分式的约分和通分
分式的约分和通分
![分式的约分和通分](https://img.taocdn.com/s3/m/08650559777f5acfa1c7aa00b52acfc789eb9fdb.png)
分式的约分和通分(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分.(2)分式约分的依据:分式的基本性质.(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.(4)最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式.3.例题与练习:例1: 约分:()532164.1abc bc a - ()()()x y a y x a --322.2 (1)①有没有公因式?②公因式是什么? 解:23235324444164ca abc c abc a abc bc a -=⋅⋅-=- 小结:分式的分子、分母都是几个因式的积的形式,所以约去分子、分母中相同因式的最低次幂,注意系数也要约分(2).请学生分析如何约分:由于()y x x y --=-,所以,分子和分母的公因式是:()y x a -,约分可得:解:()()()()()()()()2232322222y x a y x a y x y x a y x a y x a x y a y x a --=--⋅--=---=-- 小结:①当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分.②注意对分子、分母符号的处理.分子或分母的系数是负数时,一般先把负号提到分式本身的前边.例2 .把下列各式约分:()x x x 525.122-- ()634.222-+++a a a a 解:()()()()x x x x x x xx x 5555525.122+=--+=-- ()()()()()212313634.222-+=-+++=-+++a a a a a a a a a a (五)小结:1.约分的主要步骤:先把分式的分子,分母分解因式,然后约去分子分母中的相同因式的最低次幂,(包括分子分母中系数的最大公约数)。
2.约分的依据是分式的基本性质:约去分子与分母的公因式相当于被约去的公因式同时除原分式的分子分母,根据分式的基本性质,所得的分式与原分式的值相等。
分式的基本性质应用:约分、通分
![分式的基本性质应用:约分、通分](https://img.taocdn.com/s3/m/aa6bcea40722192e4436f605.png)
1.通分:
归例纳((112.))通4分b22adca33:22bb与与与34abcaa26bb522bcc
找最简公分母的方法: 1.把各分母因式分解
2.取系数的最小公倍数;
3.取所有因式的最高次幂。
例2.通分: 2x x5
与
3x x5
1
2
1
2
x 1 与 1 x (x 1)2 与 1 x2
找最简公分母的方法:
1.你根据什么进行分式变形?
2.分式变形后,各分母有什么变化?
通分的定义:
利用分式的基本性质,把不同分母
的分式化为相同分母的分式,这样的分 式变形叫分式的通分。
3.分式的分母 4ab 、6a2最终都化成什么?
4ab
6a2
12a2b 最简公分母
取各分母的所有因式的最高次幂的积作 为公分母,它叫做最简公分母。
1、分式的基本性质内容是什么?
分式的分子与分母同时乘以(或除以)同
一个不等于0的整式 ,分式的值不变.
2、什么是分式的约分?分式的约分 有什么要求?
1 3、把右边的分数通分:2
,
3 4
,
5 6
探究
一. 填空:
ab 4ab
3a2 3ab
12a2b
,
2a b 6a2
4ab 2b2
12a2b
,
1.已知 x y z ,试求 x y z 的值.
234
x yz
2.已x2
的值.
3.已知x2
3x
1
0, 试求x 2
1 x2
的值.
1. (多项式)因式分解;
2xy 与 x (x y)2 x2 y2
2.取系数的最小公倍数; 1 与 x x2 4 4 2x
分式的约分和通分
![分式的约分和通分](https://img.taocdn.com/s3/m/6a21bd7a2b160b4e767fcfb3.png)
15 21
=
35 5 37 7
理解应用
a 2bc a2bc ab ac
ab ab ab 分式的约分
把一个分式的分子和分母的公因式约去,不改 变分式的值,这种变形叫做分式的约分.
约分的依据是: 分式的基本性质.
最简分式:一个分式的分子与分母没有1以外的公 因式,叫做最简分式.
