【精品】温度控制系统智能控制器的与仿真
本科毕业论文PID温控系统的设计及仿真

CENTRAL SOUTH UNIVERSITY 本科生毕业论文题目PID温控系统的设计及仿真学生指导教师学院信息科学与工程学院专业班级完成时间年月摘要温度是工业控制的主要被控参数之一。
可是由于温度自身的一些特点,如惯性大,滞后现象严重,难以建立精确的数学模型等,给控制过程带来了难题。
要对温度进行控制,有很多方案可选。
PID 控制简单且容易实现,在大多数情况下能满足性能要求。
模糊控制的鲁棒性好,无需知道被控对象的数学模型,且在快速性方面有着自己的优势。
研究分析了PID 控制和模糊控制的优缺点,把两者相互结合,采用了用模糊规则整定P K 、I K 两个参数的模糊自整定PID 控制方法。
本研究以电烤箱为控制对象,用MATLAB 软件对PID 控制、模糊控制和参数模糊自整定PID 控制的控制性能分别进行了仿真研究。
仿真结果表明PID 对于对象模型复杂和模型难以确定的控制系统具有很大的局限性,不能满足调节时间短、超调小的技术要求。
由于模糊控制的理论(如量化因子和比例因子的确定问题)并不完善,其可能获得的控制性能无法把握,而且模糊控制易受模糊规则有限等级的限制而引起稳态误差。
参数模糊自整定PID 控制吸收前两种方法的长处,满足了调节时间短、超调量为零且稳态误差较小的控制要求。
因此本论文最终确定采用参数模糊自整定PID 控制方案。
本系统硬件采用了以 AT89C52 单片机为核心的温度控制器,选用 k 型热电偶为温度传感器结合MAX6675芯片构成前向通道,同时双向晶闸管和SSR 构成后向通道,由按键、LED 数码显示器及报警单元等组成人机联系电路。
关键词:单片机,PID ,模糊控制,仿真ABSTRACTTemperature is one of the main parameters in the industrial process control.Yetthere are difficultiesto have a good control oftemperature becauseof the characteristics of the temperature itself:the temperature inertia is great, its time-lag is serious and it is hardto establish an accurate mathematical model.There are many methods to be selected in order to control a system. The PID controlis simple,easily realized andin most casesit meetsthe control demand. Fuzzy control has the advantage of quickness,itsrobustness is good and there is no needto know theobject ’smathematical model.This paper analyses the advantages and disadvantages of both PID control and fuzzycontrol and es to the method of bining them together,fuzzy self-tuningPID control. In this method,P K and I K of the PID controller are adjusted by fuzzy control rules .In the paper simulations of PID control, fuzzy control and fuzzyself-tuning PID control are done by MATLAB to control a electric oven.Conclusions are that for those control objects of which models are plicated or hard to establish,the PID method has limitation and doesn ’t meet the control demand. As the fuzzy control method theory is not perfect, a good control performance cannot be expected. And it could easily cause the steady-state error for it is restricted by limited grades of the fuzzy rules.Finally the fuzzy self-tuning PID control method is selected, since it meets the control demands.In this paper AT89C52 is used as controller, toward access is posed of K which is used as the temperature sensor and MAX6675.Backward access is posed of bidirectional thyristor and SSR. Man-machine circuit is posed of keyboard, LED and warning unit, etc.Key words :Micro Controller, PID Control, Fuzzy Control, Simulation目 录摘要IABSTRACTII第一章绪论11.1 课题的提出及意义11.2 控制系统背景介绍11.3 当代温控系统及智能算法2第二章温控系统的设计52.1 温控系统的总体设计52.1.1 温控系统设计的基本原则52.1.2 温控系统的结构及设计62.2 温控系统的硬件设计72.2.1 前向通道设计72.2.2 后向通道设计102.2.3 人机通道设计11小结15第三章系统控制方案163.1 PID 控制163.1.1 PID的概述163.1.2 PID 控制的基本理论及特点163.2 模糊控制183.2.1 模糊控制的概述183.2.2 模糊控制的基本原理及特点183.3 模糊PID 控制19小结21第四章仿真研究224.1 MATLAB及其模糊逻辑工具箱和仿真环境simulink224.2 仿真和优选234.2.1 控制对象模型234.2.2 仿真和方案选择25小结32第五章总结与展望335.1 主要工作容335.2 工作小结335.3 存在的问题及未来的方向34结束语35参考文献36第一章绪论1.1 课题的提出及意义温度是生产过程和科学实验中非常普遍而又十分重要的物理参数。
PID温控系统的设计及仿真毕业论文

PID温控系统的设计及仿真毕业论文摘要:本论文针对PID温控系统的设计和仿真展开研究。
首先,介绍了PID控制器的基本原理和工作方式,并分析了PID控制器在温控系统中的应用。
然后,基于MATLAB/Simulink软件,建立了PID温控系统的数学模型,并进行了系统的仿真。
通过对比分析不同PID参数的变化对温度控制系统的影响,最终得到了最优的控制参数。
关键词:PID控制器,温控系统,MATLAB,仿真1.引言温控系统在日常生活中被广泛应用,例如家用温度控制、工业生产过程中的温度控制等。
PID控制器作为一种经典的控制方法,被广泛应用于温控系统中。
本论文旨在设计一个PID温控系统,并通过仿真实验分析不同PID参数对系统性能的影响,从而得到最优的控制参数。
2.PID控制器原理及应用PID控制器是一种反馈控制器,根据控制量与设定值之间的差异来调整输出信号。
它由比例环节、积分环节和微分环节组成,可以有效地抑制温度偏差、提高控制系统的稳定性和精度。
PID控制器在温控系统中的应用十分广泛。
通过对温度传感器采集到的信号进行处理,PID控制器可以实时调整控制系统的输出信号,从而控制温度在设定范围内波动。
PID控制器的参数调整对于系统性能和稳定性具有重要影响。
3.温控系统的数学模型建立基于PID控制器的温控系统可以用数学模型来描述。
以温度T为控制对象,控制量为输出温度U,设定温度为R,PID控制器的输出为Y。
根据温控系统的动力学特性,可以建立如下的数学模型:T * dY(t)/dt = Kp * (R - Y(t)) + Ki * ∫(R - Y(t))dt + Kd * d(R - Y(t))/dt其中Kp为比例系数,Ki为积分系数,Kd为微分系数。
4.温控系统的仿真实验通过MATLAB/Simulink软件,搭建了PID温控系统的仿真模型。
根据数学模型,设定了温度的变化范围和输出的控制参数。
在仿真实验中,通过对比分析不同PID参数的变化对温度控制系统的影响。
芯片级PCR仪温度模糊PID控制器设计与仿真

