1.集合的含义及表示
集合的含义和表示
1.1集合的含义及表示内容分析:集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集课外知识补充,康托尔-集合创始人,由于集合导致的数学危机。
(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.定义:一般地,某些指定的对象集在一起就成为一个集合.1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(简称集)(2)元素:集合中每个对象叫做这个集合的元素2、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合记作N,(2)正整数集:非负整数集内排除0的集记作N*或N+(3)整数集:全体整数的集合记作Z,(4)有理数集:全体有理数的集合记作Q,(5)实数集:全体实数的集合记作R注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0(2)非负整数集内排除0的集记作N*或N+Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*3、元素对于集合的隶属关系(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A(2)不属于:如果a不是集合A的元素,就说a不属于A4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……元素通常用小写的拉丁字母表示,如a、b、c、p、q……⑵“∈”的开口方向,不能把a∈A颠倒过来写(二)集合的表示方法1、列举法:把集合中的元素一一列举出来,写在大括号内表示集合注:(1)有些集合亦可如下表示:从51到100的所有整数组成的集合:{51,52,53,…,100},所有正奇数组成的集合:{1,3,5,7,…}(2)a与{a}不同:a表示一个元素,{a}表示一个集合,该集合只有一个元素2、描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法格式:{x∈A|满足条件}含义:在集合A中满足条件的x的集合注:(1)在不致混淆的情况下,可以省去竖线及左边部分如:{直角三角形};{大于104的实数}(2)错误表示法:{实数集};{全体实数}3、文氏图,也叫作韦恩图:用一条封闭的曲线的内部来表示一个集合的方法4、何时用列举法?何时用描述法?⑴有些集合的公共属性不明显,难以概括,不便用描述法表示,只能用列举法如:集合⑵有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法(三)有限集与无限集1、有限集:含有有限个元素的集合2、无限集:含有无限个元素的集合3、空集:不含任何元素的集合记作Φ女神助教刘亚楠。
集合的含义及表示
日之前与我国建立外交关系的所有国家; (4)2004年1月1日之前与我国建立外交关系的所有国家; ) 年 月 日之前与我国建立外交关系的所有国家 (5)所有的正方形; )所有的正方形; 的距离等于定长d的所有的点 (6)到直线 的距离等于定长 的所有的点; )到直线l的距离等于定长 的所有的点; (7)方程 x )
2
的所有实数根; + 3x − 2 = 0的所有实数根;
月入学的高一学生的全体. (8)新华中学 )新华中学2004年9月入学的高一学生的全体. 年 月入学的高一学生的全体
上面的例( )到例( )也都能组成集合吗? 上面的例(3)到例(8)也都能组成集合吗? 它们的元素分别是什么?归纳总结这些例子, 它们的元素分别是什么?归纳总结这些例子,你能 说出它们的共同特征吗? 说出它们的共同特征吗?
B = {x ∈ Z | 10 < x < 20}
大于10小于 的整数有 ,,17, , 大于 小于20的整数有 ,12,13,14,15,16,, ,18, 小于 的整数有11, , , , , ,, 19,因此,用列举法表示为 ,因此,
B = { ,12,13,14,15,16,17,18,19} 11
x 2 − 2 = 0 的所有实数根组成的集合; 的所有实数根组成的集合; (1)方程 )
小于20的所有整数组成的集合 (2)由大于 小于 的所有整数组成的集合; )由大于10小于 的所有整数组成的集合;
解: 1)设方程 x 2 ( )
2
− 2 = 0的实数根为 x ,并且满足条件
2
因,集合的含义是什么呢? 那么,集合的含义是什么呢?我们再来看下面 的例子: 的例子:
以内的所有质数; (1)1~20以内的所有质数; ) ~ 以内的所有质数 年的13年内所发射的所有人造卫 (2)我国从 )我国从1991~2003年的 年内所发射的所有人造卫 ~ 年的 星; 年生产的所有汽车; (3)金星汽车厂 )金星汽车厂2003年生产的所有汽车; 年生产的所有汽车
人教版,数学,高一,必修一,集合的含义与表示
练 习
1. 下面的各组对象能否构成集合? (1)小于2004的数; (2)和2004非常接近的数.
2.再看下列对象: (1) 2,4,6,8,10,12; (2)我校的篮球队员; (3)满足x-3>2 的实数; (4)我国四大名著; (5)抛物线y=x2上的点.
2、元素与集合的关系
通常用大写的拉丁字母 A,B,C,…表示集合, 小写的拉丁字母 a,b,c,…表示集合中的元素. 如果 a 是集合 A 的元素,就说 a 属于集合 A, 记作 a∈A;如果 a 不是集合 A 的元素,就说 a 不属于集合 A,记作 a A.
作业
活页:提能演练一
第2课时 集合的表示
回顾复习
1.集合与元素的定义; 2.集合元素的特征性质: 确定性,互异性,无序性; 3.元素与集合的关系
4. 数集及有关符号;
集合的表示
“我国的直辖市”组成的集合表示为 {北京,天津,上海,重庆} 把集合中的元素一一列举出来,并用花括号“{ }” 括起来表示集合的方法叫做列举法.
1.1.1 集合的含义与表示
“集合”是日常生活中的一个常用词,现代汉语解释为:
许多的人或物聚在一起。
康托尔(G.Cantor,1845~1918).德 国数学家,集合论创始人,他于1895
年谈到“集合”一词.
在现代数学中,集合是一种简洁、高雅的数学语言, 我们怎样理解数学中的“集合”?
通知 8月27日上午8时,高一年级的学生 在体育馆集合进行军训动员. 校长室
例1:已知A由: 2,(a 1) a
2
, a 3a 3
2
三元素构成且 1 A ,求实数a的值
变.已知集合A含有三个元素1、0、x, 若 x 2 A ,求实数x的值。
课程标准一、集合1.集合的含义及表示①通过实例,了解集
D.无数个
配 人
教
分析:首先搞清集合A中元素个数n,然后根据公式2n
B 版
)
求出子集个数.
首页
上页
下页
末页
第一章 集合与常用逻辑用语
解析:边长为2的边是等腰三角形的底边时,30°的
《 走
向
角可以是三角形的底角,也可以是顶角.故这样的三角形
高 考
》
有两个.
高 考
边长为2的边是等腰三角形的腰长时,30°的角可以
总 复 习
·(
是三角形底角,也可以是顶角,故这样的三角形也有两
数 学
个.
配 人
教
故适合条件的三角形共有4个.所以子集个数为24=
B 版
)
16个.选B.
首页
上页
下页
末页
第一章 集合与常用逻辑用语
点评:关于有限集的子集个数有如下结论:
(1)若A={a1,a2,…,an},则A的子集个数为2n,其
《 走 向
考 总
复
·(
x∈A 且 x∈B.
习 数
(3)由所有 属于集合A或属于集合B
的元素所
学 配
人
组成的集合,叫做A与B的并集,记作A∪B.若x∈A∪B,则 教
B
x∈A 或 x∈B.
