概率论典型例题
高中数学第十章概率典型例题(带答案)
高中数学第十章概率典型例题单选题1、“某彩票的中奖概率为1100”意味着( )A .购买彩票中奖的可能性为1100 B .买100张彩票能中一次奖 C .买100张彩票一次奖也不中 D .买100张彩票就一定能中奖 答案:A分析:根据概率的定义,逐项判定,即可求解.对于A 中,根据概率的定义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,由某彩票的中奖概率为1100,可得购买彩票中奖的可能性为1100,所以A 正确;对于B 、C 中,买任何1张彩票的中奖率都是1100,都具有偶然性,可能中奖,还可能中奖多次,也可能不中奖,故B 、C 错误;对于D 选项、根据彩票总数目远大于100张,所以买100张也不一定中一次奖,故D 错误. 故选:A.2、北京2022年冬奥会新增了女子单人雪车、短道速滑混合团体接力、跳台滑雪混合团体、男子自由式滑雪大跳台、女子自由式滑雪大跳台、自由式滑雪空中技巧混合团体和单板滑雪障碍追逐混合团体等7个比赛小项,现有甲、乙两名志愿者分别从7个比赛小项中各任选一项参加志愿服务工作,且甲、乙两人的选择互不影响,那么甲、乙两名志愿者选择同一个比赛小项进行志愿服务工作的概率是( ) A .249B .649C .17D .27 答案:C分析:根据古典概型概率的计算公式直接计算.由题意可知甲、乙两名志愿者分别从7个比赛小项中各任选一项参加志愿服务工作共有7×7=49种情况, 其中甲、乙两名志愿者选择同一个比赛小项进行志愿服务工作共7种,所以甲、乙两名志愿者选择同一个比赛小项进行志愿服务工作的概率是749=17,故选:C.3、某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%答案:C分析:记“该中学学生喜欢足球”为事件A,“该中学学生喜欢游泳”为事件B,则“该中学学生喜欢足球或游泳”为事件A+B,“该中学学生既喜欢足球又喜欢游泳”为事件A⋅B,然后根据积事件的概率公式P(A⋅B)=P(A)+P(B)−P(A+B)可得结果.记“该中学学生喜欢足球”为事件A,“该中学学生喜欢游泳”为事件B,则“该中学学生喜欢足球或游泳”为事件A+B,“该中学学生既喜欢足球又喜欢游泳”为事件A⋅B,则P(A)=0.6,P(B)=0.82,P(A+B)=0.96,所以P(A⋅B)=P(A)+P(B)−P(A+B)=0.6+0.82−0.96=0.46所以该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例为46%.故选:C.小提示:本题考查了积事件的概率公式,属于基础题.4、若随机事件A,B互斥,且P(A)=2−a,P(B)=3a−4,则实数a的取值范围为()A.(43,32]B.(1,32]C.(43,32)D.(12,43)答案:A分析:根据随机事件概率的范围以及互斥事件概率的关系列出不等式组,即可求解.由题意,知{0<P(A)<1 0<P(B)<1P(A)+P(B)≤1,即{0<2−a<10<3a−4<12a−2≤1,解得43<a≤32,所以实数a的取值范围为(43,32].故选:A.5、甲、乙两人投篮,投中的概率分别为0.6,0.7,若两人各投2次,则两人投中次数不等的概率是()A.0.6076B.0.7516C.0.3924D.0.2484答案:A分析:先求出两人投中次数相等的概率,再根据对立事件的概率公式可得两人投中次数不相等的概率.两人投中次数相等的概率P=0.42×0.32+C21×0.6×0.4×C21×0.7×0.3+0.62×0.72=0.3924,故两人投中次数不相等的概率为:1﹣0.3924=0.6076.故选:A.小提示:本题考查了对立事件的概率公式和独立事件的概率公式,属于基础题.6、下列各对事件中,不互为相互独立事件的是()A.掷一枚骰子一次,事件M“出现偶数点”;事件N“出现3点或6点”B.袋中有3白、2黑共5个大小相同的小球,依次有放回地摸两球,事件M“第一次摸到白球”,事件N“第二次摸到白球”C.袋中有3白、2黑共5个大小相同的小球,依次不放回地摸两球,事件M“第一次摸到白球”,事件N“第二次摸到黑球”D.甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,事件M“从甲组中选出1名男生”,事件N“从乙组中选出1名女生”答案:C分析:利用对立事件和相互独立事件的概念求解.解:对于选项A,事件M={2,4,6},事件N={3,6},事件MN={6},基本事件空间Ω={1,2,3,4,5,6},所以P(M)=36=12,P(N)=26=13,P(MN)=16=12×13,即P(MN)=P(N)P(M),因此事件M与事件N是相互独立事件;对于选项B,袋中有3白、2黑共5个大小相同的小球,依次有放回地摸两球,事件M“第一次摸到白球”,事件N“第二次摸到白球”,则事件M发生与否与N无关,同时,事件N发生与否与M无关,则事件M与事件N是相互独立事件;对于选项C,袋中有3白、2黑,5个大小相同的小球,依次不放回地摸两球,事件M“第一次摸到白球”,事件N “第二次摸到黑球”, 则事件M 发生与否和事件N 有关,故事件M 和事件N 与不是相互独立事件;对于选项D ,甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,事件M “从甲组中选出1名男生”,事件N “从乙组中选出1名女生”,则事件M 发生与否与N 无关,同时,事件N 发生与否与M 无关,则事件M 与事件N 是相互独立事件; 故选:C.7、2021年12月9日,中国空间站太空课堂以天地互动的方式,与设在北京、南宁、汶川、香港、澳门的地面课堂同步进行.假设香港、澳门参加互动的学生人数之比为5:3,其中香港课堂女生占35,澳门课堂女生占13,若主持人向这两个分课堂中的一名学生提问,则该学生恰好为女生的概率是( ) A .18B .38C .12D .58答案:C分析:利用互斥事件概率加法公式计算古典概型的概率即可得答案.解:因为香港、澳门参加互动的学生人数之比为5:3,其中香港课堂女生占35,澳门课堂女生占13, 所以香港女生数为总数的58×35=38,澳门女生数为总数的38×13=18,所以提问的学生恰好为女生的概率是38+18=12. 故选:C.8、某学校共有教职工120人,对他们进行年龄结构和受教育程度的调查,其结果如下表:60% B .该教职工具有研究生学历的概率超过50% C .该教职工的年龄在50岁以上的概率超过10%D .该教职工的年龄在35岁及以上且具有研究生学历的概率超过10% 答案:D分析:根据表中数据,用频率代替概率求解.A.该教职工具有本科学历的概率p=75120=58=62.5%>60%,故错误;B.该教职工具有研究生学历的概率p=45120=38=37.5%<50%,故错误;C.该教职工的年龄在50岁以上的概率p=10120=112≈8.3%<10%,故错误;D.该教职工的年龄在35岁及以上且具有研究生学历的概率p=15120=18=12.5%>10%,故正确.小提示:本题主要考查概率的求法,还考查了分析求解问题的能力,属于基础题.多选题9、下列有关古典概型的说法中,正确的是()A.试验的样本空间的样本点总数有限B.每个事件出现的可能性相等C.每个样本点出现的可能性相等D.已知样本点总数为n,若随机事件A包含k个样本点,则事件A发生的概率P(A)=kn答案:ACD分析:根据古典概型的定义逐项判断即可.由古典概型概念可知:试验的样本空间的样本点总数有限;每个样本点出现的可能性相等.故AC正确;每个事件不一定是样本点,可能包含若干个样本点,所以B不正确;根据古典概型的概率计算公式可知D正确.故选:ACD10、某学校为调查学生迷恋电子游戏情况,设计如下调查方案,每个被调查者先投掷一枚骰子,若出现向上的点数为3的倍数,则如实回答问题“投掷点数是不是奇数?”,反之,如实回答问题“你是不是迷恋电子游戏?”.已知被调查的150名学生中,共有30人回答“是”,则下列结论正确的是()A.这150名学生中,约有50人回答问题“投掷点数是不是奇数?”B.这150名学生中,必有5人迷恋电子游戏C.该校约有5%的学生迷恋电子游戏D.该校约有2%的学生迷恋电子游戏答案:AC分析:先由题意计算出回答问题一的人数50人,再计算出回答问题一“是”的人数25人,故可得到回答问题二“是”的人数5人,最后逐一分析四个选项即可.由题意可知掷出点数为3的倍数的情况为3,6,故掷出点数为3的倍数的概率为13,故理论上回答问题一的人数为150×13=50人.掷出点数为奇数的概率为12,理论上回答问题一的50人中有25人回答“是”,故回答问题二的学生中回答“是”的人数为30-25=5人.对于A, 抽样调查的这150名学生中,约有50人回答问题一,故A正确.对于B, 抽样调查的这150名学生中,约有5人迷恋电子游戏,“必有”过于绝对,故B错.对于C,抽样调查的150名学生中,50名学生回答问题一,故有100名学生回答问题二,有5名学生回答“是”,故该校迷恋电子游戏的学生约为5100=5%,故C正确.对于D,由C可知该校迷恋电子游戏的学生约为5100=5%,故D错.故选:AC.11、不透明的口袋内装有红色、绿色和蓝色卡片各2张,一次任意取出2张卡片,则与事件“2张卡片都为红色”互斥而不对立的事件有()A.2张卡片都不是红色B.2张卡片恰有一张红色C.2张卡片至少有一张红色D.2张卡片都为绿色答案:ABD分析:列举出所有情况,然后再利用互斥事件和对立事件的定义判断.解:6张卡片中一次取出2张卡片的所有情况有:“2张都为红色”、“2张都为绿色”、“2张都为蓝色”、“1张为红色1张为绿色”、“1张为红色1张为蓝色”、“1张为绿色1张为蓝色”,选项中给出的四个事件中与“2张都为红色”互斥而非对立的事件是:“2张都不是红色”,“2张恰有一张红色”,“2张都为绿色”,其中“2张至少一张为红色”包含事件“2张都为红色”,二者并非互斥.