高中物理专题:带电粒子在电场中的运动
高中物理精品课件: 带电粒子在电场中的运动
一点,而且CD=2R,把一质量m=100 g、带电荷量q=10-4 C的带负
电小球,放在水平轨道的D点,由静止释放后,在轨道的内侧运动.g
=10 m/s2,则:
(1)小球到达B点时的速度是多大?
(2)小球到达B点时对轨道的压力是多大?
解析:(1)小球从 D 至 B 的过程中,由动能定理:
v
0
0
=
02
=
02 + 2
tan 2 tan
如图所示,有一带电粒子贴着A板沿水平方向射入匀强电场,当
偏转电压为U1时,带电粒子沿①轨迹从两板正中间飞出;当偏转
电压为U2时,带电粒子沿②轨迹落到B板中间;设粒子两次射入电
场的水平速度相同,则两次偏转电压之比为( A )
偏转距离 y= at ④
2
d
能飞出的条件为 y≤ ⑤
2
2Ud2
联立①~⑤式解得 U′≤ 2 =4.0×102 V
l
即要使电子能飞出,所加电压最大为 400 V.
[答案]
400 V
如图所示为真空示波管的示意图,电子从灯丝K发出(初速度不计),经
灯丝与A板间的加速电压U1加速,从A板中心孔沿中心线KO射出,然后进
双光子医用直线加速
器是用于癌症放射治
疗的大型医疗设备,
它通过产生X射线和
电子线,对病人体内
的肿瘤进行直接照射,
从而达到消除或减小
肿瘤的目的。
一、带电粒子的加速
+
+q
++
m
+ +
V0=0
高中物理电容公式带电粒子在电场中的运动
高中物理电容公式带电粒子在电场中的运动
下面是高中物理电容器常见公式,以及带电粒子在电场中的运动问题
1、带电粒子在电场中的加速公式是):
W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2 其中(Vo=0)
2、带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏
转(不考虑重力作用的情况下)
在垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)
在平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m
带电小球接触后,电量分配3、两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;
电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;
电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;
处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;
常见电场的电场线分布要求熟记〔[第二册P98];
电容单位换算:1F=106μF=1012PF;
电子伏(eV)是能量的单位,1eV=1.60×10-19J;。
高中物理高考物理带电粒子在电场中的运动解题技巧及经典题型及练习题(含答案)
高中物理高考物理带电粒子在电场中的运动解题技巧及经典题型及练习题(含答案)一、高考物理精讲专题带电粒子在电场中的运动1.如图,一带电荷量q =+0.05C 、质量M =lkg 的绝缘平板置于光滑的水平面上,板上靠右端放一可视为质点、质量m =lkg 的不带电小物块,平板与物块间的动摩擦因数μ=0.75.距平板左端L =0.8m 处有一固定弹性挡板,挡板与平板等高,平板撞上挡板后会原速率反弹。
整个空间存在电场强度E =100N/C 的水平向左的匀强电场。
现将物块与平板一起由静止释放,已知重力加速度g =10m/s 2,平板所带电荷量保持不变,整个过程中物块未离开平板。
求:(1)平板第二次与挡板即将碰撞时的速率; (2)平板的最小长度;(3)从释放平板到两者最终停止运动,挡板对平板的总冲量。
