制系统的根轨迹图。

[r,k] = rlocus(sys) 返回根轨迹增益值和闭环极点值,不绘制根轨迹图 2)rlocfind 函数该函数的使用方法如下:[k,poles]=rlocfind(sys) 计算鼠标选取点处的根轨迹增益值和闭环极点值,可在图形窗口根轨迹图中显示出十字光标,当用户选择其中一点时,相应的增益值和极点值记录在k 和poles 中。

[k,poles]=rlocfind(sys,p) 计算最靠近给定闭环极点p 处的根轨迹增益。

3)sgrid 函数该函数的使用方法如下:sgrid 可在连续系统根轨迹或零极点图上绘制出栅格线,栅格线由等阻尼系数和等自然频率线构成。

sgrid(’new’) 先清除当前的图形,然后绘制出栅格线,并将坐标轴属性设置成hold on 。

sgrid(z,Wn) 指定阻尼系数z 和自然频率Wn 。

sgrid(z,Wn,’new’) 指定阻尼系数z 和自然频率Wn ,在绘制栅格线之前清除当前的图形并将坐标轴属性设置成hold on 。

三、实验内容1. 已知系统开环传递函数为(s 5)(s)(s 1)(s 3)(s 12)K G +=+++(1)使用MATLAB 绘制系统的根轨迹图。

(2)求根轨迹的两条分支离开实轴时的K 值,并确定该K 值对应的所有闭环极点。

(3)以区间[-40,-5]之间的值替代s = −12处的极点,重新绘制根轨迹图,观察其对根轨迹图的影响。

北理工自控原理实验三 三阶系统的稳定性和瞬态响应

北理工自控原理实验三 三阶系统的稳定性和瞬态响应
不同参数系统临界稳定和30%超调量的衰减振荡对应的增益K如下
由表格看出,惯性时间常数T1和T2的增大,均会导致系统临界稳定时的K值减小。在超调量相同( 相同)的衰减振荡中,T1和T2的增大,将导致增益K减小。
五,思考题
1,改变被测系统的电路参数,从而改变闭环系统的极点,观察对比前后响应曲线,分析各级点对系统过渡过程的影响?
4、了解和掌握利用MATLAB的开环根轨迹求解系统的性能指标的方法。
二,实验结果数据
一型三阶系统的模拟电路图如下:
I型三阶系统的开环传递函数为
G(s)=
闭环传递函数(单位反馈)为
积分时间常数Ti=R1*C1=1S,惯性时间常数T1=R3*C2=0.1S,
K1=R3/C2=1,T2=R4*C3=0.5S,K=R4/R=500KΩ/R
自动Байду номын сангаас制理论实验
——三阶系统的稳定性和瞬态响应
姓名
学号:
班级:
实验日期:
一、实验目的
1、了解和掌握典型三阶系统模拟电路的构成方法及I型三阶系统的传递函数表达式。
2、了解和掌握求解高阶闭环系统临界稳定增益K的多种方法(劳斯稳定判据法、代数求解法、MATLAB根轨迹求解法)。
3、观察和分析I型三阶系统在阶跃信号输入时,系统的稳定、临界稳定及不稳定三种瞬态响应。
(3)当可变电阻分别为R=30 kΩ,此时系统不稳定,发散振荡。
输出波形如下:
三,数据分析
用matlab画出G(S)= 的根轨迹
根轨迹与虚轴交点是s=4.45j和-4.45j,此时的根轨迹增益K=11.9813
(1)当0<K<12时,由于K=R4/R,随着R的增大,K值减小,则根轨迹越来越远离虚轴。此时由于 ,当远离虚轴时,易知 增大,即 。由于Ts= , 增大,故Ts减小。即随着R的增大,调节时间变小。

北京理工大学 控制理论基础实验报告

北京理工大学 控制理论基础实验报告

控制理论基础实验1.控制系统的模型建立2.控制系统的暂态特性分析3.根轨迹分析4.系统的频率特性分析一、实验目的实验一1.掌握利用MATLAB建立控制系统模型的方法。

