南开大学光学工程内部课件Sep 7th

合集下载

南开大学光学工程Dec 7th

南开大学光学工程Dec 7th

0 h
式中 h 6.626 10
34
J s, 称为普朗克常数.
上面这个假说,叫做普朗克能量子假说,它与经 典理论能量是连续的理论相矛盾.
Planck’s quantum theory
以这个假说为前提,根据热力学定律,普朗克得出 黑体辐射公式(普朗克公式):
r0 ( , T )
Hydrogen spectrum
Figure shows hydrogen spectral lines in the visible region. These were the first lines to be discovered. There are 4 lines at 210 nm, 434 nm, 486nm and 656 nm (red). These lines form the Balmer series named after the scientist who came up with an empirical formula for the wavelengths of these lines.
Line spectra of some elements
The existence of these lines cannot be explained by classical Physics
Emission (line) spectra of some elements
Spectrum of Hydrogen Atom
Planck’s quantum theory
可以算出,腔内在~+d频率范围内,本征模 数为 2 8 d , 3 c
瑞利根据热力学中能量均分定理, 认为每一本 征振动的动能和势能各占KT/2.因此在~+d 频率范围内的能量为

南开大学光学工程内部课件Oct 19th

南开大学光学工程内部课件Oct 19th

E1 (r , t ) E01 exp i(k1 r t 1 ) E2 (r , t ) E02 exp i(k2 r t 2 ).
Two plane waves meet at P
Superposition of two beams

The transmitted light is incident onto a screen containing two narrow slits
Young’s Double Slit Experiment

The symmetric narrow slits, S1 and S2 act as the two light sources The waves from the two slits come from the same source S0 and therefore are always in phase.
m


= 0, ±1, ±2, …
Interference Equations

Y:measured vertically from the zeroth order maximum Assumptions


L >>d,
d >>λ

y =LtanθLsinθ
I I1 I 2 2 I1I 2 cos(kd sin ) I1 I 2 2 I1I 2 cos(kdy / L)

Other Coherent Sources

Currently, it is much more common to use a laser as a coherent source The laser produces an intense, coherent,

南开大学光学工程内部课件Nov-16th

南开大学光学工程内部课件Nov-16th

If the primary wave was simply to propagate
from S to P, it is
E
0
e i[t k ( r0 )]
r0
The two equations must be exactly the same. So we introduce a /2 phase difference between the primary wave and the secondary wave to make the two equations so.
dS d 2 ( sin )
Fresnel Dif2 2( r0 )cos
So
dS 2 rdr. Constant!!! r0
We have
El
(1)l 1
2Kl A r0
equation (a) becomes
E E1 Em
2
2
Fresnel Diffraction
From equation (b) we have
E
E1

E2 2

E m 1 2

Em
Since K() goes from 1 to 0 over a great many zones, we can neglect any variation between adjacent zones, i.e. │E1│= │E2│, │Em-1│= │Em│. So

Em 2
)
Em 2
(a)
or
E
E1

E2 2
(
E2 2

E3

E4 2

南开大学光学工程内部课件Lecture 2

南开大学光学工程内部课件Lecture 2
—— Range Instrumentation prism, right.
BM 60 90 right
Ray Tracing
Reflection from Flat Surface
—— Range Instrumentation prism, left, roof.
BM 100 90 left roof
CR 180 roof
Ray Tracing
Reflection from Flat Surface
—— Rhomb prism. It has two reflective faces 斜方棱镜,又名菱形棱镜
BC 0 (Rhomb)
Ray Tracing
Reflection from Flat Surface
Reflection from Flat Surface
—— Isosceles prism, three reflective faces, roof
CR 45 roof (Schmidt)
Ray Tracing
Reflection from Flat Surface
—— Isosceles prism, three reflective faces, roof

Reflection Prism
—— Isosceles prism (Classification code: R), single reflective face. 等腰棱镜(代号:D), 一次反射型
The Dove Prism (AR45)
Ray Tracing
Reflection from Flat Surface
• In fact, if the UV and IR are included, most any substance will sow some absorption. So anomalous dispersion exist somewhere throughout the spectrum

