空间向量之 建立空间直角坐标系的方法及技巧
建立空间直角坐标系的几种方法
建立空间直角坐标系的几种方法1.给定坐标轴方向及原点位置:最直接的方法是给定三个坐标轴的方向及原点位置。
通常,我们选择三个相互垂直的轴,并确定它们的正方向。
例如,我们可以选择X轴向右,Y轴向上,Z轴垂直于XOY平面向外,然后选择原点为坐标轴的交点。
通过这种方法,我们就可以建立一个三维直角坐标系。
2.使用原点和两个已知点:在给定两个已知点和原点的情况下,我们可以建立一个空间直角坐标系。
首先,我们将其中一个已知点作为坐标轴上的一个点,然后确定一个与此轴垂直的第二个轴。
接下来,我们确定第三个轴的方向,使其与前两个轴正交,并选择原点位置。
通过这种方法,我们可以构建一个三维直角坐标系。
3.使用平面和轴的交点:另一种建立空间直角坐标系的方法是确定两个平面及其在坐标轴上的交点。
首先,我们选择平面XY作为参考平面,并将其与X轴和Y轴在原点处的交点作为坐标轴上的两个点。
然后,选择两个非共线的轴分别与平面XZ和平面YZ正交,并确定它们的正方向。
通过这种方法,我们可以建立一个三维直角坐标系。
4.使用向量运算:通过向量运算的方法可以建立空间直角坐标系。
首先,选择一个已知向量为其中一个坐标轴的向量。
然后,选择另一个与已知向量相互垂直的向量,并进行正规化。
接下来,使用向量叉积运算确定第三个轴的方向,并对其进行正规化。
最后,选择原点位置。
通过这种方法,我们可以建立一个三维直角坐标系。
这些方法都是建立空间直角坐标系的常见方法,可以根据具体情况选择合适的方法进行建立。
空间向量的直角坐标及其运算
∴ AP AB , AP AD,又 AB AD A , AP 平面 ABCD,
∴ AP 是平面 ABCD的法向量; 解:(2) AB 22 12 42 21 , AD 42 22 02 2 5 ,
∴ SABC
1 2
AB
AC
sin
A
101 。 2
7、在棱长为1的正方体 ABCD A1B1C1D1 中,E, F 分别是 DD1、DB 中点,G 在棱CD 上,
CG
1 4
CD
,
H
是
C1G
的中点;
(1)求证: EF B1C ;(2)求 EF 与C1G 所成的角的余弦;(3)求 FH 的长。
解:如图以 D 为原点建立直角坐标系 D xyz ,
(3)证明线面平行:若直线的方向向量与平面的一个法向量垂直,则这直线与该平面平行;
(4)证明面面平行:若两个不重合平面的法向量平行,则这两个平面就互相平行。 11、用向量求异面直线所成角:
找出两条异面直线各自的一个方向向量,计算这两个向量的夹角 ,则 (或 的补角)
即为两条异面直线所成的角。
设 a、b 是异面直线, d1 是直线 a 的一个方向向量, d2 是直线b 的一个方向向量,异面
一、基本概念:
1、空间直角坐标系:
(1)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用 i, j,k
表示;
(2)在空间选定一点O 和一个单位正交基底 i, j,k ,以点O 为原点,分别以 i, j,k 的方向
为正方向建立三条数轴:x 轴、 y 轴、z 轴,它们都叫坐标轴;我们称建立了一个空间 直角坐标系 O xyz ,点O 叫原点,向量 i, j, k 都叫单位向量;通过每两个坐标轴的平
空间向量的直角坐标运算
空间向量的直角坐标运算一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:●掌握空间向量的坐标表示、坐标运算、夹角公式、距离公式。
●能通过坐标运算判断向量的共线与垂直。
● 理解直线的方向向量与平面的法向量,会求平面的法向量。
重点难点:●重点:掌握空间向量的坐标运算,能通过坐标运算判断向量的共线与垂直。
● 难点:向量坐标的确定以及夹角公式,距离公式的应用。
学习策略:● 空间向量的直角坐标运算和平面向量的直角坐标运算类似,两个向量的加、减、数乘运算就是向量的横坐标、纵坐标、竖坐标分别进行加、减、数乘运算;空间两个向量的数量积等于它们对应坐标的乘积之和。
● 对于垂直问题,一般是利用0a b a b ⊥⇔=进行证明;对于平行问题,一般是利用共线向量和共面向量定理进行证明。
二、学习与应用空间向量的基本定理(一)共线向量定理:空间任意两个向量a、b (b ≠0),a //b 的充要条件是(二)共面向量定理(平面向量的基本定理):两个向量a 、b 不共线,向量p 与向量a 、b 共面的充要条件是*推论:P 、A 、B 、C 四点共面的充要条件:对空间任意一点O ,有OP =(三)空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在 的有序实数组{,,}x y z ,使p = 。
“凡事预则立,不预则废”。
科学地预习才能使我们上课听讲更有目的性和针对性。
知识回顾——复习学习新知识之前,看看你的知识贮备过关了吗? 详细内容请参看网校资源ID :#tbjx7#281331若三个向量a、b、c不共面,我们把{,,}a b c叫做空间的一个,,,a b c叫做基向量,空间任意三个不共面的向量都可以构成空间的一个。
知识点一:空间直角坐标系及空间向量的坐标表示(一)单位正交基底若空间的一个基底的三个基向量,且长为,这个基底叫单位正交基底,常用{,,}i j k表示。
空间向量的坐标表示与几何应用
空间向量的坐标表示与几何应用在三维空间中,空间向量是研究物体运动和位置的重要工具。
为了准确地描述和计算空间向量,我们需要用坐标来表示它们。
本文将详细介绍空间向量的坐标表示方法,并探讨其在几何应用中的重要性。
一、坐标表示方法1. 直角坐标系直角坐标系是最常用的表示空间向量的方法。
在直角坐标系中,我们以三个相互垂直的坐标轴为基准,分别表示x、y、z三个方向。
一个空间向量可以通过三个坐标值(x,y,z)来表示,分别表示它在x轴、y 轴和z轴上的投影长度。
例如,对于一个空间向量v,在直角坐标系中,我们可以表示为v=(x,y,z)。
2. 球坐标系球坐标系是另一种表示空间向量的方法,它是通过一个原点、一个偏离原点的距离、一个与z轴的夹角和一个与x轴的投影角来确定一个空间向量的位置。
在球坐标系中,一个空间向量的坐标通常表示为(r,θ,φ),其中r表示向量到原点的距离,θ表示向量与z轴的夹角,φ表示向量在x-y平面上的投影与x轴的夹角。
二、坐标表示的几何应用1. 向量的加法与减法通过坐标表示,我们可以方便地对空间向量进行加法与减法运算。
只需将对应坐标相加或相减即可得到结果。
例如,对于向量v=(x1,y1,z1)和向量w=(x2,y2,z2),它们的和可以表示为v+w=(x1+x2,y1+y2,z1+z2)。
2. 向量的数量积与夹角坐标表示还可以用于计算向量的数量积和夹角。
向量的数量积可以通过坐标之间的乘积运算得到。
例如,对于向量v=(x1,y1,z1)和向量w=(x2,y2,z2),它们的数量积可以表示为v·w=x1x2+y1y2+z1z2。
夹角可以通过向量的数量积公式求解:cosθ = (v·w) / (|v| |w|)其中,|v|和|w|分别表示向量v和w的模长。
3. 点与直线的相对位置通过点和直线的坐标表示,我们可以判断一个点与直线的相对位置关系。
以直线的方程和点的坐标为基础,我们可以计算点到直线的距离,从而判断点在直线上方、下方还是与直线相交。
建立空间直角坐标系的几种方法
建立空间直角坐标系的几种方法
建立空间直角坐标系是数学中非常重要的一个步骤,用于描述物体的位置和形状,可以帮助我们更精确地测量和绘图。
下面是几种建立空间直角坐标系的方法:
1. 笛卡尔坐标系:笛卡尔坐标系是最常用的空间直角坐标系,由直角坐标系和极坐标系相结合而成。
在笛卡尔坐标系中,x轴代表水平方向,y轴代表垂直方向,而z轴则代表物体的深度。
2. 极坐标系:极坐标系与笛卡尔坐标系相似,但使用z轴来表示物体的深度。
在极坐标系中,x轴代表物体的法向量,y轴代表物体的旋向量,而z轴则代表物体的深度。
3. 直角坐标系:直角坐标系是最简单的坐标系之一,由水平和垂直两条轴组成。
在直角坐标系中,x轴和y轴分别代表水平和垂直方向,而z轴则代表物体的深度。
4. 球坐标系:球坐标系是一种特殊的直角坐标系,适用于描述球形或多边形的物体。
在球坐标系中,x轴代表球的x轴方向,y轴代表球的y轴方向,而z轴则代表球的深度。
除了以上几种方法,还有其他很多种坐标系可以用于描述物体的位置和形状,例如四维坐标系、环形坐标系等。
这些方法的优缺点和适用范围都不同,需要根据具体的需求来选择。
拓展:空间直角坐标系在实际应用中的重要性。
例如,在医学领域中,空间直角坐标系可以用于测量人体器官的位置和大小,以便进行手术和影像学检查;在
工程领域中,空间直角坐标系可以用于测量建筑物的高度、形状和尺寸,以便进行
设计和施工。
此外,空间直角坐标系在科学研究中也有着广泛的应用,例如在物理学、天文学和地球科学等领域中,都可以利用空间直角坐标系来描述物体的位置和形状。
空间向量之建立空间直角坐标系的方法及技巧
空间向量之建立空间直角坐标系的方法及技巧、禾U用共顶点的互相垂直的三条棱构建直角坐标系例1已知直四棱柱ABC D A i B i CD中,AA= 2,底面ABCD是直角梯形,/ A为直角,AB//CD AB= 4, AD= 2,DC= 1,求异面直线BC与DC所成角的余弦值.解析:如图1, 以D为坐标原点,分别以DA DC DD所在直线为x、y、z轴建立空间直角1 , 2)、B(2, 4, 0), •- BC =(-2,3,2) , CD=(0, -1,0).坐标系,则C (0,设BC i与CD所成的角为vCD 3 '1717二、利用线面垂直关系构建直角坐标系例2 如图2,在三棱柱ABC- ABC中,AB丄侧面BBCQ, E为棱CC上异于C C的一点,EAL EB.已知AB = J2 , BB = 2, BC= 1, / BCC=上.求二面角A- EB—A的平面角的正切值.3解析:如图2,以B为原点,分别以BB、BA所在直线为y轴、z轴,过B点垂直于平面AB 的直线为x轴建立空间直角坐标系.由于BC= 1, BB= 2, AB= -/2,/ BCG=—,3•••在三棱柱ABC- ABC 中,有(0, 0, 0)、(0, 0,C1 第3 /—,—,0 .I2 2丿輛〕〔3设E — , a, 0 且一丄<a<3,I2丿22由EAL EB,得EAEB =0,CDBA 丄EB ,故二面角 A- EB —A i 的平面角日的大小为向量 BA 与 EA 的夹角.訳=BA = (0,0八 2) , EA 二三、利用面面垂直关系构建直角坐标系例3 如图3,在四棱锥 V — ABCD 中,底面ABCD 是正方形,侧面 VAD 是正三角形,平面 VAD 丄底面ABCDAB 丄 VA又ABL AD 从而AB 与平面VAD 内两条相交直线 VA AD 都垂直,二 (2)设E 为DV 的中点,则J-1显1 I 22丿 即「2,一皿] X ,2—aJ< 2 丿+a (a —2)=a 2—2a+3=0,「. 'a —丄 |4 I 2丿3 4 即-2或a =| (舍去).故E 佇,,0 . ■ 3i3 去(3,0,_Q,时,2, -纠 辽 2丿 I 2 2丿,DV =(1,0, 3). 由已知有EA _ EB i , 故 COS V =灵晁^,即ta —子EA'B 1A 1(1)证明 AE 丄平面VAD(2)求面 VAD 与面VDB^成的二面角的余弦值.解析:(1) 取AD 的中点O 为原点,建立如图3所示的空间直角坐标系.设 AD= 2,则 A (1,0,0)、D (— 1,0,0)、B ( 1,2,0)、V (0,0,爲),二 AB =(0, 2, 0) , VA =( 1,0, — V 3 ).由 ABVA = (0,2,0壯1,0, - . 3) = 0,得AB 丄平面VAD故所求二面角的余弦值为 —217四、禾U 用正棱锥的中心与高所在直线构建直角坐标系已知正四棱锥 V-ABCD 中, E 为VC 中点,正四棱锥底面边长为 2a ,高为h .即 cos Z DEB =「6a 2 h :; 10a 1 2 +h 2(2)因为E 是VC 的中点,又BE! VCc 2 , 23 2 a h a 0 ,• h -、2a . 2 2 21 1,即 cos Z DEB 二-一• EB[DV 」i,o,J 3)=o ,••• E 吐 DV又 EAL DV 因此/ AEB 是所求二面角的平面角.(1) 求/ DEB 的余弦值;(2) 若BE! VC 求/ DEB 的余弦值.解析: (1)如图4,以V 在平面AC 的射影O 为坐标原点建立空间直角坐标系, 其中O x / BC O y // AB,则由 AB^ 2a , OV= h ,有 B (a ,a , 0)、C (- a , a ,0)、D( - a , -a,0)、V (0, 0, h)、*222'丿•晁…3a ,I 2a h 2 2) 丨h a,_ •- cos :. BE ,DEBE DE 2 2 ? 10a h =o ,即 _3a,-a h I 22,2 心,a ,-h )“ , 这时 cos ;: BE ,DE -6a 2 h 2 10a 2 h 2E 八EB .'21 …cosEB _ 7图4所以五、利用图形中的对称关系建立坐标系图形中虽没有明显交于一点的三条直线,但有一定对称关系(如正三棱柱、正四棱柱等) 自身对称性可建立空间直角坐标系.例5已知两个正四棱锥 P — ABCDfQ-ABCD 勺高都为 2, AB= 4.(1) 证明:PQL 平面ABCD(2) 求异面直线 AQ 与 PB 所成的角;(3) 求点P 到平面QAD 勺距离.(2)由题设知,ABCDI 正方形,且ACL BD 由( 1),PQL 平面ABCD 故可分别以直线 CA, DB , QP 点评:禾U 用图形所具备的对称性,建立空间直角坐标系后,相关点与向量的坐标应容易得 出•第(3)问也可用“等体积法”求距离. 3 3 ,利用 为x , y , z 轴建立空间直角坐标系(如图 1),易得 A5 =(—2J2Q ,- 2),PB =(0,2、2- 2), cos :: AQ ,PB =AQ PB1 arccos —. 3(3)由(2)知,点 D(0,— 2矩0) AD =(—2逅,—2J2,0)PQ所求异面直线所成的角是 = (0,0, 4).设n = (x , y , z )是平面QAD 的一个法向量,则 0[nLAD = 0,得、,2x • z = 0,取 1,得 x y =0, n = (1, -1, - .2) •点P 到平面QAD 勺距离d -PQL nn| =2】2 .。
课件2:1.1.3 空间向量的坐标与空间直角坐标系
cos〈a,b〉=
a1b1+a2b2+a3b3 a21+a22+a23 b21+b22+b23
知识点四 空间直角坐标系
1.空间直角坐标系
以空间中两两__垂__直____且相交于一点 O 的三条直线分别
定义
为 x 轴、y 轴、z 轴,这时就说建立了空间直角坐标系 Oxyz,其中点 O 叫做坐标__原__点____,x 轴、y 轴、z 轴叫
【基础自测】
1.已知向量 a=(-3,2,5),b=(1,x,-1),且 a·b=2,
则 x 的值为( )
A.3
B.4
C.5
D.6
解析:∵a·b=-3×1+2x+5×(-1)=2,∴x=5. 答案:C
2.已知向量 a=(3,-2,1),b=(-2,4,0),则 4a+2b 等于( )
A.(16,0,4)
方法归纳 解决空间向量垂直、平行问题的思路 1.若有关向量已知时,通常需要设出向量的坐标,例如, 设向量 a=(x,y,z). 2.在有关平行的问题中,通常需要引入参数,例如,已 知 a∥b,则引入参数 λ,有 a=λb,再转化为方程组求解. 3.选择向量的坐标形式,可以达到简化运算的目的.