【答案】(1)平板第二次与挡板即将碰撞时的速率为1.0m/s;(2)平板的最小长度为0.53m;(3)从释放平板到两者最终停止运动,挡板对平板的总冲量为8.0N•s 【解析】 【详解】(1)两者相对静止,在电场力作用下一起向左加速, 有a =qEm=2.5m/s 2<μg 故平板M 与物块m 一起匀加速,根据动能定理可得:qEL =12(M +m )v 21 解得v =2.0m/s平板反弹后,物块加速度大小a 1=mgmμ=7.5m/s 2,向左做匀减速运动平板加速度大小a 2=qE mgmμ+=12.5m/s 2, 平板向右做匀减速运动,设经历时间t 1木板与木块达到共同速度v 1′,向右为正方向。
-v 1+a 1t 1=v 1-a 2t 1解得t 1=0.2s ,v 1'=0.5m/s ,方向向左。
此时平板左端距挡板的距离:x =v 1t 122112a t -=0.15m 此后两者一起向左匀加速,设第二次碰撞时速度为v ,则由动能定理12(M +m )v 2212-(M +m )21'v =qEx 1解得v 2=1.0m/s(2)最后平板、小物块静止(左端与挡板接触),此时小物块恰好滑到平板最左端,这时的平板长度最短。
高三专题:带电粒子在电场中的运动轨迹问题
高三专题:带电粒子在电场中的运动轨迹问题【规律总结】①两个切线方向电场线的切线方向:____________________________轨迹的切线方向:______________________________②判断电性应根据:________________________________③判断a、E、F根据:______________________________④判断v、E K的大小根据:___________________________⑤判断E p的大小根据:______________________________⑥判断电势的高低根据:______________________________【典型题目】1、某静电场中的电场线如图所示,带电粒子在电场中仅受电场力作用,其运动轨迹如图中虚线所示,由M运动到N,以下说法正确的是()A.粒子必定带正电荷B.粒子在M点的加速度大于它在N点的加速度C.粒子在M点的加速度小于它在N点的加速度D.粒子在M点的动能小于它在N点的动能2、实线为三条未知方向的电场线,从电场中的M点以相同的速度飞出a、b两个带电粒子,a、b的运动轨迹如右图中的虚线所示(a、b只受电场力作用),则()A.a一定带正电,b一定带负电B.电场力对a做正功,对b做负功C.a的速度将减小,b的速度将增大D.a的加速度将减小,b的加速度将增大3、如右图所示,实线表示匀强电场中的电场线,一带电粒子(不计重力)经过电场区域后的轨迹如图中虚线所示,a、b是轨迹上的两点,关于粒子的运动情况,下列说法中可能正确的是()A.该粒子带正电荷,运动方向为由a至bB.该粒子带负电荷,运动方向为由a至bC.该粒子带正电荷,运动方向为由b至aD.该粒子带负电荷,运动方向为由b至a4、如图所示,图中实线是一簇未标明方向的由点电荷产生的电场线,虚线是某一带电粒子通过该电场区域时的运动轨迹,a、b是轨迹上的两点,若带电粒子在运动中只受电场力作用,根据此图能做出正确判断的是()A.带电粒子所带电荷的符号B.带电粒子在a、b两点的受力方向C.带电粒子在a、b两点的速度何处较大D.带电粒子在a、b两点的电势能何处较大5、如右图所示,实线是匀强电场的电场线,虚线是某一带电粒子通过该电场区域时的运动轨迹,a、b是轨迹上两点,若带电粒子在运动中只受电场力作用,则由此图可作出正确判断的是()A.带电粒子带负电荷B.带电粒子带正电荷C.带电粒子所受电场力的方向向左D.带电粒子做匀变速运动6、一带电粒子沿着右图中曲线JK穿过一匀强电场,a、b、c、d为该电场的电势面,其中φa<φb<φc<φd,若不计粒子受的重力,可以确定()A.该粒子带正电B.该粒子带负电C.从J到K粒子的电势能增加D.