大线能量焊接
武钢大线能量焊接系列钢的研发进展
大线能量 焊接低 温钢 、大线能量 焊接耐火耐候钢 、大线 能量焊 接抗震 钢等系列 钢种。该 系列 钢 的集 成技术及产 业化应用 ,为我 国该 系列 钢的需求提供 了技术支撑 ,有效带 动了我 国有关钢 厂对高性 能 高技 术含量钢材 的研发 和生产 ,结束了大线能量焊接钢 长期依赖进 口并受制于人 的历 史。
wa n r d c d o h olwi g a p cs i cu i g tc n lg a k r u d s ito u e n t e f l n s e t n l d n e h oo b c g o n ,me al r h o y,tc n lg h r c e i is a o y tl g te r uy e h oo c aa trs c s y t wela p l a in .T e se l a e a l ws ag e tip t li g se l i o s s e t i t e dn r c l s a p i t s h t es r sf l ,l r eh a u d n te t lw u c p i l y t w l i gc a k,lr e c o oo n we w h bi o ag h a n u e d n t e t ih s e gh,l r e h a n u e dn te t o e e au e ,lr e h a p t l ig e tip tw l i g se l h h g t n t wi r a g e tip tw l i g se l h lw tmp r t r wi ag e tn u dn i we s e i r —e itn e& we te n t lw t f e r s a c e hi s ah r g.1r e h a n u l ig se lwi a t q a e r ssa c .T e it g ain a d i — i ag e t p t i wed n te t e r u k —e it n e h h h n e rt n n o d s i l ai n o e se l e is p o i e e h i a u p r frt e d ma d o i s r s se li h n u t ai t f h te r r vd d tc n c ls p ot o h e n ft s e i te n C i a,e e t ey p o — r z o t s e h e f c i l r mo v td t e r s a c e h e e r h,d v l p n n r d cin o ih p r r a c n i h t c t es n n e el n —e itr f e e o me t d p o u t fh g ef m n ea d h g -e h se l ,a d e d d t o g t r h s y o a o o h m o te d p n e c n i o s o h s te s h e e d n e o mp r ft o e se l . t
首钢大型石油储备罐用大线能量焊接钢板研究
系列焊接性能 ,在气 电立焊 、电弧手 工焊及埋弧 自动 焊的焊 接条 件下 ,焊接 接头 的强度 、低温 冲击韧 性 、
CO T D及 N T D r等指标 完全满足大型石油储备 罐用 钢板 的要求 。 关键词 石油储罐 大线能量 钢板 性能
The Re e r h o he Hi h Ene g n utW ed ng Plt f sa c n t g r yIp li a eo
目前 ,我国 1 0万 m 大型石油储备罐 的建 设 已经 基本 实现 了钢板 的国产化 。国产钢 板在 我
国一 期石油 储备 基地 的建 设 中逐 渐得 到 了推广 和
20 0 8年热 处 理 生产 线 投 入 使 用 后 及 时 开 始 了石 油 储 备 罐 用 钢 板 S 60 ( 2 NV G 1E 1Mn iR)( 称 简
o vo sc a g b i u h n e.Es e ily,t e wedig p ro ma c sa e i to c d. Un rt ewed n o d t n p c al h l n e r n e nr du e f r de l i g c n ii s h o o f EGW , SMAW a d AW , t e n ia o s n l d n c a i n S h i d c tr i cu i g h ry mpa t NDTF a d c, n CT OD o h fte
w ligji a l aiy t erq i m ns fag t aeo n . e n n cnf l st f d ot u y s lt eur e t o res rg it k l h e l o la
Ke r s olso a e tnk, hih e e g n u , p ae, p o e t y Wo d i tr g a g n ryip t lt r p ry
大线能量焊接用船体结构钢的研究进展
率 的高 低 , 不仅 影 响建造 成 本 , 且直 接 决定 了 船 加 .钢板对 大 线 能量 焊接 的适 应性 也需 要 相 应提 而
舶 的交 货 周期 。 以焊材 消耗 为指 标衡 量 实 际生 产 高 。 统 的低 合金 钢板进 行 大线 能量焊 接时 , 传 由于
效 率 ,0 6年我 国仅 为 1 g( ・ ) ] 20 5k /人 天 H ,远 落后 焊接 热循 环 的作用 .在 焊 接热 影 响 区发生 晶粒 异
zn H Z b i etnu e ig Ipit otht uhm aue sdces gcro — oe(A ) yhg h a ip t l n .t o s u a sc esrsa erai abne h w d n t n
q i ae t f i g g a n s e o u tn t n HAZ a d i d cn h n r cy t l n e r e t r c p — u v ln , n n r i i fa s i i i z e e n n u i g t e i t r s l e f ri o p e i i a a i t
焊接线 能 量 。增加 焊接 线能 量 可 以有 效 提 高焊 接 造是 大线 能 量 焊接 方 法 应 用 最 为广 泛 的 领 域 , 本
效 率 。目前 船 厂采用 的多丝 埋 弧焊 、 电立 焊 和电 文对 国内外此 领 域研究 现 状及 鞍 钢 大线 能量 焊接 气 渣焊 等高 效焊 接方 法 , 与传 统焊 条 电弧 焊相 比 。 焊 船板 开发 情况 进行介 绍 。