跟踪训练 3 (1)(变条件)若将本例(1)中“c∥B→C”改为 “c⊥a 且 c⊥b”,求 c.
做_坐__标__轴___.通过每两个坐标轴的平面叫做_坐__标__平__面_,
分别称为 xOy 平面、yOz 平面、___x_O_z___平面
画法
在平面上画空间直角坐标系 Oxyz 时,一般使∠xOy= __1_3_5_°___,∠yOz=90°
图示
说明
本书建立的坐标系都是___右__手___直角坐标系,即在空间 直角坐标系中,让右手拇指指向____x____轴的正方向, 食指指向____y____轴的正方向,中指指向____z____轴的 正方向,则称这个坐标系为右手直角坐标系
第28练 空间向量解决立体几何问题的两大策略——“选基底”与“建系”
第28练 空间向量解决立体几何问题的两大策略——“选基底”与“建系”[题型分析·高考展望] 向量作为一个工具,其用途是非常广泛的,可以解决现高中阶段立体几何中的大部分问题,不管是证明位置关系还是求解问题.而向量中最主要的两个手段就是选基底与建立空间直角坐标系.在高考中,用向量解决立体几何解答题,几乎成了必然的选择.体验高考1.(2018·北京)如图,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,P A ⊥PD ,P A =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5. (1)求证:PD ⊥平面P AB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱P A 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP 的值;若不存在,说明理由.(1)证明 ∵平面P AD ⊥平面ABCD , 平面P AD ∩平面ABCD =AD . 又AB ⊥AD ,AB ⊂平面ABCD . ∴AB ⊥平面P AD .∵PD ⊂平面P AD .∴AB ⊥PD . 又P A ⊥PD ,P A ∩AB =A . ∴PD ⊥平面P AB .(2)解 取AD 中点O ,连接CO ,PO .∵P A =PD ,∴PO ⊥AD . 又∵PO ⊂平面P AD , 平面P AD ⊥平面ABCD , ∴PO ⊥平面ABCD ,∵CO ⊂平面ABCD ,∴PO ⊥CO , ∵AC =CD ,∴CO ⊥AD .以O 为原点建立如图所示空间直角坐标系.易知P (0,0,1),A (0,1,0),B (1,1,0),C (2,0,0),D (0,-1,0).则PB →=(1,1,-1),PD →=(0,-1,-1),PC →=(2,0,-1). CD →=(-2,-1,0).设n =(x 0,y 0,1)为平面PCD 的一个法向量. 由⎩⎪⎨⎪⎧ n ·PD →=0,n ·PC →=0得⎩⎪⎨⎪⎧-y 0-1=0,2x 0-1=0,解得⎩⎪⎨⎪⎧y 0=-1,x 0=12.即n =⎝⎛⎭⎫12,-1,1. 设PB 与平面PCD 的夹角为θ. 则sin θ=|cos 〈n ,PB →〉|=⎪⎪⎪⎪⎪⎪n ·PB →|n ||PB →|=⎪⎪⎪⎪⎪⎪12-1-114+1+1×3=33. ∴直线PB 与平面PCD 所成角的正弦值为33.(3)解 设M 是棱P A 上一点, 则存在λ∈[0,1]使得AM →=λAP →,因此点M (0,1-λ,λ),BM →=(-1,-λ,λ), ∵BM ⊄平面PCD ,∴要使BM ∥平面PCD 当且仅当BM →·n =0,即(-1,-λ,λ)·⎝⎛⎭⎫12,-1,1=0,解得λ=14, ∴在棱P A 上存在点M 使得BM ∥平面PCD , 此时AM AP =14.2.(2018·天津)如图,正方形ABCD 的中心为O ,四边形OBEF 为矩形,平面OBEF ⊥平面ABCD ,点G 为AB 的中点,AB =BE =2. (1)求证:EG ∥平面ADF ; (2)求二面角O —EF —C 的正弦值;(3)设H 为线段AF 上的点,且AH =23HF ,求直线BH 和平面CEF 所成角的正弦值.解 依题意,OF ⊥平面ABCD ,如图,以O 为原点,分别以AD →,BA →,OF →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,依题意可得O (0,0,0),A (-1,1,0),B (-1,-1,0),C (1,-1,0),D (1,1,0),E (-1,-1,2),F (0,0,2),G (-1,0,0).(1)证明 依题意,AD →=(2,0,0),AF →=(1,-1,2). 设n 1=(x 1,y 1,z 1)为平面ADF 的法向量, 则⎩⎪⎨⎪⎧n 1·AD →=0,n 1·AF →=0, 即⎩⎪⎨⎪⎧2x 1=0,x 1-y 1+2z 1=0,不妨取z 1=1,可得n 1=(0,2,1), 又EG →=(0,1,-2),可得EG →·n 1=0,又因为直线EG ⊄平面ADF ,所以EG ∥平面ADF .(2)解 易证OA →=(-1,1,0)为平面OEF 的一个法向量,依题意,EF →=(1,1,0),CF →=(-1,1,2),设n 2=(x 2,y 2,z 2)为平面CEF 的法向量, 则⎩⎪⎨⎪⎧n 2·EF →=0,n 2·CF →=0,即⎩⎪⎨⎪⎧x 2+y 2=0,-x 2+y 2+2z 2=0,不妨取 x 2=1, 可得n 2=(1,-1,1).因此有cos 〈OA →,n 2〉=OA →·n 2|OA →||n 2|=-63,于是sin 〈OA →,n 2〉=33.所以二面角O —EF —C 的正弦值为33. (3)解 由AH =23HF ,得AH =25AF .因为AF →=(1,-1,2), 所以AH →=25AF →=⎝⎛⎭⎫25,-25,45, 进而有H ⎝⎛⎭⎫-35,35,45, 从而BH →=⎝⎛⎭⎫25,85,45.因此cos 〈BH →,n 2〉=BH →·n 2|BH →||n 2|=-721.所以直线BH 和平面CEF 所成角的正弦值为721. 3.(2018·课标全国乙)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D -AF -E 与二面角C -BE -F 都是60°.(1)证明:平面ABEF ⊥平面EFDC ; (2)求二面角E -BC -A 的余弦值.(1)证明 由已知可得AF ⊥DF ,AF ⊥FE ,所以AF ⊥平面EFDC ,又AF ⊂平面ABEF ,故平面ABEF ⊥平面EFDC .(2)解 过D 作DG ⊥EF ,垂足为G ,由(1)知DG ⊥平面ABEF .以G 为坐标原点,GF →的方向为x 轴正方向,|GF →|为单位长,建立如图所示的空间直角坐标系Gxyz .由(1)知∠DFE 为二面角D -AF -E 的平面角,故∠DFE =60°,则DF =2,DG =3,可得A (1,4,0),B (-3,4,0),E (-3,0,0),D (0,0,3).由已知,得AB ∥EF ,所以AB ∥平面EFDC ,又平面ABCD ∩平面EFDC =CD ,故AB ∥CD ,CD ∥EF .由BE ∥AF ,可得BE ⊥平面EFDC ,所以∠CEF 为二面角C -BE -F 的平面角,∠CEF =60°,从而可得C (-2,0,3). 所以EC →=(1,0,3),EB →=(0,4,0),AC →=(-3,-4,3),AB →=(-4,0,0).设n =(x ,y ,z )是平面BCE 的法向量,则⎩⎪⎨⎪⎧n ·EC →=0,n ·EB →=0,即⎩⎪⎨⎪⎧x +3z =0,4y =0,所以可取n =(3,0,-3).设m 是平面ABCD 的法向量,则⎩⎪⎨⎪⎧m ·AC →=0,m ·AB →=0.同理可取m =(0,3,4),则cos 〈n ,m 〉=n ·m |n ||m |=-21919.故二面角E -BC -A 的余弦值为-21919.高考必会题型题型一 选好基底解决立体几何问题例1 如图所示,已知空间四边形ABCD 的各边和对角线的长都等于a ,点M 、N 分别是AB 、CD 的中点.(1)求证:MN ⊥AB ,MN ⊥CD ; (2)求MN 的长;(3)求异面直线AN 与CM 夹角的余弦值. (1)证明 设AB →=p ,AC →=q ,AD →=r . 由题意可知:|p |=|q |=|r |=a , 且p 、q 、r 三向量两两夹角均为60°.∵MN →=AN →-AM →=12(AC →+AD →)-12AB →=12(q +r -p ),∴MN →·AB →=12(q +r -p )·p =12(q ·p +r ·p -p 2)=12(a 2·cos 60°+a 2·cos 60°-a 2)=0. ∴MN ⊥AB ,同理可证MN ⊥CD . (2)解 由(1)可知MN →=12(q +r -p ),∴|MN →|2=MN →2=14(q +r -p )2=14[q 2+r 2+p 2+2(q ·r -p ·q -r ·p )]=14[a 2+a 2+a 2+2(a 22-a 22-a 22)] =14·2a 2=a 22. ∴|MN →|=22a ,∴MN 的长为22a .(3)解 设向量 AN →与MC →的夹角为θ. ∵AN →=12(AC →+AD →)=12(q +r ),MC →=AC →-AM →=q -12p ,∴AN →·MC →=12(q +r )·(q -12p )=12(q 2-12q ·p +r ·q -12r ·p ) =12(a 2-12a 2·cos 60°+a 2·cos 60°-12a 2·cos 60°) =12(a 2-a 24+a 22-a 24)=a 22. 又∵|AN →|=|MC →|=32a ,∴AN →·MC →=|AN →|·|MC →|·cos θ =32a ·32a ·cos θ=a 22. ∴cos θ=23,∴向量AN →与MC →的夹角的余弦值为23,从而异面直线AN 与CM 夹角的余弦值为23.点评 对于不易建立直角坐标系的题目,选择好“基底”也可使问题顺利解决.“基底”就是一个坐标系,选择时,作为基底的向量一般为已知向量,且能进行运算,还需能将其他向量线性表示.变式训练1 如图,在四棱锥P -GBCD 中,PG ⊥平面GBCD ,GD ∥BC ,GD =34BC ,且BG ⊥GC ,GB =GC =2,E 是BC 的中点,PG =4.(1)求异面直线GE 与PC 所成角的余弦值;(2)若F 点是棱PC 上一点,且DF →·GC →=0,PF →=kCF →,求k 的值. 解 (1)如图所示,以G 点为原点建立空间直角坐标系Gxyz ,则B (2,0,0),C (0,2,0),D (-32,32,0),P (0,0,4),故E (1,1,0),GE →=(1,1,0),PC →=(0,2,-4), cos 〈GE →,PC →〉=GE →·PC →|GE →||PC →|=22·20=1010,故异面直线GE 与PC 所成角的余弦值为1010. (2)设F (0,y ,z ),则DF →=GF →-GD →=(0,y ,z )-(-32,32,0)=(32,y -32,z ),GC →=(0,2,0).∵DF →·GC →=0,∴(32,y -32,z )·(0,2,0)=2(y -32)=0,∴y =32.在平面PGC 内过F 点作FM ⊥GC ,M 为垂足,则GM =32,MC =12,∴PF FC =GMMC=3,∴k =-3. 题型二 建立空间直角坐标系解决立体几何问题例2 (2018·山东)在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O ′的直径,FB 是圆台的一条母线.(1)已知G ,H 分别为EC ,FB 的中点,求证:GH ∥平面ABC ; (2)已知EF =FB =12AC =23,AB =BC ,求二面角F -BC -A 的余弦值.(1)证明 设FC 中点为I ,连接GI ,HI .在△CEF 中,因为点G 是CE 的中点,所以GI ∥EF . 又EF ∥OB ,所以GI ∥OB .在△CFB 中,因为H 是FB 的中点,所以HI ∥BC ,又HI ∩GI =I , 所以平面GHI ∥平面ABC .因为GH ⊂平面GHI ,所以GH ∥平面ABC .(2)连接OO ′,则OO ′⊥平面ABC .又AB =BC ,且AC 是圆O 的直径,所以BO ⊥AC . 以O 为坐标原点,建立如图所示的空间直角坐标系Oxyz .由题意得B (0,23,0),C (-23,0,0).过点F 作FM ⊥OB 于点M , 所以FM =FB 2-BM 2=3,可得F (0,3,3).故BC →=(-23,-23,0),BF →=(0,-3,3). 设m =(x ,y ,z )是平面BCF 的一个法向量. 由⎩⎪⎨⎪⎧m ·BC →=0,m ·BF →=0,可得⎩⎪⎨⎪⎧-23x -23y =0,-3y +3z =0.可得平面BCF 的一个法向量m =⎝⎛⎭⎫-1,1,33,因为平面ABC 的一个法向量n =(0,0,1), 所以cos 〈m ,n 〉=m ·n |m ||n |=77.