2.掌握系统的各种模型表述及相互之间的转换关系。

3.学习和掌握系统模型连接的等效变化。

实验二1.学习和掌握利用MATLAB进行系统时域响应求解和仿真的方法。

2.考察二阶系统的时间响应,研究二阶系统参数对系统暂态特性的影响。

实验三1.学习和掌握利用MATLAB绘制根轨迹图的方法2.学习和掌握利用系统根轨迹图分析系统的性能。

实验四1.学习和掌握利用MATLAB绘制系统Nyquist图和Bode图的方法。

2.学习和掌握利用系统的频率特性分析系统的性能。

二、实验原理1)传递函数模型(TF)gtf=tf(num,den)2)零极点增益模型(ZPK)Gzpk=zpk(z,p,k)3)状态空间模型(SS)Gss=ss(a,b,c,d)4)三种模型之间的转换TF→ZPK:z pk(sys)TF→SS:ss(sys)ZPK→TF:t f(sys)ZPK→SS:s s(sys)SS→TF:tf(sys)SS→ZPK:z pk(sys)5)绘制系统零极点图Pzmap(gzpk);Grid on;6)系统模型的串联G(s)=G1(s)*G2(s)7)系统模型的并联G(s)=G1(s)+G2(s)8)系统模型的反馈连接T=feedback(G,H)T=feedback(G,H,sign)9)绘制阶跃响应step(sys)step(sys,T)10)线性时不变系统仿真工具ltiview11)绘制系统根轨迹图rlocus(sys)rlocus(sys,k)[r,k]=rlocus(sys)12)计算鼠标选择点处根轨迹增益值和闭环极点值[k,poles]=rlocfind(sys)13)在连续系统根轨迹或零极点图上绘制出栅格线sgrid(‘new’)sgrid(z,Wn)14)绘制系统的Nyquist图nyquist(SYS)nyquist(sys,w)15)绘制系统的Bode图bode(sys)bode(sys,w)16)从频率响应数据中计算幅度裕度,相位裕度及对应角频率margin(sys)[mag,phase]=bode(sys,w)三、实验结果实验一1)零极点图2)零极点图3)总串联函数Transfer function:10 s^6 + 170 s^5 + 1065 s^4 + 3150 s^3 + 4580 s^2 + 2980 s + 525---------------------------------------------------------------------------------------------------------------------- s^9 + 24 s^8 + 226 s^7 + 1084 s^6 + 2905 s^5 + 4516 s^4 + 4044 s^3 + 1936 s^2 + 384 s 4)闭环传递函数Transfer function:2.25 s^2 + 7.5 s + 6-------------------------------------------------------0.25 s^4 + 1.25 s^3 + 2 s^2 + 5.5 s + 65)闭环传递函数Transfer function:20 s^3 + 160 s^2 + 400 s + 320-------------------------------------------------------------------------s^6 + 10 s^5 + 35 s^4 + 44 s^3 + 82 s^2 + 116 s - 48%1num=[2 18 40]; den=[1 5 8 6]; gtf=tf(num,den) gzpk=zpk(gtf) gss=ss(gtf) pzmap(gzpk);grid on%2a=[0 1 0 00 0 1 00 0 0 1-1 -2 -3 -4];b=[0 0 0 0]’;c=[10 2 0 0];d=0;gss=ss(a,b,c,d); gtf=tf(gss); gzpk=zpk(gss); pzmap(gzpk)grid on%3g1a=[2 6 5]; g1b=[1 4 5 2];g2a=[1 4 1];g2b=[1 9 8 0];g3z=[-3 -7];g3p=[-1 -4 -6];g3k=5;g1tf=tf(g1a,g1b);g2tf=tf(g2a,g2b);g3zpk=zpk(g3z,g3p,g3k);g3tf=tf(g3zpk);g=g1tf*g2tf*g3tf%4g1=tf([1],[1 1]);g2=tf(1,[0.5 1]);g3=g2;g4=tf(3,[1 0]);g=feedback((g1+g2)*g4,g3)%5g1=tf(10,[1 1]);g2=tf(2,[1 1 0]);g3=tf([1 3],[1 2]);g4=tf([5 0],[1 6 8]);g=feedback(g1*(feedback(g2, g3,1)),g4)实验二12(1)t d=0.272 t r=0.371 t p=0.787 t s=1.19ϭ=9%(2)(3)(4)ξ变大,延迟时间,上升时间,峰值时间,调整时间均越来越长,超调量开始时减小,然后保持不变。

北理工自控实验报告

北理工自控实验报告

本科实验报告实验名称:控制理论基础实验课程名称:控制理论基础实验时间:任课教师:实验地点:实验教师:实验类型:□原理验证□综合设计□自主创新学生姓名:学号/班级:组号:学院:同组搭档:专业:成绩:实验1 控制系统的模型建立一、实验目的1、掌握利用MATLAB 建立控制系统模型的方法。

2、掌握系统的各种模型表述及相互之间的转换关系。

3、学习和掌握系统模型连接的等效变换。

二、实验原理1、系统模型的 MATLAB描述系统的模型描述了系统的输入、输出变量以及内部各变量之间的关系,表征一个系统的模型有很多种,如微分方程、传递函数模型、状态空间模型等。