A s atT ew ligpoesb i haipt ed gi hp bi igiit d cdad bt c: h edn rcs yh幽 etn u li si- ul n r ue n r w n n d sn o
大线能量焊接用钢的现状与发展讲解
大线能量焊接用钢板的应用领域
船舶
桥梁
高层建筑
海洋结构
石油储罐
球罐
国外大线能量焊接用钢的研究现状
造船
日本JFE公司的EH40船板钢的焊接 热输入量已经达到680kJ/cm,40 至100mm厚度的钢板可实现一道次 焊接成形,其焊接效率比传统方 法提高数十倍。
日本新日铁公司开发的EH40造船 钢板,其焊接热输入量能够达到 390 kJ/cm;
• 钢中第二相,包括传统意义上的夹杂物微细化及其形状 和分布状态的有效控制是未来钢铁材料科学与技术发展 的重要方向。
晶内针状铁素体含量与韧脆转变温度的关系
只有当HAZ组织中的针状铁素体含量达到50%以上 时,焊接热影响区才会显现出良好的低温韧性
HAZ部位奥氏体晶粒尺寸对韧性的影响 HAZ部位奥氏体晶粒细小有利于提高韧性
50mm
21mm
50mm
1水冷滑块 2金属熔池 3渣池 4焊接电源 5焊丝 6送丝轮 7导电杆 8引出板 9出水管 10金属熔滴 11进水管 12 焊缝 13起焊槽
普通热输入焊接:多道次、生产效率低
大热输入焊接:单道次、生产效率高,成本低
电渣焊焊缝
手工焊焊缝
1 大线能量焊接用钢的研究现状
近年,随着构件的大型化和大跨度化,使用低合金高强钢的下游企业为 提高施工效率和降低成本,逐步开始采用更为高效的大线能量焊接方法。 目前国内常见的大线能量焊接方法如下:
日本大线能量焊接用钢生产技术简介
日本大热输入焊接用钢的生产技术——氧化物冶金技术
新日铁的“HTUFF”技术:
使钢中形成纳米级Ca、Mg的氧化 物和硫化物粒子,细化奥氏体晶 粒的同时利用这些氧化物作为晶 内针状铁素体的形核点,提高大 热输入焊接CGHAZ的韧性。
大线能量焊接问题
钢板被广泛用于诸如建筑、桥梁、压力容器、储罐、管线和船舶等基础建设和大型建筑中。
建筑构件的大型化和高层化发展趋势要求钢板的厚度增加,同时具有更高的综合性能,包括更高的力学性能、高效的加工性能以及优良的抗腐蚀性能和抗疲劳破坏性能等。
但是,随着钢板强度的提高,其冲击韧度和焊接性能显著下降,焊接裂纹敏感性增加。
特别是随着焊接线能量的提高,传统低合金高强钢的焊接热影响区性能(强度、韧性)恶化,易产生焊接冷裂纹问题,给大型钢结构的制造带来困难。
由于焊接为厚板加工的主要方式,满足大线能量焊接性能也逐步成为各种钢种所具备的一种性能。
所以,在追求高强度的同时,改善钢板的韧性以提高钢板的焊接性能越来越迫切。
提高钢大线能量焊接性能的主要技术手段钢大线能量焊接的主要难点在于其热影响区(HAZ)的强度和韧性随着输入线能量的增大而降低。
因此,HAZ的韧性成为制约钢大线能量焊接的关键因素。
为了解决HAZ的韧性问题,国内外相继开展了大线能量焊接用钢的研究工作,提出的改善韧性的方法主要有降低C含量和Ceq、利用微合金元素和氧化物夹杂细化奥氏体晶粒、获得韧性好的组织如针状铁素体以及贝氏体组织的超低碳钢、通过改进生产工艺提高韧性等。
1 奥氏体晶粒的细化晶粒细化是同时提高钢的强度和韧性的唯一途径。
通过降低奥氏体的晶粒尺寸来增加形核点密度以细化铁素体晶粒的方法已经被广泛研究。
原奥氏体晶粒越细小,HAZ的晶粒也就越小,韧性也就会越好。
在钢中引入微量的合金元素,形成弥散分布的高熔点颗粒。
这些颗粒一方面以“钉轧”的形式阻碍奥氏体晶界的迁移,限制奥氏体晶粒的长大,同时增加了相变过程中的形核点,从而使钢的组织更加细小。
目前研究较多的是Ti元素对高温奥氏体的细化作用。
研究发现,Ti在钢中形成细小弥散的TiN粒子,在焊接热循环过程中有效阻止奥氏体晶粒的长大,促进针状铁素体析出,从而改善HAZ的韧性。
研究人员发现,Nb可以加强Ti的细化作用。
Nb在钢中与N也有着强烈的亲和力,可以取代部分Ti,与N形成(Ti,Nb)N颗粒,其溶解温度在1350℃以上,可以钉轧、拖拽高温奥氏体晶界的迁移。
Ti对大线能量焊接焊缝组织和性能的影响
Ti对大线能量焊接焊缝组织和性能的影响阿荣1,潘川1,赵琳2,田志凌3(1.安泰科技股份有限公司焊接材料分公司,北京100081;2.新冶高科技集团有限公司,北京100081;3.中国钢研科技集团有限公司,北京100081)摘要:对不同Ti含量的气电立焊焊缝组织及力学性能进行了对比研究。
结果表明,Ti的质量分数在0.028%~0.038%范围内时,焊缝中获得大量细小的针状铁素体,焊缝组织及低温韧性得以明显改善。
当Ti过量时,焊缝中的针状铁素体减少,组织以贝氏体为主,低温韧性相应下降。
焊缝组织中观察到块状和条状的M-A组元,随着焊缝Ti含量增加,其总量增加。
焊缝夹杂物多为以氧化物为核心,外层包裹着MnS的复合夹杂物,并随夹杂物Ti含量的增加,由Mn-Si-Al-O型向Ti-Mn-Al-O型转变,有利于促进针状铁素体形成。
而当焊缝中Ti过量时,主要夹杂物又转变为对针状铁素体形核无效的Ti-Al-O型,促进了贝氏体转变。
关键词:大线能量焊接;Ti;针状铁素体;M-A组元;焊缝组织;力学性能低合金高强钢焊缝力学性能主要受焊缝组织、焊缝金属化学成分及焊接热输入的影响。
一般,低合金高强钢焊缝组织主要以马氏体、贝氏体和铁素体为主。
为了获得较高的综合力学性能,焊缝中形成大量的针状铁素体是非常必要的。
针状铁素体转变温度为650~500℃,属中温转变产物。
典型的针状铁素体组织紧密,板条间角度通常大于15°,为大角度晶界,且针状铁素体晶内存在大量高密度位错(其密度为108~1010cm-2),因此在变形过程中不利于微裂纹扩展,宏观上表现出良好的断裂韧性及低温韧性[1-7]。
针状铁素体通常以那些尺寸为0.3~2.0μm,弥散分布的非金属夹杂物为形核质点,并与奥氏体母相之间保持一定的位相关系(K-S,N-W)生长。
