高中数学专题复习含参不等式与参变量的取值范围

高中数学专题复习含参不等式与参变量的取值范围

含参不等式的专题练习教学设计 .doc

例2 解不等式135 x <-< 课后练习: 一.选择题(共2小题) 1.(2015春?石城县月考)已知m为整数,则解集可以为﹣1<x<1的不等式组是() A .B . C . D . 2.(2002?徐州)已知实数x、y同时满足三个条件:①3x﹣2y=4﹣p,②4x﹣3y=2+p,③x>y,那么实数p 的取值范围是() A .p>﹣1 B . p<1 C . p<﹣1 D . p>1 二.填空题(共7小题) 3.(2012?谷城县校级模拟)若不等式组恰有两个整数解.则实数a的取值范围 是. 4.(2010?江津区)我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2,若x,y均为整数,且满足1 <<3,则x+y的值是. 5.若不等式组的解集是﹣1<x<1,则(a+b)2009=. 6.关于x的不等式组的所有整数解的和是﹣7,则m的取值范围是. 7.不等式组的解是0<x<2,那么a+b的值等于. 8.已知不等式组的解集1≤x<2,则a=. 9.若关于x的不等式的解集为x<2,则k的取值范围是. 三.解答题(共4小题)

10.(1)解方程组: (2)求不等式组的整数解. 11.(2013?乐山)已知关于x,y的方程组的解满足不等式组,求满足条件的m的整数值. 12.(2011?铜仁地区)为鼓励学生参加体育锻炼,学校计划拿出不超过3200元的资金购买一批篮球和排球,已知篮球和排球的单价比为3:2,单价和为160元. (1)篮球和排球的单价分别是多少元? (2)若要求购买的篮球和排球的总数量是36个,且购买的排球数少于11个,有哪几种购买方案? 13.(2011?邵阳)为庆祝建党90周年,某学校欲按如下规则组建一个学生合唱团参加我市的唱红歌比赛.规则一:合唱队的总人数不得少于50人,且不得超过55人. 规则二:合唱队的队员中,九年级学生占合唱团总人数的,八年级学生占合唱团总人数的,余下的为七年 级学生. 请求出该合唱团中七年级学生的人数.

3.均值不等式(全国卷1)

第三节:均值不等式 1.★★若正数a b c ,,满足24288c bc ac ab +++=,则2a b c ++的最小值为 A. 3 B.23C.2 D.2 2 答案:D 2. ★★(2014 河北唐山二模文)若实数a b c ,,满足2228a b c ++=,则a b c + +的最大值为 A.9 B.23 C.3 2 D.2 答案:D 3. ★★(2014 河北衡水四调理)已知,,,ABC A B C ?∠∠∠中的对边分别为,,a b c ,若 1, 2 2a cosC c b =+=,则ABC ?的周长的取值范围是__________. 答案:](32, 4. ★ (2014 河北衡水三调理)已知,,a b c 为互不相等的正数,222a c bc +=,则下列关系中可能成立的是( ) A .a b c >> B .b c a >> C .b a c >> D .a c b >> 答案:C 5.★★( 2014 河北衡水三调理)已知各项均为正数的等比数列满足, 若存在两项 的最小值为 ( ) A . B . C . D .9 答案:A 6. ★★(2014 河北衡水三调文)已知0,0,lg 2lg8lg 2x y x y >>+=,则113x y +的最小值是. 答案:4 7. ★★(2014 河北衡水四调文)函数2()2l n f x x x b x a =+-+(0,)b a R >∈在点{}n a 7652a a a =+,m n a a 114 4,a m n =+则3 2 539 4

(),()b f b 处的切线斜率的最小值 是( ) A.2 1 答案:A 8. ★★(2014 河北冀州中学月考文)若正实数满足 恒成立,则 的最大值为. 答案:1 9. ★★★(2012 山西襄汾中学高考练兵理)设x 、y 满足约束条件,若目 标函数(00)z ax by a b =+>>其中,的最大值为3,则+的最小值为 A .3 B .1 C .2 D .4 答案:A 10. ★★★(2014 河南郑州2014第一次质量预测理)已知,a b 是两个互相垂直的单位向量,且1c a c b ?=?= ,则对任意的正实数t ,1||c ta b t ++ 的最小值是( ) A .2 B ..4 D .答案:B 11. ★★(2014 河南中原名校期中联考理)已知00x y >,>,若222y x m m x y 8+>+恒成立,则实数m 的取值范围是 A .42m m ≥≤或- B .24m m ≥≤或- C .24m -<< D .42m -<< 答案:D 12. ★(2013 河南许昌市期中理)若实数x y ,满足221x y xy ++=,则x y +的最大值是 . 答案: ,x y 2x y +=M ≥M 23023400x y x y y -+≥?? -+≤??≥? 1a 2 b