)
版
(4) 若 已 知 全 集 U , 集 合 A⊆U , 则 ∁ UA = {x|x∈U 且 x∉A}.
首页
上页
下页
末页
第一章 集合与常用逻辑用语
考
形式出现.
总 复
习
·(
3.逻辑联结词、存在量词、全称量词,一般不会单独
数 学
命题,通常会在题目中间接考查,若单独命题,则是简单
集合的含义与表示
称这两个集合相等
湖南省长沙市一中卫星远程学校
练习1.下列指定的对象,能构成一个集合 ( B ) 的是 ①很小的数 ②不超过 30的非负实数 ③直角坐标平面的横坐标与纵坐标相等的点 ④的近似值 ⑤高一年级优秀的学生 ⑥所有无理数 ⑦大于2的整数 ⑧正三角形全体 A. ②③④⑥⑦⑧ C. ②③⑥⑦ B. ②③⑥⑦⑧ D. ②③⑤⑥⑦⑧
解:当a=0时,x=-1.
当a≠0时,=16-4×4a=0. a=1. 此时x=-2. ∴a=1时这个元素为-2. ∴a=0时这个元素为-1.
课堂练习
1.教科书5面练习第1、2题
2.教科书11面习题1.1第1、2题
课堂小结
1.集合的定义 2.集合元素的性质 3.集合与元素的关系 4.集合的表示 5.集合的分类
解:当a=0时,x=-1.
例4已知集合
A={x|ax2+4x+4=0,x∈R,a∈R} 只有一个元素,求a的值与这个元素.
解:当a=0时,x=-1.
当a≠0时,=16-4×4a=0. a=1. 此时x=-2.
例4已知集合
A={x|ax2+4x+4=0,x∈R,a∈R} 只有一个元素,求a的值与这个元素.
2.集合的表示:
集合常用大写字母A,B,C,…表示,元素常用 小写字母a,b,c,…表示.
3.集合与元素的关系:
如果a是集合A的元素,就说a属于集 合A,记作a∈A. 如果a不是集合A的元素,就说a不属 于集合A,记作aA.
例如:A表示方程x2=1的解. 2A,1∈A.
4.常用数集及记法:
N:自然数集(含0)
-1 3
x | 0
x | x
x 2
集合的含义及表示方法
确定性
集合中的元素具有确定性,即每个元素是否属于某个集合是明确的。对于任意一 个元素,如果它属于某个集合,则它只属于该集合;如果不属于该集合,则它与 该集合没有关系。
确定性的性质使得集合可以准确地描述事物的分类和归属问题,是数学和计算机 科学中基本的概念之一。
集合的含义及表示方法
• 集合的基本概念 • 集合的运算 • 集合的性质 • 集合的应用
01
集合的基本概念
集合的定义
01 集合是由确定的、不同的元素所组成的总体 。
02
集合中的元素具有确定性,即每一个对象是 否属于某个集合是确定的。
03
集合中的元素具有互异性,即集合中不会有 重复的元素。
04
集合中的元素具有无序性,即集合中元素的 排列顺序不影响集合本身。
数据库系统
数据库系统是计算机科学中用来存储和管理大量数据的重要工具。集合理论在数据库设计 中起着重要的作用,例如关系数据库中的表可以看作是集合的表示。
在日常生活中的应用
分类问题
在生活中,我们经常需要对事物进行分类。集合可以用来表示不同的类别,帮助我们更好地组织 和理解事物。
决策制定
在决策制定过程中,我们经常需要考虑多个因素或条件。集合可以帮助我们表示这些因素或条件 ,并分析它们之间的关系,从而做出更好的决策。
03
补集
补集是指全集中不属于某个集合的元素组成的集合。
补集的表示方法是在一个集合后面加上"′",例如:A′。
补集运算满足反演律,即A′=(全集−A)∪(全集−B)。
03
集合的性质
无序性
集合中的元素没有固定的顺序,即元素的位置不影响集合的性质。例如,集合A={1,2,3}和集合B={3,2,1}是同一个集合,因为 元素的无序性,集合A和集合B具有相同的性质。
集合的含义与表示
集合的含义与表示目录集合的含义与表示 (1)知识点: (1)一、集合的三性:确定性、互异性、无序性 (3)①确定性 (3)②互异性 (4)二、集合的表示方法 (7)①元素与集合的关系 (7)②列举法 (8)③描述法 (10)三、区别点集与数集 (11)知识点:1.集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。
一般的研究对象统称为元素,一些元素组成的总体叫集合,简称为集。
2.集合的中元素的三个特性:(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。
例:世界上最高的山、中国古代四大美女、教室里面所有的人……(2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。
例:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合例:{a,b,c}和{a,c,b}是表示同一个集合.3.集合的表示:{…} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
①列举法:将集合中的元素一一列举出来{a,b,c……}②描述法:将集合中元素的公共属性描述出来,写在大括号内表示集合。
{x∈R| x-3>2} ,{x| x-3>2}③语言描述法:例:{不是直角三角形的三角形}4.集合的分类:(1)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合例:{x|x2=-5}5.元素与集合的关系:(1)元素在集合里,则元素属于集合,即:a∈A∉(2)元素不在集合里,则元素不属于集合,即:a A注意:常用数集及其记法:非负整数集(即自然数集)记作:N;正整数集N*或N+;整数集Z;有理数集Q;实数集R.一、集合的三性:确定性、互异性、无序性①确定性1.下列各组对象能够构成集合的是( )A. 我国所有的老人B. 我们班的高个子C. 长命万岁的人D. 我国的小河流答案:C。
集合的含义及其表示
集合的含义及其表示1.1集合的含义及其表示一.课标解读 1.《普通高中数学课程标准》明确指出:“通过实例,了解集合的含义,体会元素与集合的”属于”关系;能选择自然语言.图形语言(列举法或描述法)描述不同的具体问题感受集合语言的意义和作用.” 2.重点:集合的概念与表示方法.3.难点:运用集合的两种常用表示法---列举法与描述法,正确表示一些简单的集合. 二.要点扫描 1.集合的概念一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集);构成集合的每个对象叫做这个集合的元素(或成员)。
集合的元素可以是我们看到的、听到的、闻到的、触摸到的、想到的各种各样的事物或者一些抽象符号。
2.集合元素的特征由集合概念中的两个关键词“确定的”、“不同的”可以知道集合元素有两大特征性质:⑴确定性特征:集合中的元素必须是明确的,不允许出现模棱两可、无法断定的陈述。
设集合给定,若有一具体对象,则要么是的元素,要么不是的元素,二者必居其一,且只居其一。
⑵互异性特征:集合中的元素必须是互不相同的。
设集合给定,的元素是指含于其中的互不相同的元素,相同的对象归于同一集合时只能算集合的一个元素。
3.集合与元素之间的关系集合与元素之间只有“属于”或“不属于”。