这里主要介绍系统传递函数(TF)模型、零极点增益(ZPK)模型和状态空间(SS)模型的MATLAB 描述方法。

1)传递函数(TF)模型传递函数是描述线性定常系统输入-输出关系的一种最常用的数学模型,其表达式一般为在MATLAB 中,直接使用分子分母多项式的行向量表示系统,即num = [bm, bm-1, … b1, b0];den = [an, an-1, … a1, a0];调用tf 函数可以建立传递函数TF 对象模型,调用格式如下:Gtf = tf(num,den);Tfdata 函数可以从TF 对象模型中提取分子分母多项式,调用格式如下:[num,den] = tfdata(Gtf) 返回cell 类型的分子分母多项式系数;[num,den] = tfdata(Gtf,'v') 返回向量形式的分子分母多项式系数;2)零极点增益(ZPK)模型传递函数因式分解后可以写成式中, z1 , z2, …,z m称为传递函数的零点, p1,p2,…,p n称为传递函数的极点,k 为传递系数(系统增益)。

在MATLAB 中,直接用[z,p,k]矢量组表示系统,其中z,p,k 分别表示系统的零极点及其增益,即:z=[z1,z2,…,zm];p=[p1,p2,…,pn];k=[k];调用zpk 函数可以创建ZPK 对象模型,调用格式如下:Gzpk = zpk(z,p,k)同样,MATLAB 提供了zpkdata 命令用来提取系统的零极点及其增益,调用格式如下:[z,p,k] = zpkdata(Gzpk) 返回cell 类型的零极点及增益;[z,p,k] = zpkdata(Gzpk,’v’) 返回向量形式的零极点及增益;函数pzmap 可用于求取系统的零极点或绘制系统得零极点图,调用格式如下:pzmap(G) 在复平面内绘出系统模型的零极点图。

北京理工大学自动控制matlab实验报告概要

北京理工大学自动控制matlab实验报告概要

软件工具在控制系统分析和综合中的应用实验MATLAB 班级:01811001学号:1120100209姓名:戚煜华一、试验目的:1.了解MATLAB这种强大的数学软件的基本特点和语言特点。

2.掌握控制系统在MATLAB中的描述。

3.学会用MATLAB的Control工具箱中提供的仿真函数,例如连续时间系统在阶跃输入激励下的仿真函数step(),脉冲激励下的仿真函数impulse()等。

4掌握典型一阶、二阶系统中参数的变化对阶跃响应曲线的影响;5掌握使用MATLAB绘制控制系统的根轨迹图,并了解附加开环零、极点对闭环根轨迹的影响。

6.学会使用MATLAB绘制系统频率特性曲线—乃氏图和伯德图,并利用MATLAB 求出系统的稳定裕度。

7.掌握系统串联校正后,开环指标及时域响应指标的变化规律。

二、试验设备:一台装有MATLAB软件的电脑三、试验内容:1为例,令T=0.1,1,10,绘制其单位阶跃响应曲线,并?(Gs) 2.以传函1Ts?总结给出惯性时间常数对阶跃响应影响的结论。

时的单位阶跃响应曲线T=0.1T=1时的单位阶跃响应曲线T=10时的单位阶跃响应曲线结论:惯性时间常数T越大,上升时间、调节时间和延迟时间越长。

2?分,,,,为对象,令,n?s)=1=030.2.0.5以传函1G1.5(??n???nn22?2ss?分别绘制阶跃响应曲线,进行,,,别绘制阶跃响应曲线。

令101=0.1=0.7??n对二阶阶跃响应的影响分析。

、??n :,=0=1??n时,分析:=1?n?,零阻尼,响应为无阻尼等幅振荡;=0??的增大,振荡幅值减小,响应速度变慢,超调量和,欠阻尼,随着0.5=0.2减小;?,临界阻尼,响应变慢,超调和振荡消失;=1?,过阻尼,系统没有超调,且过渡时间较长。