高中数学不等式讲义

6.1不等式的概念和性质 〖考纲要求〗掌握不等式的性质及其证明,能正确使用这些概念解决一些简单问题. 〖复习建议〗不等式的性质是解、证不等式的基础,对于这些性质,关键是正确理解和熟练运用, 要弄清每一个条件和结论,学会对不等式进行条件的放宽和加强。 〖双基回顾〗常见的性质有8条: 1、反身性(也叫对称性):a >b ?b <a 2、传递性:a >b ,b >c ?a >c 3、平移性:a >b ?a +c >b +c 4、伸缩性:???>>0c b a ?ac >bc ;???<>0 c b a ?ac <bc 5、乘方性:a >b ≥0?a n >b n (n ∈N ,n ≥2)6、开方性:a >b ≥0?n a >n b (n ∈N ,n ≥2) 7、叠加性:a >b ,c >d ?a +c >b +d 8、叠乘性:a >b ≥0,c >d ≥0?a ·c >b ·d 一、知识点训练: 1、b a b a 11???成立的充要条件为 2、用“>”“<”“=”填空: (1)a

含参不等式(有解、无解问题)(人教版)含答案

含参不等式(有解、无解问题)(人教版)一、单选题(共10道,每道10分) 1.若不等式组的解集为,则m的取值范围是( ) A. B. C. D. 答案:A 解题思路: 试题难度:三颗星知识点:含参不等式(组) 2.若关于x的不等式组有解,则a的取值范围是( ) A. B. C. D. 答案:B 解题思路:

试题难度:三颗星知识点:含参不等式(组) 3.若不等式组有解,则a的取值范围是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:含参不等式(组) 4.若关于x的不等式组有解,则a的取值范围是( ) A. B. C. D.

答案:B 解题思路: 试题难度:三颗星知识点:含参不等式(组) 5.若关于x的不等式组有解,则a的取值范围是( ) A. B. C. D. 答案:C 解题思路: 试题难度:三颗星知识点:含参不等式(组)

6.关于x的不等式组无解,则a的取值范围是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:含参不等式(组) 7.若关于x的不等式组无解,则a的取值范围是( ) A. B. C. D. 答案:D 解题思路:

试题难度:三颗星知识点:含参不等式(组) 8.已知关于x的不等式组无解,则a的取值范围是( ) A. B. C. D. 答案:A 解题思路: 试题难度:三颗星知识点:含参不等式(组)

9.若关于x的不等式组无解,则a的取值范围是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:含参不等式(组) 10.若关于x的不等式组无解,则m的取值范围是( ) A. B. C. D. 答案:B 解题思路:

含参不等式的解法

含参数的一元二次不等式的解法 含参数的一元二次不等式的解法与具体的一元二次不等式的解法在本质上是一致的,这类不等式可从分析两个根的大小及二次系数的正负入手去解答,但遗憾的是这类问题始终成为绝大多数学生学习的难点,此现象出现的根本原因是不清楚该如何对参数进行讨论,而参数的讨论实际上就是参数的分类,而参数该如何进行分类?下面我们通过几个例子体会一下。 一. 二次项系数为常数 例1、解关于x 的不等式:0)1(2 >--+m x m x 解:原不等式可化为:(x-1)(x+m )>0 (两根是1和-m ,谁大?) (1)当1<-m 即m<-1时,解得:x<1或x>-m (2)当1=-m 即m=-1时,不等式化为:0122 >+-x x ∴x ≠1 (3)当1>-m 即m>-1时,解得:x<-m 或x>1 综上,不等式的解集为: (){}m x x x m -><-<或时当1|,11 (){}1|,12≠-=x x m 时当 (){}1-|,13><->x m x x m 或时当 例2:解关于x 的不等式:.0)2(2 >+-+a x a x (不能因式分解) 解:()a a 422 --=? (方程有没有根,取决于谁?) ()()R a a a 时,解集为即当32432404212 +<<-<--=? ()()3 2432404222 +=-==--=? a a a a 或时当