例如:是集合的元素,记作,读作“ 属于”;不是集合的元素,记作,读作“ 不属于”。
4.集合的分类集合按照元素个数可以分为有限集和无限集。
特殊地,不含任何元素的集合叫做空集,记作。
5.集合的表示方法⑴列举法是把元素不重复、不计顺序的一一列举出来的方法,非常直观,一目了然。
⑵特征性质描述法是用确定的条件描述集合内元素特点的集合表示方法。
例如:集合可以用它的特征性质描述为{ },这表示在集合中,属于集合的任意一个元素都具有性质,而不属于集合的元素都不具有性质。
除此之外,集合还常用韦恩图来表示,韦恩图是用封闭曲线内部的点来表示集合的方法(有时,也用小写字母分别定出集合中的某些元素),同学们在下节课中会接触到这个内容。
1.1集合的概念及表示
1.1集合的概念及表示【知识储备】1.集合的概念(1)含义:一般地,我们把所研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集).(2)集合相等:只要构成两个集合的元素是一样的,即这两个集合中的元素完全相同,就称这两个集合相等.[知识点拨]集合中的元素必须满足如下性质:(1)确定性:指的是作为一个集合中的元素,必须是确定的,即一个集合一旦确定,某一个元素属于或不属于这个集合是确定的,要么是该集合中的元素,要么不是,二者必居其一.(2)互异性:集合中的元素必须是互异的,就是说,对于一个给定的集合,它的任何两个元素都是不同的.(3)无序性:集合中的元素是没有顺序的,比如集合{1,2,3}与{2,3,1}表示同一集合.2.元素与集合的关系关系概念记法读法属于如果a是集合A中的元素,就说a属于集合Aa∈A a属于集合A不属于如果a不是集合A中的元素,就说a不属于集合Aa∉A a不属于集合A[知识点拨]符号“∈”和“∉”只能用于元素与集合之间,并且这两个符号的左边是元素,右边是集合,具有方向性,左右两边不能互换.3.集合的表示法(1)自然语言表示法:用文字语言形式来表示集合的方法.例如:小于3的实数组成的集合.(2)字母表示法:用一个大写拉丁字母表示集合,如A,B,C等,用小写拉丁字母表示元素,如a,b,c等.常用数集的表示:名称非负整数集(自然数集)正整数集整数集有理数集实数集符号N N*或N+Z Q R(3)列举法:把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.(4)描述法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.这种用集合所含元素的共同特征表示集合的方法叫做描述法.【题型精讲】【题型一集合概念的理解】必备技巧判断一组对象是否能构成集合的三个依据判断一组对象能否组成集合,关键看该组对象是否满足确定性,如果此组对象满足确定性,就可以组成集合;否则,不能组成集合.同时还要注意集合中元素的互异性、无序性.例1下列对象中不能构成一个集合的是()A.某校比较出名的教师B.方程−2=0的根C.不小于3的自然数D.所有锐角三角形例2(多选)下列各组对象能构成集合的是()A.拥有手机的人B.2024年高考数学难题C.所有有理数D.小于π的正整数【题型精练】1.给出下列说法:①在一个集合中可以找到两个相同的元素;②好听的歌能组成一个集合;③高一(1)班所有姓氏能构成集合;④把1,2,3三个数排列,共有6种情况,因此由这三个数组成的集合有6个.其中正确的个数为()A.0B.1C.2D.32.下列各组对象中能构成集合的是()A.充分接近的实数的全体B.数学成绩比较好的同学C.小于20的所有自然数D.未来世界的高科技产品【题型二用列举法表示集合】例3用列举法表示下列集合(1)11以内非负偶数的集合;(2)方程(+1)(2−4)=0的所有实数根组成的集合;(3)一次函数=2与=+1的图象的交点组成的集合.【题型精练】1.用列举法表示下列给定的集合:(1)大于1且小于6的整数组成的集合A;(2)方程2−9=0的实数根组成的集合B;(3)一次函数=+2与=−2+5的图象的交点组成的集合C.2.用列举法表示下列集合.(1)不大于10的非负偶数组成的集合A;(2)小于8的质数组成的集合B;(3)方程22−−3=0的实数根组成的集合C;(4)一次函数=+3与=−2+6的图象的交点组成的集合D.【题型三用描述法表示集合】必备技巧利用描述法表示集合的关注点(1)写清楚该集合代表元素的符号.(2)所有描述的内容都要写在花括号内.(3)在通常情况下,集合中竖线左侧元素的所属范围为实数集时可以省略不写.例4用适当的方法表示下列集合:(1)方程组2314,328x y x y -=⎧⎨+=⎩的解集;(2)方程2210x x -+=的实数根组成的集合;(3)平面直角坐标系内所有第二象限的点组成的集合;(4)二次函数2210y x x =+-的图象上所有的点组成的集合;(5)二次函数2210y x x =+-的图象上所有点的纵坐标组成的集合.【题型精练】1.用描述法表示下列集合:(1)不等式3+2>5的解集;(2)平面直角坐标系中第二象限的点组成的集合;(3)二次函数=2−2+3图象上的点组成的集合.(4)平面直角坐标系中第四象限内的点组成的集合;(5)集合1,12,13,14(6)所有被3整除的整数组成的集合;(7)方程2++1=0的所有实数解组成的集合.2.试说明下列集合各表示什么?1|A y yx ⎧⎫==⎨⎬⎩⎭;{|B x y ==;()1,|C x y y x ⎧⎫==⎨⎬⎩⎭(),|13y D x y x ⎧⎫==⎨⎬-⎩⎭;{}0,1E x y ===;{}1,1F x y x y =+=-=-.【题型四元素与集合的关系】必备技巧判断元素和集合关系的两种方法(1)直接法:集合中的元素是直接给出的.(2)推理法:对于某些不便直接表示的集合,只要判断该元素是否满足集合中元素所具有的特征即可.例5用符号“∈”或“∉”填空:(1)0______∅;(2)2-_______2{|5}x x <;(3)(2,3)_______{(,)|23}x y x y +=;(4)2017_______{|41,}x x n n =-∈Z .例6(吉林长春市期中)已知集合M=6*,5a N a ⎧∈⎨-⎩且}a Z ∈,则M 等于()A .{2,3}B .{1,2,3,4}C .{1,2,3,6}D .{1-,2,3,4}【题型精练】1.(多选)(浙江高一期末)若集合{}22|,,A x x m n m n ==+∈Z ,则()A .1A∈B .2A∈C .3A∈D .4A∈2.已知集合{},M m m a a b Q ==+∈,则下列四个元素中属于M 的元素的个数是()①1+;;A .4B .3C .2D .1【题型五确定集合中的元素】必备技巧确定集合中的元素(1)充分理解集合的描述法,(2)注意检验元素互异性.例7(1)(山东济南高一期末)已知集合(){},2,,A x y x y x y N =+≤∈,则A 中元素的个数为()A .1B .5C .6D .