所以二面角F -BC -A 的余弦值为77. 点评 (1)建立空间直角坐标系前应先观察题目中的垂直关系,最好借助已知的垂直关系建系.(2)利用题目中的数量关系,确定定点的坐标,动点的坐标可利用共线关系(AP →=λa ),设出动点坐标.(3)要掌握利用法向量求线面角、二面角、点到面的距离的公式法.变式训练2 在边长是2的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为AB ,A 1C 的中点,应用空间向量方法求解下列问题.(1)求EF 的长;(2)证明:EF ∥平面AA 1D 1D ; (3)证明:EF ⊥平面A 1CD . (1)解 如图建立空间直角坐标系,则A 1=(2,0,2),A =(2,0,0),B =(2,2,0),C =(0,2,0), D 1=(0,0,2),E =(2,1,0),F =(1,1,1), ∴EF →=(-1,0,1),EF = 2.(2)证明 ∵AD 1→=(-2,0,2),∴AD 1∥EF ,而EF ⊄平面AA 1D 1D ,∴EF ∥平面AA 1D 1D .(3)证明 ∵EF →·CD →=0,EF →·A 1D →=0, ∴EF ⊥CD ,EF ⊥A 1D , 又CD ∩A 1D =D , ∴EF ⊥平面A 1CD .高考题型精练1.如图,在正方体ABCD -A 1B 1C 1D 1中,若BD 1→=xAD →+yAB →+zAA 1→,则x +y +z 的值为( )A.3B.1C.-1D.-3 答案 B解析 ∵BD 1→=AD →-AB →+AA 1→, ∴x =1,y =-1,z =1,∴x +y +z =1.2.如图,在平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,则下列向量中与B 1M →相等的向量是( )A.-12a +12b +cB.12a +12b +c C.12a -12b +c D.-12a -12b +c答案 A解析 由题意知,B 1M →=B 1A 1→+A 1A →+AM →=B 1A 1→+A 1A →+12AC →=-a +c +12(a +b )=-12a +12b +c ,故选A.3.在四棱锥P -ABCD 中,AB →=(4,-2,3),AD →=(-4,1,0),AP →=(-6,2,-8),则这个四棱锥的高h 等于( ) A.1 B.2 C.13 D.26 答案 B解析 设平面ABCD 的一个法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ⊥AB →n ⊥AD→⇒⎩⎪⎨⎪⎧4x -2y +3z =0,-4x +y =0.令y =4,则n =(1,4,43),则cos 〈n ,AP →〉=n ·AP →|n ||AP →|=-6+8-323133×226=-2626,∵h |AP →|=|cos 〈n ·AP →〉|, ∴h =2626×226=2,故选B. 4.如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E ,F ,且EF =22,则下列结论中错误的是( )A.AC ⊥BEB.EF ∥平面ABCDC.三棱锥A -BEF 的体积为定值D.异面直线AE ,BF 所成的角为定值 答案 D解析 ∵AC ⊥平面BB 1D 1D , 又BE ⊂平面BB 1D 1D , ∴AC ⊥BE ,故A 正确. ∵B 1D 1∥平面ABCD ,又E ,F 在直线D 1B 1上运动, ∴EF ∥平面ABCD ,故B 正确.C 中,由于点B 到直线B 1D 1的距离不变,故△BEF 的面积为定值,又点A 到平面BEF 的距离为22, 故V A -BEF 为定值,故C 正确.建立空间直角坐标系,如图所示,可得A (1,1,0),B (0,1,0).①当点E 在D 1处,点F 为D 1B 1的中点时,E (1,0,1), F (12,12,1),∴AE →=(0,-1,1),BF →=(12,-12,1), ∴AE →·BF →=32.又|AE →|=2,|BF →|=62,∴cos 〈AE →,BF →〉=AE →·BF →|AE →||BF →|=322·62=32.∴此时异面直线AE 与BF 成30°角. ②当点E 为D 1B 1的中点,F 在B 1处时, E (12,12,1),F (0,1,1), ∴AE →=(-12,-12,1),BF →=(0,0,1),∴AE →·BF →=1,|AE →|=(-12)2+(-12)2+12=62, ∴cos 〈AE →,BF →〉=AE →·BF →|AE →||BF →|=162·1=63≠32,故D 错误.故选D.5.若a =(2x ,1,3),b =(1,-2y ,9),如果a 与b 为共线向量,则( )A.x =1,y =1B.x =12,y =-12C.x =-16,y =32D.x =16,y =-32答案 D解析 因为a 与b 为共线向量, 所以存在实数λ使得a =λb , 所以⎩⎪⎨⎪⎧2x =λ,1=-2λy ,3=9λ,解得x =16,y =-32.6.已知空间四边形OABC ,其对角线为OB ,AC ,M ,N 分别是OA ,CB 的中点,点G 在线段MN 上,且使MG =2GN ,则用向量OA →,OB →,OC →表示向量OG →是()A.OG →=16OA →+13OB →+13OC →B.OG →=16OA →+13OB →+23OC →C.OG →=OA →+23OB →+23OC →D.OG →=12OA →+23OB →+23OC →答案 A解析 ∵MG =2GN ,M ,N 分别是边OA ,CB 的中点, ∴OG →=OM →+MG →=OM →+23MN →=OM →+23(MO →+OC →+CN →)=13OM →+23OC →+13(OB →-OC →) =16OA →+13OB →+13OC →. 故选A.7.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三向量共面,则实数λ=________. 答案657解析 a ,b ,c 三向量共面,则存在实数x ,y , 使c =x a +y b ,所以⎩⎪⎨⎪⎧2x -y =7,-x +4y =5,3x -2y =λ,解得⎩⎪⎨⎪⎧x =337,y =177,λ=657.8.如图所示,PD 垂直于正方形ABCD 所在的平面,AB =2,E 为PB 的中点,cos 〈DP →,AE →〉=33,若以DA ,DC ,DP 所在直线分别为x ,y ,z 轴建立空间直角坐标系,则点E 的坐标为________.答案 (1,1,1) 解析 设PD =a (a >0),则A (2,0,0),B (2,2,0),P (0,0,a ),E (1,1,a2),∴DP →=(0,0,a ),AE →=(-1,1,a 2),∵cos 〈DP →,AE →〉=33,∴a 22=a 2+a 24×33,∴a =2,∴E 的坐标为(1,1,1).9.如图,在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M =AN =2a3,则MN 与平面BB 1C 1C 的位置关系是________.答案 平行解析 ∵正方体棱长为a ,A 1M =AN =2a 3, ∴MB →=23A 1B →,CN →=23CA →,∴MN →=MB →+BC →+CN →=23A 1B →+BC →+23CA → =23(A 1B 1→+B 1B →)+BC →+23(CD →+DA →) =23B 1B →+13B 1C 1→. 又∵CD →是平面B 1BCC 1的一个法向量, ∴MN →·CD →=(23B 1B →+13B 1C 1→)·CD →=0,∴MN →⊥CD →,又∵MN ⊄平面BB 1C 1C , ∴MN ∥平面BB 1C 1C .10.已知棱长为a 的正方体ABCD -A 1B 1C 1D 1中,E 是BC 的中点,F 为A 1B 1的中点.(1)求证:DE ⊥C 1F ;(2)求异面直线A 1C 与C 1F 所成角的余弦值.(1)证明 以D 为原点,以DA ,DC ,DD 1为x ,y ,z 的正半轴建立空间直角坐标系,则D (0,0,0),E (a 2,a ,0),C 1(0,a ,a ),F (a ,a2,a ),所以DE →=(a 2,a ,0),C 1F →=(a ,-a 2,0),DE →·C 1F →=0,所以DE ⊥C 1F .(2)解 A 1(a ,0,a ),C (0,a ,0),A 1C →=(-a ,a ,-a ), C 1F →=(a ,-a 2,0),cos 〈A 1C →,C 1F →〉=A 1C →·C 1F →|A 1C →||C 1F →|=-32a 23a ×52a=-155,所以异面直线A 1C 与C 1F 所成角的余弦值是155. 11.如图,在四棱锥P -ABCD 中,PC ⊥底面ABCD ,底面ABCD 是直角梯形,AB ⊥AD ,AB ∥CD ,AB =2AD =2CD =2,E 是PB 的中点.(1)求证:平面EAC ⊥平面PBC ; (2)若二面角P -AC -E 的余弦值为63,求直线P A 与平面EAC 所成角的正弦值. (1)证明 ∵PC ⊥平面ABCD ,AC ⊂平面ABCD , ∴AC ⊥PC .∵AB =2,AD =CD =1, ∴AC =BC =2,∴AC 2+BC 2=AB 2, ∴AC ⊥BC ,又BC ∩PC =C ,∴AC ⊥平面PBC .∵AC ⊂平面EAC ,∴平面EAC ⊥平面PBC .(2)解 如图,以点C 为原点,DA →,CD →,CP →分别为x 轴、y 轴、z 轴正方向建立空间直角坐标系,则C (0,0,0),A (1,1,0),B (1,-1,0), 设P (0,0,a )(a >0),则E (12,-12,a 2),CA →=(1,1,0),CP →=(0,0,a ),CE →=(12,-12,a 2).取m =(1,-1,0),则m ·CA →=m ·CP →=0,m 为平面P AC 的法向量, 设n =(x ,y ,z )为平面EAC 的法向量, 则n ·CA →=n ·CE →=0,即⎩⎪⎨⎪⎧x +y =0,x -y +az =0.取x =a ,y =-a ,z =-2,则n =(a ,-a ,-2), 依题意,|cos 〈m ,n 〉|=n ·m |n ||m |=aa 2+2=63, 则a =2,于是n =(2,-2,-2),P A →=(1,1,-2). 设直线P A 与平面EAC 所成角为θ, 则sin θ=|cos 〈P A →,n 〉|=P A →·n |P A →||n |=23,即直线P A 与平面EAC 所成角的正弦值为23. 12.直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为菱形,且∠BAD =60°,A 1A =AB ,E 为BB 1延长线上的一点,D 1E ⊥平面D 1AC .设AB =2. (1)求二面角E -AC -D 1的大小;(2)在D 1E 上是否存在一点P ,使A 1P ∥平面EAC ?若存在,求D 1P ∶PE 的值;若不存在,说明理由.解 (1)设AC 与BD 交于点O ,如图所示建立空间直角坐标系Oxyz ,则A =(3,0,0),B (0,1,0),C (-3,0,0),D (0,-1,0), D 1(0,-1,2),设E (0,1,2+h ),则D 1E →=(0,2,h ),CA →=(23,0,0),D 1A →=(3,1,-2), ∵D 1E ⊥平面D 1AC , ∴D 1E ⊥AC ,D 1E ⊥D 1A ,∴2-2h =0,∴h =1,即E (0,1,3). ∵D 1E →=(0,2,1),AE →=(-3,1,3), 设平面EAC 的法向量为m =(x ,y ,z ), 则由⎩⎪⎨⎪⎧m ⊥CA →,m ⊥AE →,得⎩⎪⎨⎪⎧x =0,-3x +y +3z =0.令z =-1,∴平面EAC 的一个法向量为m =(0,3,-1), 又平面D 1AC 的法向量为D 1E →=(0,2,1), ∴cos 〈m ,D 1E →〉=m ·D 1E →|m |·|D 1E →|=22,∴二面角E -AC -D 1大小为45°.(2)设D 1P →=λPE →=λ(D 1E →-D 1P →), 得D 1P →=λ1+λD 1E →=(0,2λ1+λ,λ1+λ),∴A 1P →=A 1D 1→+D 1P →=(-3,-1,0)+(0,2λ1+λ,λ1+λ)=(-3,λ-11+λ,λ1+λ), ∵A 1P ∥平面EAC ,∴A 1P →⊥m , ∴-3×0+3×λ-11+λ+(-1)×λ1+λ=0,∴λ=32.∴存在点P 使A 1P ∥平面EAC , 此时D 1P ∶PE =3∶2.。
空间向量及其运算的坐标表示
,
解析:m+n=(1,-3,5)+(-2,2,-4)=(-1,-1,1),3m-n=3(1,-3,5)-(-2,2,-4)=(5,-11,19),
(2m)·(-3n)=(2,-6,10)·(6,-6,12)=168.