粒子从J到K运动过程中的动能与电势能之和不变7、如下图所示,实线为方向未知的三条电场线,虚线分别为等势线1、2、3,已知MN=NQ,a、b两带电粒子从等势线2上的O点以相同的初速度飞出.仅在电场力作用下,两粒子的运动轨迹如下图所示,则()A.a一定带正电,b一定带负电B.a加速度减小,b加速度增大C.MN电势差|U MN|等于NQ两点电势差|U NQ|D.a粒子到达等势线3的动能变化量比b粒子到达等势线1的动能变化量小8、如下图,一带负电粒子以某速度进入水平向右的匀强电场中,在电场力作用下形成图中所示的运动轨迹.M和N是轨迹上的两点,其中M点在轨迹的最右点.不计重力,下列表述正确的是()A.粒子在M点的速率最大B.粒子所受电场力沿电场方向C.粒子在电场中的加速度不变D.粒子在电场中的电势能始终在增加9、如下图为一匀强电场,某带电粒子从A点运动到B点.在这一运动过程中克服重力做的功为2.0 J,电场力做的功为1.5 J.则下列说法正确的是()A.粒子带负电B.粒子在A点的电势能比在B点少1.5 JC.粒子在A点的动能比在B点多0.5 JD.粒子在A点的机械能比在B点少1.5 J10、如下图所示,图中实线表示一匀强电场的电场线,一带负电荷的粒子射入电场,虚线是它的运动轨迹,a、b是轨迹上的两点,若粒子所受重力不计,则下列判断正确的是()A.电场线方向向下B.粒子一定从a点运动到b点C.a点电势比b点电势高D.粒子在a点的电势能大于在b点的电势能11、下图中虚线为匀强电场中与场强方向垂直的等间距平行直线,两粒子M、N质量相等,所带电荷的绝对值也相等.现将M、N从虚线上的O点以相同速率射出,两粒子在电场中运动的轨迹分别如右图中两条实线所示.点a、b、c为实线与虚线的交点.已知O点电势高于c点,若不计重力,则()A.M带负电荷,N带正电荷B.N在a点的速度与M在c点的速度大小相同C.N在从O点运动至a点的过程中克服电场力做功D.M在从O点运动至b点的过程中,电场力对它做的功等于零12.如图所示,虚线a、b、c表示电场中的三个等势面与纸平面的交线,且相邻等势面之间的电势差相等.实线为一带正电荷粒子仅在电场力作用下通过该区域时的运动轨迹,M、N是这条轨迹上的两点,则下列说法中正确的是()A.三个等势面中,a的电势最高B.对于M、N两点,带电粒子通过M点时电势能较大C.对于M、N两点,带电粒子通过M点时动能较大D.带电粒子由M运动到N,加速度增大13、如图,虚线a、b和c是静电场中的三个等势面,它们的电势分别为φa、φb、和φc,φa﹥φb﹥φc。
高一物理《带电粒子在电场中的运动》知识点总结
高一物理《带电粒子在电场中的运动》知识点总结一、带电粒子在电场中的加速分析带电粒子的加速问题有两种思路:1.利用牛顿第二定律结合匀变速直线运动公式分析.适用于匀强电场.2.利用静电力做功结合动能定理分析.对于匀强电场和非匀强电场都适用,公式有qEd =12m v 2-12m v 02(匀强电场)或qU =12m v 2-12m v 02(任何电场)等. 二、带电粒子在电场中的偏转如图所示,质量为m 、带电荷量为q 的粒子(忽略重力),以初速度v 0平行于两极板进入匀强电场,极板长为l ,极板间距离为d ,极板间电压为U .1.运动性质:(1)沿初速度方向:速度为v 0的匀速直线运动.(2)垂直v 0的方向:初速度为零的匀加速直线运动.2.运动规律:(1)t =l v 0,a =qU md ,偏移距离y =12at 2=qUl 22m v 02d. (2)v y =at =qUl m v 0d ,tan θ=v y v 0=qUl md v 02. 三、带电粒子的分类及受力特点(1)电子、质子、α粒子、离子等粒子,一般都不考虑重力,但不能忽略质量.(2)质量较大的微粒,如带电小球、带电油滴、带电颗粒等,除有说明或有明确的暗示外,处理问题时一般都不能忽略重力.(3)受力分析仍按力学中受力分析的方法分析,切勿漏掉静电力.四、求带电粒子的速度的两种方法(1)从动力学角度出发,用牛顿第二定律和运动学知识求解.