f z y c n r l rw t w n u n h e u p t se tb ih d I w s u e o c n tu tt e smu ain mo e fmir c i e e u z o t l i t o i p ta d t r e o t u swa sa l e . t a s d t o sr c h i l t d lo c o hp l v l oe h s o
PD控制算法很难解决 温度快 速切换 与扰动抑制 之间 的矛 盾 、 I 结构简单性 与系统鲁棒性之 间的矛盾 、 静态与动态性能 间的矛
盾 。
(5 ) 5℃ 和延伸 区(2C , 7 ̄ )通过 2 ~ 0次温度循环 , 可实 现整 0 3 便
个扩增 过程 “J 。其 典型温度设定 曲线如 图 1 所示 。
属度 函数 。其 中温度偏差的模糊隶属 函数如 图 4所示 。
l “L ) e
Z PZ
PS
PM
P B
一
l0 — 0 o 8
- 0 4
—0 0 2 2 0
e
一
4 0
8 0
10 0
冒鼙 玻璃盖片 口皿 疆 [==] D S PM 臣圈
半导 体制冷片函受 强圜 电 风扇 导热双面胶 — ' A 乘性蛇形铜导线 Wf /— ff
l o t m V g e t u e t e e au e o e s o ta d a h e e te p e ie c n r ftmp r tr S mu t e u l hs lo a g r h , a r a y r d c e tmp rt r v r h o n c iv h r c s o t lo e e au . i l n o s t i ag — i n l e h o e a y, rt m a t n e o u t e oma c h n t e ca sc I o t lag r h , n ti e y t e i . i h h ssr g rr b s r r n e t a h l ia P D c n r o t m a d i s a or a z o pf s l o l i s l e
基于模糊PID的温度控制系统的设计与仿真

将模糊控制理论和 PID 控制系统结合起来,能够提
高 控 制 系 统 的 性 能 ,来 适 应 各 种 工 业 环 境 。 为 此 ,
设 计 了 一 种 模 糊 PID 控 制 系 统 ,以 炉 温 控ห้องสมุดไป่ตู้制 为 例 ,
应 用 模 糊 推 理 的 方 法 实 现 了 PID 参 数 的 自 适 应 调
(1)
Ts + 1
其中,K 为被控对象的静态增益;T 为系统的时
基金项目:河南省教育厅项目(17A413009)
作者简介:宋 璐(1984—),女,陕西咸阳人,硕士,讲师。研究方向:大学物理和电子教学以及实验。
- 51 -
《电子设计工程》2020 年第 21 期
K p = K p′ +{e,e c}K p = K p′ + ΔK p
systems of traditional PID and fuzzy PID are established based on Simulink respectively. The simulation
results show that compared with traditional PID, Fuzzy PID has obvious advantages in control
以炉温控制为例进行对象模型的建立,为适应不
以 适 应 不 同 的 场 合 [1-5] 。 而 模 糊 控 制 具 有 智 能 化 的
同的工作环境,炉温需要进行动态的调整并进行精确
特 点 ,能 够 根 据 被 控 对 象 特 性 的 变 化 来 调 整 参 数 ,
地控制。根据实验结果或文献可知,由于温度传感
糊 PID 在控制性能上具有明显的优越性,具有无静差无超调,抗干扰能力强和鲁棒性好等特点。
基于Matlab的PID温控系统的设计与仿真

基于Matlab的PID温控系统的设计与仿真摘要在Matlab6.5环境下,通过Matlab/Simulink提供的模块,对温度控制系统的PID控制器进行设计和仿真。
结果表明,基于Matlab的仿真研究,能够直观、简便、快捷地设计出性能优良的交流电弧炉温度系统控制器。
关键词温度系统数学模型;参数整定;传递函数在钢铁冶炼过程中,越来越多地使用交流电弧炉设备,温控系统的控制性能直接影响到钢铁的质量,所以炉温控制占据重要的位置。
PID控制是温控系统中一种典型的控制方式,是在温度控制中应用最广泛、最基本的一种控制方式。
随着科学发展,各行各业对温控精度要求越来越高,经典PID控制在某些场合已不能满足要求,因而智能PID控制的引入是精密温控系统的发展趋势。
为了改善电弧炉系统恒温控制质量差的现状,研制具有快速相应的、经济性好的、适合国情的恒温控制装置具有十分重要的意义。
1温控系统模型的建立在Matlab6.5环境下,通过Simulink提供的模块,对电弧炉温控系统的PID控制器进行设计和仿真。
由于常规PID控制器结构简单、鲁棒性强,被广泛应用于过程控制中。
开展数字PID控制的电弧炉控制系统模型使应用于生产实际的系统稳定性和安全性得到迅速改善。
1.1温控系统阶越响应曲线的获得在高校微机控制技术实验仪器上按以下步骤测得温度系统阶越响应曲线:1)给温度控制系统75%的控制量,即每个控制周期通过X0=255×75%=191个周波数,温度系统处于开环状态。
2)ATMEGA32L内部A/D每隔0.8s采样一次温度传感器输出的电压值,换算成实际温度值,再通过串口通讯将温度值送到电脑上保存。
使用通用串口调试助手“大傻串口调试软件-3.0AD”作为上位机接收数据并保存到文件“S曲线采集.txt”中。
3)在采集数据过程中,不时的将已经得到的数据通过“MicrosoftExcel”文档画图,查看温度曲线是否已经进入了稳态区;根据若曲线在一个较长时间里基本稳定在一个小范围值内即表明进入稳态区了,此时关闭系统。
智能温湿度监测与控制系统设计与实现