故选:ABD.12、设A,B分别为随机事件A,B的对立事件,已知0<P(A)<1,0<P(B)<1,则下列说法正确的是()A.P(B|A)+P(B|A)=1B.P(B|A)+P(B|A)=0C.若A,B是相互独立事件,则P(A|B)=P(A)D.若A,B是互斥事件,则P(B|A)=P(B)答案:AC分析:计算得AC正确;当A,B是相互独立事件时,P(B|A)+P(B|A)=2P(B)≠0,故B错误;因为A,B 是互斥事件,得P(B|A)=0,而P(B)∈(0,1),故D错误.解:P(B|A)+P(B|A)=P(AB)+P(AB)P(A)=P(A)P(A)=1,故A正确;当A,B是相互独立事件时,则P(B|A)+P(B|A)=2P(B)≠0,故B错误;因为A,B是相互独立事件,则P(AB)=P(A)P(B),所以P(A|B)=P(AB)P(B)=P(A),故C正确;因为A,B是互斥事件,P(AB)=0,则根据条件概率公式P(B|A)=0,而P(B)∈(0,1),故D错误.故选:AC.13、袋中有红球3个,白球2个,黑球1个,从中任取2个,则互斥的两个事件是()A.至少有一个白球与都是白球B.恰有一个红球与白、黑球各一个C.至少一个白球与至多有一个红球D.至少有一个红球与两个白球答案:BD分析:根据互斥事件的定义和性质判断.袋中装有红球3个、白球2个、黑球1个,从中任取2个,在A中,至少有一个白球和都是白球两个事件能同时发生,不是互斥事件,故A不成立.在B中,恰有一个红球和白、黑球各一个不能同时发生,是互斥事件,故B成立;在C中,至少一个白球与至多有一个红球,能同时发生,故C不成立;在D中,至少有一个红球与两个白球两个事件不能同时发生,是互斥事件,故D成立;故选:BD.小提示:本题考查互斥事件的判断,根据两个事件是否能同时发生即可判断,是基础题. 填空题14、甲、乙两队进行篮球决赛,采取三场二胜制(当一队赢得二场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以2:1获胜的概率是_____. 答案:0.3解析:甲队以2:1获胜的是指甲队前两场比赛中一胜一负,第三场比赛甲胜,利用独立事件的概率乘法公式和概率的加法公式能求出甲队以2:1获胜的概率. 甲队的主客场安排依次为“主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立, 甲队以2:1获胜的是指甲队前两场比赛中一胜一负,第三场比赛甲胜, 则甲队以2:1获胜的概率是:P =0.6×0.5×0.6+0.4×0.5×0.6=0.3. 所以答案是:0.3.小提示:本题考查概率的求法,考查相互独立事件概率乘法公式和互斥事件概率加法公式等基础知识,考查运算求解能力,是基础题.15、已知事件A ,B ,C 相互独立,若P (AB )=16,P(BC)=14,P(ABC)=112,则P (A )=______. 答案:13分析:根据相互独立事件的概率公式,列出P (A ),P (B ),P(C),P(B)的等式,根据对立逐一求解,可求出P (A )的值.根据相互独立事件的概率公式,可得{ P (A )P (B )=16P(B)P (C )=14P (A )P (B )P(C)=112,所以P (A )=13. 所以答案是:13.16、在一个口袋中有大小和质地相同的4个白球和3个红球,若不放回的依次从口袋中每次摸出一个球,直到摸出2个红球就停止,则连续摸4次停止的概率等于______.答案:935分析:根据题设写出基本事件,再应用互斥事件加法公式求概率.由题意知,连续依次摸出的4个球分别是:白白红红,白红白红,红白白红共3种情况,第一种摸出“白白红红”的概率为47×36×35×12=335,第二种摸出“白红白红”的概率为47×36×35×12=335,第三种摸出“红白白红”的概率为37×46×35×12=335,所以连续摸4次停止的概率等于935.所以答案是:935解答题17、数学兴趣小组设计了一份“你最喜欢的支付方式”的调查问卷(每人必选且只能选一种支付方式),在某商场随机调查了部分顾客,并将统计结果绘制成如下所示的两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)将条形统计图补充完整,在扇形统计图中表示“现金”支付的扇形圆心角的度数为多少?(2)若之前统计遗漏了15份问卷,已知这15份问卷都是采用“支付宝”进行支付,问重新统计后的众数所在的分类与之前统计的情况是否相同,并简要说明理由;(3)在一次购物中,嘉嘉和琪琪随机从“微信,支付宝,银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.答案:(1)条形统计图见解析,90∘;(2)不同,理由见解析;(3)13.分析:(1)由两幅图可知,用现金、支付宝、其他支付共有人数110人,所占比例为1-15%-30%=55%,可得共调查了多少人,再根据用银行卡、微信支付的百分比可得答案(2)根据原数据的众数所在的分类为微信,加上遗漏的15份问卷后,数据的众数所在的分类为微信、支付宝可得答案;(3)将微信记为A 、支付宝记为B 、银行卡记为C ,画出树状图根据古典概型概率计算公式可得答案. (1)由条形统计图可知,用现金、支付宝、其他支付共有人数110人, 所占比例为1-15%-30%=55%,所以共调查了1100.55=200人,所以用银行卡支付的人有200×0.15=30人,用微信支付的人有200×0.3=60人, 用现金支付所占比例为50200=0.25,所以0.25×360∘=90∘,在扇形统计图中表示“现金”支付的扇形圆心角的度数为90°,补全统计图如图所示:(2)重新统计后的众数所在的分类与之前统计的情况不同,理由如下:原数据的众数所在的分类为微信,而加上遗漏的15份问卷后,数据的众数所在的分类为微信、支付宝. (3)将微信记为A 、支付宝记为B 、银行卡记为C ,画树状图如下:∵共有9种等可能的结果,其中两人恰好选择同一种支付方式的有3种, ∴两人恰好选择同一种支付方式的概率为39=13.18、某田径队有三名短跑运动员,根据平时训练情况统计甲、乙、丙三人100米跑(互不影响)的成绩在13s 内(称为合格)的概率分别为25,,13.若对这三名短跑运动员的100跑的成绩进行一次检测,则求:(Ⅰ)三人都合格的概率;34(Ⅱ)三人都不合格的概率;(Ⅲ)出现几人合格的概率最大.答案:(Ⅰ)110;(Ⅱ)110;(Ⅲ)1人. 分析:记甲、乙、丙三人100米跑成绩合格分别为事件A ,B ,C ,显然事件A ,B ,C 相互独立,则P(A)=25,P(B)=34,P(C)=13,从而根据不同事件的概率求法求得各小题.记甲、乙、丙三人100米跑成绩合格分别为事件A ,B ,C ,显然事件A ,B ,C 相互独立,则P(A)=25,P(B)=34,P(C)=13 设恰有k 人合格的概率为P k (k =0,1,2,3).(Ⅰ)三人都合格的概率:P 3=P(ABC)=P(A)⋅P(B)⋅P(C)=25×34×13=110(Ⅱ)三人都不合格的概率:P 0=P(ABC)=P(A)⋅P(B)⋅P(C)=35×14×23=110.(Ⅲ)恰有两人合格的概率:P 2=P(ABC)+P(ABC)+P(ABC)=25×34×23+25×14×13+35×34×13=2360. 恰有一人合格的概率:P 1=1−P 0−P 2−P 3=1−110−2360−110=2560=512.因为512>2360>110,所以出现1人合格的概率最大.。
概率论考试题及答案
概率论考试题及答案导言:概率论是数学中的一门基础学科,主要研究随机现象的规律性和不确定性。
它广泛应用于统计学、金融、工程学、计算机科学等领域。
本文将给出一些概率论考试题及答案,旨在帮助读者加深对概率论知识的理解和掌握。
题目一:计算概率已知一副扑克牌,共有52张牌,其中13张为红心。
从中任意抽取5张牌,求至少一张红心的概率。
解答:首先计算没有红心的情况,即全是黑桃、方片和梅花的概率。
抽取第一张牌时,没有红心的概率为39/52;抽取第二张牌时,没有红心的概率为38/51;以此类推,抽取第五张牌时,没有红心的概率为35/48。
将每次抽取没有红心的概率相乘,即可得到全是非红心牌的概率为(39/52) * (38/51) * (37/50) * (36/49) * (35/48) ≈ 0.359。
因此,至少一张红心的概率为1 - 0.359 ≈ 0.641。
题目二:条件概率在一批产品中,有30%的次品。
已知次品中的20%是由机器A生产的,而合格品中的15%是由机器A生产的。
现从这批产品中随机选取一件,发现该件品质合格。
求此件产品是由机器A生产的概率。
解答:设事件B表示所选产品是由机器A生产的,事件A表示所选产品是合格品。
根据题意,已知P(B) = 0.3,P(A|B) = 0.15,需要求的是P(B|A)。
根据条件概率的定义,我们有P(B|A) = P(A∩B) / P(A)。
首先计算P(A∩B),即既是合格品又是由机器A生产的概率,即P(A∩B) = P(B) * P(A|B) = 0.3 * 0.15 = 0.045。
其次,计算P(A),即产品为合格品的概率。
合格品中由机器A生产的概率为0.15,由机器B生产的概率为1 - 0.15 = 0.85。
所以,P(A) = P(A∩B) + P(A∩B') = 0.045 + 0.85 * (1 - 0.2) ≈ 0.881。
最后,根据条件概率的公式,可得P(B|A) = P(A∩B) / P(A) = 0.045 / 0.881 ≈ 0.051。
概率论典型例题
P{ X 0} P{ X 2}
P{ X 0} P{ X 2} P{ X 5}
22 . 29
---
例2 设离散型随机变量 X 的分布函数为
0, x 1,
a,
1 x 1,
F
(
x
)
2 3
a,
1 x 2,
a b, x 2.