分式的约分和通分
分式的基本性质
分式的分子与分母同乘(或除以)一个 不等于0的整式,分式的值不变。
用式子表示为:
C , C .(C 0) C C
其中A,B,C是整式。
分数是如何约分的? 1、约分: 约去分子与分母的最大公约数,化为最简分数。
解: (2)
x2
x2 9 6x
9
(
x
3)( x ( x 3)2
3)
x3 x3
约分时,分子或分母若是 多项式,能分解则必须先 进行因式分解.再找出分 子和分母的公因式进行 约分
例:约分 6x2 12xy 6y2
(3) 3x 3y
解:(3) 6x2 12xy 6y2
确定几个分式的最简公分母的方法:
(1)系数:分式分母系数的最小公倍数; (2)因式:凡各分母中出现的不同因式都 要取到; (3)因式的指数:相同因式取指数最高的。
理解应用 分式的通分
例4 通分:
(1)
3 2a2b
与
ab ab2c
;
(2) 2x 与 3x . x5 x5
分析:为通分要先确定分式的公分母.
1 3xyz
1
2x2z
4x2 y3 12x3 y 4 z
6xy 4 12 x3 y 4 z
15.1.3分式的约分和通分
![15.1.3分式的约分和通分](https://img.taocdn.com/s3/m/f6527621b307e87101f696dd.png)
15.1.3分式的约分和通分一知识要点:【约分】(1)定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。
(2)步骤:把分式分子分母因式分解,然后约去分子与分母的公因。
(3)注意:①分式的分子与分母均为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。
②分子分母若为多项式,先对分子分母进行因式分解,再约分。
(4)最简分式的定义:一个分式的分子与分母没有公因式时,叫做最简分式。
约分时。
分子分母公因式的确定方法:①系数取分子、分母系数的最大公约数作为公因式的系数.②取各个公因式的最低次幂作为公因式的因式.③如果分子、分母是多项式,则应先把分子、分母分解因式,然后判断公因式【通分】(1)定义:把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。
(依据:分式的基本性质!)(2)最简公分母:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。
通分时,最简公分母的确定方法:①系数取各个分母系数的最小公倍数作为最简公分母的系数.②取各个公因式的最高次幂作为最简公分母的因式.③如果分母是多项式,则应先把每个分母分解因式,然后判断最简公分母.【分式的约分和通分--关键先是分解因式】二 例题教学:题型一:最简分式的概念例1: 1)下列各分式中,最简分式是( )A 、()()y x y x +-8534B 、2222xy y x y x ++ C 、y x x y +-22 D 、()222y x y x +- 2)下列分式.,24,,424,x 2222ba b a b b x x m m x +++-++π中,最简分式是————————————。
题型二:分式的约分例2:约分:(1)322016xy yx -;(3)n m m n --22;(3)6222---+x x x x . 题型三:最简公分母的确定例3: 1)分式23a ,a 65,28ba 的最简公分母是( ) A .48a 3b 2 B .24a 3b 2 C .48a 2b 2 D .24a 2b 22)分式22)2(14a 1--a b b b 和的最简公分母是———————— 。
分式的方法与技巧
![分式的方法与技巧](https://img.taocdn.com/s3/m/b9b3affa77eeaeaad1f34693daef5ef7ba0d1226.png)
1、整体通分法