=1.5??以后,系统没有了超越大,振荡幅值越小,过渡时间越长;综上所述,>=1?对二阶系统的影响是改变系统的振荡幅值和过渡时调和振荡。

自动控制理论实验报告

自动控制理论实验报告

自动控制理论实验报告自动控制理论实验报告引言:自动控制理论是一门研究如何使系统在给定的要求下自动地实现稳定性、准确性和鲁棒性的学科。

在工程领域中,自动控制理论的应用广泛,例如在机械、电子、航空航天等领域。

本实验旨在通过控制系统的设计和实施,验证自动控制理论的有效性。

实验一:PID控制器的设计与实现PID控制器是一种常用的控制器,由比例项、积分项和微分项组成。

在本实验中,我们将通过设计一个PID控制器来实现对一个模拟系统的控制。

首先,我们需要建立系统模型,即将系统的输入和输出之间的关系进行数学建模。

然后,根据系统模型和控制目标,我们可以确定PID控制器的参数。

最后,将PID控制器与系统进行连接,并进行实际控制实验。

实验二:状态空间控制器的设计与实现状态空间控制器是一种基于系统状态的控制方法。

在本实验中,我们将利用状态空间理论设计一个控制器来实现对一个模拟系统的控制。

首先,我们需要将系统的动态行为用状态方程的形式表示出来。

然后,通过选择适当的状态反馈增益矩阵,可以实现对系统状态的调节。

最后,将状态空间控制器与系统进行连接,并进行实际控制实验。

实验三:模糊控制器的设计与实现模糊控制器是一种基于模糊逻辑的控制方法。

在本实验中,我们将利用模糊控制理论设计一个控制器来实现对一个模拟系统的控制。

首先,我们需要将系统的输入和输出之间的关系用模糊规则进行描述。

然后,通过选择适当的模糊规则和隶属函数,可以实现对系统的非线性控制。

最后,将模糊控制器与系统进行连接,并进行实际控制实验。

实验四:神经网络控制器的设计与实现神经网络控制器是一种基于神经网络的控制方法。

在本实验中,我们将利用神经网络理论设计一个控制器来实现对一个模拟系统的控制。

首先,我们需要将系统的输入和输出之间的关系用神经网络进行建模。

然后,通过训练神经网络,可以实现对系统的自适应控制。

最后,将神经网络控制器与系统进行连接,并进行实际控制实验。

结论:通过本次实验,我们验证了自动控制理论在实际系统中的有效性。

北理工自控实验报告四

北理工自控实验报告四

实验4 系统的频率特性分析一、实验目的1. 学习和掌握利用MATLAB 绘制系统Nyquist 图和Bode 图的方法。

2. 学习和掌握利用系统的频率特性分析系统的性能。

二、实验原理系统的频率特性是一种图解方法,分析运用系统的开环频率特性曲线,分析闭环系统的性能,如系统的稳态性能、暂态性能常用的频率特性曲线有Nyquist 图和Bode 图。

在MATLAB 中,提供了绘制Nyquist 图和Bode 图的专门函数。

1. Nyquist 图nyquist 函数可以用于计算或绘制连续时间LTI 系统的Nyquist 频率曲线,其使用方法如下:nyquist(sys) 绘制系统的Nyquist 曲线。

nyquist(sys,w) 利用给定的频率向量w 来绘制系统的Nyquist 曲线。

[re,im]=nyquist(sys,w) 返回Nyquist 曲线的实部re 和虚部im ,不绘图。

2. Bode 图bode 函数可以用于计算或绘制连续时间LTI 系统的Bode 图,其方法如下: bode(sys) 绘制系统的Bode 图。

bode(sys,w)利用给定的频率向量w 来绘制系统的Bode 图。

[mag,phase]=bode(sys,w)返回Bode 图数据的幅度mag 和相位phase ,不绘图。

3. 幅度和相位裕度计算margin 函数可以用于从频率响应数据中计算出幅度裕度、相位裕度及其对应的角频率,其使用方法如下: margin(sys)margin(mag,phase,w)[Gm,Pm,Wcg,Wcp] = margin(sys)[Gm,Pm,Wcg,Wcp] = margin(mag,phase,w)其中不带输出参数时,可绘制出标有幅度裕度和相位裕度值的Bode 图,带输出参数时,返回幅度裕度Gm 、相位裕度Pm 及其对应的角频率Wcg 和Wcp 。

三、实验内容1. 已知系统开环传递函数为21000(s)(s 3s 2)(s 5)G =+++绘制系统的Nyquist 图,并讨论其稳定性。

北京理工大学自动控制原理实验报告

北京理工大学自动控制原理实验报告

本科实验报告实验名称:控制理论基础实验实验1控制系统的模型建立、实验目的1、掌握利用MATLAB建立控制系统模型的方法。

2、掌握系统的各种模型表述及相互之间的转换关系。

3、学习和掌握系统模型连接的等效变换。

二、实验原理1、系统模型的MATLAB苗述系统的模型描述了系统的输入、输出变量以及内部各变量之间的关系,表征一个系统的模型有很多种,如微分方程、传递函数模型、状态空间模型等。

这里主要介绍系统传递函数(TF)模型、零极点增益(ZPK模型和状态空间(SS)模型的MATLAB描述方法。

1)传递函数(TF)模型传递函数是描述线性定常系统输入-输出关系的一种最常用的数学模型,其表达式一般为在MATLAB中,直接使用分子分母多项式的行向量表示系统,即num = [bm, bm- 1,…b1, bO]den = [an, an- 1, …a1, aO]调用tf 函数可以建立传递函数TF 对象模型,调用格式如下:Gtf = tf(num,den)Tfdata 函数可以从TF 对象模型中提取分子分母多项式,调用格式如下:[num,den] = tfdata(Gtf) 返回cell 类型的分子分母多项式系数[num,den] = tfdata(Gtf,'v') 返回向量形式的分子分母多项式系数2)零极点增益(ZPK模型传递函数因式分解后可以写成式中,z 1 , z 2,…,z m称为传递函数的零点,P1,P2,…,p n称为传递函数的极点,k为传递系数(系统增益)。