2.已知空间向量a=(2,λ,-1),b=(λ,8,λ-6),若a∥b,则λ=
间坐标系的转换.
二、空间向量运算的坐标表示
1.空间向量的坐标运算法则
设向量a=(a1,a2,a3),b=(b1,b2,b3),λ∈R,那么
向量运算
加法
减法
数乘
数量积
向量表示
a+b
a-b
λa
a·b
坐标表示
(a1+b1,a2+b2,a3+b3)
(a1-b1,a2-b2,a3-b3)
(λa1,λa2,λa3)
“数量化”,也就是坐标系的引入,使得几何问题“代
数化”,为了使得空间几何“代数化”,我们引入了坐
标及其运算.
探究新知
一、空间直角坐标系与坐标表示
1.空间直角坐标系
在空间选定一点O和一个单位正交基底 , , ,以点O为原点,分别以i,j,k的方向为正方向、以它
们的长为单位长度建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴.这时我们就建立了一个空
(2)把ka+b与ka-2b用坐标表示出来,再根据数量积为0求解.
解:(1)∵ =(-2,-1,2)且 c∥ ,
∴设 c=λ =(-2λ,-λ,2λ)(λ∈R).
∴|c|= (-2)2 + (-)2 + (2)2 =3|λ|=3,解得 λ=±1.
第6-1节(空间直角坐标系、向量及其运算
江西理工大学理学院第 六 章 向量代数与 空间解析几何江西理工大学理学院第 1 节 空间直角坐标系 向量及其运算江西理工大学理学院数轴上的点与数 x具有一一对应的关系。
平面直角坐标系使我们建立了平面上的点( x , y ) 与一对有序数组之间的一一对应关系,沟通了平面图形与数的研究。
为了沟通空间图形与数的研究,我们用类 似于平面解析几何的方法,通过引进空间直角 坐标系来实现。
江西理工大学理学院一、空间点的直角坐标三个坐标轴的正方向 符合右手系.即以右手握住 z 轴, 当右手的四个手指从z 竖轴π 正向 x 轴以 角 2定点 o•y 纵轴度转向正向 y 轴时, 横轴 x 大拇指的指向就是 z 空间直角坐标系 轴的正向.注:为使空间直角坐标系画得更富于立体感通 常把 x 轴和 y轴间的夹角画成 130 0 左右。
江西理工大学理学院Ⅲzzox 面Ⅱyoz 面Ⅳxoy 面Ⅶ ⅧoyⅥ ⅤⅠx空间直角坐标系共有八个卦限江西理工大学理学院⎯ 空间的点 ←⎯ → 有序数组 ( x , y , z )特殊点的表示: 坐标轴上的点 P , Q , R, 坐标面上的点 A, B , C ,1− −1O ( 0, 0, 0 )B ( 0, y , z )•zR ( 0, 0, z )C ( x , o, z )M ( x, y, z )o xP ( x , 0 ,0 )Q ( 0 , y ,0 )yA( x , y ,0)江西理工大学理学院)各坐标面;( 2 )各坐 例1 求点 ( a , b, c )关于(1 标轴;(3 )坐标原点的对称点的 坐标。
解 (1)点( a , b , c )关于 xOy 面的对称点是 ( a , b ,− c );关于 yOz 面的对称点是 ( − a , b , c ); 关于 zOx 面的对称点是 ( a ,− b , c );( 2 )点( a , b , c )关于 x轴的对称点是 ( a ,− b ,− c ); 关于 y轴的对称点是 ( − a , b ,− c ); 关于 z轴的对 称点是 ( − a ,− b , c ); ( 3 )点( a , b , c )关于原点的对称点是 ( − a ,− b ,− c );江西理工大学理学院二、空间两点间的距离设 M 1 ( x1 , y1 , z1 ) 、 M 2 ( x 2 , y 2 , z 2 ) 为空间两点zR• M2M1d = M1 M 2 = ?•Po x2在直角 ∆M 1 NM 2 Q 及 直 角 ∆M PN 1 N 中,使用勾股定 y 理知2 2d = M 1 P + PN + NM 2 ,2江西理工大学理学院Q M 1 P = x2 − x1 , PN = y2 − y1 , NM 2 = z2 − z1 ,zR• M2M1 •Po x2 2Q Ny∴d =M 1 P + PN + NM 222M1 M 2 =( x2 − x1 ) + ( y2 − y1 ) + ( z2 − z1 ) .2 2空间两点间距离公式 特殊地:若两点分别为 M ( x , y , z ) , O ( 0,0,0)d = OM = x 2 + y 2 + z 2 .江西理工大学理学院例 2 求证以 M 1 (4,3,1)、 M 2 (7,1,2)、 M 3 (5,2,3) 三点为顶点的三角形是一个等腰三角形.解 M1 M 22(7 − 4)2 + (1 − 3)2 + ( 2 − 1)2 = 14, =M 2 M 3 = (5 − 7)2 + ( 2 − 1)2 + ( 3 − 2)2 = 6,2M 3 M1 =2(4 − 5)2 + ( 3 − 2)2 + (1 − 3)2 = 6,∴ M 2 M 3 = M 3 M1 ,原结论成立.。
空间向量解决立体几何
1 空间直角坐标系构建三策略利用空间向量的方法解决立体几何问题,关键是依托图形建立空间直角坐标系,将其它向量用坐标表示,通过向量运算,判定或证明空间元素的位置关系,以及空间角、空间距离问题的探求.所以如何建立空间直角坐标系显得非常重要,下面简述空间建系的三种方法,希望同学们面对空间几何问题能做到有的放矢,化解自如.1.利用共顶点的互相垂直的三条棱例1 已知直四棱柱中,AA 1=2,底面ABCD 是直角梯形,∠DAB 为直角,AB ∥CD ,AB =4,AD =2,DC =1,试求异面直线BC 1与DC 所成角的余弦值.解 如图以D 为坐标原点,分别以DA ,DC ,DD 1所在的直线为x 轴,y轴,z 轴,建立空间直角坐标系,则D (0,0,0),C 1(0,1,2),B (2,4,0),C (0,1,0),所以BC 1→=(-2,-3,2),CD →=(0,-1,0).所以cos 〈BC 1→,CD →〉=BC 1→·CD →|BC 1→||CD →|=31717. 故异面直线BC 1与DC 所成角的余弦值为31717. 点评 本例以直四棱柱为背景,求异面直线所成角.求解关键是从直四棱柱图形中的共点的三条棱互相垂直关系处着眼,建立空间直角坐标系,写出有关点的坐标和相关向量的坐标,再求两异面直线的方向向量的夹角即可.2.利用线面垂直关系例2 如图,在三棱柱ABC -A 1B 1C 1中,AB ⊥面BB 1C 1C ,E 为棱C 1C 的中点,已知AB =2,BB 1=2,BC =1,∠BCC 1=π3.试建立合适的空间直角坐标系,求出图中所有点的坐标.解 过B 点作BP 垂直BB 1交C 1C 于P 点,因为AB ⊥面BB 1C 1C ,所以BP ⊥面ABB 1A 1,以B 为原点,分别以BP ,BB 1,BA 所在的直线为x ,y ,z 轴,建立空间直角坐标系.因为AB =2,BB 1=2,BC =1,∠BCC 1=π3, 所以CP =12,C 1P =32,BP =32,则各点坐标分别为B (0,0,0),A (0,0,2),B 1(0,2,0),C (32,-12,0),C 1(32,32,0),E (32,12,0),A 1(0,2,2).点评 空间直角坐标系的建立,要尽量地使尽可能多的点落在坐标轴上,这样建成的坐标系,既能迅速写出各点的坐标,又由于坐标轴上的点的坐标含有0,也为后续的运算带来了方便.本题已知条件中的垂直关系“AB ⊥面BB 1C 1C ”,可作为建系的突破口.3.利用面面垂直关系例3 如图1,等腰梯形ABCD 中,AD ∥BC ,AB =AD =2,∠ABC =60°,E 是BC 的中点.将△ABE 沿AE 折起,使平面BAE ⊥平面AEC (如图2),连接BC ,BD .求平面ABE 与平面BCD 所成的锐角的大小.解 取AE 中点M ,连接BM ,DM .因为在等腰梯形ABCD 中,AD ∥BC ,AB =AD ,∠ABC =60°,E 是BC 的中点, 所以△ABE 与△ADE 都是等边三角形,所以BM ⊥AE ,DM ⊥AE .又平面BAE ⊥平面AEC ,所以BM ⊥MD .以M 为原点,分别以ME ,MD ,MB 所在的直线为x ,y ,z 轴,建立空间直角坐标系Mxyz ,如图,则E (1,0,0),B (0,0,3),C (2,3,0),D (0,3,0),所以DC →=(2,0,0),BD →=(0,3,-3),设平面BCD 的法向量为m =(x ,y ,z ),由⎩⎪⎨⎪⎧m ·DC →=2x =0,m ·BD →=3y -3z =0.取y =1,得m =(0,1,1), 又因平面ABE 的一个法向量MD →=(0,3,0),所以cos 〈m ,MD →〉=m ·MD →|m ||MD →|=22, 所以平面ABE 与平面BCD 所成的锐角为45°.点评 本题求解关键是利用面面垂直关系,先证在两平面内共点的三线垂直,再构建空间直角坐标系,然后分别求出两个平面的法向量,求出两法向量夹角的余弦值,即可得所求的两平面所成的锐角的大小.用法向量的夹角求二面角时应注意:平面的法向量有两个相反的方向,取的方向不同求出来的角度就不同,所以最后还应该根据这个二面角的实际形态确定其大小.2 用向量法研究“动态”立体几何问题“动态”立体几何问题是在静态几何问题中渗透了一些“动态”的点、线、面等元素,同时由于“动态”的存在,使得问题的处理趋于灵活.本文介绍巧解“动态”立体几何问题的法宝——向量法,教你如何以静制动.1.求解、证明问题例1 在棱长为a 的正方体OABC —O 1A 1B 1C 1中,E 、F 分别是AB 、BC 上的动点,且AE =BF ,求证:A 1F ⊥C 1E .证明 以O 为坐标原点建立如图所示的空间直角坐标系,则A 1(a,0,a ),C 1(0,a ,a ).设AE =BF =x ,∴E (a ,x,0),F (a -x ,a,0).∴A 1F →=(-x ,a ,-a ),C 1E →=(a ,x -a ,-a ).∵A 1F →·C 1E →=(-x ,a ,-a )·(a ,x -a ,-a )=-ax +ax -a 2+a 2=0,∴A 1F →⊥C 1E →,即A 1F ⊥C 1E .2.定位问题例2 如图,已知四边形ABCD ,CDGF ,ADGE 均为正方形,且边长为1,在DG 上是否存在点M ,使得直线MB 与平面BEF 的夹角为45°?若存在,求出点M 的位置;若不存在,请说明理由.解题提示 假设存在点M ,设平面BEF 的法向量为n ,设BM 与平面BEF所成的角为θ,利用sin θ=|BM →·n ||BM →||n |解出t ,若t 满足条件则存在. 解 因为四边形CDGF ,ADGE 均为正方形,所以GD ⊥DA ,GD ⊥DC .又DA ∩DC =D ,所以GD ⊥平面ABCD .又DA ⊥DC ,所以DA ,DG ,DC 两两互相垂直,如图,以D 为原点建立空间直角坐标系,则B (1,1,0),E (1,0,1),F (0,1,1).因为点M 在DG 上,假设存在点M (0,0,t ) (0≤t ≤1)使得直线BM 与平面BEF 的夹角为45°.设平面BEF 的法向量为n =(x ,y ,z ).因为BE →=(0,-1,1),BF →=(-1,0,1),则⎩⎪⎨⎪⎧ n ·BE →=0,n ·BF →=0,即⎩⎪⎨⎪⎧-y +z =0,-x +z =0,令z =1,得x =y =1, 所以n =(1,1,1)为平面BEF 的一个法向量.又BM →=(-1,-1,t ),直线BM 与平面BEF 所成的角为45°,所以sin 45°=|BM →·n ||BM →||n |=|-2+t |t 2+2×3=22, 解得t =-4±3 2.又0≤t ≤1,所以t =32-4.故在DG 上存在点M (0,0,32-4),且DM =32-4时,直线MB 与平面BEF 所成的角为45°.点评 由于立体几何题中“动态”性的存在,使有些问题的结果变得不确定,这时我们要以不变应万变,抓住问题的实质,引入参量,利用空间垂直关系及数量积将几何问题代数化,达到以静制动的效果.3 向量与立体几何中的数学思想1.数形结合思想向量方法是解决问题的一种重要方法,坐标是研究向量问题的有效工具,利用空间向量的坐标表示可以把向量问题转化为代数运算,从而沟通了几何与代数的联系,体现了数形结合的重要思想.向量具有数形兼备的特点,因此,它能将几何中的“形”和代数中的“数”有机地结合在一起.例1 如图,在四棱柱ABCD -A 1B 1C 1D 1中,A 1A ⊥底面ABCD ,∠BAD =90°,AD ∥BC ,且A 1A =AB =AD =2BC =2,点E 在棱AB 上,平面A 1EC 与棱C 1D 1相交于点F .(1)证明:A 1F ∥平面B 1CE ;(2)若E 是棱AB 的中点,求二面角A 1-EC -D 的余弦值;(3)求三棱锥B 1-A 1EF 的体积的最大值.(1)证明 因为ABCD -A 1B 1C 1D 1是棱柱,所以平面ABCD ∥平面A 1B 1C 1D 1.又因为平面ABCD ∩平面A 1ECF =EC ,平面A 1B 1C 1D 1∩平面A 1ECF =AF ,所以A 1F ∥EC .又因为A 1F ⊄平面B 1CE ,EC ⊂平面B 1CE ,所以A 1F ∥平面B 1CE .(2)解 因为AA 1⊥底面ABCD ,⊥BAD =90°,所以AA 1,AB ,AD 两两垂直,以A 为原点,以AB ,AD ,AA 1分别为x 轴、y 轴和z 轴,如图建立空间直角坐标系.则A 1(0,0,2),E (1,0,0),C (2,1,0),所以A 1E →=(1,0,-2),A 1C →=(2,1,-2).设平面A 1ECF 的法向量为m =(x ,y ,z ),由A 1E →·m =0,A 1C →·m =0,得⎩⎪⎨⎪⎧x -2z =0,2x +y -2z =0. 令z =1,得m =(2,-2,1).又因为平面DEC 的法向量为n =(0,0,1),所以cos 〈m ,n 〉=m ·n |m |·|n |=13, 由图可知,二面角AA 1-EC -D 的平面角为锐角,所以二面角A 1-EC -D 的余弦值为13. (3)解 过点F 作FM ⊥A 1B 1于点M ,因为平面A 1ABB 1⊥平面A 1B 1C 1D 1,FM ⊂平面A 1B 1C 1D 1,所以FM ⊥平面A 1ABB 1,所以VB 1-A 1EF =VF -B 1A 1E =13×S △A 1B 1E ×FM =13×2×22×FM =23FM . 