(i )13324-≠ -=x a 时,解得:当 (ii )13-324-≠+=x a 时,解得: 当 ()()时 或即当32432404232 +>-<>--=? a a a a 两根为()2 42)2(2 1 a a a x --+ -= ,()2 42)2(2 2 a a a x --- -= . ()()2 42)2(2 42)2(2 2 a a a x a a a x --+ -> --- -< 或此时解得: 综上,不等式的解集为: (1)当3 2 4324+<<-a 时,解 R ; (2)当324-=a 时,解集为(13,-∞-)?( +∞ -,13); (3)当324+=a 时,解集为(13,--∞-)?(+∞ -- ,13); (4)当3 24-a 时, 解集为(2 48)2(, 2 +---∞-a a a )?( +∞ +-+ -,2 4 8)2(2 a a a ); 二.二次项系数含参数 例3、解关于x 的不等式:.01)1(2 <++-x a ax 解:若0 =a ,原不等式.101>?<+-?x x 若0--?或.1>x 若0 >a ,原不等式.0)1)(1(<-- ? x a x )(* 其解的情况应由a 1与1的大小关系决定,故 (1)当1=a 时,式)(*的解集为φ ; (2)当1>a 时,式)(*11<

2019高中数学专题复习不等式

(六) 不等式(注意速度和准度) 一、“12+4”提速练 1.不等式? ????x +12? ?? ??32-x ≥0的解集是( ) A.????????? ?x ??? x <-12或x > 32 B.?????? ??? ?x ??? x ≤-12或x ≥ 3 2 C.? ????? ??? ?x ??? -12≤x ≤ 3 2 D.? ????? ??? ?x ??? -121b ,- 1 a <-1b ,故A 不正确,D 正确.可得ab =2,b 2=1,∴ab >b 2 ,故B 不正确.可得-ab =-2, -a 2 =-4,∴-ab >-a 2 ,故C 不正确. 3.(2017·全国卷Ⅱ)设x ,y 满足约束条件???? ? 2x +3y -3≤0,2x -3y +3≥0, y +3≥0,则z =2x +y 的最小 值是( ) A .-15 B .-9 C .1 D .9 解析:选A 法一:作出不等式组表示的可行域如图中阴影部分所示.易求得可行域的顶点A (0,1),B (-6,-3),C (6,-3),当直线z =2x +y 过点B (-6,-3)时,z 取得最小值,z min =2×(-6)-3=-15. 法二:易求可行域顶点A (0,1),B (-6,-3),C (6,-3),分别代入目标函数,求出对应的z 的值依次为1,-15,9,故最小值为-15.

含参不等式题型知识讲解

含参不等式题型 一、给出不等式解的情况,求参数取值范围: 总结:给出不等式组解集的情况,只能确定参数的取值范围。记住:“大小小大有解;大大小小无解。”注:端点值格外考虑。 1:已知关于x 的不等式组3x x a >-???????+>-??的解集是x>2a,则a 的取值范围是 。 4、已知关于x 的不等式组2113x x m -?>???>?的解集为2x >,则( ) .2.2.2.2A m B m C m D m ><=≤

5、关于x 的一元一次不等式组x a x b >?? >?的解集是x>a,则a 与b 的关系为( ) ...0.0A a b B a b C a b D a b ≥≤≥>≤< 6、若关于x 的不等式组841x x x m +-??? p f 的解集是x >3,则m 的取值范围是 7、若关于x 的不等式组8x x m ?,有解,则m 的取值范围是__ ___。 8、若关于x 的不等式组?? ?->+<121m x m x 无解,则m 的取值范围是 。 二、给出不等式解集,求参数的值 总结:给出不等式组确切的解集,可以求出参数的值。方法:先解出含参的不等式组中每个不等式的解集,再利用已知解集与所求解集之间的对应关系,建立方程。 1:若关于x 的不等式组2123x a x b -? 的解集为11x -<<,求()()11a b +-的值。 2:已知关于x 的不等式组()324213 x x a x x --≤???+>-??的解集是13x ≤<,求a 的值。 3、若关于x 的不等式组 的解集为 ,求a,b 的值 {a b x b a x 22>+<+3 3<<-x