在MATLAB中,直接用[z,p,k]矢量组表示系统,其中乙p, k分别表示系统的零极点及其增益,即:z=[z1,z2,…,zm];p=[p1,p2,…,pn];k=[k];调用zpk 函数可以创建ZPK 对象模型,调用格式如下:Gzpk = zpk(z,p,k)同样,MATLAB提供了zpkdata命令用来提取系统的零极点及其增益,调用格式如下:[z,p,k] = zpkdata(Gzpk) 返回cell 类型的零极点及增益[z,p,k] = zpkdata (Gzpk, 'v') 返回向量形式的零极点及增益函数pzmap 可用于求取系统的零极点或绘制系统得零极点图,调用格式如下:pzmap(G) 在复平面内绘出系统模型的零极点图。

自动控制理论实验报告

自动控制理论实验报告

自动控制理论实验报告实验二控制系统的时域分析一、实验目的学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性;二、实验要点1、系统的典型响应有哪些?2、如何判断系统稳定性?3、系统的动态性能指标有哪些?三、实验方法(一)四种典型响应1、阶跃响应:阶跃响应常用格式:1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。

2、),(Tn sys step ;表示时间范围0---Tn 。

3、),(T sys step ;表示时间范围向量T 指定。

4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。

2、脉冲响应:脉冲函数在数学上的精确定义:0,0)(1)(0==?∞t x f dx x f 其拉氏变换为:)()()()(1)(s G s f s G s Y s f === 所以脉冲响应即为传函的反拉氏变换。

脉冲响应函数常用格式:① )(sys impulse ;② );,();,(T sys impulse Tn sys impulse ③ ),(T sys impulse Y =(二)分析系统稳定性有以下三种方法:1、利用pzmap 绘制连续系统的零极点图;2、利用tf2zp 求出系统零极点;3、利用roots 求分母多项式的根来确定系统的极点(三)系统的动态特性分析Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.四、实验内容实验三控制系统的根轨迹分析一实验目的1.利用计算机完成控制系统的根轨迹作图2.了解控制系统根轨迹图的一般规律3.利用根轨迹图进行系统分析二实验要点1. 预习什么是系统根轨迹?2. 闭环系统根轨迹绘制规则。

三实验方法(一)方法:当系统中的开环增益k 从0到变化时,闭环特征方程的根在复平面上的一组曲线为根轨迹。

北理工:自动控制实验实验报告汇总

北理工:自动控制实验实验报告汇总

控制理论基础实验班级:05611001学号:1120101327姓名:付予实验时间:周五下午 7、8节指导教师:范哲意实验一:控制系统的模型建立一、实验目的1. 掌握利用MATLAB 建立控制系统模型的方法。

2. 掌握系统的各种模型表述及相互之间的转换关系。

3. 学习和掌握系统模型连接的等效变换。

二、实验原理1. 系统模型的MATLAB描述1)传递函数(TF)模型2)零极点增益(ZPK)模型3)状态空间(SS)模型4)三种模型之间的转换2. 系统模型的连接在实际应用中,整个控制系统是由多个单一的模型组合而成,基本的组合方式有串联连接、并联连接和反馈连接。

三、实验内容1.已知控制系统的传递函数如下22s 18s 40G(s)3 2S 5s 8s 6试用MATLAB建立系统的传递函数模型、零极点增益模型及系统的状态空间方程模型, 并绘制系统零极点图。

实验代码:>> num=[2,18,40];>> den=[1,5,8,6];>> gtf=tf(num,den)>> gzpk=zpk(gtf)实验结果:传递函数模型:gtf =2 s A2 + 18 s + 40s A3 + 5 sA2 + 8 s + 6零极点增益模型:gzpk =2 (s+5) (s+4)(s+3) (sA2 + 2s + 2)状态空间方程模型:gss = >> gss=ss(gtf)>> pzmap(gzpk)>> grid ona =x1x2x3 x1-5-2 1.5x2400x3010b =u1x14x20x3c =x1x2x3 y10.5 1.125 2.5u1=y1 0零极点图形:Pole-Zero Ntato2•已知控制系统的状态空间方程如下0 10 0 0 0 0 10 0 xx u0 0 0 1 0-1 -2 -3 -4 1y 10 2 0 0x试用MATLAB 建立系统的传递函数模型、零极点增益模型及系统的状态空间方程模型,并绘制系统零极点图。