对于特定条件的夹杂物是如何促进针状铁素体以及晶内铁素体形核长大的原因目前也有了部分一致的观点[8-13],其原理主要可以通过晶格匹配理论、界面能变化、应力应变场强变化及化学成分变化引起的化学驱动力提高等几个方面解释。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Materials Science Forum Vols. 783-786 (2014) pp 1046-1052 © (2014) Trans Tech Publications, Switzerland doi:10.4028//MSF.783-786.1046Research and development of a yield strength 400 MPa class structural steel plate with enhanced weldability Yu Zhang*, Xiaobao Li, Xin Pan(Institute of Research of Iron and Steel, Shasteel, Jinfeng, Zhangjiagang, Jiangsu, 215625, China) *Corresponding author: zhangyu02@ Keywords: Structural steel plate, high heat input welding, heat-affected zone, intra-granular nucleated ferrite, impact property;Abstract: A 400 MPa yield strength structural steel plate with enhanced weldability was produced by using advanced steel making technology and thermo-mechanical controlled processing technique. A microstructure consisting of acicular ferrite (3~8 m) and polygonal ferrite was observed in the rolled plate, which exhibits a yield strength ≥ 420 MPa, tensile strength ≥ 560 MPa, elongation ≥ 26 % and charpy impact toughness ≥ 300 J at -40 °C. Three-wire flux copper backing submerged arc welding with heat input of 230 kJ/cm was applied to butt weld the 36 mm thick plate, and defect-free joint with satisfactory mechanical properties were produced. The coarse grain heat affected zone (CGHAZ) contains mostly intra-granular nucleated ferrite plus a few grain boundary ferrite and ferrite side plate, and shows charpy impact toughness ≥ 90 J at -40 °C. The enhancement impact toughness of CGHAZ resultant from high heat input welding is due to improvement of intra-granular ferrite formation induced by Ca and Ti containing oxides and sulphides. 1. Introduction Steels with yield strength over 400 MPs are getting increased application for shipbuilding and offshore platform construction for increasing capacity [1-3]. Welding heat input for on-site fabrication is strictly controlled below 50 kJ/cm for ensuring low temperature impact property of the weld joint. For conventional steel grades, the impact property of the heat affected zone (HAZ) will deteriorate with increasing heat input due to the formation of brittle bainitic structure [4-7]. Welding methods with high heat input of 80~200 kJ/cm, such as electro-gas welding and multi-wire submerged arc welding which enable one-pass welding of 40 mm thick plate, were employed by the industry for improving construction efficiency and cost reduction [8-10]. It is obvious that the lack of high quality steel plate limits the efficiency improvement of shipbuilding. There are some activities aiming to develop the steel plate with enhanced weldability, and some promising results were reported [11-13]. However most of them are laboratory trial results and lack of verification of mill facilities. In this paper, microstrucrtural characteristics, mechanical property and weldability of a 400 MPa yield strength class steel plate produced by industrial mill facilities were reported. 