智能温湿度监测与控制系统设计与实现近年来,人们对于室内空气质量的关注度越来越高。
不仅是因为随着现代生活的快节奏,大部分时间都在室内,健康的室内环境对人们的身体健康非常重要,而且也因为人们越来越意识到,空气污染不只在室外,也存在于室内。
为了解决室内环境的问题,智能温湿度监测与控制系统得以应运而生。
该系统主要包括传感器、控制器和执行器三个部分。
传感器采集室内温湿度等参数,将数据传递给控制器,控制器通过分析数据,自动启动或停止执行器,以达到调节室内环境的效果。
在本文中,我们将探讨智能温湿度监测与控制系统的设计与实现,具体包括系统结构、传感器的选择、控制器的程序设计和执行器的选择等方面。
1. 系统结构智能温湿度监测与控制系统主要包括以下部分:1.1 传感器常见的温湿度传感器有电阻式、电容式和半导体式传感器。
其中,半导体式传感器是最为常见的,因为它精度高、响应速度快、价格便宜。
此外,还可以考虑使用一些辅助传感器,如二氧化碳传感器、PM2.5传感器等,以对室内环境进行更全面的监测。
1.2 控制器控制器是智能温湿度监测与控制系统的核心部分,其作用是根据传感器采集到的数据,控制执行器的启停。
可以使用单片机、微处理器、PLC等现有的控制器来完成这个任务。
1.3 执行器算,可以选择不同品牌和型号的空调或新风系统。
2. 传感器的选择如上所述,半导体式传感器是一种比较常用的温湿度传感器。
其原理是,当传感器表面的薄膜吸收水分,会改变薄膜材料的电阻,从而反映出相对湿度的变化。
另外,需要注意的是,传感器要具有一定的线性和温度补偿能力,以保证数据的准确性。
3. 控制器的程序设计控制器的程序设计需要考虑的因素也比较多。
一般而言,控制程序的设计应该具备以下特点:3.1 安全性室内环境对人类的健康有着直接的影响,控制程序在运行过程中需要考虑到人体的安全。
例如,在设定温湿度范围时,应该避免出现极端的设定值,以保证人员的舒适度和安全性。
基于PT100的温度测控系统的设计与仿真

基于PT100的温度测控系统的设计与仿真王青【摘要】温度测控在现代工业生产过程中起着非常关键的作用,也是设备按照预定的方案正常运行的必要条件;针对目前工业设备温度控制系统电路稳定性差、精度低、实时显示效果差等缺点,设计了基于PT100的温度测控系统;该系统采用电桥对PT100传感器输出的电信号进行采样;采用LM741设计差分放大电路消除线路阻抗引起的测量偏差;采用ADC0808逐次逼近法消除温控系统的非线性误差;采用STC高性能单片机作为主控芯片进行数据处理、并能够实时显示温度数值和具有设定上下限的功能,最后通过继电器实现对被控对象通断进行控制;系统通过Proteus软件仿真运行验证了电路设计的合理性、温度显示数据的高精度和系统正常运行的鲁棒性.【期刊名称】《计算机测量与控制》【年(卷),期】2019(027)009【总页数】5页(P47-50,56)【关键词】PT100;温度;Proteus仿真【作者】王青【作者单位】南通理工学院电气与能源工程学院,江苏南通226002【正文语种】中文【中图分类】TP230 引言温度是表征物体冷热程度的物理量,它可以通过物体随温度变化的某些特性(如电阻、电压变化等特性)来间接测量,通过研究发现金属铂(Pt)的电阻值随温度变化而变化,并且具有很好的稳定性,利用铂的这种物理特性制成的传感器称为铂电阻温度传感器[1]。
金属铂电阻温度传感器精度高、稳定性好,在工业测量方面有广泛的应用。
1 PT100测温工作原理通常所说的PT100是指铂电阻温度传感器在0 ℃时对应的电阻值为100 Ω,电阻变化率为0.385 1 Ω/ ℃,PT100的分度表如表1所示。
根据电阻值和摄氏温度的具体关系,可以推算出变化电阻对应的温度值。
由于PT100是中低温区(-200~650 ℃)最常用的一种温度传感器,故环境温度下具体的电阻取值关系为。
RPT=R0[1+AT+BT2+C(T-100)T3](1)式(1)中R0为摄氏温度在0 ℃时金属铂电阻温度传感器对应的阻值,T为实时环境温度值,ABC分别表示系数值A=3.908*10-3;B=-5.775*10-7;C=-4.183*10-12,RPT为实时环境温度T对应PT100的电阻值[2]。
锅炉过热蒸汽温度控制系统的设计与仿真

低(5~IO) ̄C,效率就降低约 1%,因此严格 控制过热汽温在给定值 间 r约为 20s,具有较 良好的动态特性。但实际运行 中,蒸汽负荷
附近是大型火电机组运行 的重要任务之一[1J。
是变化的,因此不宜用来控制过热汽温 。
过热蒸汽温度控制 中,被控对象具 有非 线性 、时变性 、滞后 2-2 烟气传 热量扰 动的动态 特性
monitored control system is developed by Kingview.Th e results show that t he FUZZY-PID con troller not only improves the
system of nonlinear,time variability and ce , 桫 processing capacity,but also has better se L adaptive ca pa city a nd
第 4期 2016年 4月
机 械 设 计 与 制 造
Machinery Design & Manufacture
265
锅 炉过 热 蒸 汽 温度控 制 系统 的设 计 与仿 真
刘丽桑 ,张锦 枫
(福建工程学院 福建省数字化装备重点实验室 ,福建 福州 350118)
摘 要 :过热蒸汽温度 的高低直接影响着火电机组的安全性和经济性 。由于过 热蒸汽温度对象具有非线性 、时变等复杂 特 性 ,设 计了一种采用模糊 PID控制策略 的串级控制方案 ,分析 了锅炉过热蒸汽温度在 不同扰动作 用下的动 态特 性 ,设 计 了 FUZZY—PID控制 器,对 PID控制器参数进行 了整定,并对 FUZZY-PID控制器和常规控制器的控制效果进行 了仿真 比较 ,最后利用组态王 Kingview开发 了相应的过热蒸汽温度监控 系统。结果表明 ,FUZZY—PID自适应能力强 ,提高 了系 统对非线性、时变性和不确定性等的处理能力,改善 了控 制效果 ,具有更好的动态特性。 关键词 :过热蒸汽 ;温度控制;FUZZY-PID;串级控制 ;Kingview 中图分类号 :TH16;TP368.1;TK3 文献标识码 :A 文章编 号:1001—3997(2016)04—0265—03
夹套式反应器温度控制系统设计仿真