分析:像这样的,一个分式,后面是整式时,将后面的整式看作一个整体,来进行整体通分,可以简单求解。
2、逐项通分法
分析:通过观察各分母的特点,分母为整式时,想一想符合不符合乘法公式的运用特点,从左到右依次通分。
3、先约分,再通分
分析:像这样分子分母都是含有分母的整式时,想到能不能先约分,就要现将分子、分母先分解因式,能月份的先约分后再根据题目的特点进项必要的变化后求值。
4、裂项相消法
分析:通过观察,后两个分式的分母是两个因数的积,并且这两个因式相差1,而分子是一个还相同,这是就应该想到裂项法解题,就是将每一个分式拆成两项的差,前后抵消后再计算。
5、整体代入法
分析:先将条件进行整理,然后整体代入求代数式的值值。
6、公式法
分析:遇到这种特点的题目,先将条件式进行变形,利用完全平方公式再对要求的式子进行整理,然后代入求值。
7、设辅助参数法
分析:利用条件式设一个辅助参数,将一些代数式用所设的参数表示,然后再将这些代数式代入到所求的式子中去,起到化简的目的。
8、倒数变换法
分析:像这种分子比较简单,分母比较复杂事时,这时可以想到把条件式整体取倒数,使条件变简单,再求值。
9、特殊值法
分析:由已知条件无法求出a、b、c的值,可根据已知条件取字母的一组特殊值,然后代入所求的式子求出结果。
这种方法多用在填空题、选择题中。
分式的约分与通分技巧
![分式的约分与通分技巧](https://img.taocdn.com/s3/m/5552a575ef06eff9aef8941ea76e58fafab04587.png)
分式的约分与通分技巧在数学中,分式是由分子和分母组成的表达式,分式可以通过约分和通分来进行简化或合并。
约分是指分式的分子与分母同时除以它们的公约数,使分子和分母尽可能小。
通分则是将两个分式的分母统一为相同的数,以便进行比较或运算。
在本文中,我们将介绍分式的约分与通分的一些技巧。
一、分式的约分技巧当一个分式的分子和分母有公约数时,可以进行约分。
约分的目的是使得分子和分母尽可能地简化,这样可以方便计算和比较。
1. 找出分子和分母的公约数:公约数是指能够同时整除两个或多个数的数。
例如,对于分式4/8,公约数有1、2和4。
2. 除去公约数:将分子和分母分别除以它们的公约数。
对于分式4/8,我们可以除以公约数2,得到最简分式1/2。
3. 化简分式:如果分式的分子和分母仍然有公约数,可以继续进行约分操作,直到无法再约分为止。
例如,对于分式12/24,我们可以先找出它们的最大公约数为12,然后进行除法操作,得到最简分式1/2。
二、分式的通分技巧在进行分式的比较或运算时,往往需要将分式的分母统一为相同的数,这就是通分操作。
1. 找出分式的最小公倍数:最小公倍数是指两个或多个数的公倍数中最小的一个数。
例如,对于分式1/2和3/4,我们可以找出它们的最小公倍数为4。
2. 乘以适当的倍数:将分子和分母同时乘以适当的倍数,使得分母变为最小公倍数。
对于分式1/2,我们乘以2/2得到2/4;对于分式3/4,我们乘以1/1得到3/4。
3. 进行比较或运算:通分后的分式可以进行比较或运算。
例如,对于分式1/2和3/4,通分后分别为2/4和3/4,可以直接比较它们的大小。
三、约分与通分的应用约分与通分技巧在数学中的应用非常广泛,特别是在分数的计算、比较和运算中。
1. 分数的加减运算:当进行分数的加减运算时,需要先找到它们的最小公倍数,然后进行通分操作,最后进行相应的运算。
例如,对于分式1/2和1/3的相加,我们可以找到它们的最小公倍数为6,然后分别将它们通分为3/6和2/6,再进行加法运算得到5/6。
浅谈分式的约分与通分
![浅谈分式的约分与通分](https://img.taocdn.com/s3/m/01121d204a73f242336c1eb91a37f111f1850d26.png)
案例分析新课程NEW CURRICULUM浅谈分式的约分与通分罗成群(贵州省瓮安县中坪中学)分式的约分与通分是人教版八年级下册第十六章———16.1.2分式的基本性质的后继学习内容。