2. Experimental procedure 2.1 Industrial production of the steel plate The alloy design is basically low carbon and low carbon equivalent type. Steel-making is conducted on a 180t converter-ladle fining-RH, and finally continuous casted into a with a thickness of 220 mm, and the measured composition includes 0.05%C, 0.15%Si, 1.45%Mn, 0.006%P, 0.004%S, 0.001%B, and minor Ti and Ca.All rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the written permission of TTP, . (ID: 112.25.149.196-25/04/14,11:07:47)Materials Science Forum Vols. 783-7861047The hot rolling is carried out on a four-high 5 m width heavy plate mill with accelerated cooling system (MULPIC-AcC). After reheating the slab at 1200 °C for two hours, the slab was subjected to a thermo-mechanically controlled rolling and accelerated cooling process (TMCP), and the key parameters includes: 1) rough rolling above 1000 °C with a thickness reduction ratio ≥50 %; 2) finish rolling below 880 °C with a thickness reduction ratio ≥60 %; and 3) the rolled plates should be cooled to a temperature between 400 and 500 °C with a cooling rate 10~25 °C/s. 2.2 Microstructure and mechanical property characterization Microstructure observation was conducted on samples after polishing, etching in 4 % nital solution by using optical microscopy and field emission scanning electron microscopy (FE-SEM, JSM 7100F). Thin foils for transmission electron microscopy (TEM,JEM 2100F) examination were prepared using standard procedures, and then subjected to twin jet electro-polishing using an elecroyte of 5 % perchloric acid, 35% butoxy ethanol and 60% methanol. The hardness values are in Hv using a load of 49 N and a dwell time of 5 s. Charpy V-notch (CVN) impact tests were performed on standard samples (10×10×55 mm) on a 450-J instrumented pendulum impact tester. Mechanical properties at center thickness (t/2) and quarter thickness (t/4) of the plate were measured. Round tensile samples with 8 mm gage diameter were machined and tested at room temperature at a cross-head speed of 5 mm/min by a 250-kN machine. 2.3 Welding tests Flux copper backing submerged arc welding (FCB-SAW) was applied to butt weld the industrially produced 26 mm thick plate without preheating and post weld heat treatment. Groove of single V of 50 ° and a gap distance of 4 mm was used. Three solid wires with diameters of 4.8 and 6.0mm was selected, which have a nominal composition of 0.08%C. 0.35%Si, 1.40%Mn, 0.15%Mo, 0.011%P, 0.012%S, and other residual elements at resultant all weld metal. The detailed welding parameters were listed in Table 1. The flux for SAW contains a nominal composition (weight percentage) of 15% SiO2, 18% Al2O3, 5% CaO, 22% CaF2, 32% MgO and others. The welding is conducted without preheating and post heat treatment, and linear heat input during welding is calculated to be 230 kJ/cm. Table 1 FCB-SAW ParametersCurrent (A) I1(Φ4.8mm) 1280 I2(Φ4.8mm) I3(Φ6.0mm) 1180 1100 Voltage (V) U1 35 U2 40 U3 42 Wire distance (mm) W1→W2 35 W2→W3 120 Travel speed Heat input (cm/min) (kJ/cm) 37 2303 Results and discussion 3.1 Microstructure and property of the hot