夹套式反应器温度控制系统设计仿真随着工业化的快速发展,夹套式反应器在化工生产中的应用越来越广泛。
而夹套式反应器的温度控制系统则成为了保证反应器稳定运行的关键。
本文将介绍夹套式反应器温度控制系统的设计和仿真,以及该系统的优势和应用前景。
一、夹套式反应器温度控制系统的设计在夹套式反应器中,温度控制系统的设计需要考虑多个因素,如反应物料的性质、反应速率、热量传递效率等。
首先,我们需要选择合适的温度传感器来获取反应器内部的温度信息。
常见的温度传感器有热电偶和红外线测温仪等。
其次,我们需要选择合适的控制器来实现温度的调节。
常用的控制器有PID控制器和模糊控制器等。
最后,我们需要设计合理的控制策略来实现温度的稳定控制。
常见的控制策略有比例控制、积分控制和微分控制等。
二、夹套式反应器温度控制系统的仿真为了验证设计的合理性和可行性,我们可以利用仿真软件进行夹套式反应器温度控制系统的仿真。
通过建立反应器的数学模型,我们可以模拟不同的工况和操作情况,并对温度控制系统的性能进行评估。
在仿真过程中,我们可以调整控制器的参数,优化控制策略,以达到更好的控制效果。
三、夹套式反应器温度控制系统的优势相比于其他类型的反应器,夹套式反应器具有温度控制更加稳定、反应物料更加均匀、反应速率更加快速等优势。
夹套式反应器温度控制系统的设计和优化可以提高反应器的生产效率和产品质量,降低能耗和生产成本。
四、夹套式反应器温度控制系统的应用前景夹套式反应器温度控制系统的应用前景非常广阔。
在化工生产中,夹套式反应器被广泛应用于有机合成、催化反应、聚合反应等领域。
随着科技的不断进步,夹套式反应器温度控制系统的设计和优化将会更加智能化和自动化,为化工生产带来更多的便利和效益。
夹套式反应器温度控制系统的设计和仿真对于保证反应器的稳定运行具有重要意义。
通过合理的设计和优化,夹套式反应器温度控制系统可以实现温度的精确控制,提高生产效率和产品质量。
随着科技的不断发展,夹套式反应器温度控制系统的应用前景将会更加广阔。
智能温度控制器实训报告

一、实训目的本次实训旨在通过实际操作,了解和掌握智能温度控制器的设计原理、工作流程以及调试方法。
通过实训,提高学生的动手能力、分析问题和解决问题的能力,同时加深对嵌入式系统、单片机以及温度控制理论的理解。
二、实训器材1. 单片机开发板:以51单片机为例2. 温度传感器:DS18B203. 显示模块:LCD1602液晶显示屏4. 电阻加热器5. 电源模块6. 继电器模块7. 万用表8. 调试工具:Keil、Proteus等三、实训内容1. 系统组成(1)单片机:作为控制核心,负责接收温度传感器数据、执行控制算法、输出控制信号。
(2)温度传感器:实时监测环境温度,将温度数据转换为电信号传输给单片机。
(3)A/D转换器:将温度传感器的模拟信号转换为数字信号,供单片机处理。
(4)显示模块:实时显示当前环境温度。
(5)电阻加热器:根据温度控制需求,实现温度的升温和降温。
(6)继电器模块:根据单片机控制信号,驱动电阻加热器进行温度调节。
2. 系统工作原理(1)温度传感器将环境温度转换为电信号,通过A/D转换器转换为数字信号。
(2)单片机接收温度数据,根据预设的温度控制算法进行计算,输出控制信号。
(3)控制信号通过继电器模块驱动电阻加热器,实现温度的升温和降温。
(4)显示模块实时显示当前环境温度。
3. 系统设计(1)硬件设计:根据系统需求,选择合适的单片机、温度传感器、显示模块等硬件设备,并进行电路设计。
(2)软件设计:编写单片机程序,实现温度数据的采集、处理、显示以及控制算法。
(3)调试与优化:通过调试工具对系统进行调试,优化系统性能。
四、实训步骤1. 硬件搭建:根据系统组成,搭建智能温度控制器电路。
2. 硬件调试:使用万用表测试电路连接是否正确,确保电路正常工作。
3. 软件编写:使用Keil等调试工具编写单片机程序,实现温度数据的采集、处理、显示以及控制算法。
4. 调试与优化:通过调试工具对系统进行调试,观察系统运行情况,发现问题并进行优化。
某温度控制系统的MATLAB仿真

某温度控制系统的MATLAB仿真1. 简介温度控制是很多工业过程中的一个重要环节,能够保证工业生产过程的稳定性和产品质量。
本文将介绍一个基于MATLAB的温度控制系统的仿真,包括系统的建模和控制算法的实现。
2. 温度控制系统建模温度控制系统一般由一个加热元件和一个温度传感器组成。
加热元件通过对电流或电压的控制来控制温度,温度传感器用于测量当前温度的值。
本文以一个简化的一维加热系统为例进行仿真。
2.1 系统参数设置首先,我们需要设置温度控制系统的一些参数,包括加热元件的功率、温度传感器的灵敏度和环境温度等。
这些参数可以在MATLAB中定义,如下所示:P = 100; % 加热元件功率K = 0.5; % 温度传感器灵敏度T_ambient = 25; % 环境温度2.2 系统动力学建模接下来,我们需要建立温度控制系统的动力学模型。
假设加热元件和温度传感器之间存在一定的传热延迟,我们可以使用一阶惯性模型进行建模。
系统的状态方程可以表示为:T_dot = (P - K * (T - T_ambient)) / C其中,T_dot为温度的变化率,T为温度的值,C为系统的热容量。
根据系统的动力学特性,我们可以选择合适的参数来建立系统模型。
3. 控制算法设计在温度控制系统中,我们需要设计一个控制算法来将温度稳定在设定的目标温度附近。
常用的控制算法包括比例控制、比例积分控制和模糊控制等。
本文选取比例积分控制(PI控制)作为控制算法进行仿真。
3.1 PI控制器设计PI控制器由一个比例项和一个积分项组成,其输出可以表示为:u(t) = K_p * (e(t) + (1 / T_i) * \\int_{0}^{t} e(\\tau) d\\tau)其中,e(t)为温度误差,K_p为比例系数,T_i为积分时间常数。
比例系数和积分时间常数的选择是控制器设计中的关键。
3.2 控制律实现在MATLAB中,我们可以使用控制系统工具箱来实现PI控制器。
【精品】计算机控制技术课程设计温度控制系统设计