且 P{ X 2} 1 ,试确定常数a,b,并求 X 的分布律. 2
---
例5 设某仪器上装有三只独立工作的同型号电子 元件,其寿命(单位 : 小时)都服从同一指数分布,其
中参数 1 600,试求在仪器使用的最初200小时
内,至少有一只元件损坏的概率a. [思路] 以 Ai (i 1,2,3) 分别表示三个电子元件“在 使用的最初 200 小时内损坏”的事件, 于是 a P{ A1 A2 A3 } 1 P( A1 A2 A3 )
C B AB.
---
例3 假设目标出现在射程之内的概率为0.7,这时 射击命中目标的概率为0.6, 试求两次独立射击至 少有一次命中目标的概率.
[思路] 引进事件 A {目标进入射程}; Bi {第i次射击命中目标}, i 1,2.
故所求概率为事件B B1 B2的概率,由于目标 不在射程之内是不可能命中目标的, 因此 , 可利 用全概率公式来求解.
---
例4 设有来自三个地区的各10名、15名和25名考 生的报名表,其中女生的报名表分别为3份、7份和
5 份, 随机地取一个地区的报名表,从中先后抽出 两份.
(1) 求先抽到的一份是女生表的概率 p;
(2)已知后抽到的一份表是男生表,求先抽到 的一份是女生表的概率 p.
[思路] 由于抽到的表与来自哪个地区有关,故此 题要用全概率公式来讨论.
典型例题_概率论
第一部分 随机事件及其概率例 1 设A B C 、、为三个随机事件,试用A B C 、、表示下列事件。
1)“A B 与发生,而C 不发生”(表示为A B C ); 2)“三个事件都发生”(表示为A B C ); 3)“三个事件至少有一个发生”(表示为A B C⋃⋃);4)“三个事件恰好有一个发生”(表示为A B C A B C A B C++);5)“三个事件至少有两个发生”(表示为A B B C A C ⋃⋃或A B CA B C A B C A B C+++)6)“三个事件至多有两个发生”(表示为A B C 或A B C⋃⋃)。
例2 将n 只球随机地放入N (N ≥n )个盒子中去,假定盒子装球容量不限, 试求1)每个盒子至多装一只球的概率,2)指定其中一个盒子装一只球的概率。
解: 设事件A =“N 个盒子中,每个盒子至多装一只球”,事件B=“指定其中一个盒子装一只球”。
1)一个球放入N 个盒子中的放法有N 种,n 个球放入N 个盒子中的放法有nN 种。
假设固定前n 个盒子各装一球,其分配方法有!n 种,从N 个盒子中任取n 个盒子各装一球,取法有nN C 种,所以,事件A 的样本点数为nNC !n ,即事件A 的概率为nn NNn CA P !)(=2)若指定一个盒子里装一只球,首先考虑球的取法有1nC 种,其次,剩余的1N-个盒子中,1n -只球的放法有1(1)n N --种,所以事件B 的样本点数为1n C 1(1)n N --,即事件B 的概率为11(1)()n n nC N P B N--=注:还可以将模型推广,如生日问题,求事件“n 个人中至少有两人的生日相同”的概率。
设想一年有365天,将“天”看成‘盒子’,n 个人好比‘n 只球’,考虑事件A 的对立事件A =“n 个人在一年中生日全不相同”,它等价于“n 个球装入365个盒子中各装一球”,由前面的计算知:nnn C A P 365!)(365=,所以nnn C A P 365!1)(365-=。
概率论典型例题
20
4
故Y
~
B
⎛ ⎜⎝
3,
1 4
⎞ ⎟⎠
。
于是
C P{Y = 2} =
2⎛ 3 ⎜⎝
1 4
⎞2 ⎟⎠
⎛ ⎜⎝
3 4
⎞ ⎟⎠
=
9 64
。
注:本例既需要掌握二项分布的由来及其概率分布,还需掌握连续型随机变
量由密度函数求其在某个区间上的取值概率。 有离散也有连续,需要区分清楚,
掌握牢固,这是容易出问题的地方。
解:(1)当 y > 0 时,
FY ( y) = P(Y
≤
y)
=
P
⎛ ⎜⎝
1 X
≤
y
⎞ ⎟⎠
=
P
⎛ ⎜⎝
1 X
≤
0
⎞ ⎟⎠
+
P
⎛ ⎜⎝
0
<
1 X
≤
y
⎞ ⎟⎠
当 y < 0 时,
=
P(X
<
0) +
⎛ P⎜
⎝
X
≥
1 y
⎞ ⎟ ⎠
=
FX
(0) +1−
FX
⎛ ⎜ ⎝
1 y
⎞ ⎟
;
⎠
FY ( y) =
P(Y
≤
X2 0
1
4
9
pk 0.1 0.3 0.3 0.3
注:对离散型随机变量,其函数的分布列的求法比较简单。只要从分布列定
义中包含的两部分:可能取值与对应概率出发,必定能求出。
另外,值得提醒的是,如果分布列中有未知参数,一定要通过分布列的性质
(一般是归一性的应用),将其求出,再进行其他计算。
(完整版)概率经典例题及解析、近年高考题50道带答案.doc
【经典例题】【例 1】( 2012 湖北) 如图,在圆心角为直角的扇形 OAB 中,分别以 OA , OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是21 121 A .1- πB . 2 - πC . πD . π【答案】 A【解析】 令 OA=1,扇形 OAB 为对称图形, ACBD 围成面积为 S 1,围成 OC 为 S 2,作对称轴 OD ,则过 C 点. S 2 即为以 OA2 π 1 2 111 π -2 S2(2)-2×2×2=1为直径的半圆面积减去三角形OAC 的面积, S =8 .在扇形 OAD 中 2 为扇形面积减去三角S 2 S 1 1 21 S 2π -2 π -2π形 OAC 面积和 2 , 2 = 8 π×1 - 8 - 2 =16 , S 1+S 2= 4 ,扇形 OAB 面积 S= 4 ,选 A .【例 2】( 2013 湖北) 如图所示,将一个各面都涂了油漆的正方体,切割为 125 个同样大小的小正方体,经过搅拌后, 从中随机取一个小正方体,记它的涂漆面数为X ,则 X 的均值 E(X) = ( )1266 1687 A. 125B. 5C.125D. 5【答案】 B27 54 36 8 27【解析】 X 的取值为 0,1, 2,3 且 P(X = 0) =125,P(X = 1) =125,P(X = 2) = 125,P(X = 3) = 125,故 E(X) =0× 125+1× 54 36 8 6+2× +3× =,选B.125 125 125 5【例 3】( 2012 四川) 节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通 电后的 4 秒内任一时刻等可能发生,然后每串彩灯以 4 秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过 2 秒的概率是 ()1 1 3 7 A. 4B. 2C. 4D. 8【答案】 C【解析】 设第一串彩灯在通电后第 x 秒闪亮, 第二串彩灯在通电后第 y 秒闪亮,由题意 0≤ x ≤ 4,满足条件的关系式0≤y ≤4,根据几何概型可知, 事件全体的测度 ( 面积 ) 为 16 平方单位,而满足条件的事件测度( 阴影部分面积 ) 为 12 平方单位,123故概率为 16= 4.【例 4】( 2009 江苏) 现有 5 根竹竿,它们的长度(单位: m )分别为 2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2 根竹竿,则它们的长度恰好相差 0.3m 的概率为 .【答案】 0.2 【解析】 从 5 根竹竿中一次随机抽取 2 根的可能的事件总数为 10,它们的长度恰好相差 0.3m 的事件数为 2,分别是:2.5 和 2.8 , 2.6 和 2.9 ,所求概率为 0.2【例 5】( 2013 江苏) 现有某类病毒记作 X m Y n ,其中正整数 m , n(m ≤7, n ≤ 9)可以任意选取,则 m , n 都取到奇数的概率为 ________.20【答案】【解析】 基本事件共有 7×9= 63 种, m 可以取 1, 3, 5,7, n 可以取 1, 3,5, 7, 9. 所以 m ,n 都取到奇数共有 2020种,故所求概率为63.【例 6】( 2013 山东) 在区间 [- 3,3] 上随机取一个数 x ,使得 |x + 1|- |x - 2| ≥1成立的概率为 ________.【答案】13【解析】 当 x<- 1 时,不等式化为- x - 1+ x -2≥1,此时无解;当- 1≤x ≤2 时,不等式化为 x +1+ x -2≥1,解之得 x ≥1;当 x>2 时,不等式化为 x + 1- x +2≥1,此时恒成立, ∴|x + 1| - |x -2| ≥1的解集为 [ 1,+∞ ) . 在 [ -3, 3]上使不等式有解的区间为 [ 1,3] ,由几何概型的概率公式得 P = 3- 1 1 .3-(- 3) =3【例 7】( 2013 北京)下图是某市 3 月 1 日至 14 日的空气质量指数趋势图, 空气质量指数小于 100 表示空气质量优良, 空气质量指数大于 200 表示空气重度污染. 某人随机选择 3 月 1 日至 3 月 13 日中的某一天到达该市, 并停留 2 天.( 1)求此人到达当日空气重度污染的概率;( 2)设 X 是此人停留 期间空气质量优良的天数,求 X 的分布列与数学期望;( 3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明 )【答案】 132; 1213; 3 月 5 日【解析】 设 Ai 表示事件“此人于3 月 i 日到达该市” (i = 1, 2, , 13) .1(i ≠j) .根据题意, P(Ai) = ,且 Ai ∩Aj =13( 1)设 B 为事件“此人到达当日空气重度污染”,则B =A5∪A8.2所以 P(B) =P(A5∪A8)= P(A5) + P(A8) = .13( 2)由题意可知, X 的所有可能取值为 0,1, 2,且P(X= 1) =P(A3∪A6∪A7 ∪A11)4=P(A3) + P(A6) + P(A7) + P(A11) =13,P(X= 2) =P(A1∪A2∪A12∪A13)4=P(A1) + P(A2) + P(A12) + P(A13) =13,5P(X= 0) = 1- P(X= 1) - P(X= 2) =13.所以 X 的分布列为X 0 1 2P 5 4 4 13 13 135 4 4 12故 X 的期望 E(X) =0×+1×+2×= .13 13 13 13( 3)从 3 月 5 日开始连续三天的空气质量指数方差最大.【例 8】(2013 福建)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为2,中奖可以3 获得 2 分;方案乙的中奖率为2,中奖可以获得 3 分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中5奖与否互不影响,晚会结束后凭分数兑换奖品.