因为当F 与点D 1重合时,FM 取到最大值2(此时点E 与点B 重合),所以当F 与点D 1重合时,三棱锥B 1-A 1EF 的体积的最大值为43. 2.转化与化归思想空间向量的坐标及运算为解决立体几何中的夹角、距离、垂直、平行等问题提供了工具,因此我们要善于把这些问题转化为向量的夹角、模、垂直、平行等问题,利用向量方法解决.将几何问题化归为向量问题,然后利用向量的性质进行运算和论证,再将结果转化为几何问题.这种“从几何到向量,再从向量到几何”的思想方法,在本章尤为重要.例2 如图,在长方体ABCD -A 1B 1C 1D 1中,AA 1=AB =2AD =2,E 为AB 的中点,F 为D 1E 上的一点,D 1F =2FE .(1)证明:平面DFC ⊥平面D 1EC ;(2)求二面角A -DF -C 的平面角的余弦值.分析 求二面角最常用的办法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.解 (1)以D 为原点,分别以DA 、DC 、DD 1所在的直线为x 轴、y 轴、z 轴建立如图所示空间直角坐标系,则A (1,0,0),B (1,2,0),C (0,2,0),D 1(0,0,2).∵E 为AB 的中点,∴E 点坐标为E (1,1,0),∵D 1F =2FE ,∴D 1F →=23D 1E →=23(1,1,-2) =(23,23,-43), ∴DF →=DD 1→+D 1F →=(0,0,2)+(23,23,-43) =(23,23,23),设n =(x ,y ,z )是平面DFC 的法向量,则⎩⎪⎨⎪⎧ n ·DF →=0,n ·DC →=0, ∴⎩⎪⎨⎪⎧ 23x +23y +23z =0,2y =0.取x =1得平面FDC 的一个法向量为n =(1,0,-1).设p =(x ,y ,z )是平面ED 1C 的法向量,则⎩⎪⎨⎪⎧p ·D 1F →=0,p ·D 1C →=0,∴⎩⎪⎨⎪⎧ 23x +23y -43z =0,2y -2z =0,取y =1得平面D 1EC 的一个法向量p =(1,1,1), ∵n ·p =(1,0,-1)·(1,1,1)=0,∴平面DFC ⊥平面D 1EC .(3)设q =(x ,y ,z )是平面ADF 的法向量,则⎩⎪⎨⎪⎧ q ·DF →=0,q ·DA →=0, ∴⎩⎪⎨⎪⎧23x +23y +23z =0,x =0,取y =1得平面ADF 的一个法向量q =(0,1,-1),设二面角A -DF -C 的平面角为θ,由题中条件可知θ∈(π2,π),则cos θ=|n ·q |n |·|q ||=-0+0+12×2=-12, ∴二面角A -DF -C 的平面角的余弦值为12. 3.函数思想例3 已知关于x 的方程x 2-(t -2)x +t 2+3t +5=0有两个实根,且c =a +t b ,a =(-1,1,3),b =(1,0,-2).问|c |能否取得最大值?若能,求出实数t 的值及对应的向量b 与c 夹角的余弦值;若不能,说明理由.分析 写出|c |关于t 的函数关系式,再利用函数观点求解.解 由题意知Δ≥0,得-4≤t ≤-43, 又c =(-1,1,3)+t (1,0,-2)=(-1+t,1,3-2t ),∴|c |=(-1+t )2+(3-2t )2+1 =5⎝⎛⎭⎫t -752+65. 当t ∈⎣⎡⎦⎤-4,-43时,f (t )=5⎝⎛⎭⎫t -752+65是单调递减函数,∴y max =f (-4),即|c |的最大值存在, 此时c =(-5,1,11).b·c =-27,|c |=7 3.而|b |=5,∴cos 〈b ,c 〉=b·c |b||c |=-275×73=-91535. 点评 凡涉及向量中的最值问题,若可用向量坐标形式,一般可考虑写出函数关系式,利用函数思想求解.4.分类讨论思想例4 如图,矩形ABCD 中,AB =1,BC =a ,P A ⊥平面ABCD (点P 位于平面ABCD 上方),问BC 边上是否存在点Q ,使PQ →⊥QD →?分析 由PQ →⊥QD →,得PQ ⊥QD ,所以平面ABCD 内,点Q 在以边AD为直径的圆上,若此圆与边BC 相切或相交,则BC 边上存在点Q ,否则不存在.解 假设存在点Q (Q 点在边BC 上),使PQ →⊥QD →,即PQ ⊥QD ,连接AQ .∵P A ⊥平面ABCD ,∴P A ⊥QD .又PQ →=P A →+AQ →且PQ →⊥QD →,∴PQ →·QD →=0,即P A →·QD →+AQ →·QD →=0.又由P A →·QD →=0,∴AQ →·QD →=0,∴AQ →⊥QD →.即点Q 在以边AD 为直径的圆上,圆的半径为a 2. 又∵AB =1,由题图知,当a 2=1,即a =2时,该圆与边BC 相切,存在1个点Q 满足题意; 当a 2>1,即a >2时,该圆与边BC 相交,存在2个点Q 满足题意; 当a 2<1,即a <2时,该圆与边BC 相离,不存在点Q 满足题意. 综上所述,当a ≥2时,存在点Q ;当0<a <2时,不存在点。
高中数学立体几何建系设点专题
2009-2010学年高三立几建系设点专题引入空间向量坐标运算,使解立体几何问题避免了传统方法进行繁琐的空间分析,只需建立空间直角坐标系进行向量运算,而如何建立恰当的坐标系,成为用向量解题的关键步骤之一.所谓“建立适当的坐标系”,一般应使尽量多的点在数轴上或便于计算。
一、建立空间直角坐标系的三条途径途径一、利用图形中的对称关系建立坐标系:图形中虽没有明显交于一点的三条直线,但有一定对称关系(如正三棱柱、正四棱柱等),利用自身对称性可建立空间直角坐标系.例1(湖南卷理科第18题)已知两个正四棱锥P -ABCD 与Q -ABCD 的高都为2,AB =4.(1)证明:PQ ⊥平面ABCD ;(2)求异面直线AQ 与PB 所成的角;(3)求点P 到平面QAD 的距离.简解:(1)略;(2)由题设知,ABCD 是正方形,且AC ⊥BD .由(1),PQ ⊥平面ABCD ,故可分别以直线为x ,y ,z 轴建立空间直角坐标系(如图1),易得CA DB QP 、、,.所求异面直线(02)(02)AQ PB =--=-u u u r u u u r 1cos 3AQ PB AQ PB AQ PB <>==u u u r u u u r u u u r u u u r g u u u r u u u r 、所成的角是.1arccos3(3)由(2)知,点.(00)(0)(004)D AD PQ -=--=-u u u r u u u r设n =(x ,y ,z )是平面QAD 的一个法向量,则得取x =1,得00AQ AD ⎧=⎪⎨=⎪⎩u u u r g u u u rg 、、nn 00z x y +=+=⎪⎩、、.点P 到平面QAD 的距离(11--、、n =PQ d ==u u u r g nn途径二、利用面面垂直的性质建立坐标系:图形中有两个互相垂直的平面,可以利用面面垂直的性质定理,作出互相垂直且交于一点的三条直线,建立坐标系.例2 (全国卷Ⅱ理科第19题)在直三棱柱中,AB =BC ,D 、E 分别为111ABC A B C -的中点.11BB AC 、(1)证明:ED 为异面直线与的公垂线;1BB 1AC (2)设,求二面角的大小.1AA AC ==11A AD C --解:(1)如图2,建立直角坐标系,其中原点O 为O xyz -AC 的中点,设则,,(00)A a 、、1(00)(02)B b B b c 、、、、、则,即.11(00)(002)0ED b BB c ED BB ===u u u r u u u r u u u r u u u r g 、、、、、、1ED BB ⊥同理. 因此ED 为异面直线与的公垂线.1ED AC ⊥1BB 1AC (2)不妨令,则,1a b c ===1(110)(110)(002)BC AB AA =--=-=u u u r u u u r u u u r 、、、、、、、、.即BC ⊥AB ,BC ⊥,又∵,∴BC ⊥面100BC AB BC AA ==u u u r u u u r u u u r u u u rg g 、1AA 1AB AA A =I .1A AD 又,,(101)(101)(010)0EC AE ED EC AE =--=-==u u u r u u u r u u u r u u u r u u u rg 、、、、、、、、、0EC ED =u u u r u u u r g 即EC ⊥AE ,EC ⊥ED ,又∵AE ∩ED =E ,∴EC ⊥面.∴1C AD ,即得和的夹角为.所以,二面角1cos 2EC BC EC BC EC BC <>==u u u r u u u ru u u r u u u r g u u u r u u u r 、EC u u u r BC u u u r 60o 为.11A AD C --60o 练2:如图,平面PAC ⊥平面ABC ,ABC∆是以AC 为斜边的等腰直角三角形,,,E F O 分别为PA ,PB ,AC 的中点,16AC =,10PA PC ==.(I )设G 是OC 的中点,证明://FG 平面BOE ;(II )证明:在ABO ∆内存在一点M ,使FM ⊥平面BOE ,并求点M 到OA ,OB 的距离.途径三、利用图形中现成的垂直关系建立坐标系:当图形中有明显互相垂直且交于一点的三条直线,可以利用这三条直线直接建系.例3.如图,在四棱锥中,底面四边长为1的菱形,,O ABCD -ABCD 4ABC π∠=, ,为的中点。
空间向量的建系方法
空间向量的建系方法空间向量的建系方法主要包括以下步骤:1.确定原点:●在三维空间中,首先选择一个点作为坐标系的原点O。
2.建立坐标轴:●选取互相垂直的三条直线作为坐标轴。
通常按照右手定则来建立直角坐标系(右手坐标系):伸出右手,大拇指、食指和中指分别指向x轴、y轴和z轴的方向,且三个手指在同一直线上时,它们之间的角度均为90度。
这样可以保证正方向的一致性。
3.定义单位向量:●对于每个坐标轴,定义相应的单位向量。
对于x轴,单位向量为(1, 0,0);对于y轴,单位向量为(0, 1, 0);对于z轴,单位向量为(0, 0, 1)。
4.标注正方向与长度:●明确各坐标轴的正方向,并规定所有坐标轴具有相同的单位长度。
5.表示空间向量:●任何空间向量A都可以用这个坐标系下的坐标来表示,设其端点坐标为(Ax, Ay, Az),那么该向量可以写作:A=Ax i+Ay j+Az k其中,i、j、k分别是x、y、z轴对应的单位向量。
6.应用到具体问题中:●在实际应用过程中,根据问题的具体情况,可能还需要处理向量在不同坐标系之间的转换,或者通过计算向量的投影等方式将物理现象转化为数学表达。
7.向量的方向角:●在确定了坐标系后,一个空间向量还可以通过与坐标轴之间的夹角来表示其方向。
对于单位向量,其方向可以由两个角度(通常取从正x 轴开始顺时针方向的角度)θ和φ描述,即极坐标形式:(r, θ, φ),其中r为向量的模长。
8.向量的线性运算:●在建立了空间直角坐标系后,可以方便地对向量进行加减、数乘和点乘等线性运算。
例如,两个向量A和B相加就是将它们对应的每个分量相加得到新向量C:[ \mathbf{C} = \mathbf{A} + \mathbf{B} = (Ax + Bx, Ay + By, Az + Bz) ]9.向量的叉乘(向量积):●在三维空间中,两个非零向量A和B可以进行叉乘运算,得到一个新的垂直于A和B的向量N,并且它的大小等于A和B所构成平行四边形的面积,方向遵循右手螺旋法则。
空间向量之建立空间直角坐标系的方法及技巧
空间向量之建立空间直角坐标系的方法及技巧建立空间直角坐标系是解决空间向量问题的基础。
下面将介绍建立空间直角坐标系的方法及技巧。
一、确定坐标轴的方向和位置1.确定原点:选择一个固定点作为原点,通常选择一个与问题相关的点,如物体的质心或一个已知的点。
2.确定x轴的方向和位置:选择一个与原点不共线的点作为x轴上的一个点,通常选择一个与问题相关的点,如力的方向或一个已知的点。
然后确定一个与x轴垂直的直线作为x轴,并确定x轴的正方向。
3.确定y轴的方向和位置:选择一个与原点和x轴不共面的点作为y轴上的一个点,通常选择一个与问题相关的点,如力的方向或一个已知的点。
然后确定一个与x轴和y轴都垂直的直线作为y轴,并确定y轴的正方向。
4.确定z轴的方向和位置:选择一个与原点、x轴和y轴不共线的点作为z轴上的一个点,通常选择一个与问题相关的点,如力的方向或一个已知的点。
然后确定一个与x轴、y轴和z轴都垂直的直线作为z轴,并确定z轴的正方向。
二、确定坐标轴的刻度和单位1.确定刻度:确定每个坐标轴上的刻度间隔,刻度的选择应根据问题而定,可以根据已知数据、问题要求或实际情况选择。
2.确定单位:确定每个坐标轴上的单位,单位的选择应根据问题而定,可以选择国际单位制(如米、千克)或其他适当的单位。
三、确定坐标系的右手定则建立空间直角坐标系时,要符合右手定则,即将右手放在坐标轴上,大拇指指向x轴的正方向,食指指向y轴的正方向,则中指指向的方向即为z轴的正方向。
四、根据空间向量的位置确定其坐标根据已知空间向量的位置,确定其在空间直角坐标系中的坐标。
首先确定向量所在直线与坐标轴的交点,然后根据交点的坐标确定向量的坐标。
五、利用正交性简化向量运算空间直角坐标系有一个重要的特点,即坐标轴两两正交。
利用这一性质,可以简化向量的运算。
例如,两个向量的数量积可以分别计算各个坐标上的乘积,然后相加,而不必进行向量的点积运算。
总结:建立空间直角坐标系的方法及技巧主要包括确定坐标轴的方向和位置、确定坐标轴的刻度和单位、确定坐标系的右手定则、根据空间向量的位置确定其坐标和利用正交性简化向量运算。
第六节 空间直角坐标系及空间向量的线性运算(知识梳理)