分式的约分与通分是学习分式运算的奠基石,也是学习解分式方程的基础。
但这一知识点教科书讲解得简略,许多学生学习时都感到困难,为了帮助学生学习这一知识点以及加深学生对该知识点的认识,我对分式的约分与通分作如下解析:一、分式的约分1.理解分式约分的定义与分数的约分类似,利用分式的基本性质,约去分式的分子和分母的公因式,不改变分式的值,像这样的分式变形叫做分式的约分。
如分式4x 2y 3z 6x 2y 2约去分子和分母的公因式2x 2y 2,使4x 2y 3z 6x 2y 2化为2yz 3就叫把分式4x 2y 3z 6x 2y 2约分。
分式的分子和分母都含有的因式叫做分子和分母的公因式。
例如,分式4x 2y 3z 6x 2y 2=2x 2y 2·2yz 2x 2y 2·3,其中2x 2y 2叫做分式4x 2y 3z 6x 2y 2的分子和分母的公因式。
像分式2yz 3这样,分子与分母没有公因式的分式叫最简分式。
注意:①分式的约分,一般要约去分子和分母所有的公因式,使所得结果成为最简分式或整式(单项式与多项式统称为整式)。
②分式约分的关键是确定分式的分子与分母的公因式。
③公因式的系数是分子与分母的系数的最大公约数;公因式的因式是分子与分母都含有的因式的最低次幂。
④分式约分的目的是把复杂的分式化成最简分数。
2.约分的方法和步骤当分式的分子与分母都是单项式时,先找出分子与分母的公因式,然后约去分子与分母的公因式。
例如,约分:(1)5x 25x2;(2)-32a 2b 3c 24b 2c 解:(1)5x 25x 2=1·5x 5x ·5x =15x (2)-32a 2b 3c 24b 2c =-4a 2b 2·8b 2c 3·8b 2c =-43a 2b 二、分式的通分1.理解分式通分的定义与分数的通分类似,利用分式的基本性质,使分式的分子和分母同乘以适当的整式,不改变分式的值,把异分母的分式化成分母相同的分式,这样的分式变形叫做分式的通分。
八年级数学《分式的约分和通分》教案
![八年级数学《分式的约分和通分》教案](https://img.taocdn.com/s3/m/f878c6fe1b37f111f18583d049649b6648d7090d.png)
“三部五环”教学模式设计《16.1.2分式的基本性质(2)》教学设计
活动三变式训练,巩固新知 题组一:选择题
1、下列说法错误的是( ) A .
a 21与24a b
通分后分别为242a a 与2
4a
b B .
z xy 231与y
x 2
31
通分后分别为z y x x 223与z
y x yz
2
23 C .
n m +1与m
n -1
的最简公分母为2
2
n m - D .
)(1n m a -与m
n -1
最简公分
母为))((m n n m a -- 2、下列约分正确的是( ) A .
33
=+m
m B.
022=--y x y x C.
b
a
b x a x =++ D.
1-=-+-y x y x 题组二:快速解答 1、约分
2、通分 (1)
2
261
21xy
y x -与 (2)
6
4312---+x x x
x 与 题组三:挑战自我
【师生活动】
教师相机出示题组,其中题组一口答,题组二、三纸笔演练
(题组二的1题分组练习,交叉评价),生思考并独立完成,
教师巡视指导,相机提名板演,重点关注学困生的表现,
及时辅导、补救。
【设计意图】
培养学生自主学习的思想,观察其成效
板书设计
16.1.2分式的约分和通分(2)。
分式的通分和约分
![分式的通分和约分](https://img.taocdn.com/s3/m/a476089768dc5022aaea998fcc22bcd126ff42e5.png)
分式的通分和约分
今天我来跟大家聊聊分式的通分和约分。
第一节,什么是分式