南开大学光子学课程讲义1-32-1-EM_theory

南开大学光子学课程讲义1-32-1-EM_theory

1. Intruduction to waves
In the classical term, “wave concept” is distinct from “particle concept” A feature of “classical particle” is its localisation
B E , t D H jfree . t
Consequences

Charges that acceቤተ መጻሕፍቲ ባይዱerate will generate waves consisting of oscillating electric and magnetic fields! These waves can exist in vacuum ! Speed of these waves

— an object is confined to very small region

A feature of “classical wave” is its nonlocalisation:
— self-sustaining, propagating disturbance of a medium over a long distance

Wave Motions
y A cos(t kx)
y 1 y 2 2 2 u t x
2 2
u: velocity of wave
Wave packets

Often want to describe waves which resemble pulses – called wave packets Make it easy to visualize the wave velocity Phase velocity and group velocity

大学光学L绪论PPT学习教案

大学光学L绪论PPT学习教案

解: 水相对于空气的折射率为 n (n 4 / 3)
根据折射定律,有
O
y' y
Q'
x
i2
i1 M

空 气

n1 sin i1 sin i2
Q
y x tan i1
y' x tan i2
y' y tan i1 y sin i1 cos i2 y 1 n2 sin2 i1
tan i2 sin i2 cos i1
第18页/共47页
5)光强定义为一个平均值的原因
响应时间:能够被感知或被记录所需的最短时间 人眼的响应时间:t 0.1s
109 s 最好的仪器的响应时间大约:
T 1015 s
光波的振动周期:t T
人眼和接收器只能感知光波的平均能流密度 有实际意义的是光波的平均能流
第19页/共47页
三、光 谱
n1;n2
第30页/共47页
n1 sin i1 n2 sin i2
斯涅尔定律(W.Snell )
介质折射率不仅与介 质种类有关,而且与光 的波长有关。在同一种 介质中,长波折射率小 ,短波的折射率大。
第31页/共47页
[例题1] 在水中深度为y 处有一发光点Q,作QO垂直于水面,求射
出水面折射线的延长线与QO交点Q '的深度 y 与' 入射角 i1 的关系
1)单色光:仅有单一波长的光叫单色光,否则 是非单色光。
2)谱密度: dI ~ d i() dI
d
3)光谱:谱密度随波长变化的分布曲线
I 0 dI 0 i()d
4)连续光谱:光谱随波长的变化分布连续叫做
连续光谱
第20页/共47页

光学基本知识讲座PPT课件

光学基本知识讲座PPT课件

心性将遭到破坏,产生各种成像缺陷。这种成
像缺陷就是像差。
像差分类:
对单色光:球差、彗差、象散、场曲、畸变
对多色光:位置色差、倍率色差
1.球差
由轴上一点发出的光线
经球面折射后所得的截距L’, 随入射光线与光轴夹角U或入 射光线在球面上的入射点的
高度而异,原来的同心光束 将不复为同心光束。不同倾 角的光线交光轴于不同的位 置上,相对于理想像点位置
光栅
光栅主要参数:
1.光栅常数
(栅格周期)d;
2.缝宽
光栅主要作用:
分光,产生衍
射光斑。
2.光头光学设计实例 介绍TOP 66A设计方案
光是电磁波,光线是波面的法线。如 光学系统是理想的,经系统形成一个新 的球面波,但实际上,由于光学系统存 在成像缺陷,不可避免地使波面变了形, 这个变了形实际波面与相对于理想波面 的偏离,就是波像差。
7.像质评价
光学系统设计时必须校正像差,如何评判设计质量的好坏
就要用适当的方法来进行。
目前最常用的方法有:
同方向上有不同的曲率,其曲率随
方向而渐变,分别形成子午像点和
弧矢像点。
两个像点之间的距离就用来描
述像散的大小。
xts’=xt’-xs’
场曲:
即使子午像点和弧矢像点重合,
但像面仍然弯曲,这就是场曲。
4.畸变
理想光学系统,一对共轭面上的放大率 是常数。
实际光学系统,当视场变大时,像的放
大率随视场而变,使像相对于物体失去了相
1)物空间的中的一点对应与像空间中唯一的一点,
这一对点称为共轭点;
2)物空间中的一条直线对应与像空间中唯一的一
条直线,这一对直线称为共轭线;