rolled plate Fig. 1 shows the optical microstructure of the hot rolled 36 mm thick plate, which contains 50~60% volume fraction of quasi-polygonal ferrite (QPF, 10~25 µm) and acicular ferrite (AF, 3~8 µm). The t/4 shows a finer structure than the t/2, and this is the common feature of TMCP steel plates [14,15]. Table 2 lists the tensile property and CVN impact properties of the hot rolled plate. The plate exhibits yield strength (YS) ≥ 405 MPa, tensile strength (TS) ≥ 528 MPa and elongation (El) ≥ 27 %. The plate shows an absorbed energy ≥ 300 J at -40 °C and ≥ 200 J at -60 °C, and the ductile to brittle transition temperature is below -70 °C. This suggests the excellent low temperature of the rolled plate.1048THERMEC 2013Fig. 1 Optical microstructure of the hot rolled 36 mm thick plate Table 2 Mechanical properties of the hot rolled plate YS./MPa t/4 t/2 415 405 TS/MPa 542 528 El./% 27 28 RA./% 83 82 CVN impact property / J vE0 °C 393, 388, 378 319, 325, 339 vE-20 °C 388, 385, 377 303, 321, 327 vE-40 °C 360, 327, 348 310, 311, 307Fig. 2 shows the typical morphology of the fracture surface after impact testing. Dimples with varied size (2~60 µm) and depths are observed, which suggests the ductile fracture behavior. The excellent match of strength and low temperature impact toughness is contributed from two points: 1) refined PF and QPF grain structure resulted from TMCP process; 2) high fraction of sub-grain boundaries produced from low temperature rolling with high thickness reduction ratio.Fig.2 Typical SEM micrograph of fractured surface of the plateProcedures like cold leveling, rolling bending, press forming is inevitable during fabrication of larger steel structures. Strain aging occurs that results in increased strength, decreased ductility and toughness. The effect of strain aging on the above properties is concerned by fabrication unit and should be examined for insurance of structure safety. The CVN testing was therefore conducted on the plate experienced varied strain aging conditions at -40 °C, and the properties were summarized in Table 3. It is observed that the plate retains sufficient toughness after strain aging.Materials Science Forum Vols. 783-7861049Table 3 CVN Impact property of the plate after strain aging treatment with a soaking time of 1 hour CVN impact toughness at -40 °C Location t/4 t/2 Strain 2.5 % Aging at 250 °C 326, 320, 322 331, 333, 338 Aging at 570 °C 307, 317, 339 350, 340, 360 Strain 5.0 % Aging at 250 °C 233, 315, 288 327, 344, 331 Aging at 570 °C 297, 327, 331 338, 336, 3303.2 Microstructure and impact property of the FCB-SAW weld joint Three-wire FCB-SAW with a heat input of 230 kJ/cm was applied to the 36 mm thick plate, and defect-free weld joint was produced, as shown in Fig. 3. Hardness profile across the weld joint was shown in Fig. 4, and it is clearly observed that heat-affected zone (HAZ) has the lowest hardness value across the joint. Moreover, the lowest hardness value falls in the region adjacent to HAZ boundary line, which shows a value of HV 10 lower than their adjacent BMFig. 