分式也叫做分数,表示两个不同的大小的数,由分子和分母两部分组成,先定义一下分子分母的含义:分子:是分式的分子部分,表示两个数的比值;分母:是分式的分母部分,表示两个数的大小。
第二节,什么是分式的通分
所谓的分式的通分就是将两个分式的分子和分母都变成同一个数,让它们具有相同的大小,这样就可以比较它们之间的大小,从而挑出最大的和最小的。
第三节,分式的通分怎么做
要想将两个分式通分,首先需要先确定它们的最大公约数(LCD)。
最大公约数就是能够同时整除两个数的最大数。
最后,将分子分别乘以分母与最大公约数的商,将分母分别乘以分子与最大公约数的商,这样两个分式的分子和分母就都变成同一个数,完成了分式的通分。
第四节,什么是分式的约分
所谓的分式的约分,就是通过求出一个分式中分子和分母的最大公约数,并将它们各自化简为最小公分数,以达到求出分式的最简形式,也就是约分的过程。
第五节,分式的约分怎么做
首先计算两个分式的最大公约数,然后将分子各自化简为最小公分数,再将分母也各自化简为最小分数,最后将两个分式的也可以变成最小公分数的形式,完成了分式的约分。
综上所述,分式的通分和约分经常被广泛使用,两个分式的通分可以让它们具有相同的大小,从而比较它们之间的大小;而分式的约分则可以求出这个分式的最简形式。
也希望通过本文,人们能够对分式的通分和约分有更深刻的理解。
分式的约分与通分技巧
![分式的约分与通分技巧](https://img.taocdn.com/s3/m/2a2a6518bf23482fb4daa58da0116c175e0e1e64.png)
分式的约分与通分技巧分式是数学中常见的一种表达形式,它由分子和分母组成。
在进行数学运算或问题解答时,需要对分式进行约分或通分,以便更方便地进行计算或分析。
本文将介绍分式的约分与通分技巧,并提供一些实例进行说明。
一、分式的约分技巧分式的约分是指将分式的分子和分母同时除以它们的最大公约数,使得分子和分母的比值保持不变,但分式的表示形式更简洁。
下面是一些常见的约分技巧:1. 找出分子和分母的公共因子,计算它们的最大公约数。
然后将分子和分母同时除以最大公约数。
例如,对于分式6/12,我们可以找到分子6和分母12的最大公约数为6。
将分子和分母同时除以6,得到约分后的分式1/2。
2. 利用质数进行约分。
如果分子分母都可以被同一个质数整除,那么可以直接将分子和分母同时除以这个质数。
例如,对于分式18/24,我们可以发现分子18和分母24都可以被2整除。
将分子和分母同时除以2,得到约分后的分式9/12。
继续约分,我们可以得到3/4。
二、分式的通分技巧通分是指将两个或多个分式的分母统一为相同的数值。
通分可以使得分式之间的比较和运算更加便利。
下面是一些常见的通分技巧:1. 找出两个分式分母的最小公倍数,将两个分式的分母都改为最小公倍数,并使得分子保持不变。
例如,对于分式1/2和2/3,它们的分母分别为2和3。
2和3的最小公倍数为6,因此我们可以将1/2乘以3/3,2/3乘以2/2,得到通分后的分式3/6和4/6。
2. 利用分母之间的因数关系进行通分。
如果两个分数的分母之间存在因数关系,可以根据这个关系进行通分。
例如,对于分式1/3和1/6,我们可以发现6可以整除3。
将1/3乘以2/2,得到通分后的分式2/6。
以上是分式的约分与通分技巧的简要介绍。
在实际应用中,我们可以根据具体的问题和分式的特点选择合适的约分与通分方法。
熟练掌握这些技巧可以提高我们在数学运算和问题解答中的效率和准确性。
通过本文的介绍,我们对分式的约分与通分技巧有了更深入的了解。
分式的约分、通分
![分式的约分、通分](https://img.taocdn.com/s3/m/bc547755ff00bed5b9f31ddb.png)
宝坻区林亭口中学 宋晨明
复习回顾
分式的基本性质: 一个分式的分子与分母同乘(或除以) 一个 不为0的整式 ,分式的值___不__变______
用字母表示为:
A AC ,
B BC
A
AC
(C≠0)
B BC
观察类比 6
分式约分吗?