( 1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X ,求 X≤3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?【答案】1115;方案甲.2 2【解析】方法一:( 1)由已知得,小明中奖的概率为3,小红中奖的概率为5,且两人中奖与否互不影响.记“这2 人的累计得分X≤3”的事件为A,则事件 A 的对立事件为“ X=5”,2 2 411因为 P(X=5) =×=,所以P(A)=1-P(X=5)=,3 5 151511即这两人的累计得分X≤3的概率为15.( 2)设小明、小红都选择方案甲抽奖中奖次数为X1,都选择方案乙抽奖中奖次数为X2,则这两人选择方案甲抽奖累计得分的数学期望为E(2X1) ,选择方案乙抽奖累计得分的数学期望为E(3X2) .2 2由已知可得,X1~ B 2,3, X2~ B 2,5,2 42 4所以 E(X1) =2×3=3, E(X2) =2×5=5,812从而 E(2X1) = 2E(X1) =, E(3X2) = 3E(X2) =.3 5因为 E(2X1)>E(3X2) ,所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.方法二:( 1)由已知得,小明中奖的概率为2,小红中奖的概率为2,且两人中奖与否互不影响.35记“这两人的累计得分 X ≤3”的事件为 A ,则事件 A 包含有“ X =0”“ X =2”“ X =3”三个两两互斥的事件,2 2 1 2 2 22 22, 因为 P(X = 0) = 1-× 1- = ,P(X = 2) = × 1-= ,P(X =3) = 1- × = 15 355355 3 511所以 P(A) = P(X = 0) + P(X = 2) + P(X = 3) =15,11即这两人的累计得分 X ≤3的概率为 15.( 2)设小明、小红都选择方案甲所获得的累计得分为 X1,都选择方案乙所获得的累计得分为X2,则 X1, X2 的分布列如下:X1 0 2 4 X2 0 3 6 P14 4 P912 4 9 9 9 2525251448所以 E(X1) =0× 9+2× 9+4× 9= 3,E(X2) =0× 9 +3× 12+6× 4 = 12.25 25 25 5因为 E(X1)>E(X2) ,所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.【例 9】( 2013 浙江) 设袋子中装有 a 个红球, b 个黄球, c 个蓝球,且规定:取出一个红球得1 分,取出一个黄球得2 分,取出一个蓝球得3 分.( 1)当 a = 3, b = 2,c = 1 时,从该袋子中任取 (有放回,且每球取到的机会均等 )2 个球,记随机变量 ξ为取出此 2球所得分数之和,求 ξ的分布列;( 2)从该袋子中任取 (每球取到的机会均等 )1 个球,记随机变量 η为取出此球所得分数. 若 E η= 5,D η=5,求 a ∶ b ∶ c.3 9【答案】 3∶ 2∶ 1【解析】( 1)由题意得,ξ= 2, 3, 4, 5, 6.P(ξ= 2) = 3×3 1= ,6×6 4 P(ξ= 3) =2×3×2= 1,6×6 32×3×1+2×2 5 P(ξ= 4) = 6×6 = 18. P(ξ= 5) = 2×2×1 16×6= 9,P(ξ= 6) = 1×1 1,= 366×6 所以 ξ 的分布列为ξ 2 3 4 5 6 P1 1 5 1 1 4318936( 2)由题意知 η 的分布列为η 1 2 3Pa b ca +b +c a + b + ca +b +ca 2b3c5所以 E η= a + b + c + a +b + c + a +b + c = 3,5 a 5 b 5c5D η= 1- 32· a + b + c +2- 32· a + b + c +3- 32· a + b + c = 9, 2a - b - 4c = 0,解得 a = 3c , b = 2c , 化简得a + 4b -11c = 0,故 a ∶b ∶c =3∶2∶1.【例 10】( 2009 北京理) 某学生在上学路上要经过 4 个路口, 假设在各路口是否遇到红灯是相互独立的,遇到红灯的 概率都是 1,遇到红灯时停留的时间都是2min.3( 1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率; ( 2)求这名学生在上学路上因遇到红灯停留的总时间的分布列及期望 .【答案】4;327 8【解析】 本题主要考查随机事件、互斥事件、相互独立事件等概率知识、考查离散型随机变量的分布列和期望等基础 知识,考查运用概率与统计知识解决实际问题的能力.( 1)设这名学生在上学路上到第三个路口时首次遇到红灯为事件 A ,因为事件 A 等于事件“这名学生在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯”,所以事件A 的概率为PA11111 4 .333 27( 2)由题意,可得可能取的值为 0,2, 4, 6,8(单位: min ) .事件“2k ”等价于事件“该学生在路上遇到k 次红灯”( k 0, 1, 2,3, 4),k 4 k∴ P2kC k412k 0,1,2,3,4,33∴即 的分布列是0 246 8P16 32 8818181278181∴ 的期望是 E16 32 88 1 82468.818127 81813【课堂练习】1.( 2013 广东) 已知离散型随机变量X 的分布列为X 1 2 3P3 3 151010则 X 的数学期望 E(X) = () 35A. 2B . 2 C. 2 D . 32.( 2013 陕西) 如图,在矩形区域 ABCD 的 A ,C 两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区 域 ADE 和扇形区域 CBF( 该矩形区域内无其他信号来源,基站工作正常 ).若在该矩形区域内随机地选一地点,则该地点无 信号的概率是 ( ).A .1- π π π D . π4 B . -1 B .2- 42 23.在棱长分别为 1, 2, 3 的长方体上随机选取两个相异顶点,若每个顶点被选的概率相同,则选到两个顶点的距离 大于 3的概率为 ()4 3 2 3A .7B . 7C . 7D . 144.( 2009 安徽理) 考察正方体 6 个面的中心,甲从这 6 个点中任意选两个点连成直线,乙也从这6 个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于12 34?BA .B .C .D .75757575?F?C?D? E? A5.( 2009 江西理) 为了庆祝六一儿童节,某食品厂制作了3 种不同的精美卡片,每袋食品随机装入一张卡片,集齐3种卡片可获奖,现购买该种食品5 袋,能获奖的概率为()3133 C .4850A .B .81D ..8181816.( 2009 辽宁文) ABCD 为长方形, AB = 2, BC =1,O 为 AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于 1 的概率为A .B . 1C .8D . 18447.( 2009 上海理) 若事件 E 与 F 相互独立,且 P EP F1 的值等于,则P EI F4A . 01 C .11B .4D .1628.( 2013 广州) 在区间 [1,5] 和[2, 4]上分别取一个数,记为a ,b ,则方程 x 2 y 22+b 2= 1 表示焦点在 x 轴上且离心率小a于 3的椭圆的概率为 ()2C .1711531A .2B . 3232D . 321, 2,3,9.已知数列 {a } 满足 a = a+ n - 1(n ≥2,n ∈ N),一颗质地均匀的正方体骰子,其六个面上的点数分别为nnn -14, 5, 6,将这颗骰子连续抛掷三次,得到的点数分别记为 a , b , c ,则满足集合 {a ,b , c} = {a 1, a 2, a 3}(1 ≤a i ≤6,i = 1, 2, 3)的概率是 ()1B . 1C . 1D . 1A .72 36 24 1210.( 2009 湖北文) 甲、乙、丙三人将参加某项测试,他们能达标的概率分别是0.8、 0.6、 0.5,则三人都达标的概率是,三人中至少有一人达标的概率是 。
概率论-例题
1. 设随机变量X 与Y 分别服从参数为λ1和λ2的指数分布,且二者相互独立.求:(1) )|(|x y f X Y ; (2) ⎩⎨⎧>≤=YX Y X Z ,0,1的分布律.2. 设随机变量在上服从均匀分布, 服从参数的指数分布,且相互独立,求(1)关于的方程有实根的概率;(2).3. 一射手向某个靶子射击,设靶心为坐标原点,弹着点坐标(X ,Y )服从二维正态分布N(0,1;0,1;0). 求弹着点与靶心的距离Z 的概率密度函数。
4. 设P{X=0}=P{X=1}=1/2,Y~U(0,1)且X,Y 相互独立,求X+Y 的概率分布.5. 随机变量(X , Y )的联合概率密度函数是 )()(2121),(2222y g x g e e y x f y x πππ-+-+= (x , y )∈R 2 其中 ⎩⎨⎧>≤=ππx x x x g 0cos )( 1) 证明X 与Y 都服从正态分布;2) 求随机变量Y 关于X 的条件概率密度; 3)讨论X 与Y 是否相互独立? 4) 根据本题的结果,你能总结出什么结论?6. 甲乙两人约定在下午1点到2点之间的任意时刻独立到达某车站乘坐公交车,这段时间内共有四班公交车,它们开车的时刻分别为1:15, 1:30, 1:45; 2:00. 若他们约定:(1) 见车就乘;(2)最多等一辆车。
求他们乘同一辆车的概率。
7. 某超市销售一批照相机共10台,其中有3台次品,7台正品。
某顾客去选购时,超市已售出2台,该顾客从剩下的8台中任选一台,求该顾客购买到正品的概率.8. 设甲、乙、丙三导弹向同一敌机射击,甲、乙、丙击中敌机的概率分别为0.4, 0.5, 0.7. 如果只有一弹击中,飞机坠毁的概率为0.2;如两弹击中,飞机坠毁的概率为0.6;如三弹击中,飞机坠毁的概率为0.9。
(1)求飞机坠毁的概率;(2)若飞机已经坠毁,问飞机最有可能是被几颗导弹击中的?9. 设)(),(21x F x F 为两个分布函数,问:(1) )()(21x F x F +是否分布函数? (2))()(21x F x F 是否分布函数? 给出证明。
概率论试题(附含答案)详细
事件表达式A B 的意思是事件A 与事件B 至少有一件发生假设事件A 与事件B 互为对立,则事件A B 是不可能事件. 这是因为对立事件的积事件是不可能事件。
已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从自由度为2的χ2分布. 因为n 个相互独立的服从标准正态分布的随机变量的平方和服从自由度为n 的χ2分布。