北理工自动控制实验报告,DOC

北理工自动控制实验报告,DOC

本科实验报告实验名称:控制理论基础实验)模型、1)传递函数(TF)模型传递函数是描述线性定常系统输入-输出关系的一种最常用的数学模型,其表达式一般为在MATLAB中,直接使用分子分母多项式的行向量表示系统,即num=[bm,bm-1,…b1,b]den=[an,an-1,…a1,a0]调用tf函数可以建立传递函数TF对象模型,调用格式如下:Gtf=tf(num,den)Tfdata函数可以从TF对象模型中提取分子分母多项式,调用格式如下:[num,den]=tfdata(Gtf)返回cell类型的分子分母多项式系数[num,den]=tfdata(Gtf,'v')返回向量形式的分子分母多项式系数2)零极点增益(ZPK)模型传递函数因式分解后可以写成式中,称为传递函数的零点,?称为传递函的极点,k为传递系数(系统增益)。

在即:z=[p=[调用返回向量形式的零极点及增益函数返回的系统零极点,不作图。

3矩阵;B为n×r矩阵,称为输入矩阵或控制矩阵;C为m×n矩阵,称为输出矩阵;D为m×r矩阵,称为直接传输矩阵。

在MATLAB中,直接用矩阵组[A,B,C,D]表示系统,调用ss函数可以创建ZPK对象模型,调用格式如下:Gss=ss(A,B,C,D)同样,MATLAB提供了ssdata命令用来提取系统的A、B、C、D矩阵,调用格式如下:[A,B,C,D]=ssdata(Gss)。

它返回系统模型的A、B、C、D矩阵。

4)三种模型之间的转换上述三种模型之间可以互相转换,MATLAB实现方法如下TF模型→ZPK模型:zpk(SYS)或tf2zp(num,den)TF模型→SS模型:ss(SYS)或tf2ss(num,den)ZPK模型→TF模型:tf(SYS)或zp2tf(z,p,k)ZPK模型→SS模型:ss(SYS)或zp2ss(z,p,k)SS模型→TF模型:tf(SYS)或ss2tf(A,B,C,D)SS模型→ZPK模型:zpk(SYS)或ss2zp(A,B,C,D)2.系统模型的连接在实际应用中,整个控制系统是由多个单一的模型组合而成,基本的组合方式有串联连接、并联连接和反馈连接。

北京理工大学自动控制理论实验报告三

北京理工大学自动控制理论实验报告三

自动控制理论实验报告(三)——二阶开环及闭环系统的频率特性曲线班级:姓名:学号:一、实验目的1.了解和掌握Ⅰ型二阶闭环系统中的对数幅频特性)(ωL 和相频特性)(ωϕ,实频特性Re(ω)和虚频特性Im(ω)的计算。

2.了解和掌握欠阻尼Ⅰ型二阶闭环系统中的自然频率ωn 、阻尼比ξ对谐振频率ωr 和谐振峰值L(ωr )的影响及ωr 和L(ωr ) 的计算。

3.了解阻尼比ξ对开环参数幅值穿越频率ωc 和相位裕度γ的影响及幅值穿越频率ωc 和相位裕度γ的计算。

4.了解和掌握Ⅰ型二阶闭环系统对数幅频曲线、相频曲线和幅相曲线的构造及绘制方法。

二、实验原理及说明被测系统的结构图如图:图中被测系统的闭环传递函数φ(S)=)()(S R S C =)()(1)(S H S G S G + 以角频率ω为参数的闭环系统对数幅频特性和相频特性为L(ω)=20lg|φ(j ω)| φ(ω)= ∠φ(j ω)本实验以二阶闭环系统模拟电路为例,令积分时间常数为Ti ,惯性时间常数为T ,开环增益为K ,可得:自然频率:TiTK=n ω 阻尼比:KTTi21=ξ谐振频率:221ξωω-=n r 谐振峰值:2121lg20)(ξξω-=r L频率特性测试电路如图,其中惯性环节的R 用可变电阻取代。

其中输入“数/模转换OUT ”,输出“数/模转换IN ”。

计算欠阻尼二阶闭环系统中的幅值穿越频率ωc 、相位裕度γ: 幅值穿越频率:24241ξξωω-+⨯=n c相位裕度:424122arctan)(180ξξξωϕγ++-=+=cγ值越小,Mp%越大,振荡越厉害;γ值越大,Mp%小,调节时间ts 越长,因此为使二阶闭环系统不致于振荡太厉害及调节时间太长,一般希望:30°≤γ≤70°本实验以二阶闭环系统频率特性曲线为例,得:ωc =14.186 γ=34.93°二阶闭环系统模拟电路的各环节参数:积分环节的积分时间常数T i =R 1C 1=1s ,惯性环节的惯性时间常数 T=R 3C 2=0.1s ,开环增益K=R 3/R 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本科实验报告实验名称:控制理论基础(实验)实验一:控制系统的模型建立一、实验目的1.掌握利用MATLAB 建立控制系统模型的方法。