无数个(2)集合*12|x N Z x ⎧⎫∈∈⎨⎬⎩⎭中含有的元素个数为()A .4B .6C .8D .12例8(1)(江苏苏州市期中)设集合{123}{45}}A C x B y x A y B ===+∈∈,,,,,,,则C 中元素的个数为()A .3B .4C .5D .6(2)(江苏南通市月考)已知集合(){},2,,A x y x y x Z y Z =+≤∈∈,则A 中元素的个数为()A .9B .10C .12D .13(3)(黑龙江大庆市期中)由实数2,,|,x x x -所组成的集合,最多可含有()个元素A .2B .3C .4D .51.若集合()(){}326A x N x x =∈--<,则A 中的元素个数为()A .3B .4C .5D .62.若集合{}0123A =,,,,()}{,,B x y x A y A x y A =∈∈-∈,,则B 中所含元素的个数为()A .4B .6C .7D .103.(青海高一月考)已知集合{1,2,3,4,5}A ={},(,),,B x y x A y A x y A =∈∈-∈,则B 中所含元素的个数为()A .3B .6C .8D .10【题型六元素特性中的求参问题】必备技巧利用集合中元素的确定性、互异性求参数的策略及注意点(1)策略:根据集合中元素的确定性,可以解出参数的所有可能值,再根据集合中元素的互异性对求得的参数值进行检验.(2)注意点:利用集合中元素的互异性解题时,要注意分类讨论思想的应用.例9(上海市进才中学高一期末)已知集合22{2,(1),33}Aa a a =+++,且1A∈,则实数a 的值为________.例10(山东济南月考)已知集合{}2210,A x ax x a R =++=∈.(1)若A 中只有一个元素,求a 的值;(2)若A 中至少有一个元素,求a 的取值范围;(3)若A 中至多有一个元素,求a 的取值范围.1.(吴起高级中学高一月考)若{}22111a a ∈++,,,则a =()A .2B .1或-1C .1D .-12.已知{}222,(1),33A a a a a =++++,若1A∈,则实数a 构成的集合B 的元素个数是()A .0B .1C .2D .33.(云南丽江市期末)若集合2{|210}A x kx x =++=中有且仅有一个元素,则k 的值为___________.。
集合的含义与表示知识点
集合的含义与表示一集合与元素1.集合:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合(set)。
集合常用大写的拉丁字母来表示,如集合A、集合B……;集合中的每一个对象称为该集合的元素(element),简称元。
集合的元素常用小写的拉丁字母来表示。
如a、b、c、p、q……指出下列对象是否构成集合,如果是,指出该集合的元素。
(1)我国的直辖市;(2)省溧中高一(1)班全体学生;(3)较大的数(4)young 中的字母;(5)大于100的数;(6)小于0的正数。
2.集合中元素的属性(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)无序性:集合中的元素在描述时没有固定的先后顺序。
3.元素与集合的关系(1)元素a是集合A中的元素,记做a∈A,读作“a属于集合A”;(2)元素a不是集合A中的元素,记做a∉A,读作“a不属于集合A”.4.集合相等如果构成两个集合的元素个数及元素相同,就称这两个集合相等,与元素的排列顺序无关.二集合的分类1.有限集:集合中元素的个数是可数的,只含有一个元素的集合叫单元素集合;2.无限集:集合中元素的个数是不可数的;3.空集:不含有任何元素的集合,记做∅.三集合的表示方法1.集合元素与集合的关系用“属于”和“不属于”表示;(1)如果a是集合A的元素,就说a属于A,记作a∈A;(2)如果a不是集合A的元素,就说a不属于A,记作a∉A (“∈”的开口方向,不能把a∈A颠倒过来写)2.常用数集(1)自然数集:又称为非负整数集,记做N;(2)正整数集:自然数集内排除0的集合,记做N+或N※;(3)整数集:全体整数的集合,记做Z(4)有理数集:全体有理数的集合,记做Q(5)实数集:全体实数的集合,记做R3.集合的表示方法(1)自然语言法:用文字叙述的形式描述集合。
1.1集合的含义与表示
1.1 集合的含义与表示【学习目标】1. 认识并理解集合的含义,知道常用数集及其记法;了解从属关系;2. 掌握集合的表示方法,并能正确地表示一些简单的集合. 重点:集合的表示方法 难点:描述法 【引入新课】在初中,我们已经接触过一些集合,你能举出一些集合的例子吗? 【探究新知】 探究1:集合的概念(1) 1~10以内所有的素数(质数); (2)我国古代的四大发明; (3)所有的正方形; (4)翔宇班2019级全体学生.思考:上述4个集合中的元素分别是什么? 这4个实例的共同特征是什么?归纳定义:一般地,我们把 统称为元素,把 叫做集合(简称为集).注:集合通常用大写的拉丁字母C B A ,,…表示,集合中的元素用小写的拉丁字母a ,b ,c …表示.探究2:集合元素的三个特征思考1:咱班的所有美女能不能构成一个集合?由此说明集合中的元素具有什么性质? 思考2:由实数2、3、2组成的集合有几个元素?由此说明集合中的元素具有什么性质? 思考3:由实数1、2组成的集合记为M ,由实数2、1组成的集合记为N ,这两个集合中的元素相同吗?这说明集合中的元素具有什么特征?归纳元素的特征: 。
思考:如果用A 表示2019级翔宇班全体学生组成的集合,用a 表示2019级翔宇班的一位同学,b 是一名枣庄三中的一位同学,那么,a b 与集合A 分别有什么关系? 由此看见元素与集合之间有什么关系?归纳:如果a 是集合A 的元素,就说 ,记作 ;如果a 不是集合A 的元素,就说 ,记作 .探究4:常用数集及其记法N ;N *或N + ;Z ; Q ;R探究5:集合的表示方法思考1:地球上的四大洋组成的集合怎么表示呢?归纳定义列举法: .注意:大括号不能缺失,不必考虑顺序,元素之间用“,”隔开;思考2: 你能用列举法表示不等式37-<x 的解集吗? 归纳定义描述法: 。
. 具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.注意:描述法表示集合应注意集合的代表元素如2{(,)|1}x y y x =-;2{|1}y y x =-;2{|1}x y x =-不同.例1.用列举法表示下列集合: (1)小于10的所有自然数组成的集合; (2)方程x x =2的所有实数根组成的集合; (3)由1~20以内的所有质数组成的集合.例2.用描述法表示下列集合:(1)不等式23>-x 的所有解组成的集合; (2)直线1+=x y 上所有点组成的集合; (3)所有奇数组成的集合.例3.试分别用列举法和描述法表示下列集合:(1)方程02-2=x 的所有实数根组成的集合;(2)由大于10小于20的所有整数组成的集合.例4.已知集合A 是由三个元素,25a a +,12组成的,且,求.【当堂检测】1.下列给出的对象中,能组成集合的是( )A.一切很大的数B.好心人C.漂亮的小女孩D.方程x 2-1=0的实数根 2.下面说法正确的是( )A.所有在N 中的元素都在N *中B.所有不在N *中的数都在Z 中C.所有不在Q 中的实数都在R 中D.方程4x =-8的解既在N 中又在Z 中 3.