高中数学竞赛均值不等式讲义

均值不等式 1.均值不等式 知识点1: 二元均值不等式可以推广到n 元,即: 设,,, 123 a a a a n 为n 个非负实数,则 12n a a a n ++ + ≥1 23 a a a a n === =). 如何证明? 知识点2: 设,,, 123 a a a a n 为n 个非负实数 ,n Q , 12n n a a a A n ++ += , n G =, 12 111n n n H a a a = ++,则n n n n Q A G H ≥≥≥(等号成立当且仅当 123a a a a n ====) 更一般的平均值的定义: 设正数(1,2,3...)i a i n =,则α的幂平均值=1 1 ( )n i i a n α α =∑,特 别的,我们有: lim ()n f G αα→=,1 1 ()( )n i i a f n α α α==∑为关于α的增函数. 知识点3:重要结论 (1)2 22,,,.a b c R a b c ab bc ac ∈++≥++ (2) ()2 ,,,3().a b c R a b c ab bc ac ∈++≥++ (3) 2222,,,3()().a b c R a b c a b c ∈++≥++ (4) 2,,,()3().a b c R ab bc ca abc a b c ∈++≥++ (5) ,,,()()()()().a b c R a b b c a c abc a b c ab cb ac ∈++++=++++ (6) 222;2a a a b b a b b -≥-+≥(a,b,c>0) (7) 2222221 ()()3 a b b c c a a b c a b c ++≤++++(a,b,c>0) (8)正实数(1,2,3...)i a i n =,则 21 1 1 n n i i i i a n a ==?≥∑∑ (当且仅当12...n a a a ===); (9) 222222222222()()()()()a b b c c a ab bc ca a b c a bc b ca c ab ++++=++++ 知识点4:加权平均值不等式 已知 12+...1(0,1,2.,,,) n i w w w w i n +=>=,则对任意正实数 12112212........n w w w n n n w a w a w a a a a +++≥.

高中数学专题复习基本不等式

第六章 不等式 课 题:基本不等式 教学目标:学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不 等号“≥”取等号的条件是:当且仅当这两个数相等。 教学重点:2 a b +≤的证明过 程。 教学难点:2 a b +≤等号成立条件。 教学过程: 1.课题导入 2 a b +≤ 的几何背景: 如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能在这个图案中找出一些相等关系或不等关系吗? 教师引导学生从面积的关系去找相等关系或不等关系。 2.讲授新课 1.探究图形中的不等关系 将图中的“风车”抽象成如图,在正方形ABCD 中右个全等的直角三角形。设直角三角形的 两条直角边长为a,b 这样,4个直角三角形的面积的和是2ab ,正方形的面积为2 2 a b +。由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:2 2 2a b ab +≥。 当直角三角形变为等腰直角三角形,即a=b 时,正方形EFGH 缩为一个点,这时有2 2 2a b ab +=。 2.得到结论:一般的,如果)""(2R,,2 2号时取当且仅当那么==≥+∈b a ab b a b a 3.思考证明:你能给出它的证明吗? 证明:因为2 22)(2b a ab b a -=-+ 当a b ≠时22 ,()0,,()0,a b a b a b ->=-=当时 所以,0)(2≥-b a ,即.2)(2 2ab b a ≥+ 4.1)2 a b +

特别的,如果a>0,b>0,我们用分别代替a 、b ,可得a b +≥, (a>0,b>0)2 a b + 2)2 a b +≤ 用分析法证明: 要证 2 a b +≥只要证 a+b ≥ (2) 要证(2),只要证 a+b- ≥0 (3) 要证(3),只要证 ( - )2 (4) 显然,(4)是成立的。当且仅当a=b 时,(4)中的等号成立。 3)2 a b +≤ 的几何意义 探究:课本第110页的“探究” 在右图中,AB 是圆的直径,点C 是AB 上的一点,AC=a,BC=b 。过点C 作垂直于 AB 的弦DE ,连接AD 、BD 。2 a b +的几何解释吗? 易证Rt △A CD ∽Rt △D CB ,那么CD 2 =CA ·CB 即CD =ab . 这个圆的半径为 2b a +,显然,它大于或等于CD ,即 ab b a ≥+2 ,其中当且仅当点C 与圆心重合,即a =b 时,等号成立. 2 a b +≤几何意义是“半径不小于半弦” 评述:1.如果把 2 b a +看作是正数a 、 b 的等差中项,ab 看作是正数a 、b 的等比中项,那么该定理可以叙述为:两个正数的等差中项不小于它们的等比中项. 2.在数学中,我们称 2 b a +为a 、 b 的算术平均数,称ab 为a 、b 的几何平均数.本节定理还可叙述为:两个正数的算术平均数不小于它们的几何平均数. [补充例题] 例1 已知x 、y 都是正数,求证: (1) y x x y +≥2;