(适用于匀强电场)由牛顿第二定律可知,带电粒子运动的加速度的大小a =F m =qE m =qU md.若一个带正电荷的粒子,在静电力作用下由静止开始从正极板向负极板做匀加速直线运动,两极板间的距离为d ,则由v 2-v 02=2ad 可求得带电粒子到达负极板时的速度v =2ad =2qU m.(2)从功能关系角度出发,用动能定理求解.(可以是匀强电场,也可以是非匀强电场)带电粒子在运动过程中,只受静电力作用,静电力做的功W =qU ,根据动能定理,当初速度为零时,W =12m v 2-0,解得v =2qU m ;当初速度不为零时,W =12m v 2-12m v 02,解得v =2qU m +v 02. 五、带电粒子在电场中的偏转的几个常用推论(1)粒子从偏转电场中射出时,其速度方向的反向延长线与初速度方向的延长线交于一点,此点为粒子沿初速度方向位移的中点.(2)位移方向与初速度方向间夹角α的正切值为速度偏转角θ正切值的12,即tan α=12tan θ. (3)不同的带电粒子(电性相同,初速度为零),经过同一电场加速后,又进入同一偏转电场,则它们的运动轨迹必定重合.注意:分析粒子的偏转问题也可以利用动能定理,即qEy =ΔE k ,其中y 为粒子在偏转电场中沿静电力方向的偏移量.。
高三物理总复习_带电粒子在电场场中的运动讲解
t=
=2.5×10-9 s┄┄┄┄┄┄(2分)
而交变电压的周期T=
s=0.02 s, 图6-3-8
远远大于t,故可以认为进入偏转电场的电子均在当时所加
电压形成的匀强电场中运动.┄┄┄┄┄┄┄┄┄(2分)
2019/6/4
纵向位移
=at2,a=
┄┄┄┄(2分)
所以电子能够打在荧光屏上的最大偏转电压
Um=
2019/6/4
一、带电粒子在电场中的加速和偏转
1.带电粒子在电场中的加速
(1)运动状态的分析:带电粒子沿与电场线平行的方向进入
匀强电场,受到的电场力与运动方向在同一条直线上,
做 加(减)速直线运动 .
带电粒
(2)用功能观点分析:电场力对带电粒子做的功等于
子动能的增量
qU
,即 = mv2- mv02.
2019/6/4
4.如图6-3-11所 示,质子( 11H)和α粒子 ( He42)以
相同的初动能垂直射入偏转电
图6-3-11
场(粒子不计重力),则这两个粒子射出电场时的侧位移y之
比为
()
A.1∶1
B.1∶2
2019/C6/.4 2∶1
D.1∶4
解析:由y=
和Ek0= mv02,
得:y=
可知,y与q成正比,B正确.
的距离为x,则x=
⑤
结论:粒子从偏转电场中射出时,就像是从极板间的l/2处 20沿19/6直/4 线射出.
②若不同的带电粒子是从静止经同一加速电压U0加速后进入 偏转电场的,则由②和④得:
y=
⑥
结论:粒子的偏转角和偏转距离与粒子的q、m无关,仅取决
于加速电场和偏转电场.即不同的带电粒子从静止经过同一
高一物理 10.5 带电粒子在电场中的运动
电子沿Y方 向向上偏移
已知:电子由静止经过U1加速后,进入长l电压U2的 偏转电极YY',板间距d,板端到荧光屏的距离L。 求:电子射出偏转电场时的偏向角正切值tanφ及打 到屏上电子的偏移量y'
tan U 2l
2dU1
tan
y' l2L
U2l y' 2dU1 l 2 L
y'
l 2dU1
(
l
粒子在与电场平行的方向上做初速为 零的匀加速运动
实验录像:用阴极射线管演示带电粒子在电场中的偏转
例2、如图所示一质量为m的电子以一定的初速度v0沿上 极板水平射入两平行的金属板,两板间电势差为U,板间 距为d,板长为l。为使电子能飞出电场,电子进入电场时 的速度v0应满足什么条件?
三、示波器的原理
初速度为零,加速度 为 a=F/m=qU/md 的 匀 加速直线运动。
解法一: 运用运动学知识求解
a F qU m md
v2 2ad
v 2qU m
解法二: 运用能量知识求解
qU 1 mv2 v 2qU
2
m
基本粒子在电场中加速需要的t 极短,重力的影响可以忽略!