由“book 中的字母”构成的集合中元素个数为( ) A.1 B.2 C.3 D.44. .设A ={x ∈N |1≤x <6},则下列正确的是( ) A.6∈A B.0∈A C.3∉A D.3.5∉A5.已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,则实数m 为( ) A.2 B.3 C.0或3 D.0,2,3均可6.下列集合不等于由所有奇数构成的集合的是( )A.{x |x =4k -1,k ∈Z }B.{x |x =2k -1,k ∈Z }C.{x |x =2k +1,k ∈Z }D.{x |x =2k +3,k ∈Z } 7.用列举法表示集合{x |x 2-2x +1=0}为8.一次函数y =x -3与y =-2x 的图象的交点组成的集合是【课堂小结】1.1 集合的含义与表示--课时作业A一、选择题1.已知集合A 由x <1的数构成,则有( )A .3∈AB .1∈AC .0∈AD .-1∉A2.由实数x ,-x ,|x |,x 2,-3x 3所组成的集合,最多含( ) A .2个元素 B .3个元素 C .4个元素 D .5个元素 3.下列结论中,不正确的是( )A .若a ∈N ,则-a ∉NB .若a ∈Z ,则a 2∈ZC .若a ∈Q ,则|a |∈QD .若a ∈R ,则3a ∈R4.已知x ,y 为非零实数,代数式x |x |+y|y |的值所组成的集合是M ,则下列判断正确的是( )A .0∉MB .1∈MC .-2∉MD .2∈M5.已知集合S 中三个元素a ,b ,c 是△ABC 的三边长,那么△ABC 一定不是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形6.已知集合A ={a ,b ,c }中任意2个不同元素的和的集合为{1,2,3},则集合A 的任意2个不同元素的差的绝对值的集合是( )A .{1,2,3}B .{1,2}C .{0,1}D .{0,1,2} 7.已知A 中元素满足x =3k -1,k ∈Z ,则下列表示正确的是( ) A .-1∉A B .-11∈A C .3k 2-1∈A D .-34∉A 二、填空题8.在方程x 2-4x +4=0的解集中,有________个元素. 9.下列所给关系正确的个数是________. ①π∈R ;②3D ∈/Q ;③0∈N *;④|-4|D ∈/N *.10.如果有一集合含有三个元素:1,x ,x 2-x ,则实数x 的取值范围是___________________.. 11.已知a ,b ∈R ,集合A 中含有a ,ba ,1三个元素,集合B 中含有a 2,a +b,0三个元素,若A =B ,则a +b =____.13.已知集合M 中的元素是正整数,且满足命题“如果x ∈M ,则(4-x )∈M ”,则满足条件的集合M 的个数为________. 三、解答题14.已知集合A 是由a -2,2a 2+5a,12三个元素组成的,且-3∈A ,求实数a 的值.15.已知集合A 含有两个元素a -3和2a -1,a ∈R . (1)若-3∈A ,试求实数a 的值; (2)若a ∈A ,试求实数a 的值.16.数集A 满足条件:若a ∈A ,则11-a ∈A (a ≠1).(1)若2∈A ,试求出A 中其他所有元素;(2)自己设计一个数属于A ,然后求出A 中其他所有元素;(3)从上面的解答过程中,你能悟出什么道理?并大胆证明你发现的“道理”.1.1 集合的含义与表示--课时作业B一、选择题1.方程组⎩⎪⎨⎪⎧x +y =3,x -y =-1的解集不可以表示为( )A .{(x ,y )|⎩⎪⎨⎪⎧x +y =3x -y =-1} B .{(x ,y )|⎩⎪⎨⎪⎧x =1y =2} C .{1,2} D .{(1,2)}2.集合A ={x ∈Z |-2<x <3}的元素个数为( ) A .1 B .2 C .3 D .4 3.集合{(x ,y )|y =2x -1}表示( )A .方程y =2x -1B .平面直角坐标系中的所有点组成的集合C .点(x ,y )D .函数y =2x -1图象上的所有点组成的集合 4.已知x ,y 为非零实数,则集合M ={m |m =x |x |+y |y |+xy|xy |}为( )A .{0,3}B .{1,3}C .{-1,3}D .{1,-3}5.下列选项中,集合M ,N 相等的是( ) A .M ={3,2},N ={2,3} B .M ={(3,2)},N ={(2,3)} C .M ={3,2},N ={(3,2)}D .M ={(x ,y )|x =3且y =2},N ={(x ,y )|x =3或y =2} 6.集合{3,52,73,94,…}用描述法可表示为( )A .{x |x =2n +12n ,n ∈N *}B .{x |x =2n +3n ,n ∈N *}C .{x |x =2n -1n ,n ∈N *} D .{x |x =2n +1n,n ∈N *} 7.下列命题中正确的是( )①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};③方程(x -1)2(x -2)=0的所有解的集合可表示为{1,1,2};④集合{x |4<x <5}可以用列举法表示.A .只有①和④B .只有②和③C .只有②D .以上命题都不对***m ∈N *},若a ∈A ,b ∈B ,c ∈C ,则下列结论中可能成立的是( )A .2 006=a +b +cB .2 006=abcC .2 006=a +bcD .2 006=a (b +c )二、填空题9.方程x 2-5x +6=0的解集可表示为_______________. 10.集合{x ∈N |x 2+x -2=0}用列举法可表示为_____________.11.已知集合A ={1,2,3},B ={(x ,y )|x ∈A ,y ∈A ,x +y ∈A },则B 中所含元素的个数为________. 12.定义集合A -B ={x |x ∈A ,且x ∉B },若集合A ={x |2x +1>0},集合B ={x |x -23<0},则集合A -B =____________. 13.给出下列集合:①{(x ,y )|x ≠1,y ≠1,x ≠2,y ≠-3};②{(x ,y )|⎩⎪⎨⎪⎧ x ≠1,y ≠1且⎩⎪⎨⎪⎧ x ≠2,y ≠-3};③{(x ,y )|⎩⎪⎨⎪⎧ x ≠1,y ≠1或⎩⎪⎨⎪⎧x ≠2,y ≠-3};④{(x ,y )|[(x -1)2+(y -1)2]·[(x -2)2+(y +3)2≠0]}.其中不能表示“在直角坐标系xOy 平面内,除去点(1,1)、(2,-3)之外所有点的集合”的序号有________. 三、解答题14.已知集合A ={x |y =x 2+3},B ={y |y =x 2+3},C ={(x ,y )|y =x 2+3},它们三个集合相等吗?试说明理由.15.用适当的方法表示下列集合: (1)大于2且小于5的有理数组成的集合; (2)24的所有正因数组成的集合;(3)平面直角坐标系内与坐标轴的距离相等的点组成的集合.16.若P ={0,2,5},Q ={1,2,6},定义集合P +Q ={a +b |a ∈P ,b ∈Q },用列举法表示集合P +。