第六节空间直角坐标系及空间向量的线性运算复习目标学法指导1.会确定空间点的坐标.2.会求直线方向向量及平面法向量.3.会进行空间向量的几何运算及代数运算.4.会进行空间向量的数量积及坐标运算. 1.空间直角坐标系中的点是由横、纵、竖三个数组成的有序数组.2.直线的方向向量与直线上的向量是共线向量,平面的法向量与平面上的任何直线都垂直.3.空间向量的几何运算及代数运算与平面向量类似.4.会通过数量积进行空间向量的坐标运算表达直线、平面位置关系.一、空间直角坐标系及空间向量的有关概念1.空间直角坐标系及有关概念(1)空间直角坐标系以空间一点O为原点,建立三条两两垂直的数轴:x轴、y轴、z轴.这时我们说建立了一个空间直角坐标系Oxyz,其中点O叫做坐标原点,x 轴、y轴、z轴叫做坐标轴,通过每两个坐标轴的平面叫做坐标平面.(2)右手直角坐标系在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,如果中指指向z 轴的正方向,则称这个坐标系为右手直角坐标系.(3)空间一点M 的坐标空间一点M 的坐标可以用有序实数组(x,y,z)来表示,记作M(x,y,z),其中x 叫做点M 的横坐标,y 叫做点M 的纵坐标,z 叫做点M 的竖坐标. 2.空间两点间的距离公式、中点公式 (1)距离公式①设点A(x 1,y 1,z 1),B(x 2,y 2,z 2),则②点P(x,y,z)与坐标原点O 之间的距离为 .(2)中点公式设点P(x,y,z)为线段P 1P 2的中点,其中P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2),则有121212,2,2.2x x x y y y z z z +⎧=⎪⎪+⎪=⎨⎪+⎪=⎪⎩3.空间向量的有关概念向量零向量长度(或模)为0的向量相等向量方向相同且模相等的向量相反向量方向相反且模相等的向量共线向量(或平行向量)如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量,a平行于b记作 a∥b共面向量平行于同一个平面的向量叫做共面向量概念理解(1)空间直角坐标系的建立原则是:合理利用几何体中的垂直关系,特别是面面垂直;尽可能地让相关点落在坐标轴或坐标平面上.(2)直线的方向向量:l是空间一直线,A,B是直线l上任意两点,则称ABu u u r为直线l的方向向量,与ABu u u r平行的任意非零向量也是直线l的方向向量.(3)平面的法向量可利用方程组求出:设a,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为0,0.n a n b ⋅=⎧⎨⋅=⎩ (4)共线向量定理中a ∥b ⇔存在λ∈R,使a=λb,不要忽视b ≠0. (5)一个平面的法向量有无数个,但要注意它们是共线向量,不要误认为是共面向量. 二、数量积与坐标运算 1.数量积及相关概念(1)两向量的夹角:已知两个非零向量a,b,在空间任取一点O,作OA u u u r =a,OB u u u r=b,则∠AOB 叫做向量a 与b 的夹角,记作<a,b>,其范围是[0,π].若<a,b>=π2,则称向量a 与b 互相垂直,记作a ⊥b.若<a,b>=0,则称向量a 与b 同向共线,若<a,b>=π,则称向量a 与b 反向共线. (2)两向量的数量积:已知两个非零向量a,b,则|a||b|cos<a,b>叫做向量a,b 的数量积,记作 a ·b,即a ·b=|a||b|cos<a,b>. 2.两个向量数量积的性质和结论 已知两个非零向量a 和b.(1)a ·e=|a|cos<a,e>(其中e 为单位向量). (2)a ⊥b ⇔a ·b=0. (3)cos<a,b>=a b a b⋅.(4)a 2=a ·a=|a|2,|a|=.(5)|a ·b|≤|a||b|.3.空间向量数量积的运算律 (1)数乘结合律:(λa)·b=λ(a ·b).(2)交换律:a ·b=b ·a.(3)分配律:a ·(b+c)=a ·b+a·c. 4.向量坐标的定义设i,j,k 为空间三个两两垂直的单位向量,如果OP u u u r=xi+yj+zk,则(x,y,z)叫做向量OP u u u r的坐标. 5.空间向量运算的坐标表示 设a=(x 1,y 1,z 1),b=(x 2,y 2,z 2),那么(1)加、减运算:a ±b=(x 1±x 2,y 1±y 2,z 1±z 2). (2)数量积:a ·b=x 1x 2+y 1y 2+z 1z 2. (3)夹角公式:cos<a,b>=121212222222111222x y z x y z ++++.(4)模长公式:|a|=a a ⋅=222111x y z ++.(5)数乘运算:λa=(λx 1,λy 1,λz 1)(λ∈R).(6)平行的充要条件:a ∥b ⇔x 1=λx 2,y 1=λy 2,z 1=λz 2(λ∈R). (7)垂直的充要条件:a ⊥b ⇔x 1x 2+y 1y 2+z 1z 2=0.1.概念理解(1)探求两向量的夹角时, 必须从两向量共起点来看.(2)空间向量的数量积运算律与平面向量数量积运算律保持一致. (3)向量OP u u u r的坐标是终点坐标减去起点坐标.(4)立体几何中的平行或共线问题一般可以用向量共线定理解决,求两点间距离可以用向量的模解决;解决垂直问题一般可化为向量的数量积为零;求角问题可以转化为两向量的夹角.2.与数量积及坐标运算相关联的结论(1)aa表示单位向量.(2)|a|2=a·a.(3)空间向量不满足结合律,即(a·b)·c≠a·(b·c).1.在平行六面体ABCD-EFGH中,若AG u u u r=2xABu u u r+3yBCu u u r+3zHDu u u r,则x+y+z等于( D )(A)76(B)23(C)56(D)12解析:因为AG u u u r=AB u u u r+BC u u u r-HD u u u r,所以21,31,31,xyz=⎧⎪=⎨⎪=-⎩所以1,21,31,3xyz⎧=⎪⎪⎪=⎨⎪⎪=-⎪⎩所以x+y+z=12.故选D.2.平行六面体ABCD-A1B1C1D1中,向量AB u u u r,AD u u u r,1AAu u u r两两的夹角均为60°,且|AB u u u r|=1,|AD u u u r|=2,|1AAu u u r|=3,则|1ACu u u u r|等于( A )(A)5 (B)6 (C)4 (D)8解析:设AB u u u r=a,AD u u u r=b,1AAu u u r=c,则1ACu u u u r=a+b+c,21ACu u u u r=(a+b+c)2=a2+b2+c2+2a·b+2b·c+2c·a=25,因此|1ACu u u u r|=5.故选A.3.在空间四边形ABCD中,AB u u u r·CD u u u r+AC u u u r·DB u u u r +AD u u u r·BC u u u r等于( B )(A)-1 (B)0(C)1 (D)不确定解析:如图,令AB u u u r=a,AC u u u r=b,AD u u u r=c,则AB u u u r·CD u u u r+AC u u u r·DB u u u r+AD u u u r·BC u u u r=a·(c-b)+b·(a-c)+c·(b-a)=a·c-a·b+b·a-b·c+c·b-c·a=0.考点一空间直角坐标系[例1] 在空间直角坐标系Oxyz中,点A(1,2,2),则|OA|= ;点A到坐标平面yOz的距离是.解析:根据空间直角坐标系中两点间的距离公式,得|OA|=()()()222-+-+-=3.102020因为A(1,2,2),所以点A到平面yOz的距离为|1|=1.答案:3 1(1)点P(x,y,z)关于各点、线、面的对称点的坐标点、线、面对称点坐标原点(-x,-y,-z)x轴(x,-y,-z)y轴(-x,y,-z)z轴(-x,-y,z)坐标平面xOy (x,y,-z)坐标平面yOz (-x,y,z)坐标平面zOx (x,-y,z)(2)两点间距离公式的应用①求两点间的距离或线段的长度;②已知两点间的距离,确定坐标中参数的值;③根据已知条件探求满足条件的点的存在性.设点M(2,1,3)是直角坐标系Oxyz中一点,则点M关于x轴对称的点的坐标为( A )(A)(2,-1,-3) (B)(-2,1,-3)(C)(-2,-1,3) (D)(-2,-1,-3)解析:点M关于x轴对称的点与点M的横坐标相同,纵坐标、竖坐标均互为相反数,所以对称点为(2,-1,-3).故选A.考点二空间向量的线性运算[例2] 在三棱锥O-ABC中,M,N分别是OA,BC的中点,G是△ABC的重u u u u r.心,用基向量OA u u u r,OB u u u r,OC u u u r表示OG u u u r,MG解:OG u u u r =OA u u u r +AG u u u r=OA u u u r +23AN u u u r=OA u u u r +23(ON u u u r -OA u u u r)=OA u u u r+23[12(OB u u u r +OC u u u r )-OA u u u r]=13OA u u u r+13OB u u u r+13OC u u u r. MG u u u u r =OG u u u r -OM u u u u r=OG u u u r -12OA u u u r=13OA u u u r +13OB u u u r +13OC u u u r -12OA u u u r=-16OA u u u r+13OB u u u r+13OC u u u r. (1)选定空间不共面的三个向量作基向量,并用它们表示出指定的向量,是用向量解决立体几何问题的基本要求.如本例用OA u u u r ,OB u u u r ,OC u u u r 表示OG u u u r ,MG u u u u r等,另外解题时应结合已知和所求观察图形,联想相关的运算法则和公式等,就近表示所需向量.(2)首尾相接的若干个向量的和,等于由起始向量的起点指向末尾向量的终点的向量.所以求若干向量的和,可以通过平移将其转化为首尾相接的向量求和.如图,已知空间四边形OABC,其对角线为OB,AC,M,N 分别是对边OA,BC 的中点,点G 在线段MN 上,且分MN 所成的比为2,现用基向量OA u u u r ,OB u u u r ,OC u u u r 表示向量OG u u u r ,设OG u u u r =x OA u u u r +y OB u u u r+z OCu u u r ,则x,y,z 的值分别是( D ) (A)x=13,y=13,z=13(B)x=13,y=13,z=16(C)x=13,y=16,z=13 (D)x=16,y=13,z=13解析:设OA u u u r =a,OB u u u r =b,OC u u u r=c, 因为G 分MN 所成的比为2,所以MG u u u u r =23MN u u u u r, 所以OG u u u r=OM u u u u r +MG u u u u r =OM u u u u r +23(ON u u u r -OM u u u u r) =12a+23(12b+12c-12a) =12a+13b+13c-13a =16a+13b+13c, 即x=16,y=13,z=13. 考点三 空间向量的数量积与坐标运算[例3] 已知空间三点A(-2,0,2),B(-1,1,2),C(-3,0,4).设a=AB u u u r ,b=AC u u u r,(1)求a 和b 的夹角θ的余弦值;(2)若向量ka+b 与ka-2b 互相垂直,求k 的值.解:因为A(-2,0,2),B(-1,1,2),C(-3,0,4),a=AB u u u r,b=AC u u u r,所以a=(1,1,0),b=(-1,0,2). (1)cos θ=a b a b⋅=10025-++⨯=-1010,所以a 和b 的夹角θ的余弦值为-1010.解:(2)因为ka+b=k(1,1,0)+(-1,0,2)=(k-1,k,2), ka-2b=(k+2,k,-4)且(ka+b)⊥(ka-2b),所以(k-1,k,2)·(k+2,k,-4)=(k-1)(k+2)+k 2-8=2k 2+k-10=0. 解得k=-52或k=2. (1)求空间向量数量积的方法①定义法.设向量a,b 的夹角为θ,则a ·b=|a||b|cos θ; ②坐标法.设a=(x 1,y 1,z 1),b=(x 2,y 2,z 2),则a ·b=x 1x 2+y 1y 2+z 1z 2. ③基向量法.将所求向量用基向量表示,再进行运算. (2)数量积的应用①求夹角.设非零向量a,b 的夹角为θ,则cos θ=a b a b⋅,进而可求两异面直线所成的角;②求长度(距离).运用公式|a|2=a ·a,可将线段长度的计算问题转化为向量数量积的计算问题;③解决垂直问题.利用a ⊥b ⇔a ·b=0(a ≠0,b ≠0),可将垂直问题转化为向量数量积的计算问题.1.如图,在棱长为2的正四面体A-BCD 中,E,F 分别为直线AB,CD 上的动点,且3若记EF 中点P 的轨迹为L,则|L|等于 .(注:|L|表示L 的测度,在本题,L 为曲线、平面图形、空间几何体时,|L|分别对应长度、面积、体积)解析:为了便于计算,将正四面体放置于如图的正方体中,可知,正方体的棱长为2,建立如图所示的空间直角坐标系,设E(0,y 1,y 1),F(2,y 2,2-y 2),P(x,y,z),|EF|=()()()222121222yy y y +-+-+=3,即(y 1-y 2)2+(y 1+y 2-2)2=1,又12122,22x y y y y y z ⎧⎪⎪⎪+=⎨⎪⎪+-=⎪⎩即121222,2x y y y y y z ⎧⎪⎪⎪+=⎨⎪+-⎪⎪⎩代入上式得2222=1,即2)22)2=14,即P 的轨迹为半径为12的圆,周长为|L|=2πr=π. 答案:π2.A,B,C,D 是空间不共面的四点,且满足AB u u u r ·AC u u u r =0,AC u u u r ·AD u u u r =0,AB u u u r ·AD u u u r=0,M为BC 的中点,则△AMD 是( C )(A)钝角三角形 (B)锐角三角形 (C)直角三角形 (D)不确定 解析:因为M 为BC 的中点, 所以AM u u u u r =12(AB u u u r +AC u u u r).所以AM u u u u r·AD u u u r =12(AB u u u r +AC u u u r )·AD u u u r=12AB u u u r·AD u u u r +12AC u u u r ·AD u u u r=0.所以AM ⊥AD,即△AMD 为直角三角形. 考点四 易错辨析[例4] 如图所示,在空间直角坐标系中,BC=2,原点O 是BC 的中点,点A 的坐标是(32,12,0),点D 在平面yOz 内,且∠BDC=90°,∠DCB=30°.(1)求OD u u u r的坐标;(2)设AD u u u r 和BC u u u r的夹角为θ,求cos θ的值.解:(1)如图所示,过D 作DE ⊥BC,垂足为E.在Rt △DCB 中,由∠BDC=90°,∠DCB=30°,BC=2,得BD=1,CD=3.