3 Cross-section of the FCB-SAW weld jointFig. 4 Hardness profile across the weld jointFig.5 shows microstructures of FL, FL+1mm, FL+3mm and FL+5mm Hardness were observed along the line b at Fig.5, which corresponds to the center thickness of the weld joint. FL contains grain boundary ferrite (GBF), ferrite side plate (FSP) and intra-granular nucleated ferrite (IGF), and the prior austenite grain size was estimated to be 100~120 µm. A much finer gain structure was found in FL+1 mm and FL+3 mm, which consists of PF, IGF and few bainite. FL+5 mm shows a mostly PF grain structure, which corresponds to sub-critical HAZ. The weld joint fails at HAZ boundary region during transverse tensile test, and shows a tensile strength of 516 MPa and elongation of 20%. Both transverse tensile test and hardness profile proves that the HAZ is the weakest part of the weld joint. Table.4 lists the CVN impact property of weld joint, and it is clear that fusion line (FL) has the lowest value than other regions because of its coarse grain structure. The FL exhibits an absorbed energy ≥ 239 J at -20 °C, ≥ 121 J at -40 °C and ≥ 97 J at -60 °C. Fig. 6 lists the typical morphology of the fracture surface of the CVN impact specimen. Cracking along prior austenite grain boundary (indicated by dotted line and arrows), intra-granular dimple fracture and cleavage cracking was observed for FL, which corresponds to its IGF, GBF and FSP structure. While FL+1mm shows more dimples, and no prior austenite grain boundary cracking were observed. As compared to FL, the higher CVN impact value of FL+1 mm is due to the smaller grain structure. Previous studies [16-18] have suggested that IGF grains bounded by crystallographic large angle boundary are effective obstacles to hinder crack propagation, and thus to enhance fracture toughness. Thus the enhanced formation of IGF found in the CGHAZ would be beneficial to1050THERMEC 2013fracture toughness. A large number of inclusions are found at HAZ, and typical morphology and composition were shown in Fig. 7. A dual structure with a core TiOx-Al2O3 oxide and an outer layer of CaS and MnS is found. It is assumed that the complex TiOx-Al2O3 oxide with high-melting point temperature is formed during the ladle refining stage, and the CaS and MnS is formed at cooling stage of slabs or welding process.Fig. 5 Optical microstructure of the HAZ along the line b at Fig. 4 Table 4 CVN impact property of the FCB-SAW weld jointFL FL+1mm FL+3mm FL+5mmvE0 °C 269, 275, 239 219, 225, 259 312, 311, 319 319, 325, 339vE-20 °C 183, 121, 127 213, 181, 237 303, 292, 272 303, 321, 327vE-40 °C 110, 111, 97 185, 211, 207 262, 251, 247 310, 311, 307Fig. 6 SEM micrograph of the fractured surface of CVN impact test