苏教版数学高二-3.2素材 含参不等式的讨论策略

含参不等式的讨论策略 求解含参数的不等式集中了解不等式的基础知识、基本技能,常与分类讨论相结合,成为各类考试中的重点和难点。解含参数的不等式离不开分类讨论,分类讨论的关键在于弄清为什么要分类,从什么角度进行分类。本文以这两个方面为着眼点,谈谈分类的策略,供同学们参考。 一、含参数的一元二次不等式的讨论策略 例1 解关于x的不等式。 分析:对含参数的一元二次不等式的讨论顺序一般为先讨论二次项系数,后对“△”进行讨论。需要的话还要对根的大小进行比较。含参数的一元二次不等式与不含参数的一元二次不等式的解题过程实质是一样的,结合二次函数的图象、一元二次不等式分类讨论。 解:(1)当a=0时,原不等式的解集为。 (2)当a>0时,方程,△=4-4a。 ①若△>0,即01时,原不等式的解集为R。 ④当a<0时,一定有△>0,方程两个解为, ,且。 原不等式的解集为。 总结:对含参数的一元二次不等式的讨论,一般可分为以下三种情形:(1)当含参数的一元二次不等式的二次项系数为常数,但不知道与之对应的一元二次方程是否有解时需要对判别式“△”进行讨论。(2)当含参数的一元二次不等式的二次项系数为常数,且与之对应的一元二次方程有两解,但不知道两个解的大小,因此需要对解的大小进行比较。(3)当含参数的一元二次不等式的二次项系数含有参数时,首先要对二次项系数进行讨论,其次,有时要对判别式进行讨论,有时还要对方程的解的大小进行比较。 二、含参数的绝对值不等式的讨论方法 例2 解关于x的不等式。 错解:。 当时,解得。 当时,解得。

【高中数学】公式总结(均值不等式)

均值不等式归纳总结 1. (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥ +2 (2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2? ? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则1 1122-2x x x x x x +≥+ ≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和 为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』

例1:求下列函数的值域 (1)y =3x 2+ 1 2x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2· 1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧 技巧一:凑项 例 已知5 4 x <,求函数14245 y x x =-+ -的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

高中数学不等式综合复习

不等式专题 一.不等式的基本性质 1. 不等式的基本概念 (1) 不等(等)号的定义:.0;0;0b a b a b a b a b a b a ?>- (2) 不等式的分类:绝对不等式;条件不等式;矛盾不等式. (3) 同向不等式与异向不等式. (4) 同解不等式与不等式的同解变形. 2.不等式的基本性质 (1)a b b a (对称性) (2)c a c b b a >?>>,(传递性) (3)c b c a b a +>+?>(加法单调性) (4)d b c a d c b a +>+?>>,(同向不等式相加) (5)d b c a d c b a ->-?<>,(异向不等式相减) (6)bc ac c b a >?>>0,. (7)bc ac c b a 0,(乘法单调性) (8)bd ac d c b a >?>>>>0,0(同向不等式相乘) (9)0,0a b a b c d c d >><(异向不等式相除) 11(10),0a b ab a b >>? <(倒数关系) (11))1,(0>∈>?>>n Z n b a b a n n 且(平方法则) (12))1,(0>∈>?>>n Z n b a b a n n 且(开方法则) 二.一元二次不等式 1.不等式的解法 (1)整式不等式的解法(根轴法). 步骤:正化,求根,标轴,穿线(偶重根打结),定解. 特例① 一元一次不等式ax >b 解的讨论; 一元一次不等式)0(0≠>+a b ax 的解法与解集形式 当0>a 时,a b x - >, 即解集为?????? ->a b x x | 当00(a ≠0)解的讨论.

一元一次不等式的含参问题

《含参数的一元一次不等式组的解集》教学设计 教材分析:本章内容在学习了《一元一次方程》后的基础上安排的内容,是为今后学习高中的《集合》及《一元二次不等式》,《二元一次不等式》打下基础。上节课学习了《一元一次不等式组》,知道了一元一次不等式组的有关概念及求一元一次不等式组的解集的方法,并会用数轴直观的得到一元一次不等式组的解集,它是解决本节课内容《含参数的一元一次不等式组的解集》的基础和关键,通过本节课知识的学习,学生能对初中数学中的分类讨论、数形结合的思想方法有进一步的认识,养成独立思考的习惯,也能加强与同学的合作交流意识与创新意识,为今后生活和学习中更好运用数学作准备。 教学目标: (1)知识目标:使学生加深对一元一次不等式组和它的解集的概念的理解,掌握一元一次不等式组的解法,会应用数轴确定含参数的一元一次不等式组的参数范围。 (2)能力目标:培养探究、独立思考的学习习惯,感受数形结合的作用,逐步熟悉和掌握数形结合的思想方法,提高分析问题和解决问题的能力。 (3)德育目标:加强同学之间的合作交流与探讨,体验数学发现带来的乐趣。 学习重点: (1)加深对一元一次不等式组的概念与解集的理解。 (2)通过含参数不等式的分析与讨论,让学生理解掌握分类讨论和数形结合的数学思想。学习难点: (1)一元一次不等式组中字母参数的讨论。 (2)运用数轴分析不等式组中参数的范围。 教学难教学难点突破办法: (1)借助数轴,数型结合,让学生直观理解不等式组中几个不等式解集的公共部分。(2)和学生一起探讨解决问题的一般方法:先运用口诀定大小,再考虑特殊情况定等号。教学准备(预习学案)