所以DE=CDsin 30°3.OE=OB-BDcos 60°=1-12=12.所以D 点坐标为(0,-12,3),即OD u u u r的坐标为(0,-12,3).解:(2)依题意,OA u u u r=(3, 12,0), OB u u u r =(0,-1,0), OC u u u r=(0,1,0),所以AD u u u r =OD u u u r -OA u u u r=(-3,-1,3),BC u u u r =OC u u u r -OB u u u r=(0,2,0).由AD u u u r 和BC u u u r的夹角为θ,得 cos θ=AD BC AD BC⋅u u u r u u u ru u u r u u u r=()()2222223301202233102022-⨯+-⨯+⨯⎛⎫⎛⎫-+-+⨯++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭=-10.所以cos θ=-10.解答空间向量的计算问题时,以下两点容易造成失分,在备考时要高度关注:(1)对向量运算法则特别是坐标运算的法则掌握不熟练导致失误. (2)不能熟练地运用向量共线、垂直的充要条件将问题转化.类型一 空间直角坐标系1.在四棱锥O-ABCD 中,底面ABCD 是平行四边形,设OA u u u r=a, OB u u u r=b,OC u u u r =c,则OD u u u r可表示为(A )(A)a+c-b (B)a+2b-c(C)b+c-a (D)a+c-2b 解析:因为OA u u u r=a,OB u u u r=b,OC u u u r=c,在▱ABCD 中,BA u u u r =OA u u u r -OB u u u r =a-b,OD u u u r - OC u u u r =CD u u u r =BA u u u r=a-b, 所以OD u u u r=OC u u u r+CD u u u r =a-b+c.故选A.2.已知空间任意一点O 和不共线的三点A,B,C,若OP u u u r =x OA u u u r +y OB u u u r +z OC u u u r(x,y,z ∈R),则“x=2,y=-3,z=2”是“P,A,B,C四点共面”的( B ) (A)必要不充分条件 (B)充分不必要条件 (C)充要条件(D)既不充分也不必要条件 解析:当x=2,y=-3,z=2时, 即OP u u u r=2OA u u u r-3OB u u u r+2OC u u u r.则AP u u u r -AO u u u r =2OA u u u r -3(AB u u u r -AO u u u r )+2(AC u u u r -AO u u u r), 即AP u u u r=-3AB u u u r +2AC u u u r,根据共面向量定理知,P,A,B,C 四点共面; 反之,当P,A,B,C 四点共面时,根据共面向量定理, 设AP u u u r =m AB u u u r +n AC u u u r(m,n ∈R), 即OP u u u r-OA u u u r=m(OB u u u r-OA u u u r)+n(OC u u u r-OA u u u r), 即OP u u u r=(1-m-n)OA u u u r+m OB u u u r+n OC u u u r,即x=1-m-n,y=m,z=n,这组数显然不止2,-3,2.故“x=2,y=-3,z=2”是“P,A,B,C 四点共面”的充分不必要条件.故选B.3.已知a=(2,3,1),b=(-4,2,x),且a ⊥b,则|b|= . 解析:因为a ⊥b,所以-8+6+x=0,解得x=2, 故|b|=()222422-++=26.答案:26类型二 空间向量线性运算4.在正方体ABCD-A 1B 1C 1D 1中,向量1DD u u u u r -AB u u u r +BC u u u r化简后的结果是( A )(A)1BD u u u u r (B)1D B u u u u r (C)1B D u u u u r (D)1DB u u u u r解析:根据空间向量加法的平行四边形法则,把向量平移到同一起点,得1DD u u u u r -AB u u u r +BC u u u r =BA u u u r +BC u u u r +1BB u u u r =1BD u u u u r,故选A.类型三 空间向量数量积及坐标运算5.点P 是棱长为1的正方体ABCD-A 1B 1C 1D 1的底面A 1B 1C 1D 1上一点,则PA u u u r·1PC u u u u r 的取值范围是(D )(A)[-1,-14] (B)[-12,-14] (C)[-1,0] (D)[-12,0] 解析:如图,以D 1为原点,以D 1C 1,D 1A 1,D 1D 方向为x 轴,y 轴,z 轴,建立空间直角坐标系,则A(0,1,1),C 1(1,0,0),P(x,y,0), PA u u u r=(-x,1-y,1),1PC u u u u r=(1-x,-y,0), PA u u u r ·1PC u u u u r =(x-12)2+(y-12)2-12,(其中0≤x ≤1,0≤y ≤1),所以PA u u u r ·1PC u u u u r的取值范围是[-12,0].故选D.6.已知空间四边形ABCD 的每条边和对角线的长都等于a,点E,F 分别是BC,AD 的中点,则AE u u u r ·AF u u u r 的值为( C )(A)a 2 (B)12a 2 (C)14a 2(a 2解析:AE u u u r ·AF u u u r =12(AB u u u r +AC u u u r)·12AD u u u r =14(AB u u u r ·AD u u u r +AC u u u r ·AD u u u r)=14(a 2cos 60°+a 2cos 60°)=14a 2.故选C. 7.在四棱锥P-ABCD 中,AB u u u r =(4,-2,3),AD u u u r=(-4,1,0),AP u u u r=(-6,2,-8),则这个四棱锥的高h 等于( B )(A)1 (B)2 (C)13 (D)26解析:设平面ABCD 的法向量为n=(x,y,z),则,,n AB n AD ⎧⎪⎨⎪⎩u u u ru u u r ⊥⊥⇒4230,40,x y z x y -+=⎧⎨-+=⎩ 令y=4,则n=(1,4,43), 则h=n AP n⋅u u u r=326833-+-=2.故选B.8.OA u u u r=(1,2,3),OB u u u r=(2,1,2),OP u u u r=(1,1,2)(其中O 为坐标原点),点Q 在OP 上运动,当QA u u u r ·QB u u u r取最小值时,点Q 的坐标为( C )(A)( 12,34,13) (B)( 12,23,34) (C)( 43,43,83) (D)( 43,43,73) 解析:设OQ u u u r =λOP u u u r=λ(1,1,2)=(λ,λ,2λ), 则QA u u u r=(1-λ,2-λ,3-2λ), QB u u u r=(2-λ,1-λ,2-2λ),QA u u u r ·QB u u u r=(1-λ)(2-λ)+(2-λ)(1-λ)+(3-2λ)(2-2λ)=6λ2-16λ+10 =6(λ-43)2-23.当λ=43时,QA u u u r ·QB u u u r取得最小值,此时Q(43,43,83).故选C.9.A,B,C,D 是空间不共面的四点,且满足AB u u u r ·AC u u u r =0,AC u u u r ·AD u u u r =0,AB u u u r ·AD u u u r=0,则△BCD是( B )(A)钝角三角形 (B)锐角三角形 (C)直角三角形 (D)不确定 解析:BC u u u r ·BC u u u r =(AD u u u r -AB u u u r )·(AC u u u r -AB u u u r) =AD u u u r ·AC u u u r -AD u u u r ·AB u u u r -AB u u u r ·AC u u u r +2AB u u u r =2AB u u u r >0,所以cos ∠DBC>0,∠DBC 为锐角, 同理∠BDC,∠BCD 为锐角. 所以△BCD 为锐角三角形,故选B.。
5运用空间向量解题的三技巧
运用空间向量解题三技巧524500 广东省吴川市第一中学331信箱 柯厚宝从引入空间向量后,立体几何问题的解题思路变得明确、有序.但是,也不能认为它是万能的,有时用不好,还可能弄巧成拙,招来繁重的运算量,使得解题步步艰难.下面结合例题谈三点技巧,供同学们参考.一、能写出的,直接写出建立空间直角坐标后,有些向量可以通过观察后直接写出的,这时我们不防将其直接写出,避免一些不必要的无用计算.例1 已知三棱柱111ABC A B C -的三 视图如图所示,其中主视图11AA B B 和左视 图11B BCC 均为矩形,在俯视图111A B C △中,113AC =,115A B =,13cos 5A ∠=. (1)在三棱柱111ABC ABC -中,求证:1BC AC ⊥;(2)在三棱柱111ABC A B C -中,若D 是底边AB 的中点,且1BB BC =,求二面角1B CD B --的余弦值.分析:111A B C △中,运用余弦定理得114B C =,知11190AC B ∠=o,进而可证BC AC ⊥;建立空间直角坐标系后可求二面角1B CD B --的余弦值. 解:(1)(略);(2)由(1)知,以C 为原点建立空间直角坐标系, 如图所示,则(0,0,0)C ,3(2,,0)2D ,1(4,0,4)B .3(2,,0)2CD =u u u r ,1(4,0,4)CB =u u u r .设平面1CDB 的法向量为(,,)x y z =n ,由100CD CB ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u rn n ,得4300x y x z +=⎧⎨+=⎩,令3x =-,得4,3y z ==,∴(3,4,3)=-n . 又平面ABC 的法向量为(0,0,1)=n',cos ,'⋅'<>='⋅n n n n n n34=. ∴二面角1B CD B --. 评注:平面ABC 的法向量是经过观察后直接得到的,从而回避了大量的无用重复运算,使得解答简洁明了.B 1A 1C 1俯视图主视图左视图BB 1A 1AAA 1C 1C CC B B 1C 1BB 1C 11A 1O 1B AOB Pxyz二、能猜出的,先猜后证解题时,充分挖掘图形的结构特征,对线线、线面关系进行大胆的猜测与论证,采取“先猜后证”的策略,常可收到很好的效果.例2长方体1111ABCD A B C D -中,12AA =,2AB BC ==,O 是底面对角线的交点.(1)求证:11//B D 平面1BC D ;(2)求直线11AC 与平面1BC D 所成的角的大小.分析:由11//B D BD 可证11//B D 平面1BC D ;由图我们猜测1AO ⊥平面1BC D ,建立空间直角坐标系,稍加证实即可进一步求所求的角的大小.解:(1)(略);(2)以D 为原点建立空间直角坐标系,则(0,0,0)D ,(1,1,0)O ,1(2,0,2)A ,1(0,2,2)C .则1(1,1,2)AO =--u u u r ,1(0,2,2)DC =u u u u r ,(1,1,0)DO =u u u r , ∴110AO D C ⋅=u u u r u u u u r ,10AO DO ⋅=u u u r u u u r,于是1AO ⊥平面1BC D , ∴11OC A ∠为直线11AC 与平面1BC D 所成的角.而1(1,1,2)C O =-u u u u r ,11(2,2,0)C A =-u u u u r,得111111112cos 2222C O C A OC A C O C A ⋅∠===⨯⋅u u u u r u u u u r u u u u r u u u u r ,∴1145OC A ∠=o. 评注:本题猜得1A O ⊥平面1BC D 后,直接实施验证,回避了繁杂的法向量的求解,使得解答简明流畅.三、能取整数的,整数优先求平面的法向量时,通常要求出一个三元一次方程组的一组解,在寻找这组解的过程中,若能以“整数解优先”为取解原则,常可有效的降低运算量,进而顺利地解决问题.例3如图,已知点P 在圆柱1OO 的底面圆O 上,AB 为圆O 的直径. (1)求证:1BP A P ⊥;(2)若圆柱1OO 的体积12V =π,2OA =,120AOP ∠=︒, 求二面角1P A B A --的余弦值.分析:(1)不难得证;对于(2),先由题意求1AA ,再以A 为 原点建立空间直角坐标系可得解.解:(1)略;(2)如图,以A 为原点,分别以AB ,1AA 为y ,z 轴, 并以建立空间直角坐标系.由题意211412V OA AA AA =π⋅⋅=π⋅=π,解得13AA =.易得相关点的坐标分别为:()0,0,0A ,(3,3,0)P ,()10,0,3A ,()0,4,0B .∴)13A P =-u u u r ,()10,4,3A B =-u u u r ,设平面1A BP 的法向量为(,,)n x y z =, 由1100n A P n A B ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r ,得330430y z y z +-=-=⎪⎩,令4z =,则3,y x ==,∴n =,又平面1A AB 的法向量为1(1,0,0)n =,111cos ,n n n n n n ⋅<>==⋅=. ∴二面角1P A B A --. 评注:本题令4z =,回避了后面的分数运算,降低了运算量,值得我们借鉴(其实例1也用了该技巧).【《数学周报》2010年第22-26期】。
空间直角坐标系空间向量及其运算
【名师说“法”】
空间共线向量定理、共面向量定理的应用
三点(P,A,B)共线 空间四点(M,P,A,B)共面
P→A=λP→B
M→P=xM→A+yM→B
对空间任一点 O,O→P= 对空间任一点 O,O→P=O→M+
O→A+tA→B
xM→A+yM→B
三点(P,A,B)共线 空间四点(M,P,A,B)共面
[解析] 因为 α⊥β,所以两个平面的法向量也垂直,因此 (-1,3,4)·(x,1,-2)=0,即 x=-5.