由于电场力做功与场强是否匀强无关,与运动路径
解,得: l T 2neum
2m
二、带电粒子的偏转
如图1.9-3,两个相同极板Y和Y'的长度l=6.0cm,相距 d=2cm,极板间的电压U=200V。一个电子沿平行于板面
专题24 带电粒子在电场中的运动----2022年高考物理一轮重难点复习(解析版)
专题24 带电粒子在电场中的运动重点知识讲解 一、带电粒子在匀强电场中的加速1.带电粒子在电场中运动时,重力一般远小于静电力,因此重力可以忽略。
2.如图所示,匀强电场中有一带正电q 的粒子(不计重力),在电场力作用下从A 点加速运动到B 点,速度由v 0增加到v.,A 、B 间距为d ,电势差为U AB.(1)用动力学观点分析:Eq a m =, U E d=,2202v v ad -= (2)用能量的观点(动能定理)分析:2201122AB qU mv mv =- 能量观点既适用于匀强电场,也适用于非匀强电场,对匀强电场又有AB W qU qEd ==。
二、带电粒子在匀强电场中的偏转(1)带电粒子以垂直于电场线方向的初速度v 0进入匀强电场时,粒子做类平抛运动。
垂直于场强方向的匀速直线运动,沿场强方向的匀加速直线运动。
(2)偏转问题的处理方法,类似于平抛运动的研究方法,粒子沿初速度方向做匀速直线运动,可以确定通过电场的时间0lt v =。
粒子沿电场线方向做初速度为零的匀加速直线运动,加速度F qE qU a m m md===; 穿过电场的位移侧移量:221at y =222001().22Uq l ql U md v mv d=⋅=; 穿过电场的速度偏转角: 20tan y v qlU v mv dθ==。
两个结论:(1)不同的带电粒子从静止开始,经过同一电场加速后再进入同一偏转电场,射出时的偏转角度总是相同的。
(2)粒子经过电场偏转后,速度的反向延长线与初速度延长线的交点为粒子水平位移的中点。
(与平抛运动的规律一样) 三、示波管的构造原理(1)示波管的构造:示波器的核心部件是示波管,示波管的构造简图如图所示,也可将示波管的结构大致分为三部分,即电子枪、偏转电极和荧光屏。
(2)示波管的原理a 、偏转电极不加电压时,从电子枪射出的电子将沿直线运动,射到荧光屏的中心点形成一个亮斑。
b 、在XX '(或YY ')加电压时,则电子被加速,偏转后射到XX '(或YY ')所在直线上某一点,形成一个亮斑(不在中心),如图所示。
高中物理精品试题:带电粒子在电场中的运动
10.5 带电粒子在电场中的运动学习目标1.掌握带电粒子在电场中的运动规律,并能分析解决加速和偏转问题。
2.知道示波管的构造和基本原理。
重点:带电粒子在匀强电场中运动的规律。
难点:电学知识和力学知识结合处理偏转问题。
知识点一、带电粒子的加速1.基本粒子的受力特点:对于质量很小的基本粒子,如电子、质子等,虽然它们也会受到万有引力(重力)的作用,但万有引力(重力)一般远小于静电力,可以忽略不计。
(1)基本粒子:如电子、质子、α粒子、离子等,除有说明或有明确的暗示以外,此类粒子一般不考虑重力(但并不忽略质量)。
(2)带电微粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力。
2.两种分析(1)用运动状态分析:带电粒子沿电场线平行的方向进入匀强电场,受到的电场力与运动方向在同一直线上,做匀加(减)速直线运动。
(2)用功能观点分析:粒子动能的变化量等于电场力做的功(电场可以是匀强电场或非匀强电场)。
3.带电粒子的加速:如图所示,质量为m ,带正电荷q 的粒子,在静电力作用下由静止开始从正极板向负极板运动的过程中:(1)静电力对它做的功:W =qU 。
(2)设带电粒子到达负极板时速率为v ,它的动能为E k =12mv 2。
(3)由动能定理可知,qU =12mv 2可解出v =2qUm。
若粒子的初速度不为零,则:12mv 2-12mv 20=qU ⇒v =v 20+2qU m。
说明:带电粒子在非匀强电场中加速,上述结果仍适用。