南开大学光学工程内部课件Sep_16th

南开大学光学工程内部课件Sep_16th

Refraction at curved surface
Similar, the second or image focus is the axial point Fi where the image is formed when S0= . And the second or image focal length fi as equal to Si in the special case, we have
Why are focusing instruments necessary?
Refraction at curved surface
Imaging In order to image S at location P, the time it takes for each and every portion of a wavefront leaving S to converge at point P must be identical. So:
which followed with
n1 n2 1 n2 S i n1 S0 ( ) SM 2 MS ' R MS ' SM
Refraction at curved surface
Discussion Sign convention for spherical refraction surfaces and thin lenses
Refraction at curved surface
Fermat’s Principle maintains that the optical path length (OPLSS’) will be stationary (实际上,物与像之间根据费马原 理具有等光程性), i.e.:

南开大学光学工程内部课件Sep 28th

南开大学光学工程内部课件Sep 28th
The objective lens has a short focal length, ƒo<1 cm The ocular lens (eyepiece) has a focal length, ƒe, of several cm L>> ƒo and ƒe


Compound Microscope

The image seen by the eye, I2, is virtual, inverted and very much enlarged
The magnification of the microscope is the product of the magnifications of the objective and the ocular lens
Normal
vision has a far point of infinity
Farsightedness

Also called hyperopia The image focuses behind the retina Can usually see far away objects clearly, but not nearby objects
m o
angle with lens angle without lens
Simple Magnifier

The angular magnification is at a maximum when the image formed by the lens is at the near point of the eye
Presbyopia and Astigmatism
Diopters

南开大学光子学课程讲义2-2-3-QuantumOptics

南开大学光子学课程讲义2-2-3-QuantumOptics

Uncertainties in Coherent States

Expectation values in coherent states
x
α
2 = Re α mω
2
p
α
2
= 2mω Im α
α
∆x

α
= 2mω
∆p = 2
∆p
mω = 2
Uncertainty product:
Independent of α
光子学基础 -2
Quantum Theory of Light
光量子理论
Quantum Optics
—— 量子光学
Introduction
量子光学是研究光场的量子统 计特性和光场与物质相互作用的学 科。
Outline

光子相干态(Coherent State) 光压缩态(Squeezed States of Light) 光量子纠缠态(Entanglement State)
unitary
0
Roy Glauber
a α =α α
any complex number
note: 0 is a coherent state
2005 Nobel Physics Prize!
烛光与激光 哪里不同?
用颜色, 能量, 准直性… 不能区别烛光与激光
烛光 (n )n n n n 1 n (1 n )
G. Breitenbach, S. Schiller, and J. Mlynek, "Measurement of the quantum states of squeezed light", Nature, 387, 471 (1997)

南开大学光学工程内部课件Oct 28th

南开大学光学工程内部课件Oct 28th


Need Q ~ 105 or greater Led to super mirrors

polished to Angstroms ion beam machining polished to ~ 100 nanometers limited by grit size
Laser gyro developed for aircraft
tCCW = 8R 2c R

Travel time cw
tCW = 8R 2c - R

Time difference
Dt 4 A c2

Number of fringes
DN = 4 A cl
Fringe shift ~ 4 % for 2 rev/sec
Laser gyro

Interferometers
Interferometer

What is interferometer?
Interferometer is the optical setup which split incident light into two beams and then recombines them to create an interference fringe.
N=2L/ l =2L/ l
Phase change (in terms of wavelengths):
DN=Nm - N=2Ln/l- 2L/l= 2L/l (n-1)
The Michelson-Morley Experiment
1881
White light fringes
Adjust the mirrors to make the two path has the same path length, one can see white light fringes.

南开大学光学工程内部课件Nov 9th

南开大学光学工程内部课件Nov 9th
Its reduced form is
E bc(
sin

)(
sin N

)e
i [t kR ( N 1 ) ]
The flux-density distribution function is
I ( ) I 0 (
sin

) (
2
sin N

)
2
Fraunhofer Diffraction
Fraunhofer Diffraction

The Double Slit
Two long slits of width b and center-to-center separation a
Fraunhofer Diffraction
Analysis Each aperture, by itself, would generate the same single-slit diffraction pattern on the screen . At any point on , the contribution from the two slits overlap and each must be equal in amplitude and different in phase. The density distribution should be a combination of a rapidly varying double-slit interference system, modulated by a singleslit diffraction pattern.
I ( ) / I ( 0) 1.0 0.047 0.017 0.008 ......