2.掌握系统的各种模型表述及相互之间的转换关系。

3. 学习和掌握系统模型连接的等效变换。

二、实验原理1、系统模型的 MATLAB描述系统的模型描述了系统的输入、输出变量以及内部各变量之间的关系,表征一个系统的模型有很多种,如微分方程、传递函数模型、状态空间模型等。

这里主要介绍系统传递函数(TF)模型、零极点增益(ZPK)模型和状态空间(SS)模型的MATLAB 描述方法。

1)传递函数(TF)模型传递函数是描述线性定常系统输入-输出关系的一种最常用的数学模型,其表达式一般为在MATLAB 中,直接使用分子分母多项式的行向量表示系统,即num = [bm, bm-1, … b1, b0]den = [an, an-1, … a1, a0]调用tf 函数可以建立传递函数TF对象模型,调用格式如下:Gtf = tf(num,den)Tfdata 函数可以从TF对象模型中提取分子分母多项式,调用格式如下:[num,den] = tfdata(Gtf) 返回cell 类型的分子分母多项式系数[num,den] = tfdata(Gtf,'v') 返回向量形式的分子分母多项式系数2)零极点增益(ZPK)模型传递函数因式分解后可以写成式中, z1 , z2 , …,zm 称为传递函数的零点, p1,p2,…,pn称为传递函数的极点,k 为传递系数(系统增益)。

在MATLAB 中,直接用[z,p,k]矢量组表示系统,其中z,p,k 分别表示系统的零极点及其增益,即:z=[z1,z2,…,zm];p=[p1,p2,…,pn];k=[k];调用zpk 函数可以创建ZPK 对象模型,调用格式如下:Gzpk = zpk(z,p,k)同样,MATLAB 提供了zpkdata 命令用来提取系统的零极点及其增益,调用格式如下:[z,p,k] = zpkdata(Gzpk) 返回cell 类型的零极点及增益[z,p,k] = zpkdata (Gzpk,’v’) 返回向量形式的零极点及增益函数pzmap 可用于求取系统的零极点或绘制系统得零极点图,调用格式如下:pzmap(G) 在复平面内绘出系统模型的零极点图。

[p,z] = pzmap(G) 返回的系统零极点,不作图。

3)状态空间(SS)模型由状态变量描述的系统模型称为状态空间模型,由状态方程和输出方程组成:其中:x 为n 维状态向量;u 为r 维输入向量; y 为m 维输出向量; A 为n×n 方阵,称为系统矩阵; B 为n×r 矩阵,称为输入矩阵或控制矩阵;C 为m×n 矩阵,称为输出矩阵; D为m×r 矩阵,称为直接传输矩阵。

在MATLAB 中,直接用矩阵组[A,B,C,D]表示系统,调用ss 函数可以创建ZPK 对象模型,调用格式如下:Gss = ss(A,B,C,D)同样,MATLAB 提供了ssdata 命令用来提取系统的A、B、C、D 矩阵,调用格式如下:[A,B,C,D] = ssdata (Gss) 返回系统模型的A、B、C、D 矩阵4)三种模型之间的转换上述三种模型之间可以互相转换,MATLAB 实现方法如下TF 模型→ZPK 模型:zpk(SYS)或tf2zp(num,den)TF 模型→SS 模型:ss(SYS)或tf2ss(num,den)ZPK 模型→TF 模型:tf(SYS)或zp2tf(z,p,k)ZPK 模型→SS 模型:ss(SYS)或zp2ss(z,p,k)SS 模型→TF 模型:tf(SYS)或ss2tf(A,B,C,D)SS 模型→ZPK 模型:zpk(SYS)或ss2zp(A,B,C,D)2、系统模型的连接在实际应用中,整个控制系统是由多个单一的模型组合而成,基本的组合方式有串联连接、并联连接和反馈连接。

下图分别为串联连接、并联连接和反馈连接的结构框图和等效总传递函数。

在MATLAB 中可以直接使用“*”运算符实现串联连接,使用“+”运算符实现并联连接。

反馈系统传递函数求解可以通过命令feedback 实现,调用格式如下:T = feedback(G,H)T = feedback(G,H,sign)其中,G 为前向传递函数,H 为反馈传递函数;当sign = +1 时,GH 为正反馈系统传递函数;当sign = -1 时,GH 为负反馈系统传递函数;默认值是负反馈系统。