课程设计题目温度控制系统设计学院自动化学院专业自动化专业班级姓名指导教师2014年6月24日课程设计任务书题目:温度控制系统设计要求完成的主要任务:被控对象为电炉,采用热阻丝加热,利用大功率可控硅控制器控制热阻丝两端所加的电压大小,来改变流经热阻丝的电流,从而改变电炉炉内的温度。
可控硅控制器输入为0-5伏时对应电炉温度0-300℃,温度传感器测量值对应也为0-5伏,对象的特性为二阶惯性系统,惯性时间常数为T1=20秒,滞后时间常数为τ=10秒。
1)设计温度控制系统的计算机硬件系统,画出框图;2)编写积分分离PID算法程序,从键盘接受K p、T i、T d、T及β的值;3)通过数据分析T i改变时对系统超调量的影响.4)撰写设计说明书。
时间安排:6月9日查阅和准备相关技术资料,完成整体方案设计6月10日—6月12日完成硬件设计6月13日-6月15日编写调试程序6月16日-6月17日撰写课程设计说明书6月18日提交课程设计说明书、图纸、电子文档指导教师签名:年月日系主任(或责任教师)签名:年月日本次课程设计我设计的题目是温度控制系统。
通过专业课程的学习,我将引入计算机,单片机,传感器,以及PID算法来实现电炉温度的自动控制,完成课程设计的任务.计算机的自动控制是机器和仪表的发展趋势,它不仅解放了劳动力,也比以往的人为监控更准确,更及时。
一旦温度发生变化,计算机监控系统可以立即检测到并通过模拟量数字通道传送到计算机。
计算机接收到信号后通过与给定值进行比较后,计算出偏差,再通过PID控制算法给出下一步将要执行的指令。
最后通过模拟量输出通道将指令传送到生产过程,实现机器仪表的智能控制.本次课程设计用到了MATLAB这一软件,通过编写程序,将被控系统离散化。
再通过MATLAB中的simulink 仿真功能,可以看到随着Ki,Kp,Kd改变波形发生的改变,从而可以通过波形直观地看出PID参数对系统动态性能的影响。
基于PID控制算法的温度控制系统的设计与仿真

摘要本设计是一种温度控制系统,温度控制在工业生产和科学研究中具有重要意义。
其控制系统属于一阶纯滞后环节,具有大惯性、纯滞后、非线性等特点,导致传统控制方式超调大、调节时间长、控制精度低。
采用单片机进行炉温控制,具有电路设计简单、精度高、控制效果好等优点,对提高生产效率、促进科技进步等具有重要的现实意义。
PID控制法最为常见,控制输出采用PWM波触发可控硅来控制加热通断。
使系统具有较高的测量精度和控制精度。
单片机控制部分采用AT89S51单片机为核心,采用Keil 软件进行编程,同时采用分块的模式,对整个系统的硬件设计进行分析,分别给出了系统的总体框图、温度检测调理电路、A/D转换接口电路,按键输入电路以及显示电路,并对相应电路进行相关的阐述软件采用PID算法进行了建模和编程,在Proteus环境中进行了仿真。
关键词:PID;单片机;温度控制;Keil;ProteusAbstractThis design is a kind of temperature control system,The temperature control in industrial production and scientific research is of great significance.Belongs to pure first-order lag link, the control system has the characteristics of big inertia, pure lag and nonlinear, the traditional control overshoot and adjustment time is long, low control precision.By single chip microcomputer temperature control, has simple circuit design, high accuracy and good control effect, to improve the production efficiency, promote the progress of science and technology has important practical significance.PID control is the most common, the control output PWM wave triggering thyristor is used to control the heating on and off.Make the system has high accuracy of measurement and control precision.Single-chip microcomputer control part adopts single chip microcomputer A T89S51 as the core,Using Keil software programming,Using block pattern at the same time, analyzes the hardware design of the whole system, respectively, of the overall system block diagram is given, the temperature detection circuit, A/D conversion interface circuit, key input circuit and display circuit, and the corresponding circuit are related in this paper, the software, the PID algorithm is used for modeling and programming in the Proteus simulation environment.Key words:PID;Single chip microcomputer;The temperature control;Keil;Proteus目录1绪论 (1)2设计方案 (2)3系统硬件仿真电路 (3)3.1 温度测量调理电路 (3)3.2 A/D转换电路 (4)3.3 按键输入电路 (5)3.4 数码管显示电路 (6)3.5 温度控制电路 (7)4程序设计 (9)4.1 程序整体设计 (9)4.2 子程序设计 (1111)4.3源程序设计 (119)5软件调试与运行结果 (41)结论 (42)致谢 (43)参考文献 (44)1绪论现代工业生产过程中,用于热处理的加热炉,需要消耗大量的电能,而且温度控制是纯滞后的一阶大惯性环节。
夹套式反应器温度控制系统设计仿真

夹套式反应器温度控制系统设计仿真
夹套式反应器是一种常用的化工设备,用于控制化学反应过程的温度。
为了确保反应器内的温度能够稳定在设定值附近,需要设计一个有效的温度控制系统。
本文将介绍夹套式反应器温度控制系统的设计和仿真过程。
夹套式反应器的工作原理是利用夹套中流动的热载体(如蒸汽或热油)来调节反应器内物料的温度。
温度控制系统的设计目的是通过控制热载体的流量和温度,使反应器内的温度保持在设定值附近。
通常,温度控制系统包括传感器、控制器和执行器三个部分。
传感器用于实时监测反应器内的温度,将监测到的温度信号传输给控制器。
控制器根据传感器反馈的温度信号和设定值之间的差异,计算出控制信号,送往执行器。
执行器根据控制信号调节热载体的流量和温度,从而实现对反应器温度的控制。
在设计温度控制系统时,需要考虑反应器的特性、热载体的性质、控制器的稳定性等因素。
通过建立数学模型,可以进行仿真分析,验证设计方案的有效性。
在仿真过程中,可以模拟不同工况下的温度变化,评估控制系统的性能。
通过仿真分析,可以优化控制系统的参数设置,提高系统的稳定性和响应速度。
在实际应用中,还需要考虑设备的安全性、能耗等因素,综合考虑各方面因素,设计出一个合理的温度控制系统。
夹套式反应器温度控制系统的设计和仿真是一个复杂而重要的工作,需要深入理解反应器的工作原理,结合控制理论和仿真技术,才能设计出一个性能优良的控制系统。
希望本文的介绍能够为相关领域的工作者提供一些参考和启发。
基于PID控制算法的温度控制系统的设计与仿真