sampleThe potency of complex oxide TiOx-Al2O3 to nucleate ferrite during austenite decomposition has also been approved [19]. Sulphides like CaS and MnS are frequently reported [20-23] toMaterials Science Forum Vols. 783-7861051enhance intra-granular nucleation ferrite by acting directly as nuclei. This kind particle has a size range of 0.3~3 mm and a number density of 4.3×104/mm3. This clearly indicates that that the enhanced formation of IAF and IPF at HAZ resulting from a dense distribution of Ti and Mg containing oxide particles dispersed in the plate leads to the enhanced impact toughness of the HAZ.Fig. 7STEM morphology and composition of the particle found in HAZ of the weld joint4 Conclusions (1) 36 mm thick structural steel plate with enhanced weldability was industrially produced by employing advanced steel-making and thermo-mechanically controlled technology, which exhibits an yield strength ≥ 405 MPa, tensile strength ≥ 528 MPa, elongation ≥ 27%, and CVN impact toughness ≥ 300 J at -40 °C. (2) Flux copper backing submerged arc welding with heat input of 230 kJ/cm was applied to butt weld the 36mm thick plate, and defect-free weld joint was produced. The weld joint failed at HAZ during transverse tensile test, and showed a tensile strength ≥ 516 MPa. (3) The coarse grain HAZ has the lowest impact toughness across the HAZ, which has an impact toughness ≥ 97 J at -40 °C. Coarse grain HAZ contains intra-granular nucleated ferrite, grain boundary ferrite and ferrite side plate, The improvement of HAZ toughness under high heat input welding is due to enhancement formation of intra-granular ferrite, which is induced by Ti and Ca containing oxide and sulphide acting as nuclei during austenite decomposition. Reference [1] C.M. Kim, J.B. Lee, W.Y. Choo, Characteristics of single pass welds in 50 kJ/mm of heavy thickness shipbuilding steel, Proceedings of the 13th Inter Offshore and Polar Engineering Confer, Honolulu, Hawaii, USA, 2003, 90-96. [2] A. Kojima, K.I. Yoshii, T. Hada, Development of high HAZ toughness steel plates for box columns with high heat input welding, Nippon Steel Tech. Rep., 90 (2004) 39-44. [3] S. Okano, T. Koyama, Y. Kobayashi, M. Yamauchi, TMCP type HT570 steel plates with excellent weldability, Kobe Steel Eng. Rep., 55 (2005) 20-24. [4] W. Sun, G.D. Wang, J.M. Zhang, D.X. Xia, H. Sun, Microstructure characterization of high heat input welding joint of HSLA steel plate for oil storage construction, J. Mater. Sci. Technol., 25 (2009) 857-860. [5] Y.I. Komizo, Status and prospects of shipbuilding steel and its weldability, Trans JWRI 36 (2007) 1-6.1052THERMEC 2013[6] K. Abe, M. Izumi, M. Shibata, H. Imamura, High tensile strength steel plates for high heat input welding, Kobe Steel Eng. Rep., 55 (2005) 26-29. [7] A. Kojima, K. Yoshii, T. Hada, O. Saeki, K. Ichikawa, Y. Yoshida, Y. Shimura, K. Azuma, Development of high HAZ toughness steel