【题1】如图所示,电子由静止开始从M 板向N 板运动,当到达N 板时的速度为v ,保持两板间的电压不变,则A .当增大两板间距离时,v 增大B .当减小两板间距离时,v 增大C .当改变两板间距离时,v 不变D .当增大两板间距离时,电子在两板间的时间变长【题2】如图所示,A 、B 两导体板平行放置,在t =0时将电子从A 板附近由静止释放,电子的重力忽略不计。
高考物理总复习--带电粒子在电场中的运动及解析
高考物理总复习--带电粒子在电场中的运动及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图,半径为a 的内圆A 是电子发射器,其金属圆周表圆各处可沿纸面内的任意方向发射速率为v 的电子;外圆C 为与A 同心的金属网,半径为3a .不考虑静电感应及电子的重力和电子间的相互作用,已知电子质量为m ,电量为e .(1)为使从C 射出的电子速率达到3v ,C 、A 间应加多大的电压U ; (2)C 、A 间不加电压,而加垂直于纸面向里的匀强磁场.①若沿A 径向射出的电子恰好不从C 射出,求该电子第一次回到A 时,在磁场中运动的时间t ;②为使所有电子都不从C 射出,所加磁场磁感应强度B 应多大.【答案】(1)24mv e (2)①43a π ②(31)B ae ≥- 【解析】 【详解】(1)对电子经C 、A 间的电场加速时,由动能定理得()2211322eU m v mv =- 得24mv U e=(2)电子在C 、A 间磁场中运动轨迹与金属网相切.轨迹如图所示.设此轨迹圆的半径为r ,则)2223a rr a -=+又2rT vπ=得tan 3arθ== 故θ=60°所以电子在磁场中运动的时间2-22t T πθπ= 得439at vπ=(3)若沿切线方向射出的电子轨迹恰好与金属网C 相切.则所有电子都不从C 射出,轨迹如图所示:23r a a '=-又2v evB m r ='得3-1B ae =()所以3-1B ae≥()2.如图,质量分别为m A =1kg 、m B =2kg 的A 、B 两滑块放在水平面上,处于场强大小E=3×105N/C 、方向水平向右的匀强电场中,A 不带电,B 带正电、电荷量q=2×10-5C .零时刻,A 、B 用绷直的细绳连接(细绳形变不计)着,从静止同时开始运动,2s 末细绳断开.已知A 、B 与水平面间的动摩擦因数均为μ=0.1,重力加速度大小g=10m/s 2.求:(1)前2s 内,A 的位移大小; (2)6s 末,电场力的瞬时功率. 【答案】(1) 2m (2) 60W 【解析】 【分析】 【详解】(1)B 所受电场力为F=Eq=6N ;绳断之前,对系统由牛顿第二定律:F-μ(m A +m B )g=(m A +m B )a 1 可得系统的加速度a 1=1m/s 2;由运动规律:x=12a 1t 12 解得A 在2s 内的位移为x=2m ;(2)设绳断瞬间,AB 的速度大小为v 1,t 2=6s 时刻,B 的速度大小为v 2,则v 1=a 1t 1=2m/s ;绳断后,对B 由牛顿第二定律:F-μm B g=m B a 2 解得a 2=2m/s 2;由运动规律可知:v 2=v 1+a 2(t 2-t 1) 解得v 2=10m/s电场力的功率P=Fv ,解得P=60W3.如图所示,在直角坐标系x0y 平面的一、四个象限内各有一个边长为L 的正方向区域,二三像限区域内各有一个高L ,宽2L 的匀强磁场,其中在第二象限内有垂直坐标平面向外的匀强磁场,第一、三、四象限内有垂直坐标平面向内的匀强磁场,各磁场的磁感应强度大小均相等,第一象限的x<L ,L<y<2L 的区域内,有沿y 轴正方向的匀强电场.现有一质量为四电荷量为q 的带负电粒子从坐标(L ,3L/2)处以初速度0v 沿x 轴负方向射入电场,射出电场时通过坐标(0,L)点,不计粒子重力.(1)求电场强度大小E ;(2)为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小B ;(3)求第(2)问中粒子从进入磁场到坐标(-L ,0)点所用的时间.