三、实验内容1、已知控制系统的传递函数如下试用MATLAB 建立系统的传递函数模型、零极点增益模型及系统的状态空间方程模型,并绘制系统零极点图。

实验代码:num=[2 18 40];den=[1 5 8 6]; %描述系统的传递函数模型的分子分母多项式系数向量Gtf=tf(num,den) ;%调用tf函数建立系统模型Gzpk=zpk(Gtf) ; %调用zpk函数,实现从函数模型到零极点增益模型的转换Gss=ss(Gtf) ; %调用ss函数建立系统模型pzmap(Gzpk);grid on;实验结果:(1)首先建立系统的传递函数模型描述,上述程序的运行结果为:Gtf =2 s^2 + 18 s + 40---------------------s^3 + 5 s^2 + 8 s + 6(2)零极点增益模型为:Gzpk =2 (s+5) (s+4)--------------------(s+3) (s^2 + 2s + 2)(3)系统的状态空间方程模型Gss =a =x1 x2 x3x1 -5 -2x2 4 0 0x3 0 1 0b =u1x1 4x2 0x3 0c =x1 x2 x3y1d =u1y1 0(4)系统零极点图2、已知控制系统的状态空间方程如下试用MATLAB 建立系统的传递函数模型、零极点增益模型及系统的状态空间方程模型,并绘制系统零极点图。

实验代码:a=[0 1 0 0;0 0 1 0;0 0 0 1;-1 -2 -3 -4];c=[10 2 0 0];d=[0]; %写出系统的A、B、C、D矩阵Gss=ss(a,b,c,d); %调用ss函数建立系统模型Gtf=tf(Gss) ; %调用tf函数建立系统模型Gzpk=(Gss); %调用zpk函数,实现从函数模型到零极点增益模型的转换pzmap(Gzpk);grid on;实验结果:(1)系统矩阵>> aa =0 1 0 00 0 1 00 0 0 1-1 -2 -3 -4>> bb =>> cc =10 2 0 0>> dd =(2)再创建ZPK对象模型:Gzpk =a =x1 x2 x3 x4x1 0 1 0 0x2 0 0 1 0x3 0 0 0 1x4 -1 -2 -3 -4x1 0x2 0x3 0x4 1c =x1 x2 x3 x4y1 10 2 0 0d =u1y1 0(3)传递函数:Gtf =2 s + 10----------------------------- s^4 + 4 s^3 + 3 s^2 + 2 s + 1(4)零极点图:3、已知三个系统的传递函数分别为试用MATLAB 求上述三个系统串联后的总传递函数。

实验代码:num1=[2 6 5];den1=[1 4 5 2]; %描述系统的传递函数模型的分子分母多项式系数向量G1=tf(num1,den1) ; %调用tf函数建立系统模型num2=[1 4 1];den2=[1 9 8 0]; %同上G2=tf(num2,den2) ; %同上z=[-3 -7];p=[-1 -4 -6];k=[5]; %用[z,p,k]矢量组表示系统G3=zpk(z,p,k) ; %调用zpk函数,实现从函数模型到零极点增益模型的转换G=G1*G2*G3实验结果:G1 =2 s^2 + 6 s + 5---------------------s^3 + 4 s^2 + 5 s + 2Continuous-time transfer function.>> G2G2 =s^2 + 4 s + 1-----------------s^3 + 9 s^2 + 8 sContinuous-time transfer function.>> G3G3 =5 (s+3) (s+7)-----------------(s+1) (s+4) (s+6)Continuous-time zero/pole/gain model.>> GG =10 (s+ (s+3) (s+7) (s+ (s^2 + 3s +---------------------------------------------------- s (s+8) (s+6) (s+4) (s+2) (s+1)^44、已知如下图所示的系统框图试用MATLAB 求该系统的闭环传递函数。

实验代码:num1=[1];den1=[1 1]; %描述系统的传递函数模型的分子分母多项式系数向量G1=tf(num1,den1) ; %调用tf函数建立系统模型num2=[1];den2=[ 1]; %同上G2=tf(num2,den2); %同上num3=[3];den3=[1 0];G3=tf(num3,den3);H=G2;G=(G1+G2)*G3;Gtf=feedback(G,H,-1)实验结果Gtf =s^2 + s + 6---------------------------------------s^4 + s^3 + 2 s^2 + s + 65、已知如下图所示的系统框图实验代码:num1=[10];den1=[1 1]; %描述系统的传递函数模型的分子分母多项式系数向量G1=tf(num1,den1) ; %调用tf函数建立系统模型num2=[2];den2=[1 1 0];G2=tf(num2,den2);num3=[1 3];den3=[1 2];H2=tf(num3,den3);num4=[5 0];den4=[1 6 8];H1=tf(num4,den4);G=G1*feedback(G2,H2,+1);Gtf=feedback(G,H1,-1)实验结果:Gtf =20 s^3 + 160 s^2 + 400 s + 320----------------------------------------------------s^6 + 10 s^5 + 35 s^4 + 44 s^3 + 82 s^2 + 116 s - 48四、实验体会本次实验比较基础,学习如何用matlab创建传递函数模型,并得到对应的零极点模型和状态空间方程。

相关文档
最新文档