(1)36aab22bc
例3 约分
(1)
25a2bc3 15ab2c
(2)
x2
x2 9 6x9
6x212xy6y2 (3)
3x3y
(1)原式=
5abc5ac2
5ac 2
5abc3b
3b
(x3)(x3) x 3
(2)原式=
(x 3)2
x3
你能说说
约分的步骤 和结果
(6 x y)2 (3)原式= (3 x y)
(2)3x2 3xy 6x2
你发现了什么?
6 32 3 8 42 4
(1)36aab22bc
3ab 2a 3ab bc
2a bc
(公因数为 2)
(分子分母都除以 2)
(公因式为3ab) (分子分母都除以3ab)
发现不同
(2)3x2 6x
3xy
2
3xxy
3x2x
(1)类比出分式通分的概念
根据分式的基本性质,把几个异分母分式化成与原来 分式相等的同分母的分式的过程,叫做分式通分。
(2)如何进行分式通分?
(1)41ab与26aa2b
(2)x2
x y2
与xy xy
通分要先确定分式的最简公分母。
(1)最简公分母是12a2b
一般取各分母的 所有因式的
分式的约分与通分好
![分式的约分与通分好](https://img.taocdn.com/s3/m/b75da7b4c77da26925c5b0a3.png)
自学检测(一):
约分 把分式分子、分母的 公因式约去,叫分式的约
分. (1)2106xxy2 y4 3 .
12x 2 y3 9x3y2 ;
注意:将分子分母中的系数化为正
(2) x
2
x2 4 4x
4
.
x- y (x- y)3
.
注意:分子分母是多项式的先分别进行因式分解再约分。
分子与分母没有公因式的分式称为 最简分式.
约分的步骤 (1)约去系数的最大公约数
(2)约去分子分母相同因式的最低次幂
下列约分的方法对不对?
xa x ya y
x2 2 x
25a2bc3 15ab2c
x2 9 x2 6x 9
练习: 1、约分:
2bc ac
x2 xy (x y)2
(x y)y xy 2
x2 y2 (x y)2
分数的约分与通分 1.约分: 约去分子与分母的最大公约数,化为最简分数. 2.通分: 先找分子与分母的最小公倍数,再使分子与分母 同乘最小公倍数,计算即可.
学习目标:
1.知道最简分式的概念,能熟练地对分式进行约分。 2.能找出几个分式的最简公分母,会对分式进行通分.
自学指导
(一)自学教材130思考至131页思考前内容,勾、 圈、点、画。归纳总结如何对分式进行约分,时 间3分钟。
(1)
3 2a 2b
与
ab ab2c
(2) 2x 与 3x x5 x5
自学检测(二):
通分 把各分式化成相同分母的分式叫做分式的通分.
(1)
1 a2b
,
1 ab2
.
6
5
x2
y
和
分式的约分与通分及其运算规则
![分式的约分与通分及其运算规则](https://img.taocdn.com/s3/m/d1fce6a8541810a6f524ccbff121dd36a22dc464.png)
分式的约分与通分及其运算规则分式是数学中常见的一种数形式,由分子和分母组成,表示为a/b的形式。
分式的约分与通分是分式运算的基础,它们在分式的运算过程中起到了重要的作用。
本文将介绍分式的约分与通分的概念和运算规则。
一、分式的约分与通分的概念1. 约分:约分是指将分式中的分子和分母同时除以它们的公因数,使得分式的值保持不变且分子与分母互素(即它们的最大公约数为1)。
约分后的分式与原式等值,但其分子与分母通常会更小。
2. 通分:通分是指将两个或多个分式的分母进行相同的乘积操作,使它们拥有相同的分母。
通分后的分式可以方便地进行相加、相减、相乘、相除等运算。
二、约分与通分的运算规则1. 约分运算规则:a) 分式的分子与分母可以同时除以一个相同的非零整数,得到等值的分式。
b) 分式的分子与分母可以同时乘以一个相同的非零整数,得到等值的分式。