基于PID控制算法的温度控制系统的设计与仿真一、介绍温度控制是很多工业自动化系统中常见的任务之一、PID控制算法是目前最常用的控制算法之一,具有简单、稳定和高效的特点。
本文将以基于PID控制算法的温度控制系统为例,介绍其设计与仿真。
二、PID控制算法简介PID控制算法是一种经典的反馈控制算法,它根据当前系统的误差,计算出最佳的控制输出,以使系统的输出稳定在期望值附近。
PID控制算法由三个部分组成:比例(P)、积分(I)和微分(D)。
比例部分根据当前误差的大小调整输出控制量,积分部分通过累积误差来调整输出控制量,微分部分根据误差变化率调整输出控制量。
PID控制算法的输出控制量是由三个部分叠加而成。
1.系统模型的建立在设计温度控制系统之前,首先需要建立系统的数学模型。
以一个加热器控制系统为例,假设该系统的输入为加热功率,输出为温度。
2.控制器的设计根据系统模型,设计PID控制器。
首先调试比例参数P,使得系统的温度能够在误差范围内稳定下来;然后调试积分参数I,以减小系统的稳态误差;最后调试微分参数D,以提高系统的响应速度。
3.仿真实验在仿真软件中进行温度控制系统的仿真实验。
首先输入一个初始温度值,观察系统的响应;然后根据设定的期望温度,实时调整控制器的输出,观察系统的稳定状态。
4.结果分析根据仿真实验的结果,分析系统的稳态误差和响应速度。
根据实际需求和性能要求,调整控制器的参数,使得系统能够更好地满足要求。
四、结论本文以基于PID控制算法的温度控制系统为例,介绍了温度控制系统的设计与仿真过程。
通过调试PID控制器的参数,可以使系统的温度稳定在期望值附近,并且具有较好的稳态误差和响应速度。
PID控制算法在温度控制系统中有广泛的应用前景,但是需要根据具体的系统要求和性能要求进行参数调整和优化。
未来可以进一步研究温度控制系统的自适应PID控制算法,以提高控制系统的性能和鲁棒性。
水箱温度控制系统multisim仿真设计

实验题目:水温控制电路设计一、实验目的通过设计一个水温控制系统,从而加深对三极管、运放等常见电子元器件的运用,掌握电路设计的思路和参数计算,通过仿真与理论相结合,从而加深对电路的理解。
二、实验原理水温控制系统:水的温度可以由传感器转化为电压信号,通过设定电压阈值从而与采集的温度电压进行比较,超过设定温度则停止加热,加热指示灯熄灭,保温开关打开,保温指示灯亮;低于设定温度则启动加热,加热指示灯亮,保温开关断开,保温指示灯灭;为了不让控制系统在设定温度点频繁工作,需要引入滞回比较器,让控制系统合理的弹性工作。
该系统主要包括以下几点:1.用电压信号的变化来模拟水温的变化,每0.1V对应1摄氏度,再运用运放的放大电路对电压信号进行放大。
此设计用正相比例放大器,使输出时正电压,取放大器的放大倍数为10倍(即温度缩小10倍)比较合适。
2.当水的温度超过一定温度,就暂停加热,加热的指示灯熄灭,此时保温电路打开,保温指示灯亮。
运用到比较器电路,比较电路也即水温检测和水温范围测量电路。
将输入的变化的电压与基准电压(上下限电压)进行比较,通过运放输出高低电平来控制后面的电路。
比较电路3.当水的温度低于一定温度,就开始加热,加热的指示灯亮,此时保温电路断开,保温指示灯熄灭。
也用到比较器电路,原理同上。
4.因水的温度具有缓慢变化特性,设定的温度希望有一个阈值,使电路不会频繁的工作,使系统更加稳定,因此需要用到滞回比较器。
滞回比较器的电压传输特性根据 Un=Up :﹚﹢0+R /(R ×=767291R u U T﹚+R /(R ×﹚﹢+R /(R ×=7677767292R u R u U T所以﹚+R /(R ×=-767721R u U U T T ,即7u 从高电平转化为低电平和从低电平转化为高电平的分界点就有了V﹚+R /(R ×7677R u 的差别。
根据以上几个公式我们可以知道,参考电压29u 瘦集成运放的正反馈的影响,在仿真时应适当调低的数29u 值。
基于proteus的温度测控系统仿真设计

基于proteus的温度测控系统仿真设计摘要:如今在工业和农业生产以及日常生活中,温度的实时监测占据着非常重要的地位。
例如在消防场合的温度检测,我们家用中的电器设备热故障监测,各类运输工具的某些设备的温度检测,医院医疗设备的温度测试,化工车间和机械车间等设备温度过热检测,温度检测与其息息相关。
本次论文设计的温度检测系统是利用单片机AT89C51单片机作控制器,用C 语言来进行软件设计,而且能达到指令的执行速度快,节省存储空间。
它采用温度传感器传感器DS18B20进行温度测量,实现各个环境以及场合下的温度实时检测并通过LED显示器件显示温度的功能,能方便地应用于各种温度检测场合。
本论文设计的温度测控系统功能是能够实时的检测某一环境下的温度,测量的温度范围是-20℃到70℃,一旦超过最高或者是最低的温度都会通过蜂鸣器来达到报警效果。
另外我给该系统加了个复位开关,一旦出现乱码或者一般的故障可以通过该复位开关来进行复位。
本论文采用软、硬件相结合的方式,来进行各功能的编写。
本设计采用的是DS18B20和AT89C51单片机的一种温度检测系统。
论文中对用单片机温度控制原理的设计思想和软、硬件调试作了详细的论述。
关键词:89C51单片机; DS18B20;温度Temperature Monitoring System Based proteus simulation designAbstract:Today in the industrial agricultural production and our daily lifes, Real-time measurement of temperature play a very important position.For example, temperature detection in fire situations, electrical equipmentthermal fault monitoring in our household, temperature detecting some equipment of all kinds of transportion, the temperature test in hospital medical equipment, chemical plant and machinery plant... Equipment temperature detection,So temperature detection with the closely related to.This temperature monitoring system is designed using single chip machine AT89C51 as controller,it’s using C programming language to fulfill fast executing commands and saving storage.we used DS18B20 temperature sensor to monitor,it allowed us to monitor temperature in different conditions and then display digits on LED screen,this technology can be applied in many occations.this temperature monitoring system can measurereal-time temperaturein certain environment,temperature ranges from -20℃to 70℃,once reaching its limit,there will be a buzzer warning.I also added a reset button to the system in case of any glich or malfunctioning.This thesis is based on hardwares,using single chips DS18B20 and AT89C51 as temperature monitoring system.there’s more detailed information about the single chip temperature control principle and design idea,debugging in software and hardwares.Key words: display 89C51;DS18B20;Temperature目录前言 (1)1 设计要求及方案 (2)1.1温度自动检测系统技术指标 (2)1.2 温度检测系统的原理功能 (2)1.3 温度检测方案 (2)2 单片机以及所用的元器件介绍 (4)2.1 单片机 (4)2.2 AT89C51单片机单片机基本结构 (4)2.3单片机外部引脚功能 (6)2.4温度传感器(DS18B20)封装及功能介绍 (8)2.5 LED显示器 (9)2.5.1LED 的优点 (9)2.5.2 LED工作方式 (10)3硬件设计 (13)3.1 系统电路结构 (13)3.2 单片机最小系统 (13)3.3 温度采集传感电路 (15)3.4 温度显示电路 (16)4 系统软件设计 (18)4.1 系统程序总设计 (18)4.2 温度检测子程序设计 (18)4.3温度监测系统的温度程序设计 (19)5 系统仿真及结果 (20)5.1 仿真Proteus软件简介 (20)5.2软件介绍与组成 (20)5.3Proteus原理图设计 (21)5.4 Keil与Proteus联机仿真 (22)总结 (23)致谢 (24)参考文献 (25)附录 (27)前言如今在工业和农业生产的车间和设备以及我们的日常生活中的某些场合对温度的测量以及对它控制有着重要的作用。
智能控制中PID控制器的运用及其仿真【文献综述】