人教版-高一-数学-1.集合的含义与表示
集合的含义与表示一、知识概括1、集合的概念一般地,我们把研究对象统称为元素(element ),通常用小写拉丁字母a,b,c ,…表示。
把一些元素组成的总体叫集合(set ),也简称集,通常用大写拉丁字母A,B,C ,…表示。
集合如同平面几何中点、线、平面等概念一样,是集合论中的原始概念,只进行描述说明,无法定义概念。
某些教材中对集合的描述是:指定的某些对象的全体称为集合。
其中,注意理解(1)指定即说明某些对象具有共同的特征或共同的属性,说明已具备判定对象是否成为该集合的元素的判定标准,而不是随意组合。
(2)对象在不同的集合中,应有不同的内涵。
在不同的集合中,元素还可能是人、物、质点或抽象事物等。
(3)全体说明集合是一个整体概念,针对全部对象而言,并且在这个整体中各元素间无先后排列要求,没有一定的顺序关系。
【注】(1)只要构成两个集合的元素是一样的,我们就称这两个集合是相等的。
(2)构成集合的元素除了常见的数、式、点等数学对象外,还可以是其他任何确定的对象。
2、集合元素的特性集合元素具有确定性、互异性、无序性三大特性。
(1)确定性集合中的元素必须是确定的,也就是说,给定一个集合,按照该集合的构成标准能够明确判定一个对象是否属于这个集合。
如“个子高的同学”这一组对象就不能构成一个集合,因为“个子高”这个标准不够明确,而“身高超过170cm 的同学”这一组对象可以构成一个集合。
(2)互异性集合中的元素一定是不同的(或说是互异的)也就是说,相同的元素在一个集合中只能出现一次。
如方程0122=+-x x 的解构成的集合是{1},而不能写成{1,1}(3)无序性集合中元素的排列次序无先后之分,如集合{1,2}和{2,1}是同一个集合。
3、集合与元素的关系元素与集合有属于(∈)和不属于(∉)两种关系。
如果a 是集合A 的元素,就说a 属于集合A ,记作a ∈A ;如果a 不是集合A 的元素,就说a 不属于集合A ,记作a ∉A 。
集合的含义及其表示
1.1集合1.1.1 集合的含义及其表示1.集合的概念:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合(set )。
集合常用大写的拉丁字母来表示,如集合A 、集合B ……集合中的每一个对象称为该集合的元素(element ),简称元。
集合的元素常用小写的拉丁字母来表示。
如a 、b 、c 、p 、q ……指出下列对象是否构成集合,如果是,指出该集合的元素。
①我国的直辖市;②十四中高一③班全体学生;④较大的数⑤young 中的字母;⑥大于100的数; 2.关于集合的元素的特征: ①确定性:设A 是一个给定的集合,x 是某一个具体对象,则或者是A 的元素,或者不是A 的元素,两种情况必有一种且只有一种成立。
②互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
③无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊集合时,通常按照习惯的由小到大的数轴顺序书写。
3.集合元素与集合的关系用“属于”和“不属于”表示; ①如果a 是集合A 的元素,就说a 属于A ,记作a ∈A②如果a 不是集合A 的元素,就说a 不属于A ,记作a ∉A (不能把a ∈A 颠倒过来写) 4.集合相等如果构成两个集合的元素一样,就称这两个集合相等,与元素的排列顺序无关。
5. 集合的分类①有限集:集合中元素的个数是可数的,只含有一个元素的集合叫单元素集合; ②无限集:集合中元素的个数是不可数的; ③空集:不含有任何元素的集合,记做∅. 6.常用数集的记法:①非负整数集(自然数集):全体非负整数的集合记作N ,{} ,2,1,0=N②正整数集:非负整数集内排除0的集记作N *或N +{},3,2,1*=N③整数集:全体整数的集合记作Z , {} ,,,210±±=Z ④有理数集:全体有理数的集合记作Q , {}整数与分数=Q⑤实数集:全体实数的集合记作R {}数数轴上所有点所对应的=R注:①自然数集与非负整数集是相同的,也就是说,自然数集包括数0②非负整数集内排除0的集记作N *或N + Q 、Z 、R 等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z *7.集合的表示方法:①自然语言法:用文字叙述的形式描述集合。
集合的含义与表示
集合的含义与表示☆知识点☆★1、集合的概念:一般地, 一定范围内某些确定的、不同的对象的全体构成一个集合, 集合中每一个对象叫做这个集合的元素★2、集合元素的特征:确定性,互异性,无序性(1)确定性:设A 是一个给定的集合,x 是某一个具体对象,则或者是A 的元素,或者不是A 的元素,两种情况必有一种且只有一种成立.(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素.(3)无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊集合时,通常按照习惯的由小到大的顺序书写即时练习:判断下列各组对象能否构成一个集合? ① 2,3,4②(2,3),(3,4) ③ 三角形④ 2,4,6,8,…⑤ 1,2,(1,2),{1,2} ⑥ 我国的小河流⑦ 方程042=+x 的所有实数解 ⑧ 好心的人 ⑨ 著名的数学家 ⑩ 方程0122=++x x 的解★3、集合相等: 一般地,对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,同时集合B 的任何一个元素都是集合A 的元素.我们就说集合A 等于集合B.记作A =B.如:{a ,b ,c ,d}与{b ,c ,d ,a}相等; {2,3,4}与{3,4,2}相等; {2,3}与{3,2}相等.“与2相差3的所有整数所组成的集合”,即{}{}5,132-==-∈x N x 思考:A ={x |x =2m +1,m ∈Z},B ={x |x =2n -1,n ∈Z}相等吗? ★4、集合元素与集合的关系:集合元素与集合的关系用“属于”和“不属于”表示: (1)如果a 是集合A 的元素,就说a 属于A ,记作A a ∈ (2)如果a 不是集合A 的元素,就说a 不属于A ,记作A a ∉ ★5、常用数集及其记法:N 表示:非负整数集(或自然数集) N*或N+表示:除0的非负整数集 Z 表示:整数集 Q 表示:有理数集R 表示:实数集 ★6、集合的分类:2、无限集:含有无限个元素的集合。
集合的含义及其表示
(3) 比 2 大 3 的实数的全体;
解:{ 5 }.
注:有的集合只有一个元素如 { a }等,但是 { a }是集合,a 是集合{ a }的一个元素,有 a { a }.
想一想:{1,2} 与 {2,1} 是否表示同一个集合?
注:用列举法表示集合时不必考虑元素的前后次序.
例1
用列举法表示下列集合:
如: x在集合中与x不在集合中必居其一.