2. 通分运算规则:a) 对于两个分式a/b和c/d,若它们的分母相等,则可以直接相加、相减、相乘、相除等运算。
b) 对于两个分式a/b和c/d,若它们的分母不等,则需要进行通分操作,即将它们的分母相乘,并将分子按相应倍数扩大,使得它们的分母相等,然后再进行相加、相减、相乘、相除等运算。
三、约分与通分的实例演示1. 约分实例:分式4/8可以约分为1/2,因为它们的最大公约数是4。
分式6/15可以约分为2/5,因为它们的最大公约数是3。
分式12/18可以约分为2/3,因为它们的最大公约数是6。
2. 通分实例:分式1/3和2/5需要进行通分操作才能相加。
首先,它们的分母分别为3和5,所以它们的最小公倍数为15。
将1/3乘以5/5,得到5/15;将2/5乘以3/3,得到6/15。
现在,它们的分母相等,所以可以相加,结果为5/15 + 6/15 =11/15。
四、总结分式的约分与通分是数学中重要的运算规则,能够简化分式表达式和方便分式的运算。
约分能够使分式的分子和分母互素,降低分式的大小;通分能够使不同分式的分母相等,进而方便进行分式的加减乘除等运算。
人教版数学八年级上册15.1.2:分式的基本性质应用:约分、通分教案
![人教版数学八年级上册15.1.2:分式的基本性质应用:约分、通分教案](https://img.taocdn.com/s3/m/b8552447daef5ef7bb0d3c7f.png)
§15.1.2 分式的基本性质(2)——分式的约分和通分一、内容分析本节教学内容是人教版八年级上册《15.1.2分式的基本性质》第二课时,即分式的约分和通分。
本节是在学生有小学学习的分数的约分通分、初一学习了因式分解及上节课学习了分式的基本性质的知识基础上,进一步学习分式基本性质的应用。
学生通过类比分数的约分和通分来总结出分式的约分与通分的法则,从中体会数学的类比思想。
同时分式的约分和通分,是进行分式的加减乘除四则运算所必须掌握的分式变形,为后边分式的计算学习做铺垫,在本章中也有着非常重要的地位和作用。
二、教材分析(一)教学目标知识与技能:理解分式约分和通分的基本概念,认识到约分和通分其实是分式基本性质的应用和巩固,并会用分式的基本性质将分式进行正确的约分和通分。
过程与方法:应用分式的基本性质将分式变形,通过复习分数的约分、通分类比分式的约分、通分,从中渗透数学的类比思想方法,并在探究过程中掌握分式约分通分的关键。
情感态度与价值观:通过思考、探究等活动获得学习数学的成功体验,树立学习数学的信心,培养独立思考、合作交流的能力。
(二)教学重难点教学重点:分式的约分和通分教学难点:分式的约分和通分三、学情分析学生已经学过分数的约分和通分,已具备一定的知识基础,因而对于分式的约分和通分理解要相对容易一点。
但学生基础不是很好,无法灵活运用所学知识,在约分过程中先找分子和分母的公因式和在通分过程中先确定最简公分母这两个关键点不能很好地把握,尤其是当分子分母是多项式时要先进行因式分解,这样的变形过程对于学生来说更困难。
四、教学法分析本着以学生为主,教师为辅,充分发挥学生的主体地位,让学生积极主动地参与探索,互动交流学习,体现以“自主、探究、合作”为特征的教与学方式。
五、教学过程设计(一)温故知新分式的基本性质:_________________________________________________________ 用数学符号怎么表示:_________________________________________________________ 师生活动:学生回忆并举手发言,师展示答案。
专题7 分式的通分和约分(含答案)
![专题7 分式的通分和约分(含答案)](https://img.taocdn.com/s3/m/92284c62a517866fb84ae45c3b3567ec102ddc4d.png)
专题7 分式的通分和约分知识解读一、约分1.约分步骤(1)分子、分母是单项式第1步:判断结果的符号,整个分式、分子和分母的负号个数之和,奇数个为负,偶数个为正;第2步:约去公因式,系数与系数约分,相同字母与相同字母分别约分。