南开大学光学课件Nov. 23nd

南开大学光学课件Nov. 23nd

The angle of incidence for which the reflected beam is completely polarized is called the polarizing angle, θp Brewster’s Law relates the polarizing angle to the index of refraction for the material



The horizontal part of the electric field vector in the incident wave causes the charges to vibrate horizontally The vertical part of the vector simultaneously causes them to vibrate vertically Horizontally and vertically polarized waves are emitted
Birefringence
The molecular "spring constant" can be different for different directions.
Birefringence
The x- and ypolarizations can see different refractive index curves.
Birefringence can separate the two polarizations into separate beams
o-ray
no ne
e-ray
Due to Snell's Law, light of different polarizations will bend by different amounts at an interface.

南开大学光学工程内部课件Fresnel diffraction

南开大学光学工程内部课件Fresnel diffraction

(6)
(7)
Fresnel approximation for diffraction integral 3/4
The aperture is small compared to both r´ and s´ :
2 2 x 0 y 0 2 x 0 y 0 r r´ 3 r´ 2 r´ 2 r´ 2 2 x y 2 x y s s´ 3 s´ 2 s´ 2 s´
13 13 5 7 Q w 1 2 2 2 4 w w P w 1 1 3 5 1 3 5 7 9 2 2 3 2 5 w w w








We combine (22) into a comblex integral (27)
Fresnel’s integrals 1/7
The integral equation (10) can be written in the form
(12)
U P B C jS ,
(intensity I (P )=|B |2(C 2+S 2))
where (13)
B A C S j
1 2 1 cos r' s' 1 1 r' s'
2
2

2

2
u ,
2
(17)


2
v .
(18)
Then
dd

dudv
1 2 1 cos r' s'

南开大学姚江宏特色大学物理课件光学1-2分振幅薄膜干涉

南开大学姚江宏特色大学物理课件光学1-2分振幅薄膜干涉
透射光也有干涉,与反射光干涉的明暗条纹互补。
明环条件 d 1 (2k 1)
4
r (2k 1)R
2
k 1,2,3
暗环条件 d 1 k
2
r kR k 0,1,2,3
22
例2. 牛顿环的应用
C
已知:用紫光照射,借助于低倍测量
显微镜测得由中心往外数第 k 级明环 的半径 rk 3.0 10 3 m , k 级往上数
d 每增加/2:
视场中心外冒一个条纹,视场内条纹 向外扩张,条纹略变稠密.
28
演示工科物理/光的干涉/迈克耳逊干涉仪
(2) 等厚条纹的特征 (M1和M2有一夹角)
若 M1M2 不平行,则d不是常数。若d大时,由于使用的 扩展光源,空间相干性极差, 干涉消失。调小d,出现凸 向空气膜薄边的、弧状的混合型干涉条纹。再调小 d , 使得M1M2 相交,这时出现等厚直条纹。
实际使用中,光线垂直入射;有半波损失。
ZnS的最小厚度 2d1n1 / 2 k
d1
(2k 1)
4n1
|k 1
67.3nm
MgF的最小厚度 2d2n2 / 2 k
n1 n1 n2 n1 n2
n2
d2
(2k 1)
4n2
|k1 114 .6nm
10
练习题: 增透膜和增反膜 为了增加波长为550nm光的透射,在折射率n=1.5的照相 机镜头上涂一层折射率为1.38的氟化镁增透膜。若反射 光相消干涉的条件中取 k=1,膜的厚度为多少?此增透膜 在可见光范围内有没有增反?考虑光线垂直入射。
4
r (2k 1)R
2
k 1,2,3
暗环条件 d 1 k
2
r kR k 0,1,2,3