1、⑴不等式组? ??-≥>12x x 的解集是 . ⑵不等式组???-<-<12x x 的解集是 . ⑶不等式组???≥≤14x x 的解集是 . ⑷不等式组???-≤>4 5x x 的解集是 . 2、关于x 的不等式组12x m x m >->+??? 的解集是1x >-,则m = . 3、如图是表示某个不等式组的解集,则该不等式组的整数解的个数是( ) A. 4 B. 5 C. 6 D. 7 4、不等式组? ??--≤-.32,281x >x x 的最小整数解是( ) A .-1 B .0 C .2 D .3 5、满足21≤<-x 的所有整数为___________ __. 6、满足21≤≤-x 的所有整数为________________ __. 7、请写出一个只含有三个整数1、2和3的解集为 。 预习要求: 1、复习上节课的知识,考察学生对一元一次不等式组的解集的四种情况的熟悉程度, 能直接根据下面口诀求出不等式组的解集:同大取大;同小取小;大小小大(大于较小的数,小于较大的数)在中间;大大小小(大于较大的数,小于较小的数)不存在. 2、根据不等式组的解集,结合数轴,能找出满足条件的解(如整数解),并能注意“a x <”与“a x ≤”的区别,为本节课的拓展应用打下基础。 教学步骤: 一、例题教学 例1、 1、关于x 的不等式3m-x<5的解集x>2,求m 的值。 2、不等式 mx-2<3x+4的解集是 , 则m 的取值范围是 变式1.如果不等式(m ﹣2)x >m ﹣2的解集为x <1,那么( ) A .m≠2 B.m >2

教案高中含参不等式的恒成立问题整理版.doc

高中数学不等式的恒成立问题 一、用一元二次方程根的判别式 有关含有参数的一元二次不等式问题,若能把不等式转化成二次函数或二次方程,通过根的判别式或数形结合思想,可使问题得到顺利解决。 基本结论总结 例1 对于x ∈R ,不等式恒成立,求实数m 的取值范围。 例2:已知不等式04)2(2)2(2 <--+-x a x a 对于x ∈R恒成立,求参数a 的取值范围. 解:要使04)2(2)2(2 <--+-x a x a 对于x ∈R恒成立,则只须满足: (1)???<-+-<-0)2(16)2(4022 a a a 或 (2)?? ? ??<-=-=-0 40)2(20 2a a 解(1)得?? ?<<-<2 22 a a ,解(2)a =2 ∴参数a 的取值范围是-2<a ≤2. 练习 1. 已知函数])1(lg[2 2 a x a x y +-+=的定义域为R ,求实数a 的取值范围。 2.若对于x ∈R ,不等式恒成立,求实数m 的取值范围。 3.若不等式的解集是R ,求m 的范围。 4.x 取一切实数时,使3 47 2+++kx kx kx 恒有意义,求实数k 的取值范围.