毕业设计文献综述电气工程与自动化智能控制中PID控制器的运用及其仿真当今的自动控制技术都是基于反馈的概念。
反馈理论的要素包括三个部分:测量、比较和执行。
测量关心的变量,与期望值相比较,用这个误差纠正调节控制系统的响应。
这个理论和应用自动控制的关键是,做出正确的测量和比较后,如何才能更好地纠正系统。
PID(比例-积分-微分)控制器作为最早实用化的控制器已有50多年历史,现在仍然是应用最广泛的工业控制器。
PID控制器简单易懂,使用中不需精确的系统模型等先决条件,因而成为应用最为广泛的控制器。
然而由于现代工业生产过程日益复杂,被控对象往往具有不同程度的非线性模型不确定性和参数时变性,常规的PID控制对过程的精确控制则显得力不从心。
所以随着控制系统的发展,智能控制在近年来得到了长足的发展。
将智能控制和常规的PID控制方法相结合,利用智能控制对PID控制的参数进行整定,形成了许多智能PID控制器。
智能PID控制器不但具有传统PID控制直观实现简单和鲁棒性好等特点,而且智能控制具有对复杂系统进行有效的全局控制的能力和自学习自组织和自适应能力。
PID控制是控制工程中技术成熟、应用广泛的一种控制策略,经过长期的工程实践,已形成了一套完整的控制方法和典型的结构。
它不仅适用于数学模型已知的控制系统中,而且对于大多数数学模型难以确定的工业过程也可应用,在众多工业过程控制中取得了满意的应果。
在当前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志的条件下,控制理论的发展也经历了经典控制理论、现代控制理论和智能控制理论三个阶段。
自动控制系统可分为开环控制系统和闭环控制系统。
一个控制系统包括控制器﹑传感器﹑变送器﹑执行机构﹑输入输出接口。
控制器的输出经过输出接口、执行机构,加到被控系统上;控制系统的被控量,经过传感器、变送器、通过输入接口送到控制器。
不同的控制系统,其传感器、变送器、执行机构是不一样的。
目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器,其中PID 控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毕业设计[论文]题目:温度控制系统智能控制器的设计与仿真2013年5月12日目录摘要 (1)Abstract (1)第一章绪论 (2)1。
1选题背景及其意义 (2)1。
2概述 (2)1。
3温度测控技术的发展与现状 (2)1。
3。
1定值开关控温法....................... 错误!未指定书签。
1。
3.2PID线性控温法 (3)1.3。
3智能温度控制法 (3)第二章被控对象及控制策略........................... 错误!未指定书签。
2.1被控对象 .................................... 错误!未指定书签。
2。
2控制策略 (4)第三章PID控制器的设计与仿真 (5)3.1PID 控制器的模型与设计 (5)3。
2P 、I 、D 控制 (6)3。
2.1比例(P )控制 (6)3.2.2积分(I)控制 (6)3.2。
3微分(D )控制 (6)3。
3PID 控制器部分Simulink 的模块 (6)3.4PID 控制器参数的整定 (7)3。
5临界比例度法仿真的步骤 (7)3.5.1控制对象)(1S G 的参数Kp ,Ti ,Td 的整定 (9)3。
5.2控制对象)(2S G 的参数Kp ,Ti ,Td 的整定 (10)3.5。
3控制对象)(3S G 的参数Kp ,Ti ,Td 的整定 (11)3.6对PID 控制器的仿真 (11)3。
6。
1模型一的仿真 (11)3.7对PID控制器的仿真结果分析 (17)第四章Fuzzy控制器的设计与仿真比较 (18)4。
1模糊控制器的设计 (18)4.2模糊控制器的仿真比较 (21)4。
2。
1没有干扰之前的模型和仿真结果 (21)4。
2.2加了干扰之后的模型和仿真结果 (22)4.3对两组仿真结果的分析 (23)结论 (24)参考文献 (25)致谢26温度控制系统智能控制器的设计与仿真摘要基于MATLAB/Simulink仿真环境,针对PID控制器控制过程的缺陷性分析,给出了一种简单有效的智能控制方法.与通常的PID控制进行比较,其优点是非常直观、可以随意修改仿真参数,节省了大量的计算和编程工作量.通过仿真实例最后验证智能控制器的有效性。
关键词:智能控制器;PID控制器;MATLAB/Simulink;参数改变Thetemperaturecontrolsystemoftheintelligentcontrollerde signandsimulationAbstractBeingbasedonthesimulationenvironmentofMATLAB/Simulink,ThePIDtuningisa complicatedprocess。
Givinganeasyandeffectiveintelligentcontrolmethod,makingacomparisonwithPIDcontrolmethod。
Therearemanyadvantages,likeveryaudio-visual,simulationparameterchangingquickly.Thesesavelotsofcalculationandprogrammin g。
Duringthesimulationcases,wecanproveeffectivenessoftheintelligentcontroller Keywords:theintelligentcontroller;PIDcontroller;parametertuning;MATLAB/Simulink第一章绪论1。
1选题背景及其意义在人类的生活环境中,温度扮演着极其重要的角色。
无论你生活在哪里,从事什么工作,无时无刻不在与温度打着交道.自18世纪工业革命以来,工业发展与是否能掌握温度有着密切的联系。
在冶金、钢铁、石化、水泥、玻璃、医药等行业,可以说几乎80%的工业部门都不得不考虑着温度的因素。
温度不但对于工业如此重要,在农业生产中温度的监测与控制也有着十分重要的意义.1。
2概述温度是生活及生产中最基本的物理量,它表征的是物体的冷热程度。
自然界中任何物理、化学过程都紧密的与温度相联系。