已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则X +Y ~N (0,5). 因为相互独立的正态变量相加仍然服从正态分布,而E (X +Y )=E (X )+E (Y )=2-2=0, D (X +Y )=D (X )+D (Y )=4+1=5, 所以有X +Y ~N (0,5)。
样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有1233X X X ++是μ的无偏估计. 因为样本均值是总体期望的无偏估计.随机变量X 服从在区间(2,5)上的均匀分布,则X 的数学期望E (X )的值为3.5. 选C ,因为在(a ,b )区间上的均匀分布的数学期望为(a +b )/2。
已知P (A )=0.6, P (B |A )=0.3, 则P (A B )= 0.18. 由乘法公式P (A B )=P (A )P (B |A )=0.6⨯0.3=0.18。
三个人独立地向一架飞机射击,每个人击中飞机的概率都是0.4,则飞机被击中的概率为0.784. 是因为三人都不中的概率为0.63=0.216, 则至少一人中的概率就是1-0.216=0.784。
一个袋内有5个红球,3个白球,2个黑球,任取3个球恰为一红、一白、一黑的概率为0.25. 由古典概型计算得所求概率为31053210.254C ⨯⨯==。
已知连续型随机变量,01,~()2,12,0,.x x X f x x x ≤≤⎧⎪=-<≤⎨⎪⎩其它 则P {X ≤1.5}=0.875,因P {X ≤1.5} 1.5()d 0.875f x x ==⎰假设X ~B (5, 0.5)(二项分布), Y ~N (2, 36), 则E (X +Y )= 填 4.5,因E (X )=5⨯0.5=2.5, E (Y )=2, E (X +Y )=E (X )+E (Y )=2.5+2=4.5一种动物的体重X 是一随机变量,设E (X )=33, D (X )=4,10个这种动物的平均体重记作Y ,则D (Y )=0.4,因为总体X 的方差为4,10个样本的样本均值的方差是总体方差的1/10。
高等数学(概率论)习题及解答
高等数学(概率论)习题及解答高等数学(概率论)题及解答
1. 题一
1.1. 题目
已知事件A和B的概率分别为P(A) = 0.2,P(B) = 0.3,且P(A∪B) = 0.4,求P(A∩B)。
1.2. 解答
根据概率的加法定理,有:
P(A∪B) = P(A) + P(B) - P(A∩B)
代入已知数据得:
0.4 = 0.2 + 0.3 - P(A∩B)
P(A∩B) = 0.1
所以,P(A∩B)的概率为0.1。
2. 题二
2.1. 题目
已知某城市一天中的天气分为晴天、阴天和雨天三种情况,其中晴天的概率为0.4,阴天的概率为0.3。
现已知,当下为晴天时,随后一天也是晴天的概率为0.7;当下为阴天时,随后一天为晴天的概率为0.5。
求当下为晴天时,随后一天为阴天的概率。
2.2. 解答
设事件A为当下为晴天,事件B为随后一天为阴天。
根据条件概率的定义,有:
P(B|A) = P(A∩B) / P(A)
已知 P(A) = 0.4,P(B|A) = 0.5,代入并整理得:
0.5 = P(A∩B) / 0.4
P(A∩B) = 0.5 * 0.4
P(A∩B) = 0.2
所以,当下为晴天时,随后一天为阴天的概率为0.2。
以上是高等数学(概率论)习题及解答的部分内容,如有更多问题或需要补充,请随时告知。
概率论典型例题共102页
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯
40、人类法律,事物有规律,这是不 容忽视 的。— —爱献 生
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
25、学习是劳动,是充满思想的劳动。——乌申斯基
谢谢!
概率论例题与详解
例题1.玻璃杯成箱出售,每箱20只,各箱次品数为0,1,2只的概率分别为0.8,0.1,0.1,一顾客欲买下一箱玻璃杯售货员随机取出一箱,顾客开箱后随机取4只进行检查,若无次品,则购买,否则退回,求(1)顾客买下该箱玻璃杯的概率?(2)在顾客买下的一箱中,确实没有次品的概率?解 设),2,1,0(=i A i 表示箱中有i 件次品,B 表示顾客买下该箱玻璃杯(1)由全概率公式()()()94.01.01.018.042041842041920≈⨯+⨯+⨯=∑==C C C C A p A B P B P i i i (2)由贝叶斯公式85.0)()()()(000≈=B P A P A B P B A P2.设有两箱同类零件,第一箱内装有50件,其中10件是一等品;第二箱内装有30件,其中18件是一等品,现从两箱中任意挑出一箱,然后从该箱中依次随机地取出两个零件(取出的零件不放回),试求(1)第一次取出的零件是一等品的概率;(2)在第一次取出的零件是一等品的条件下,第二次取出的零件仍是一等品的概率.解 设),2,1,0(=i A i 表示从第i 箱中取得的是一等品(取出的零件不放回),B 表示从第一箱中取零件,B 表示从第二箱中取零件(1)由全概率公式4.02130********)()()()()(111=⨯+⨯=+=B P B A P B P B A P A P (2)由全概率公式 2129173018214995010)()()()()(212121⨯⨯+⨯⨯=+=B P B A A P B P B A A P A A P 因此有 )()()(12112A P A A P A A P =4856.0)2129173018214995010(25=⨯⨯+⨯⨯= 3.某电子元件在每一次试验中发生故障的概率为0.3,当故障发生不少于3次时,指示灯发出信号(1)进行了5次重复独立试验,求指示灯发出信号的概率;(2)进行了7次重复独立试验,求指示灯发出信号的概率.解(1)进行了5次重复独立试验,指示灯发出信号的概率为163.03.07.03.07.03.054452335≈+⋅+⋅C C(2)进行了7次重复独立试验,指示灯发出信号的概率为353.07.03.07.03.07.0152276177≈⋅+⋅--C C4.甲、乙、丙3人同向一飞机射击,设击中飞机的概率分别为0.4,0.5,0.7,如果只有1人击中飞机,则飞机被击落的概率是0.2;如果有2人击中飞机,则飞机被击落的概率是0.6;如果3人都击中飞机,则飞机一定被击落,求飞机被击浇的概率.解:设321,,A A A 分别表示甲、乙、丙击中飞机,i B 表示有)3,2,1(=i i 个人击中飞机=)(1B P )()()(321321321A A A P A A A P A A A P ++)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=36.07.05.06.03.05.06.03.05.04.0=⨯⨯+⨯⨯+⨯⨯==)(2B P )()()(321321321A A A P A A A P A A A P ++)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=41.07.05.04.03.05.06.03.05.04.0=⨯⨯+⨯⨯+⨯⨯==)(3B P )(321A A A P)()()(321A P A P A P =14.07.05.04.0=⨯⨯=由全概率公式)()()(11B B P B P B P =)()(22B B P B P +)()(33B B P B P +458.0114.06.041.02.036.0=⨯+⨯+⨯=5.随机地向半圆220x ax y -<<(a 为正常数)内扔一个点,点落在半圆内任何区域内的概率与区域的面积成正比,求原点与该点的连线与x 轴的夹角小于4π的概率. 解:以D 表示半圆220x ax y -<<,由题设,点),y x (应该落在如图的阴影部分G ,G 的面积为(在极坐标系中计算)θθπθθπd r rdr d G S a a ⎰⎰⎰⎪⎭⎫ ⎝⎛==40cos 202cos 204021)( θθπd a ⎰=4022cos 22402214)2cos 1(a d a ⎪⎭⎫ ⎝⎛+=+=⎰πθθπ(或G 的面积等于一个等腰直角三角形的面积加上41个圆的面积)故πππ12121214)()()(22+=⎪⎭⎫ ⎝⎛+==a a D S G S A P 6.设1)(0<<A P ,1)(0<<B P ,证明:B A 、独立⇔1)|()|(=+B A P B A P . 证明:1)|()|(=+B A P B A P ⇔)()|(1)|(B A P B A P B A P =-= ⇔)(1)()()(B P B A P B P AB P -=⇔)()()()()(B A P B P AB P B P AB P =- ⇔)()()]()()[()(A P B P B A P AB P B P AB P =+=⇔B A 、独立7. 要验收一批100件的乐器,验收方案如下:自该批乐器中随机地取3件测试(设3件乐器的测试是相互独立的),如果3件中至少有一件被认为音色不纯,则这批乐器就被拒绝接收,设一件音色不纯的乐器经测试查出其为音色不纯的概率为0.95,而一件音色纯的乐器经测试被误认为不纯的概率为0.01,如果已知这100件乐器中恰好有4件是音色不纯的,试问这批乐器被接收的概率是多少?解:设i B ={随机地取3件乐器,其中有i 件是音色不纯的}(3,2,1,0=i )A={这批乐器被接收}30)99.0()(=B A P ,05.0)99.0()(21⋅=B A P ,22)05.0(99.0)(⋅=B A P33)05.0()(=B A P31003960)(C C B P =,3100142961)(C C C B P =,3100241962)(C C C B P =,3100343)(C C B P = 故由全概率公式有8629.0)()()(30==∑=i i i B P B A P A P8.一 猎人用猎枪射击野兔,第一枪距离200米,如果未击中就追到150米处第二次射击,如果仍未击中,再追到100米处第三次射击,此时击中的概率为0.5,如果猎人的命中率始终与距离的平方成反比,求猎人击中野兔的概率。
概率论部分例题
解 设B1,B2,B3 分别表示事件: 任取的零件为甲、乙、丙机器生产, A ={抽取的零件是不合格品}, 由条件知
P(B1) 0. 40, P(B2 ) 0. 25, P(B3 ) 0. 35,
P( A | B1) 0. 10, P( A | B2 ) 0. 05, P( A | B3) 0. 01,
0
Lx
则 A 的度量 =
1 2
L2
1 2
(
Байду номын сангаасL
S
)2
.