4_4南开大学特色大学物理课件 干涉

4_4南开大学特色大学物理课件 干涉
asin
中央明条纹的半角宽为: I
sin / a
其它各级明条纹 的宽度为中央明 条纹宽度的一半。
1.5 o
a
a
2
a
sin
10
因为中央明条纹半角宽:
sin / a
p
A
x
屏幕上中央明条纹的 线宽度为:(焦距 f )
a
o
x 2 f / a
B
单缝
f
E
条纹在接收
屏上的位置 x k f / a
暗纹中心在屏上位置
k 1,2
x k f / a
r0 0 f 1.22f / D 爱里斑的半径
21
提纲 第十六章 光的衍射
§1 光的衍射现象 惠更斯-菲涅耳原理 * 光的衍射现象 * 惠更斯-菲涅耳原理 * 衍射的分类 §2 单缝和圆孔的夫琅和费衍射
* 单缝夫琅和费衍射
* 圆孔夫琅和费衍射 作业:2-2,2-6,2-7
A1
B
f
x
o
E
A2
单缝
A3
B
C 将波面分成整数个波带,各波带面积
相等,相邻波带的相位差为 ,则:
结论:
asin 2k / 2
暗纹中心
k 1,2
asin (2k 1) / 2
明纹中心
9
asin 2k / 2 k 1,2 暗纹中心
asin (2k 1) / 2
明纹中心
中央两侧第一暗条纹之间的区域,称做零极(或中央) 明条纹,它满足条件:
提纲 第二章 光的衍射
§1 光的衍射现象 惠更斯-菲涅耳原理 * 光的衍射现象 * 惠更斯-菲涅耳原理 * 衍射的分类 §2 单缝和圆孔的夫琅和费衍射
* 单缝夫琅和费衍射
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Brief history of optics (cont’ed)
平面镜 (《经下》19/—/42· —) 经:景迎日。说在转。 影子可以由反射(迎)太阳(的光线)形 成。理由在于翻转
经说:景,日之光反烛人,则景在日与人之间。
如果太阳之间
Brief history of optics (cont’ed)

母国光 战元龄著 《光学》 人民教育出版社
参考书目
ftp://202.113.227.137 Username: optics Password: optics-nk
/opt/index/
/course/optics/
《淮南万毕术》,公元前120左右,淮南王刘安及 其门客的著作。记录了用冰制作透镜的方法: “削冰令圆,举以向日,以艾承其影,则火生。” 还记录了潜望镜的雏形:“取大镜高悬,置水盆 于其下,则见四邻矣。”
Brief history of optics (cont’ed)

谭峭《化书》,约公元940年(南 唐)。书中有一段十分有趣的记 录:小人常有四镜。一名圭,一 名珠,一名砥,一名盂。圭视者 大,珠视者小,砥视者正,盂视 者倒。观彼之器,查我之型,由 是无大小,无短长,无妍丑,无 美恶。描述的很有可能是四种透 镜的成像性质。圭是双凹发散透 镜,珠是双凸透镜,砥是平凹透 镜,盂是平凸透镜。
一个受到光照射的人,看起来就好像他在发射出(光线)一样。人的下 部成为(像的)上部,而人的上部成为(像的)下部。人的脚(好像发 出)光在下方被遮蔽(即照到了针孔的下方),(但另一些光线)在上 方成像。人的头(好像发出)光在上方被遮蔽(即照到了针孔的上方), (但另一些光线)在下方成像。在(离开光源、反射体或像)较远或较 近的某个位置上,有一个距激光的点(端)(即针孔),结果像就只被 允许通过聚集之处(库)的光线所形成
Brief history of optics (cont’ed)
Brief history of optics (cont’ed)



Euclid, Catoptrics, rectilinear propagation of light, the law of reflection Hero of Alexandria, asserted that light traverses the shortest allowed path between two points. Plato, Republic, the apparent bending of objects partly immersed in water
得到一个影子
Brief history of optics (cont’ed)
焦点的定义,小孔成像中像的反演(《经下》18/—/40· ) 17
经:景到,在午有端与景长。说在端。
像由于交叉(午)因此是倒立的。交叉的地方是一个点(端)。这影响 像(景)的大小。理由在于点(端)
经说:景,光之人,照若射。下着之人也高,高者之人 也下。足蔽下光,故成景于上;首蔽上光,故成景 于下。在远近有端于光,故景库内也。
光一照到,影子就消失。但如果影子不
受到扰动,它将永远存在下去
Brief history of optics (cont’ed)
本影与半影(《经下》17/—/38· ) 16 经:景二。说在重。 有两个影子。道理在于双重(两个光源) 经说:景,二光夹一光。一光者景也。 两条光夹于一个光点。这样,从每一光点