例3.设22)(2 +-=mx x x f ,当),1[+∞-∈x 时,m x f ≥)(恒成立,求实数m 的取值范围。 关键点拨:为了使 在 恒成立,构造一个新函数 是解题的关键,再利用二次 函数的图象性质进行分类讨论,使问题得到圆满解决。若二次不等式中x 的取值范围有限制,则可利用根的分布解决问题。 解:m mx x x F -+-=22)(2 ,则当),1[+∞-∈x 时,0)(≥x F 恒成立 当120)2)(1(4<<-<+-=?m m m 即时,0)(>x F 显然成立; 当0≥?时,如图,0)(≥x F 恒成立的充要条件为: ??? ? ??? -≤--≥-≥?1 220)1(0m F 解得23-≤≤-m 。综上可得实数m 的取值范围为)1,3[-。 例4 。已知1ax x )x (f 2+-=,求使不等式0)x (f <对任意]2,1[x ∈恒成立的a 的取值范围。 解法1:数形结合 结合函数)x (f 的草图可知]2,1[x ,0)x (f ∈<时恒成立? 25a 0 a 25)2(f 0a 2)1(f >?? ?<-=<-=得。所以a 的取值范围是),25 (+∞。 解法2:转化为最值研究 4a 1)2a x ()x (f 22- +-= 1. 若]2,1[)x (f ,3a 232a 在时即≤≤上的最大值,25a ,0a 25)2(f )x (f max ><-==得3a 25 ≤<所以。 2. 若0a 2)1(f )x (f ]2,1[)x (f ,3a 2 3 2a max <-==>>上的最大值在时即,得2a >,所以3a >。 综上:a 的取值范围是),2 5 (+∞。 注:1. 此处是对参a 进行分类讨论,每一类中求得的a 的范围均合题意,故对每一类中所求得的a 的范围求并集。 2. I x ,m )x (f ∈<恒成立)m (m )x (f max 为常数?∈> 解法3:分离参数 ]2,1[x ,x 1x a ]2,1[x ,01ax x 2∈+ >?∈<+-。设x 1 x )x (g +=, 注:1. 运用此法最终仍归结为求函数)x (g 的最值,但由于将参数a 与变量x 分离,因此在求最值时避免了分类讨论,使问题相对简化。 2. 本题若将“]2,1[x ∈”改为“)2,1(x ∈”可类似上述三种方法完成。 仿解法1:?∈<)2,1(x ,0)x (f 25a 0 )2(f 0)1(f ≥?? ?≤≤得即),25 [:a +∞的范围是 读者可仿解法2,解法3类似完成,但应注意等号问题,即此处2 5 a = 也合题。 O x y x -1

高中数学讲义 均值不等式

微专题45 利用均值不等式求最值 一、基础知识: 1、高中阶段涉及的几个平均数:设()01,2,,i a i n >=L (1)调和平均数:12111n n n H a a a = +++L (2)几何平均数:12n n n G a a a =L (3)代数平均数:12n n a a a A n +++= L (4)平方平均数:222 12n n a a a Q n +++=L 2、均值不等式:n n n n H G A Q ≤≤≤,等号成立的条件均为:12n a a a ===L 特别的,当2n =时,22G A ≤?2 a b ab +≤ 即基本不等式 3、基本不等式的几个变形: (1))2,0a b ab a b +≥>:多用在求和式的最小值且涉及求和的项存在乘积为定值的情况 (2)2 2a b ab +?? ≤ ??? :多用在求乘积式的最大值且涉及乘积的项存在和为定值的情况 (3)2 2 2a b ab +≥,本公式虽然可由基本不等式推出,但本身化成完全平方式也可证明,要注意此不等式的适用范围,a b R ∈ 4、利用均值不等式求最值遵循的原则:“一正二定三等” (1)正:使用均值不等式所涉及的项必须为正数,如果有负数则考虑变形或使用其它方法 (2)定:使用均值不等式求最值时,变形后的一侧不能还含有核心变量,例如:当0,x >求 23y x x =+ 的最小值。此时若直接使用均值不等式,则2 324y x x x =+≥右侧依然含有x ,则无法找到最值。 ① 求和的式子→乘积为定值。例如:上式中2 4y x x =+ 为了乘积消掉x ,则要将3 x 拆为两个2x ,则2223 342222334y x x x x x x x x =+=++≥??=