(2)互异性:
集合中的元素必须是互不相同 的.
(3)无序性: 集合中的元素是无先后顺序 的.集合中的任何两个元素都可以 交换位置.
3. 集合及元素
集合及元素的字母表示: 通常用大写拉丁字母A,B,C,· · · 表示 集合, 用小写拉丁字母a,b,c,· · · 表示集合 中的元素。
y,o,u, n,g
4、数轴法:
○
-2
0
x
表示 x x 2
●
0
2.5
x
表示 x x 2.5
5.补充知识:集合的分类
⑴有限集:含有有限个元素的集合.
⑵无限集:含有无限个元素的集合.
⑶空 集:不含任何元素的集合. 记作.
思考:我们看这样一个集合: { x |x2+x+1=0},它有什么特征? 显然这个集合没有元素.我们把这样的 集合叫做空集,记作.
3. 集合及元素
元素与集合的关系: 如果a是集合A的元素,就说a属于集 合A,记作a ∈ A; 如果a不是集合A的元素,就说a不 属于集合A,记作a A.
例如:A表示方程x2=1的解. 2A,1∈A.
认识重要的数集:
(1) N: 自然数集(含0) 即非负整数集 (2) N+: 正整数集(不含0) (3) Z:整数集 (4) Q:有理数集
1、集合的含义及表示
集合的含义及表示一、集合1. 集合的概念:一般地,研究对象统称为元素,一些元素组成的总体叫集合,也简称集. (1)对于集合一定要从整体的角度来看待它;(2)要注意组成集合的“对象”的广泛性:一方面,任何一个确定的对象都可以组成一个集合,如人、动物、数、方程、不等式等都可以作为组成集合的对象;另一方面,就是集合本身也可以作为集合的对象.2. 集合中元素的3个特征:(1)确定性:设A是一个给定的集合,x是某一个具体对象,则x或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立.(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素.(3)无序性:集合中的元素的次序无先后之分.如:由1,2,3组成的集合,也可以写成由1,3,2组成一个集合,它们都表示同一个集合.3. 元素与集合间的关系(1)如果a是集合A的元素,就说a属于A,记作a∈A;(2)如果a不是集合A的元素,就说a不属于A,记作a A∉.4. 集合的分类(1)空集:不含有任何元素的集合称为空集,记作∅;(2)有限集:含有有限个元素的集合叫做有限集;(3)无限集:含有无限个元素的集合叫做无限集.5. 常用数集及其表示非负整数集(或自然数集),记作N;正整数集,记作N*或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R.二、集合的表示方法1. 自然语言法:用文字叙述的形式描述集合的方法.如:大于等于2且小于等于8的偶数构成的集合.2. 列举法:把集合中的元素一一列举出来,写在大括号内.如:{1,2,3,4,5},{x2,3x+2,5y 3-x ,x 2+y 2},….3.描述法:把集合中的元素的公共属性描述出来,写在大括号{ }内.具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.例1:集合的概念及元素的性质集合A 由形如(,)m m Z n Z +∈∈A 中的元素? 例2:元素与集合的关系下列六个关系中,正确的关系是 .(1)0∈N * (2)0∉{-1,1} (3)∅∈{0}例3:集合中元素的性质 6M={a Z,|N}5-a∈∈,则M=( ) A. {2,3} B. {1,2,3,4} C. {1,2,3,6} D. {-1,2,3,4}例4:集合的表示方法分别用列举法和描述法表示下列集合:(1)方程230x -=的所有实数根组成的集合;(2)由大于15小于25的所有整数组成的集合.巩固练习一、选择题1.下列四个集合中,是空集的是( )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-=C .}0|{2≤x xD .},01|{2R x x x x ∈=+-2.集合{}|(31)(4)0x Z x x ∈--=可化简为( )A .13⎧⎫⎨⎬⎩⎭B .{}4C .1,43⎧⎫⎨⎬⎩⎭D .1,43⎧⎫--⎨⎬⎩⎭3.集合{}1,3,5,7,A =⋅⋅⋅ 用描述法可表示为( )A .{}|,x x n n N =∈B .{}|21,x x n n N =-∈C .{}|21,x x n n N =+∈D .{}|2,x x n n N =+∈4.若以集合{},,S a b c =中的三个元素为边长可构成一个三角形,则这个三角形一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形二、填空题5.若集合A ={x |x 2﹣(a +2)x +2﹣a <0,x ∈Z }中有且只有一个元素,则正实数a 的取值范围是6.用列举法表示集合7.设215|022x x ax ⎧⎫∈--=⎨⎬⎩⎭,则集合219|02x x x a ⎧⎫--=⎨⎬⎩⎭中所有元素之积为 . 8. 设a ,b ∈R ,集合{}10b ,a b ,b ,,b a ⎧⎫+=⎨⎬⎩⎭,则b -a = . 三、解答题9. 已知集合A ={a +2,2a 2+a },若3∈A ,求a 的值.10.设集合A ={x |kx 2﹣4x +2=0},若集合A 中只有一个元素,试求实数k 的值,并用列举法表示集合A .11.已知方程ax 2+x +b =0.(1)若方程的解集为{1},求实数a ,b 的值;(2)若方程的解集为{1,3},求实数a ,b 的值.12.已知集合M ={﹣2,3x 2+3x ﹣4,x 2+x ﹣4},若2∈M ,求x 的值.13.已知集合A ={x ∈R |ax 2﹣3x +2=0,a ∈R }.(1)若集合A 是空集,求a 的取值范围;(2)若集合A 中只有一个元素,求a 的值,并写出此时的集合A .14.试分别用列举法和描述法表示下列集合.(1)由方程x (x 2﹣2x ﹣3)=0的所有实数根组成的集合;(2)大于2且小于7的整数.15.已知集合A ={x |x 2+x +p =0}.(1)若A =∅,求实数p 的取值范围;(2)若A 中的元素均为负数,求实数p 的取值范围.16.设集合{}22|,,M a a x y x y z ==-∈.求证:(1)一切奇数属于集合M ;(2)偶数42()k k z -∈不属于M ;(3)属于M 的两个整数,其乘积仍属于M .。
集合的含义及其表示
1.我国古代的四大发明 A={我国古代的四大发明}
2.我国的直辖市 B={我国的直辖市} 3.book中的字母 C={ book中的字母}
概念理解
1、是一定范围内的确定的对象
2、是不同的对象
3、是这些对象的全体
集合元素的特征
1.确定性
2.互异性
3.无序性
集合与元素的关系
若一个元素a在集合A中,则称a∈A, 读作“元素a属于集合A” 如: R 2 否则,称为aA,读作“元素a不属于集合A。 如: 2 Q 注:两个集合之间不能用属于的关系,只能是元 素与集合之间。 如:N∈Z (×) 即这种写法是错误的