[答案] -5
5.已知空间三点 A(1,1,1),B(-1,0,4),C(2,-2,3),则A→B
与C→A的夹角 θ 的大小是________.
[解析] 由题意知A→B=(-2,-1,3),C→A=(-1,3,-2),故
[答案] C
角度二 利用数量积求长度 2.如图,在 60°的二面角 α、l、 β 的棱 上有两点 A,B,点 C,D 分别在 α,β 内, 且 AC⊥AB,BD⊥AB,AC=BD=AB=1,则 CD 的长度为 ______________.
2
O→M)=12(O→B+O→C-O→A)=12(b+c-a).
[答案]
12(b+c-a)
3.如图所示,已知空间四边形 OABC,其
对角线为 OB、AC,M、N 分别为 OA、BC 的中
点,点 G 在线段 MN 上,且M→G=2G→N,若O→G=
x
→ OA
+
y
→ OB
+
z
→ OC
,
则
x,y,z
的值分别为
平行于同一个__平__面____的向量
0
a=b a的相反向 量为-a
a∥b
空间向量之立体几何建系和求点坐标(共24张PPT)
xOy面内D yOz面内E zOx面内F
坐标形式 (x,y,0)
(0,y,z)
(x,0,z)
基础知识:
2、空间中在底面投影为特殊位置的点:
如果 A' x1, y1, z 在底面的投影为 A x2, y2,0 ,那么x1 x2, y1 y2
(即点与投影点的横纵坐标相同) 由这条规律出发,在写空间中的点坐标时,可看一下在底面的
建系方法2练习2 练2.如图,已知四棱锥P ABCD的底面是菱形,对角线AC, BD交于点O, OA 4,OB 3,OP 4,且OP 平面ABCD,点M为PC的三等分点(靠近P), 建立适当的直角坐标系并求各点坐标。
找“墙角”
14
建系方法2练习3
练3.如图,在等腰梯形ABCD中,AB // CD, AD DC CB 1, ABC 60,CF 平面ABCD,且CF 1,建立适当的直角坐标系 并确定各点坐标。
找“墙角”
建系方法2练习5
真题(辽宁卷)如图,AB 是圆的直径,PA 垂 直圆所在的平面,C 是圆上的点.
(1)求证:平面 PAC⊥平面 PBC; (2)若 AB=2,AC=1,PA=1,求证:二面
角 C-PB-A 的余弦值.
造“墙角”
建系方法3例题
三、利用面面垂直关系构建空间直角坐标系(转化为墙角模型) 例3.在四棱锥V-ABCD中,底面ABCD是边长为2的正方形,侧面VAD 是正三角形,平面VAD⊥底面ABCD.点P、H分别是线段VC、AD的 中点.试建立空间直角坐标系并写出P、V、A、B、C、D的坐标.
互相垂直,EF // BD, ED BD, AD 2, EF ED 1, 试建立合适的 空间直角坐标系并确定各点的坐标
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间向量之 建立空间直角坐标系的方法及技巧
空间向量之 建立空间直角坐标系的方法及技巧
.
一、利用共顶点的互相垂直的三条棱构建直角坐标系
例1 已知直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,底面ABCD 就是直角梯形,∠A 为直角,AB ∥CD ,AB =4,AD =2,DC =1,求异面直线BC 1与DC 所成角的余弦值.
解析:如图1,以D 为坐标原点,分别以DA 、DC 、DD 1所在直线为x 、y 、z 轴建立空间直角坐标系,则C 1(0,1,2)、B (2,4,0), ∴1(232)BC =--u u u u r ,,,
(010)CD =-u u u r ,,. 设1BC u u u u r 与CD uuu r 所成的角为θ,
则11317cos BC CD BC CD θ==u u u u r u u u r g u u u u r u u u r . 二、利用线面垂直关系构建直角坐标系
例2 如图2,在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于C 、C 1的一点,EA ⊥EB 1.已知2AB =
,BB 1=2,BC =1,∠BCC 1=3π.求二面角A -EB 1-A 1的平面角的正切值.
解析:如图2,以B 为原点,分别以BB 1、BA 所在直线为y 轴、z 轴,过B 点垂直于平面AB 1的直线为x 轴建立空间直角坐标系.
由于BC =1,BB 1=2,AB =2,∠BCC 1=3
π, ∴在三棱柱ABC -A 1B 1C 1中,有B (0,0,0)、A (0,0,2)、B 1(0,2,0)、3102c ⎛⎫-
⎪ ⎪⎝⎭,,、13302C ⎛⎫ ⎪ ⎪⎝⎭
,,. 设30E a ⎛⎫ ⎪ ⎪⎝⎭
,,且1322a -<<,
空间向量之 建立空间直角坐标系的方法及技巧 由EA ⊥EB 1,得10EA EB =u u u r u u u r g ,
即3322022a a ⎛⎫⎛⎫---- ⎪ ⎪ ⎪ ⎪⎝⎝⎭
g ,,,, 233(2)2044a a a a =+-=-+=,∴13022a a ⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭
g , 即12a =
或32a =(舍去).故31022E ⎛⎫ ⎪ ⎪⎝⎭
,,. 由已知有1EA EB ⊥u u u r u u u r ,111B A EB ⊥u u u u r u u u r ,故二面角A -EB 1-A 1的平面角θ的大小为向量11B A u u u u r 与EA u u u r 的夹角.
因11(002)B A BA ==u u u u r u u u r ,,,31222EA ⎛⎫=-- ⎪ ⎪⎝u u u r ,,
故1111
2cos 3EA B A EA B A θ==u u u r u u u u r g u u u r u u u u r ,即2tan 2θ= 三、利用面面垂直关系构建直角坐标系
例3 如图3,在四棱锥V -ABCD 中,底面ABCD 就是正方形,侧面VAD 就是正三角形,平面VAD ⊥底面ABCD .
(1)证明AB ⊥平面VAD ;
(2)求面VAD 与面VDB 所成的二面角的余弦值.
解析:(1)取AD 的中点O 为原点,建立如图3所示的空间直角坐标系.
设AD =2,则A (1,0,0)、D (-1,0,0)、B (1,2,0)、
V (0,0,3),∴AB u u u r =(0,2,0),VA u u r =(1,0,-3).
由(020)(103)0AB VA =-=u u u r u u r g
g ,,,,,得 AB ⊥VA .
又AB ⊥AD ,从而AB 与平面VAD 内两条相交直线VA 、AD 都垂直,∴ AB ⊥平面VAD ;
(2)设E 为DV 的中点,则13022E ⎛⎫- ⎪ ⎪⎝⎭,, ∴33022EA ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,,,3322
2EB ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,,,(103)DV =u u u r ,,. ∴332(103)02EB DV ⎛⎫=-= ⎪ ⎪⎝⎭
u u u r u u u r g g ,,,,, ∴EB ⊥DV .
又EA ⊥DV ,因此∠AEB 就是所求二面角的平面角.
∴21cos 7EA EB EA EB EA EB
==u u u r u u u r u u u r u u u r g u u u r u u u r ,. 故所求二面角的余弦值为21. 四、利用正棱锥的中心与高所在直线构建直角坐标系
例4 已知正四棱锥V -ABCD 中,E 为VC 中点,正四棱锥底面边长为2a ,高为h .
(1)求∠DEB 的余弦值;
(2)若BE ⊥VC ,求∠DEB 的余弦值.
解析:(1)如图4,以V 在平面AC 的射影O 为坐标原点建立空间直角坐标系,其中
O x ∥BC ,O y ∥AB ,则由AB =2a ,OV =h ,有B (a ,a ,0)、C (-a ,a ,0)、D (-a ,-a ,0)、V (0,0,h )、
222a a h E ⎛⎫- ⎪⎝⎭
,, ∴3222a h BE a ⎛⎫=-- ⎪⎝⎭u u u r ,,,3222a h DE a ⎛⎫= ⎪⎝⎭
u u u r ,,. ∴22
226cos 10BE DE a h BE DE a h BE DE -+==+u u u r u u u r u u u r u u u r g u u u r u u u r ,, 即22
226cos 10a h DEB a h
-+=+∠; (2)因为E 就是VC 的中点,又BE ⊥VC ,
所以0BE VC =u u u r u u u r g ,即3()0222a h a a a h ⎛⎫----= ⎪⎝⎭g ,,,,, ∴22
230222
a h a --=,∴2h a =. 这时222261cos 103a h BE DE a h -+==-+u u u r u u u r ,,即1cos 3
DEB =-∠. 五、利用图形中的对称关系建立坐标系
图形中虽没有明显交于一点的三条直线,但有一定对称关系(如正三棱柱、正四棱柱等),利用自身
对称性可建立空间直角坐标系.
例5已知两个正四棱锥P -ABCD 与
Q -ABCD 的高都为2,AB =4.
(1)证明:PQ ⊥平面ABCD ;
(2)求异面直线AQ 与PB 所成的角;
(3)求点P 到平面QAD 的距离.
(2)由题设知,ABCD 就是正方形,且AC ⊥BD .由(1),PQ ⊥平面ABCD ,故可分别以直线CA DB QP ,,为x ,y ,z 轴建立空间直角坐标系(如图1),易得
(2202)(0222)AQ PB =--=-u u u r u u u r ,,,,,,1cos 3
AQ PB AQ PB AQ PB <>==u u u r u u u r u u u r u u u r g u u u r u u u r ,. 所求异面直线所成的角就是1arccos
3
. (3)由(2)知,点(0220)(22220)(004)D AD PQ -=--=-u u u r u u u r ,,,,,,,,. 设n =(x ,y ,z )就是平面QAD 的一个法向量,则00AQ AD ⎧=⎪⎨=⎪⎩u u u r g u u u r g ,,
n n 得200x z x y ⎧+=⎪⎨+=⎪⎩,,
取x =1,得(112)--,,n =.点P 到平面QAD 的距离22PQ d ==u u u r g n n
.
点评:利用图形所具备的对称性,建立空间直角坐标系后,相关点与向量的坐标应容易得出.第(3)问也可用“等体积法”求距离.。