高中数学专题复习含参不等式与参变量的取值范围

含参不等式与参变量的取值范围 一、选择题 1. 已知方程1||+=ax x 有一负根且无正根,则实数a 的取值范围是 A. a >-1 B. a=1 C. a ≥1 D. a ≤1 2. 设)(1 x f -是函数1)((2 1)(>-= -a a a x f x x 的反函数,则使1)(1 >-x f 成立的x 的取值范围是 ) ,.[) ,21.() 21,.() ,21.(222+∞---∞+∞-a D a a a C a a B a a A 3. 在R 上定义运算○×:x ○×y=x(1–y),若不等式(x –a )○×(x + a)<1对任意实数x 成立 2 1 23.2 3 21.20.11.<<- <<- <<<<-a D a C a B a A 的取值范围是 恒成立,则时,不等式(当的取值范围是,则实数的解集为若不等式的取值范围是 都有意义,则对已知函数的取值范围是 值,则)上有最大 ,在(存在,且,若,其中已知的取值范围是 数有且仅有三个解,则实若设的取值范围是 有解,则实数若不等式可以是的取值范围的充分条件,则是若集合a x x x D C B A a R x a x a D C B A a x x x x f b D b C b B b A b x f x f b a x a x b x x b ax x f D C B A a x x f x x f x a x f m D m C m B m A m m x x b D b C b B b A b B A a a b x x B x x x A a a a x x log )1)2,1(.10)2,.(),2()2,.(]2,2.()2,2.(4)2(2)2(.9)21,161.()21,321.[]21,641.[)21,1281.[)2 1 ,0()log (log )(.81 0.1.12 1 .1.11)()(lim 0,0)1,0(] 0,1()(.7] 1,.(),1.[)2,.(]2,1.[)()0)(1() 0(3)(.62 .2 .1 .1 .|3||5|.521.13.20.02."""1"},|||{},01 1 |{.422220<-∈-∞+∞--∞--<-+-∈+-=≤<≥≤<>->>??? ??∈---∈+=-∞+∞-∞=? ??>-≤-=≥>≥><-+-<≤--<<-≤<<≤-≠=<-=<+-=→- φ

高一数学必修一均值不等式题型归纳

均值不等式题型归纳 一、拼凑求最值 1.函数y =x ·(3-2x ) (0≤x ≤1)的最大值为______________. 2.已知x ≥52,则f (x )=x 2-4x +52x -4 有( ) A .最大值54 B .最小值54 C .最大值1 D .最小值1 3.当x >1时,不等式x +1x -1 ≥a 恒成立,则实数a 的取值范围是( ) A .(-∞,2] B .[2,+∞) C .[3,+∞) D .(-∞,3] 二、“1”的代换 1.若正数x 、y 满足x +3y =5xy ,则3x +4y 的最小值是( ) A .245 B .285 C .5 D .6 三、实际应用 1.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓 储时间为x 8 天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( ) A .60件 B .80件 C .100件 D .120件 2.建造一个容积为8 m 3,深为2 m 的长方体无盖水池,如果池底和池壁的造价分别为每平方米120元和80元,那么水池的最低总造价为__________元. 3.一批救灾物资随17列火车以v km/h 的速度匀速直达400km 以外的灾区,为了安全起见, 两列火车的间距不得小于(v 20 )2km ,则这批物资全部运送到灾区最少需__________h. 4.某单位决定投资3 200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元.试求: (1)仓库面积S 的取值范围是多少? (2)为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计多长?

高中数学必修5 均值不等式

均值不等式复习(学案) 基础知识回顾 1.均值不等式:ab ≤ a +b 2 (1)均值不等式成立的条件:_______________. (2)等号成立的条件:当且仅当____________时取等号. 2.几个重要的不等式 (1)a 2 +b 2 ≥2ab (a ,b ∈R ). (2)b a +a b ≥2(a ,b 同号). (3)ab ≤? ????a +b 22(a ,b ∈R ). (4) a 2+ b 22≥? ?? ??a +b 22 (a ,b ∈R ). 注意:使用均值不等式求最值,前提是“一正、二定、三相等” 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为a +b 2 ,几何平均数为ab ,均值不等式可叙述为两个正数的 算术平均数大于或等于它的几何平均数. 4.利用均值不等式求最值问题 已知x >0,y >0,则 (1) 如果积xy 是定值p ,那么当且仅当________时,__________有最_____值是_____(简记:积定和 最小) (2)如果和x +y 是定值s ,那么当且仅当_____时,____有最______值是_______.(简记:和定积最大) 双基自测 1.函数y =x +1 x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2 +1x 2+1≥1.其中正确的个数是( ). A .0 B .1 C .2 D .3 3.若正实数a ,b 满足a +b =1,则( ). A.1a +1 b 有最大值4 B .ab 有最小值1 4 C.a +b 有最大值 2 D .a 2 +b 2 有最小值 22 4.若实数b a ,满足2=+b a ,则b a 33+的最小值是( ) A .18 B. 6 C. 32 D. 432 5.若正数b a ,满足3++=b a ab ,则ab 的取值范围是 . 6.若+ ∈R y x ,,且12=+y x ,则 y x 1 1+的最小值为 . 典型例题 类型一 利用均值不等式求最值 1.若函数f (x )=x +1 x -2 (x >2)的最小值为____________. 2.已知t >0,则函数y =t 2-4t +1 t 的最小值为________.

相关文档
最新文档