物理学二级学科






理论物理 粒子物理与原子核物理 原子与分子物理 等离子体物理 凝聚态物理 声学 光学 无线电物理
Nobel Laureates in the field of Optics





W. Ketterle (MIT), E. Cornell, C. Wieman –Physics 2001• Z. Alferov, H. Kroemer, J. Kilby –Physics 2000 A. Zewail –Chemistry 1999 S. Chu, C. Cohen-Tannoudji, W. Phillips –Physics 1997 E. Ruska –Physics 1986 N. Bloembergen, A. Schawlaw, K. Siegbahn –Physics 1981 A. Cormack, G. Housefield –Biology or Medicine 1979 M. Ryle, A. Hewish –Physics 1974 D. Gabor –Physics 1971 A. Kastler –Physics 1966 C. Townes(MIT), N. Basov, A. Prokhorov–Physics 1964 F. Zernicke–Physics 1953 C. Raman –Physics 1930 W. H. Bragg, W. L. Bragg –Physics 1915 G. Lippman–Physics 1908 A. Michelson –Physics 1907 J. W. Strutt(Lord Rayleigh) –Physics 1904 H. Lorentz, P. Zeeman–Physics 1902 W. Röntgen–Physics 1901
折射率(《经下》56/—/57· 21) 经:荆之大,其沈浅也。说在见。
荆棘(在水中)的(表观的)大小是这样的,其沉
没的部分看起来是浅的。理由在于表观(见)
经说:荆,沈,荆之见也。则沈浅非荆浅也。若 易,五之一。
沉没的部分是荆棘的外表,因而沉没部分的深浅并 非荆棘本身的深浅。如果做一个比较,(那么可以
Brief history of optics
In the Beginning 墨翟,公元前468-376,《墨子》
《墨子》现存53篇,对几何学, 力学,光学等进行了描述
Brief history of optics (cont’ed)
影子的形成(《经下》16/271/—· ) — 经:景不徙。说在改为。 影子从不移动。道理在于改变行为 经说:景,光至,景忘;若在,尽古息。

Brief history of optics (cont’ed)
From the seventeenth century Hans Lippershey, Oct. 2, 1608, applied a (maybe the first) patent on refracting telescope Zacharias Jansten(1588-1632) compound microscope Galileo Galilei(1564-1642), Galilean telescope, and introduced experiments into physics René Descartes(1596-1650), Considered light as a pressure transmitted through a perfectly elastic medium (the ether) which fills all space -- wave theory. Light was believed as a longitudinal wave in the ether
Brief history of optics (cont’ed)

沈括《梦溪笔谈》,公元1086年,记 录了诸多光学现象,如凹透镜,凸透 镜,暗箱成像,魔镜(世有透光鉴, 鉴背有铭文,凡二十字,字极古,莫 能读。以鉴承日光,则背文及二十字 皆透在屋壁上,了了分明。人有原其 理,以谓铸时薄处先冷,为背文上差 厚,后冷而铜缩多,文虽在背,而鉴 面隐然有迹,所以于光中现。余观之, 理诚然如是)等
Optics
Sun, Qian (孙骞)
Photonics research center, School of Physics, Nankai University, Tianjin 300071, P. R. China Email: Qiansun@ TEL: 0086-22-23506238
参考书目

赵凯华 钟锡华著 《光学》 北京大学出版社
M. Born and E. Wolf, Principle of Optics, 7th edition,
Cambridge University Press

Eugene Hecht, Optics, 4th ed, Addison Wesley, 2002
Atoms
Nebula
Why study optics? Lasers and fiber optics now are replacing wires.
What Should Be Made Clear
What is light? How does light act (propagate)? How to generate light? How to transmit and manipulate? How to describe quantitatively light? What are the usages of light? …………
发现实际深度与表观深度之间的差)是五分之一
Brief history of optics (cont’ed)
《韩非子》(外储说左,上)

客有为周君画荚者,三年而成。君观之,与髹荚者同
状。周君大怒。• 荚者曰:“筑十版之墙,凿八尺之 画
牖,而以日始出时加之其上而观。”周君为之,• 见 望
其状,尽成龙蛇禽兽车马,万物之状备具。周君大
课程概述
相关文档
最新文档