P( A)
1 2
L2
1 2
(
L
S
)2
L2
.
1.3.3
例3
有 20 套试题,其中7套已在考试中用过.现从这 20 套题
中不放回地连取两次,每次取一套,共取两套, 问在第一次取到
的是未曾用过的试题的情况下, 第二次取到的也是未曾用过的试题
余概公式 加法公式
1 [P( A) P(B) P(C) P( AB) P( AC) P(BC) P( ABC)]
ABC AB, P( ABC) P( AB), 又 P( AB) 0,
由概率的非负性可知 P( ABC) 0 ,
P( A B C ) 1-(1/4 + 1/4 + 1/4 - 0 - 1/6 - 1/6 + 0 ) = 7/12 .
1.2.2
例1(分房模型) 有n个不同的粒子,每个粒子都以同样的概率落入
N( n)个格子的每一格子中,试求下述事件的概率:
(1) A ={ 指定的n个格子中各有一个粒子};
n个
(2)A ={ 恰有n个格子中各有一个粒子};
第一章概率论典型例题
典型例题:一.排列1.特殊排列相邻、彼此隔开、顺序一定和不可分辨例1.晚会上有5个不同的唱歌节目和3个不同的舞蹈节目,问:分别按以下要求各可排出几种不同的节目单?①3个舞蹈节目排在一起;②3个舞蹈节目彼此隔开;③3个舞蹈节目先后顺序一定。
例2.4幅大小不同的画,要求两幅最大的排在一起,问有多少种排法?例3.5辆车排成1排,1辆黄色,1辆蓝色,3辆红色,且3辆红车不可分辨,问有多少种排法?2.重复排列和非重复排列(有序)例4.5封不同的信,有6个信箱可供投递,共有多少种投信的方法?3.对立事件例5.七人并坐,甲不坐首位,乙不坐末位,有几种不同的坐法?例6.15人中取5人,有3个不能都取,有多少种取法?例7.有4对人,组成一个3人小组,不能从任意一对中取2个,问有多少种可能性?4.顺序问题例8.3白球,2黑球,先后取2球,放回,2白的种数?(有序)例9.3白球,2黑球,先后取2球,不放回,2白的种数?(有序)例10.3白球,2黑球,任取2球,2白的种数?(无序)二.概率1. 一批产品由90件正品和10件次品组成,从中任取一件,问取得正品的概率多大.2. 甲、乙两人各自向同一目标射击,已知甲命中目标的概率为0.7,乙命中目标的概率为0.8 求:(1)甲、乙两人同时命中目标的概率;(2)恰有一人命中目标的概率;(3)目标被命中的概率.3. 甲、乙、丙三人同时对飞机进行射击, 三人击中的概率分别为0.4、0.5、0.7. 飞机被一人击中而击落的概率为0.2,被两人击中而击落的概率为0.6, 若三人都击中, 飞机必定被击落, 求飞机被击落的概率.4. 有一批产品是由甲、乙、丙三厂同时生产的.其中甲厂产品占50%,乙厂产品占30%, 丙厂产品占20%,甲厂产品中正品率为95%,乙厂产品正品率为90%, 丙厂产品正品率为85%, 如果从这批产品中随机抽取一件, 试计算该产品是正品的概率多大.1.7 一个小孩用13个字母T T N M M I I H E C A A A ,,,,,,,,,,,,作组字游戏。
概率论典型例题(稻谷书苑)
(1 p5 )[1 (1 p1 p3 )(1 p2 p4 )].
藤蔓课堂
13
三、典型例题
例1 已知离散型随机变量 X 的可能取值为 2,0,
2, 5,相应的概率依次为 1 , 3 , 5 , 7 ,试求概率 a 2a 4a 8a
P{ X 2 X 0}.
[思路] 首先根据概率分布的性质求出常数 a 的
值, 然后确定概率分布律的具体形式,最后再计
算解 利用概率分布律的性质 pi 1,
条件概率.
i
藤蔓课堂
14
有
1
i
pi
1 a
3 2a
5 4a
7 8a
37 , 8a
故 a 37 , 8
因此 X 的分布律为
藤蔓课堂
7
解 记 Hi {抽到地区考生的报名表 }, i 1, 2, 3;
Aj {第 j 次抽到报名表是男生的}, j 1,2,
则有
P(Hi
)
1 3
(i
1,2,3);
P(
A1
H1
)
7; 10
P(
A1
H2
)
8; 15
P( A1
H3)
20 . 25
(1)由全概率公式知
3
p P( A1 ) P(Hi )P( A1 Hi ) i 1
藤蔓课堂
3
例3 假设目标出现在射程之内的概率为0.7,这时 射击命中目标的概率为0.6, 试求两次独立射击至 少有一次命中目标的概率.
[思路] 引进事件 A {目标进入射程};
Bi {第i次射击命中目标}, i 1,2. 故所求概率为事件B B1 B2的概率,由于目标 不在射程之内是不可能命中目标的, 因此 , 可利 用全概率公式来求解.
概率论解题示例
概率论解题示例概率论是数学中的一个重要分支,广泛应用于统计学、信息论、机器学习等领域。
它研究的是随机现象的规律性,通过建立数学模型和计算概率,能够解决许多实际问题。
本文将以几个概率论解题示例作为案例,展示概率论在解决实际问题中的应用。
示例一:抛硬币问题假设我们有一枚公正的硬币,上面有正面和反面两种可能的结果。
现在我们连续抛掷这枚硬币三次,请计算出在三次抛掷中,正面朝上的概率是多少?解答:在每次抛硬币时,由于硬币公正,正面朝上的概率和反面朝上的概率各为1/2。
由于我们连续抛掷三次,每次抛掷是相互独立的事件,即前一次抛掷的结果对后一次抛掷的结果没有影响。
设事件A表示正面朝上的结果,事件A的对立事件A'表示反面朝上的结果。
则在三次抛掷中正面朝上的概率可以表示为:P(正面朝上) = P(AAA') + P(AA'A) + P(A'AA) = (1/2)*(1/2)*(1/2) + (1/2)*(1/2)*(1/2) + (1/2)*(1/2)*(1/2) = 3/8所以,在三次抛掷中,正面朝上的概率为3/8。
示例二:生日悖论问题生日悖论是指在一个较小的群体中,至少有两人生日相同的概率较大的现象。
现假设有n个人,那么至少有两人生日相同的概率是多少?解答:首先考虑只有两个人的情况。
第一个人的生日可以是任意一天,第二个人的生日要与第一个人相同的概率是1/365。
所以,在仅有两个人时,至少有两人生日相同的概率为1/365。
然后我们考虑三个人的情况。
第一个人的生日可以是任意一天,第二个人的生日要与第一个人相同的概率是1/365,第三个人的生日要与前两个人中任何一个人相同的概率是2/365。
以此类推,当有n个人时,至少有两人生日相同的概率可以表示为:P = 1/365 + 2/365 + 3/365 + ... + (n-1)/365利用概率的加法原理,我们可以简化上式:P = 1/365 * (1 + 2 + 3 + ... + n-1)根据等差数列的求和公式,我们可以得到:P = 1/365 * (n-1)(n-1+1)/2 = (n-1)/730所以,当有n个人时,至少有两人生日相同的概率为(n-1)/730。
概率论例题汇总
求:(1) c;
0.3
1
2
0
0
1
0.1
0.1
0.1
0.2
0.2
0.3
0.4
0.3
0.5
0.5
设(X,Y)的概率密度是
*
求 (1) c的值;(2) 两个边缘密度;
解 (1)
例5
x
y
0
1
所以
y
x
(2)
所以
y
x
(2)
x
y
例1 已知 ( X, Y ) 的联合密度函数为 (1) (2) 讨论X ,Y 是否独立?