plates for box columns with high heat input welding, Nippon Steel Tech. Rep., 90 (2004) 39-44. [8] M. Minagawa, K. Shida, Y. Funatsu, S. Imai, 390MPa yield strength steel plate for large heat input welding for large container ships, Nippon Steel Tech. Rep., 380 (2004) 6-8. [9] S. Suzuki, K. Ichimiya, T. Akita, High tensile strength steel plates with excellent HAZ toughness for shipbuilding - JFE EWEL technology for excellent quality, JFE Tech. Rep., 5 (2005) 24-29. [10] H. Kawano, M. Shibata, S. Okano, Y. Kobayashi, Y. Okazaki, TMCP steel plate with excellent HAZ toughness for high-rise buildings, Kobe Steel Eng. Rep., 54 (2004) 110-113. [11] J. S. Park, B. Jung, J.B. Lee, Effect of high heat input on CTOD property of the thick steel plate for offshore engineering, POSCO Tech. Rep., 10 (2007) 46-49. [12] K. Zhu, Z.G. Yang, Effect of magnesium on the austenite grain growth of the heat affected zone in low carbon high strength steels, Metall. Mater. Trans., 42A (2011) 2207-2213. [13] M. Van Ende, M. Guo, R. Dekkers, M. Burty, J. Van Dyck, P.T. Jones, Formation and evolution of Al-Ti oxide inclusions during secondary steel refining, ISIJ Inter., 49 (2009) 1133-1140. [14] I. Tamura, Some fundamental steps in thermo-mechanical processing of steels, ISIJ Inter., 27 (1987) 763-779. [15] Y. Zhang, X. Pan, J.C. Xie, Development of 610MPa grade steel plate with low yield ratio through thermo-mechanical controlled processing with accelerated cooling, Proceedings of the 10th Inter Confer on Steel Roll, Beijing, China, 2010, 214-219. [16] C.I. Garcia, M. Hua, A.J. DeArdo, Particle stimulated nucleation of ferrite in micro-alloyed steel, MS&T, 2009, 1591-1602. [17] J.L. Lee, Y.T. Pan, The formation of intra-granular acicular ferrite in simulated heat-affected zone, ISIJ Inter., 35 (1995) 1027-1033. [18] J.S. Byun, Non-metallic inclusions and intra-granular acicular nucleation of ferrite on Ti-killed C-Mn steel, Acta Mater., 51 (2003) 1593-1606. [19] Y. Zhang, X. Pan, X.B. Li, Industrial development of steel plate suitable for high heat input welding, Proceedings of Bao-steel Academic Conference, 2013, June, Shanghai, G42-46. [20] N. Kikuchi, S. Nabeshima, Y. Kishimoto, T. Matsushita, S. Sridhar, Effect of Ti de-oxidation on solidification and post-solidification microstructure in low carbon high manganese steel, ISIJ Inter., 47(2009) 1255-1264. [21] C. van der Eiij, J Walmsley, Effects of titanium containing oxide inclusions on steel weldability, Proceedings of the 6th Inter Confer on Trends in Welding Research, Georgia, USA, 2002. [22] Φ. Grong, A.O. Kluken, H.K. Nylund, A.L. Dons, J. Hjelen, Catalyst effects in heterogeneous nucleation of acicular ferrite, Metall Mater Trans, 26A (1995) 525-534. [23] B. Wen, B. Song, In situ observation of the evolution of intra-granular acicular ferrite at Ce-containing inclusions in 16Mn steel. Steel Res. Inter., 839 (2012) 487-495.。