集合的表示方法
1.列举法 将集合的元素一一列举出来,并置 于花括号“{}”内。 注:元素间要用逗号隔开,元素的次序无关 (习惯上按字母或数字的次序写)。 2.描述法 将集合的所有元素具有的性质(满 足的条件)表示出来,写成 { x | p(x) }
有时用Venn图表示集合,更加形象直观。 如:
火药,印刷术, 指南针,造纸术 b, o, k
数集的分类
根据元素个数的多少来分 含有有限个元素的集合称为有限集 特别地,不含任何元素的集合称为空集,记为 注意:不能表示为{}。 含有无限个元素的集合称为无限集
小结
1.集合的定义、表示 2.常用数集及表示 3.属于、不属于 4.集合相等 作业:P7 1,2,4
定义
一般地,一定范围内某些确定的、不同的对象 的全体构成一个集合(set),简称集。 其中,集合中的每一个对象称为该集合的元素 (element),简称元。 规定:集合用大括号“{ }” 表示且常用大写 字母表示。如集合A,集合B等。 元素用小写字母表示,如元素a,元素b等
集合的含义及表示
集合的含义及表示一. 知识卡片1. 一般地,我们把研究对象统称为元素(element ),把一些元素组成的总体叫做集合(set ).2. 集合元素的特征对于一个给定的集合,集合中的元素是确定的,是互异的,是无序的,即集合元素三特征.确定性:某一个具体对象,它或者是一个给定的集合的元素,或者不是该集合的元素,两种情况必有一种且只有一种成立.互异性:同一集合中不应重复出现同一元素.无序性:集合中的元素没有顺序.3. 集合的字母表示集合通常用大写的拉丁字母表示,集合的元素用小写的拉丁字母表示. 如果a 是集合A 的元素,就说a 属于(belong to)集合A ,记作:a ∈A ; 如果a 不是集合A 的元素,就说a 不属于(not belong to)集合A ,记作:a A .4. 常见数集的表示非负整数集(自然数集):全体非负整数组成的集合,记作N ;正整数集:所有正整数的集合,记作N *或N +;整数集:全体整数的集合,记作Z ;有理数集:全体有理数的集合,记作Q ;实数集:全体实数的集合,记作R .5. 列举法把集合的元素一一列举出来,并用花括号“{ }”括起来,这种表示集合的方法叫做列举法.注意:不必考虑顺序,“,”隔开;a 与{a }不同.6. 描述法用集合所含元素的共同特征表示集合的方法称为描述法,一般形式为,其中x 代表元素,P 是确定条件.7. 反思与小结:① 描述法表示集合时,应特别注意集合的代表元素,如与不同.② 只要不引起误解,集合的代表元素也可省略,例如,. ③ 集合的{ }已包含“所有”的意思,例如:{整数},即代表整数集Z ,所以不必写{全体整数}.下列写法{实数集},{R }也是错误的.④ 列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法.∉{|}x A P ∈2{(,)|1}x y y x =-2{|1}y y x =-{|1}x x >{|3,}x x k k Z =∈二. 高考预测本部分内容为高考中频考点,多见于选择题、填空题。
1.1集合的含义与表示(课堂使用)马凤英2013
四、常用数集及记法
思考:所有的自然数,正整数,整数,有理数,实 数能否分别构成集合?
自然数集,正整数集,整数集,有理数集,实数 集等一些常用数集,分别用下列符号表示:
自然数集(非负整数集):记作 N 正整数集:记作 N *或 N 整数集:记作 Z 有理数集:记作 Q 实数集:记作 R
快速做答:
1.1
集合
一、集合的含义
集 合
“集合”是日常生活中的一个常用词, 现代汉语解释为:许多的人或物聚在一起.
思考:怎样理解数学中的“集合”?
新课引入 有一位牧民非常喜欢数学,但他怎么也想不明白集合的 意义,于是他请教一位数学家:“尊敬的先生,请你告诉我 集合是什么?”集合是不定义的概念,数学家很难回答.一 天,他看到牧民正在向羊圈里赶羊,等到牧民把羊全赶进羊 圈并关好门.数学家突然灵机一动,高兴地告诉牧民:“这 就是集合”.你能理解集合了吗?集合就是把需要的东西拿 到一起.
(3)我国从1991~2003年的13年内所发射的所有人造卫星。 (4)所有的正方形。
(5)高一(1)班全体同学。
(6)2004年1月1日之前与我国建立外交关系的所有国家。 ①以上各例(构成集合)有什么特点?请大家讨论. ②我们能否给出集合一个大体描述? ③上述六个例子中集合的元素各是什么?
1.集合: 一般地,把一些能够确定的不同的 对象看成一个整体,就说这个整体是由 这些对象的全体构成的集合(简称集)。 2.集合的元素: 构成集合的每个对象统称为元素。
y x2
x
o
课堂小结
1.集合的含义; 2.集合元素的性质:确定性,互 异性,无序性; 3.元素和集合的关系:属于,不属于 4.数集及有关记法; • 集合的表示方法:列举法、描述法、 Venn图 • 能灵活的用自然语言、列举法、和描 述法对集合进行等价转化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.数集 中 的取值范围是.
4.用“ ”或“ ”填空:
二、范例解读
例1判断下列对象能否构成一个集合,如果能,请采用适当的方法表示该集合;如不能,请说明理由。
(1)小于5的整数; (2)高一年级体重超过75kg的同学
☆ 蔡 老 师 高 考 与 中 考 数 学 研 究 中 心 (82974588)双基演练
1.下列说法正确的是……………………………………………………………………………………( )
A.由单词“school”中的字母构成的集合含有6个元素
B. Q
C.集合 与集合 相等.
D.当 时,由所有 的数值组成的集合为无限集
(3)方程 的非负整数解; (4)与 非常接近的有理数 .
例2已知集合 为实数.
(1)若A是空集,求 的取值范围 ; (2)若A是单元素集,求 的值 ;
(3)若A中至多只有一个元素,求 的取值范围 .
三、归纳点拨
确定的对象才能构成集合,可依据元素的特点或个数的多少采用适当的形式来表示集合,集合中的元素具有互异性,即相同的对象只能作为集合中的一个元素,如由“good”中的字母构成的集合 ,而不是 ;集合中的元素具有无序性,如 与 表示同一个集合.
第 □ 讲
1.集合的含义及表示
5.已知 ,且集合 ,集合 ,若 ,求集合B中的所有元素.
6.已知集合 ,用列举法表示集合A.
7.设集合 .若 ,试判断 与A,B的关系.
8.已知集合 ,用列举法表示集合A.
第 页
四、测试反馈
1.一个集合每一个元素的平方均等于其本身,那么这个集合是………………………………………( )
2.下列表述中正确的是…………………………………………………………………………………..( )
3.如果集合 ,则实数 的取值范围是.
4.用列举法表示不等式组 的整数集合为.
第 页
☆ 蔡 老 师 高 考 与 中 考 数 学 研 究 中 心 (82974588)△