Y的边缘分布
X的边缘分布
所以 X,Y 的边缘分布律分别为
*
若改为无放回摸球,则(X,Y)的联合分布律为
边缘分布为
边缘分布为 与有放回的情况比较, 但边缘分布却完全相同。 两者的联合分布完全不同, 若改为无放回摸球,则(X,Y)的联合分布律为
例2 设二维随机变量(X,Y )的联合分布为
解
求:(1) c;
(2)
*
设X表示机床A一天生产的产品废品数,Y 表示机床B一天生产的产品废品数,它们的概率分布如下:
X
0
1
2
0.5
P
3
0.3
0.1
0.1
例1
解
Y
0
1
0.6
P
3
0.1
0.2
0.1
问:两机床哪台质量好?设两台机床的日产量相等。
均值相等, 据此不能判断优劣,再求方差.
X
0
1
2
0.5
P
3
0.3
概率论考研题目及答案
概率论考研题目及答案题目一:概率论基本概念问题:某工厂生产的零件,合格率为0.95。
求:1. 随机抽取一个零件,它是合格品的概率。
2. 随机抽取两个零件,至少有一个是合格品的概率。
答案:1. 由于合格率为0.95,随机抽取一个零件是合格品的概率即为合格率,即 P(合格) = 0.95。
2. 抽取两个零件至少有一个是合格品的概率可以通过计算两个零件都不合格的概率,然后用1减去这个概率来得到。
两个零件都不合格的概率是 (1 - 0.95) * (1 - 0.95) = 0.0025。
因此,至少有一个是合格品的概率为 1 - 0.0025 = 0.9975。
题目二:条件概率问题:某地区有两家医院,A医院的产妇数量占70%,B医院占30%。
在A医院出生的婴儿中,男孩的比例是60%,在B医院出生的婴儿中,男孩的比例是70%。
现在随机选择了一个男孩,求这个男孩是在A医院出生的概率。
答案:设事件A为在A医院出生,事件B为在B医院出生,事件M为是男孩。
根据题意,我们有:- P(A) = 0.7- P(B) = 0.3- P(M|A) = 0.6- P(M|B) = 0.7使用全概率公式,我们可以计算出P(M):\[ P(M) = P(A)P(M|A) + P(B)P(M|B) = 0.7 \times 0.6 + 0.3\times 0.7 = 0.63 \]现在我们要求的是P(A|M),即在已知是男孩的条件下,这个男孩是在A医院出生的概率。
使用贝叶斯公式:\[ P(A|M) = \frac{P(M|A)P(A)}{P(M)} = \frac{0.6 \times0.7}{0.63} \approx 0.6985 \]题目三:随机变量及其分布问题:一个随机变量X服从参数为λ的泊松分布。
求:1. X的期望值和方差。
2. X=k的概率,其中k是一个给定的正整数。
答案:1. 泊松分布的期望值(E[X])和方差(Var(X))都等于参数λ。
概率论例题与详解
例题1.玻璃杯成箱出售,每箱20只,各箱次品数为0,1,2只的概率分别为0.8,0.1,0.1,一顾客欲买下一箱玻璃杯售货员随机取出一箱,顾客开箱后随机取4只进行检查,若无次品,则购买,否则退回,求(1)顾客买下该箱玻璃杯的概率?(2)在顾客买下的一箱中,确实没有次品的概率?解 设),2,1,0(=i A i 表示箱中有i 件次品,B 表示顾客买下该箱玻璃杯(1)由全概率公式()()()94.01.01.018.042041842041920≈⨯+⨯+⨯=∑==C C C C A p A B P B P i i i (2)由贝叶斯公式85.0)()()()(000≈=B P A P A B P B A P2.设有两箱同类零件,第一箱内装有50件,其中10件是一等品;第二箱内装有30件,其中18件是一等品,现从两箱中任意挑出一箱,然后从该箱中依次随机地取出两个零件(取出的零件不放回),试求(1)第一次取出的零件是一等品的概率;(2)在第一次取出的零件是一等品的条件下,第二次取出的零件仍是一等品的概率.解 设),2,1,0(=i A i 表示从第i 箱中取得的是一等品(取出的零件不放回),B 表示从第一箱中取零件,B 表示从第二箱中取零件(1)由全概率公式4.02130********)()()()()(111=⨯+⨯=+=B P B A P B P B A P A P (2)由全概率公式 2129173018214995010)()()()()(212121⨯⨯+⨯⨯=+=B P B A A P B P B A A P A A P 因此有 )()()(12112A P A A P A A P =4856.0)2129173018214995010(25=⨯⨯+⨯⨯= 3.某电子元件在每一次试验中发生故障的概率为0.3,当故障发生不少于3次时,指示灯发出信号(1)进行了5次重复独立试验,求指示灯发出信号的概率;(2)进行了7次重复独立试验,求指示灯发出信号的概率.解(1)进行了5次重复独立试验,指示灯发出信号的概率为163.03.07.03.07.03.054452335≈+⋅+⋅C C(2)进行了7次重复独立试验,指示灯发出信号的概率为353.07.03.07.03.07.0152276177≈⋅+⋅--C C4.甲、乙、丙3人同向一飞机射击,设击中飞机的概率分别为0.4,0.5,0.7,如果只有1人击中飞机,则飞机被击落的概率是0.2;如果有2人击中飞机,则飞机被击落的概率是0.6;如果3人都击中飞机,则飞机一定被击落,求飞机被击浇的概率.解:设321,,A A A 分别表示甲、乙、丙击中飞机,i B 表示有)3,2,1(=i i 个人击中飞机=)(1B P )()()(321321321A A A P A A A P A A A P ++)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=36.07.05.06.03.05.06.03.05.04.0=⨯⨯+⨯⨯+⨯⨯==)(2B P )()()(321321321A A A P A A A P A A A P ++)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=41.07.05.04.03.05.06.03.05.04.0=⨯⨯+⨯⨯+⨯⨯==)(3B P )(321A A A P)()()(321A P A P A P =14.07.05.04.0=⨯⨯=由全概率公式)()()(11B B P B P B P =)()(22B B P B P +)()(33B B P B P +458.0114.06.041.02.036.0=⨯+⨯+⨯=5.随机地向半圆220x ax y -<<(a 为正常数)内扔一个点,点落在半圆内任何区域内的概率与区域的面积成正比,求原点与该点的连线与x 轴的夹角小于4π的概率. 解:以D 表示半圆220x ax y -<<,由题设,点),y x (应该落在如图的阴影部分G ,G 的面积为(在极坐标系中计算)θθπθθπd r rdr d G S a a ⎰⎰⎰⎪⎭⎫ ⎝⎛==40cos 202cos 204021)( θθπd a ⎰=4022cos 22402214)2cos 1(a d a ⎪⎭⎫ ⎝⎛+=+=⎰πθθπ(或G 的面积等于一个等腰直角三角形的面积加上41个圆的面积)故πππ12121214)()()(22+=⎪⎭⎫ ⎝⎛+==a a D S G S A P 6.设1)(0<<A P ,1)(0<<B P ,证明:B A 、独立⇔1)|()|(=+B A P B A P . 证明:1)|()|(=+B A P B A P ⇔)()|(1)|(B A P B A P B A P =-= ⇔)(1)()()(B P B A P B P AB P -=⇔)()()()()(B A P B P AB P B P AB P =- ⇔)()()]()()[()(A P B P B A P AB P B P AB P =+=⇔B A 、独立7. 要验收一批100件的乐器,验收方案如下:自该批乐器中随机地取3件测试(设3件乐器的测试是相互独立的),如果3件中至少有一件被认为音色不纯,则这批乐器就被拒绝接收,设一件音色不纯的乐器经测试查出其为音色不纯的概率为0.95,而一件音色纯的乐器经测试被误认为不纯的概率为0.01,如果已知这100件乐器中恰好有4件是音色不纯的,试问这批乐器被接收的概率是多少?解:设i B ={随机地取3件乐器,其中有i 件是音色不纯的}(3,2,1,0=i )A={这批乐器被接收}30)99.0()(=B A P ,05.0)99.0()(21⋅=B A P ,22)05.0(99.0)(⋅=B A P33)05.0()(=B A P31003960)(C C B P =,3100142961)(C C C B P =,3100241962)(C C C B P =,3100343)(C C B P = 故由全概率公式有8629.0)()()(30==∑=i i i B P B A P A P8.一 猎人用猎枪射击野兔,第一枪距离200米,如果未击中就追到150米处第二次射击,如果仍未击中,再追到100米处第三次射击,此时击中的概率为0.5,如果猎人的命中率始终与距离的平方成反比,求猎人击中野兔的概率。
典型例题_概率论
第一部分 随机事件及其概率例 1 设A B C 、、为三个随机事件,试用A B C 、、表示下列事件。
1)“A B 与发生,而C 不发生”(表示为A B C ); 2)“三个事件都发生”(表示为A B C ); 3)“三个事件至少有一个发生”(表示为A B C⋃⋃);4)“三个事件恰好有一个发生”(表示为A B C A B C A B C++);5)“三个事件至少有两个发生”(表示为A B B C A C ⋃⋃或A B CA B C A B C A B C+++)6)“三个事件至多有两个发生”(表示为A B C 或A B C⋃⋃)。
例2 将n 只球随机地放入N (N ≥n )个盒子中去,假定盒子装球容量不限, 试求1)每个盒子至多装一只球的概率,2)指定其中一个盒子装一只球的概率。
解: 设事件A =“N 个盒子中,每个盒子至多装一只球”,事件B=“指定其中一个盒子装一只球”。
1)一个球放入N 个盒子中的放法有N 种,n 个球放入N 个盒子中的放法有nN 种。
假设固定前n 个盒子各装一球,其分配方法有!n 种,从N 个盒子中任取n 个盒子各装一球,取法有nN C 种,所以,事件A 的样本点数为nNC !n ,即事件A 的概率为nn NNn CA P !)(=2)若指定一个盒子里装一只球,首先考虑球的取法有1nC 种,其次,剩余的1N-个盒子中,1n -只球的放法有1(1)n N --种,所以事件B 的样本点数为1n C 1(1)n N --,即事件B 的概率为11(1)()n n nC N P B N--=注:还可以将模型推广,如生日问题,求事件“n 个人中至少有两人的生日相同”的概率。
设想一年有365天,将“天”看成‘盒子’,n 个人好比‘n 只球’,考虑事件A 的对立事件A =“n 个人在一年中生日全不相同”,它等价于“n 个球装入365个盒子中各装一球”,由前面的计算知:nnn C A P 365!)(365=,所以nnn C A P 365!1)(365-=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
又因为
3 7 7 P ( A1 A2 H 1 ) , 10 9 30 7 8 8 P ( A1 A2 H 2 ) , 15 14 30 5 20 5 P ( A1 A2 H 3 ) . 25 24 30
1 7 8 5 2 所以 P ( A1 A2 ) , 3 30 30 30 9 而 P ( A2 ) P ( H i )P ( A2 H i )
(单位 : cm ) (1) 问应如何设计公共汽车车门的高度, 使男子与 车门顶碰头的几率小于 0.01? ( 2) 若车门高为 182 cm , 求 100 个成年男子与车门 顶碰头的人数不多于 2 的概率 . [思路] 设车门高度为 l cm , 那么按设计要求应有
P{ X l } 0.01, 确定 l . 第二问首先要求出 100名男 子中身高超过 182cm 的人数的分布律, 然后用此分 布律, 求其不超过 2的概率.