(2)分子、分母是多项式第1步:分别将分子、分母因式分解;第2步:分子、分母约去公因式;注意:最高次项系数为负数的,可应用分式性质将最高次项系数化为正数后再因式分解。
2.寻找最大公因式的方法寻找分子、分母最大公因式的步骤:①系数,找最大公约数;②相同式子,找最低次幂。
如果分子或分母是多项式,要先进行分解因式,再找公因式.二、通分1.通分的步骤(1)确定几个分式的最简公分母;(2)将几个分式的分子、分母同时乘同一个整式,使得所有分式的分母都化成最简公分母.2.寻找最简公分母的方法(1)分母为单项式:①系数取单项式中所有系数的最小公倍数作为最简公分母的系数;②取单项式中每个字母出现的最高次幂作为最简公分母中该字母出现的次数.(2)分母为多项式:①将每个分母因式分解;②找出每个出现的因式的最高次幂,它们的积为最简公分母的因式;③若有系数,方法同上。
培优学案典例示范一、约分例1计算:1、(1)25328mnm n-;(2)4222244xy yx xy y+++;(3)2222444y xx xy y--+-.【提示】先将分子、分母化成乘积的形式,然后约分.【解答】【技巧点评】约分的前提条件是分子、分母有公因式,判断分子、分母是否有公因式,需要将分子、分母化成乘积的形式.跟踪训练11.约分:(1)2222812x yzx y z--;.(2)22416x xx--;(3)22369x xx x--+二、先化简,才能简化求值过程例2计算:(1)2251025x xx x--+,其中x=2.5:(2)22293a bab b-+,其中a=一4,b=2.【提示】直接代入显然很繁琐,可考虑先将分式约分,然后再代入求值。
分式通分约分练习题
![分式通分约分练习题](https://img.taocdn.com/s3/m/d2d6dac7bdeb19e8b8f67c1cfad6195f312be813.png)
分式通分约分练习题在学习分数运算的过程中,分式的通分和约分是非常重要的概念和技巧。
通分是将两个或多个分式的分母化为相同的公倍数,以便进行加、减、乘、除等运算;而约分则是将分数化简为最简形式,使分子和分母没有公约数。
接下来,我们将提供一些分式通分和约分的练习题,以帮助你巩固这些概念和技巧。
1. 通分练习题:1) 将分式1/3和2/5通分。
解答:首先,寻找1/3和2/5两个分母的最小公倍数,即3和5的最小公倍数为15。
然后,将1/3扩展为15的分式,得到5/15;将2/5扩展为15的分式,得到6/15。
所以,通分后的结果为5/15和6/15。
2) 将分式2/7和3/4通分。
解答:首先,寻找2/7和3/4两个分母的最小公倍数,即7和4的最小公倍数为28。
然后,将2/7扩展为28的分式,得到8/28;将3/4扩展为28的分式,得到21/28。
所以,通分后的结果为8/28和21/28。
2. 约分练习题:1) 将分数12/18约分为最简形式。
解答:我们需要找出分数12/18的最大公约数。
12和18的公约数有1、2、3、6,其中6是最大的公约数。
将分子和分母同时除以6,得到2/3。
所以,12/18约分为最简形式的结果是2/3。
2) 将分数16/24约分为最简形式。
解答:我们需要找出分数16/24的最大公约数。
16和24的公约数有1、2、4,其中4是最大的公约数。
将分子和分母同时除以4,得到4/6。
接着,我们可以继续约分4/6,最大公约数为2。
将分子和分母同时除以2,得到2/3。
所以,16/24约分为最简形式的结果是2/3。
通过以上练习题,我们可以发现通分和约分是分数运算中非常常用的技巧。
掌握这些技巧对于解决分数运算问题非常重要。
希望通过这些练习题的练习,你能够更加熟练地运用分式通分和约分的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。