在很多生产过程中,温度的测量和控制都直接和安全生产、提高生产效率、保证产品质量、节约能源等重大技术经济指标相联系.因此,温度的测量与控制在国民经济各个领域中均受到了相当程度的重视.用微机仿真的方法找到一种比较合适的控制器是当今社会对温度控制研究的方向之一。
通过不断地仿真、分析、在仿真、再分析得出最后的最优控制方案。
1。
3温度控制技术的发展与现状近年来,温度的控制在理论上发展比较成熟,但在实际测量和控制中,如何保证快速实时地对温度进行采样,确保数据的正确传输,并能对所测温度场进行较精确的控制,仍然是目前需要解决的问题。
温度控制技术按照控制目标的不同可分为两类:动态温度跟踪与恒值温度控制。
动态温度跟踪实现的控制目标是使被控对象的温度值按预先设定好的曲线进行变化。
在工业生产中很多场合需要实现这一控制目标,如在发酵过程控制,化工生产中的化学反应温度控制,冶金工厂中燃烧炉中的温度控制等;恒值温度控制的目的是使被控对象的温度恒定在某一给定数值上,且要求其波动幅度(即稳态误差)不能超过某允许值。
从工业控制器的发展过程来看,温度控制技术大致可分以下几种:1.3。
1定值开关控温法所谓定值开关控温法,就是通过硬件电路或软件计算判别当前温度值与设定目标温度值之间的关系,进而对系统加热装置(或冷却装置)进行通断控制。
若当前温度值比设定温度值高,则关断加热器,或者开动制冷装置;若当前温度值比设定温度值低,则开启加热器并同时关断制冷器。
这种开关控温方法比较简单,在没有计算机参与的情况下,用很简单的模拟电路就能够实现.目前,采用这种控制方法的温度控制器在我国许多工厂的老式工业电炉中仍被使用.由于这种控制方式是当系统温度上升至设定点时关断电源,当系统温度下降至设定点时开通电源,因而无法克服温度变化过程的滞后性,致使被控对象温度波动较大,控制精度低,完全不适用于高精度的温度控制。
1.3。
2 PID线性控温法这种控温方法是基于经典控制理论中的PID调节器控制原理,PID控制是最早发展起来的控制策略之一,由于其算法简单、鲁棒性好、可靠性高等优点被广泛应用工业过程控制中,尤其适用于可建立精确数学模型的确定性控制系统。
由于PID调节器模型中考虑了系统的误差、误差变化及误差积累三个因素,因此,其控制性能大大地优越于定值开关控温。
其具体控制电路可以采用模拟电路或计算机软件方法来实现PID调节功能。
前者称为模拟PID控制器,后者称为数字PID控制器。
其中数字PID控制器的参数可以在现场实现在线整定,因此具有较大的灵活性,可以得到较好的控制效果.采用这种方法实现的温度控制器,其控制品质的好坏主要取决于三个PID参数(比例值、积分值、微分值).只要PID参数选取的正确,对于一个确定的受控系统来说,其控制精度是比较令人满意的。
但是,它的不足也恰恰在于此,当对象特性一旦发生改变,三个控制参数也必须相应地跟着改变,否则其控制品质就难以得到保证。
1。
3.3智能温度控制法为了克服PID线性控温法的弱点,人们相继提出了一系列自动调整PID参数的方法,如PID参数的自学习,自整定等等.并通过将智能控制与PID控制相结合,从而实现温度的智能控制.智能控温法以神经网络和模糊数学为理论基础,并适当加以专家系统来实现智能化。
其中应用较多的有模糊控制、神经网络控制以及专家系统等。
尤其是模糊控温法在实际工程技术中得到了极为广泛的应用。
目前已出现一种高精度模糊控制器,可以很好的模拟人的操作经验来改善控制性能,从理论上讲,可以完全消除稳态误差。
所谓第三代智能温控仪表,就是指基于智能控温技术而研制的具有自适应PID算法的温度控制仪表。
目前国内温控仪表的发展,相对国外而言在性能方面还存在一定的差距,它们之间最大的差别主要还是在控制算法方面,具体表现为国内温控仪在全量程范围内温度控制精度比较低,自适应性较差。
这种不足的原因是多方面造成的,如针对不同的被控对象,由于控制算法的不足而导致控制精度不稳定。
第二章被控对象及控制策略控制系统意味着通过它可以按照所希望的方式保持和改变机器、结构或其他设备内任何感兴趣或可变化的量。
控制系统同时是为了使被控制对象达到预定的理想状态而实施的。
控制系统使被控制对象趋于某种需要的稳定状态。
2.1被控对象本文的被控对象电烤箱或者电炉的温度。
设计目的是要对它的温度进行控制,达到调节时间短、超调量为零且稳态误差在±1℃内的技术要求。
在工业生产过程中,控制对象各种各样。
理论分析和实验结果表明:电加热装置是一个具有自平衡能力的对象,可用二阶系统纯滞后环节来描述。
然而,对于二阶不振荡系统,通过参数辨识可以降为一阶模型。
因而一般可用一阶惯性滞后环节来描述温控对象的数学模型。
所以,电烤箱模型的传递函数为:1)(+•=-TS e K S G sτ(2—1)式(2—1)中K-对象的静态增益T —对象的时间常数τ—对象的纯滞后时间目前工程上常用的方法是对过程对象施加阶跃输入信号,测取过程对象的阶跃响应,然后由阶跃响应曲线确定过程的近似传递函数。
由于本文是对温度控制系统的控制方式(采用什么样的控制器)优劣的探究,所以对于控制对象不是主要的研究对象,这里取三组控制温度控制对象的模型)(S G 如下:1220)(5.01+=-S e S G s(2—2)1420)(5.02+=-S e S G s(2—3))14)(12(20)(5.03++=-S S e S G s(2—4)2.2控制策略图2-1控制流程图分别设计PID 和Fuzzy 控制器,并做多层次不同比较各自性能,得出最优控制方法.其中Yd=1,1)()2)0.1t d ξ⎧=⎨=⎩白噪声 方差0.0001确定干扰,采样周期为0.1s.)(11)(s E S T S T K s U d i p ⎥⎦⎤⎢⎣⎡++=(3-1)或写成传递函数形式:)11()()()(S T S T K S E S U S G d i p p ++==(3—2)公式中U(s )和E (s )分别是u(t )和e(t )的拉氏变换,其中p K 、i T 、dT分别控制器的比例系数、积分时间常数、微分时间常数。
3.2P、I、D控制3。
2.1比例(P)控制比例控制是一种最简单的控制方式。
其控制器输出与输入误差讯号成比例关系。
当仅有比例控制时系统输出存在稳态误差。
3。
2.2积分(I)控制在积分控制中,控制器的输出与输入误差讯号成正比关系.对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统。