则 Y ~ B(100, 0.0228), 其中 100 P{Y k } 0.0228 k 0.9772100 k , k k 0,1,,100.
所求概率为
P{Y 2} P{Y 0} P{Y 1} P{Y 2},
(4) 三个零件中最多只有两个合格品 ( B4 );
(5) 三个零件都是次品( B5 ).
解
(1) B1 A1 A2 A3 ; ( 2) B2 A1 A2 A3 A1 A2 A3 A1 A2 A3 ; ( 3) B3 A1 ( A2 A3 ); (4) B4 A1 A2 A3 , 或 B4 A1 A2 A3 ; (5) B5 A1 A2 A3 , 或 B5 A1 A2 A3 .
解
(1) 由题设知 X ~ N (170,62 ),
P{ X l } 1 P{ X l }
X 170 l 170 1 P 6 6
l 170 1 ( ) 0.01, 6 l 170 l 170 即 ( ) 0.99. 查表得 2.33, 6 6
x x 1 0 x 1 x x 当 x 0 时 , 有F ( x ) [ e d x e d x ] 1 e ; 0 2 2 所以 X 的分布函数为 1 x x 0, 2e , F ( x) 1 1 e x , x 0. 2
( 3) 由于 Y X 2 0,
0, 1 , 6 因此有 F ( x ) 1 , 2 1,
x 1, 1 x 1, 1 x 2, x 2.
从而 X 的分布律为
X P
1
1 6
1ห้องสมุดไป่ตู้
1 3
2
1 2
例3 已知随机变量 X 的概率密度为
f ( x ) Ae
x
, x .
ACB C AB AB,
故 AC AC ( B B ) ACB AC B
C B AB .
例3 假设目标出现在射程之内的概率为0.7, 这时 射击命中目标的概率为 0.6, 试求两次独立射击至
少有一次命中目标的概率.
[思路]
引进事件
A {目标进入射程};
Bi {第i次射击命中目标}, i 1,2.
解
利用分布函数 F ( x ) 的性质 :
P{ X xi } F ( xi ) F ( xi 0),
F ( ) 1,
1 知 P{ X 2} 2 2 (a b) ( a ) 3 2 2a b , 3 且 a b 1.
1 5 由此解得 a , b . 6 6
p P ( A1 ) P ( H i ) P ( A1 H i )
i 1
3
1 3 7 5 29 . 3 10 15 25 90
P ( A1 A2 ) ( 2) q P ( A1 A2 ) , 由全概率公式得 P ( A2 )
1 3 P ( A1 A2 ) P ( H i ) P ( A1 A2 H i ) P ( A1 A2 H i ), 3 i 1 i 1
1 3 5 7 37 有 1 pi , a 2a 4a 8a 8a i
37 故 a , 8
因此 X 的分布律为
X P
2
0
2
5
8 37
12 37
10 37
7 37
从而
P { X 2, X 0} P { X 2 X 0} P { X 0}
P { X 0} P { X 2} P { X 0} P { X 2} P { X 5 }
故所求概率为事件B B1 B2 的概率,由于目标 不在射程之内是不可能命中目标的, 因此 , 可利 用全概率公式来求解.
解 由题意知
P ( A) 0.7, P ( B i A) 0.6, ( i 1, 2 )
由于 P ( AB ) 0, 因为 A 表示目标不在射程之内,
因此由全概率公式, 有
三、典型例题
例1 一个工人生产了3个零件,以事件 Ai 表示他
生产的第 i 个零件是合格品 ( i 1,2,3) , 试用 Ai ( i 1,2,3) 表示下列事件 :
(1) 只有第一个零件是合格品 ( B1 ); ( 2) 三个零件中只有一个零件是合格品 ( B2 );
( 3) 第一个是合格品, 但后两个零件中至少有一 个次品 ( B3 );
A1
A3 A5
A2
A4
[思路]
为了求系统的可靠性,分两种情况讨论:
(1) 当 A5 工作正常时, 相当于 A1 , A2 并联, 与 A3 , A4 并联电路再串联而得.
( 2) 当 A5 失效时, 相当于 A1 , A3 串联再与 A2 , A4 串联电路进行并联而得.
解 记 Bi {元件Ai正常工作}, i 1,2,,5,
(1) 求先抽到的一份是女生表的概率 p;
( 2) 已知后抽到的一份表是男生表, 求先抽到 的一份是女生表的概率 p.
[思路] 由于抽到的表与来自哪个地区有关,故此 题要用全概率公式来讨论.
解 记 H i {抽到地区考生的报名表}, i 1, 2, 3;
A j { 第 j 次抽到报名表是男生的 }, j 1, 2, 1 7 则有 P ( H i ) ( i 1,2,3); P ( A1 H 1 ) ; 3 10 8 20 P ( A1 H 2 ) ; P ( A1 H 3 ) . 15 25 (1) 由全概率公式知
故 l 183.98(cm ).
( 2) 设任一男子身高超过 182cm 的概率为 p.
则 X 170 182 170 p P { X 182} P 6 6 1 ( 2) 0.0228.
设 Y 为 100 个男子中身高超过 182cm 的人数,
三、典型例题
例1 已知离散型随机变量 X 的可能取值为 2,0, 1 3 5 7 2, 5 , 相应的概率依次为 , , , , 试求概率 a 2a 4a 8a P{ X 2 X 0}.
[思路] 首先根据概率分布的性质求出常数 a 的 值, 然后确定概率分布律的具体形式,最后再计 算 解 利用概率分布律的性质 pi 1, i 条件概率.
P ( B ) P ( AB ) P ( AB ) P ( AB )
P ( A) P ( B A) P ( A) P ( B1 B2 A),
由题意知 B1 与 B2 相互独立,
从而 P ( B1 B2 A) P ( B1 A) P ( B2 A)
0.6 0.6 0.36.
说明
一个事件往往有多个等价的表达方式.
例2 设随机事件 A, B , C 满足 C AB , C A B .
证明 : AC C B AB .
证明
由于 C A B , 故 C A B, 从而 C B ( A B ) B A B ,
CA B C B AB C B ,
P (C B5 ) P ( B1 B3 B2 B4 )
1 (1 p1 p3 )(1 p2 p4 ),
所以
P (C ) p5 [1 (1 p1 )(1 p2 )][1 (1 p3 )(1 p4 )] (1 p5 )[1 (1 p1 p3 )(1 p2 p4 )].
22 . 29
例2 设离散型随机变量 X 的分布函数为
x 1, 0, a , 1 x 1, F ( x) 2 3 a , 1 x 2, a b , x 2. 1 且 P { X 2} , 试确定常数a , b, 并求 X 的分布律. 2 [思路] 首先利用分布函数的性质求出常数 a, b, 再用已确定的分布函数来求分布律.
故当 y 0 时, 有
y d d FY ( y ) [ e x d x ] dy dy 0
e
y
1 2 y
,
从而, Y 的概率密度为 1 y e ,y0 fY ( y ) 2 y 0, y 0.
例4 设某城市成年男子的身高 X ~ N (170, 62 )
C {系统正常工作}.
从而由全概率公式知
P (C ) P ( B5 ) P (C B5 ) P ( B5 ) P (C B5 ).
而
P (C B5 ) P[( B1 B2 ) ( B3 B4 )]
[1 (1 p1 )(1 p2 )][1 (1 p3 )(1 p4 )],