【答案】(1)2mv E qL =(2)04nmv B qL =n=1、2、3......(3)02L t v π=【解析】本题考查带电粒子在组合场中的运动,需画出粒子在磁场中的可能轨迹再结合物理公式求解.(1)带电粒子在电场中做类平抛运动有: 0L v t =,2122L at =,qE ma =联立解得:2mv EqL=(2)粒子进入磁场时,速度方向与y 轴负方向夹角的正切值tan xyvvθ==l速度大小02sinvv vθ==设x为每次偏转圆弧对应的弦长,根据运动的对称性,粒子能到达(一L,0 )点,应满足L=2nx,其中n=1、2、3......粒子轨迹如图甲所示,偏转圆弧对应的圆心角为2π;当满足L=(2n+1)x时,粒子轨迹如图乙所示.若轨迹如图甲设圆弧的半径为R,圆弧对应的圆心角为2π.则有2R,此时满足L=2nx联立可得:22Rn=由牛顿第二定律,洛伦兹力提供向心力,则有:2vqvB mR=得:04nmvBqL=,n=1、2、3....轨迹如图乙设圆弧的半径为R,圆弧对应的圆心角为2π.则有222x R,此时满足()221L n x=+联立可得:()2212Rn=+由牛顿第二定律,洛伦兹力提供向心力,则有:222vqvB mR=得:()2221n mvBqL+=,n=1、2、3....所以为使粒子进入磁场后途经坐标原点0到达坐标(-L,0)点,求匀强磁场的磁感应强度大小04nmv B qL =,n=1、2、3....或()02221n mv B qL+=,n=1、2、3.... (3) 若轨迹如图甲,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=2n×2π×2=2nπ,则02222n n m L t T qB v ππππ=⨯==若轨迹如图乙,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=(2n+1)×2π=(4n+2)π,则2220(42)(42)2n n m Lt T qB v ππππ++=⨯== 粒子从进入磁场到坐标(-L ,0)点所用的时间为02222n n m Lt T qB v ππππ=⨯==或2220(42)(42)2n n m Lt T qB v ππππ++=⨯==4.空间中存在方向垂直于纸面向里的匀强磁场,磁感应强度为B ,一带电量为+q 、质量为m 的粒子,在P 点以某一初速开始运动,初速方向在图中纸面内如图中P 点箭头所示.该粒子运动到图中Q 点时速度方向与P 点时速度方向垂直,如图中Q 点箭头所示.已知P 、Q 间的距离为L .若保持粒子在P 点时的速度不变,而将匀强磁场换成匀强电场,电场方向与纸面平行且与粒子在P 点时速度方向垂直,在此电场作用下粒子也由P 点运动到Q 点.不计重力.求:(1)电场强度的大小.(2)两种情况中粒子由P 运动到Q 点所经历的时间之比.【答案】22B qLE m=;2B E t t π= 【解析】 【分析】 【详解】(1)粒子在磁场中做匀速圆周运动,以v 0表示粒子在P 点的初速度,R 表示圆周的半径,则有20v qv B m R= 由于粒子在Q 点的速度垂直它在p 点时的速度,可知粒子由P 点到Q 点的轨迹为14圆周,故有2R =以E 表示电场强度的大小,a 表示粒子在电场中加速度的大小,t E 表示粒子在电场中由p 点运动到Q 点经过的时间,则有qE ma = 水平方向上:212E R at =竖直方向上:0E R v t =由以上各式,得 22B qL E m= 且E mt qB = (2)因粒子在磁场中由P 点运动到Q 点的轨迹为14圆周,即142B t T m qB π==所以2B E t t π=5.如图,PQ 分界线的右侧空间有一垂直纸面向里、磁感应强度为B 的匀强磁场。
带电粒子在电场中的运动1
2 .若F合≠0,且与初速度方向在 同一直线上,带电粒子将做加速或 减速直线运动。(变速直线运动)
带电粒子的加速
• 仅在电场力作用下,初速度与电场共线:
qU =
1 2
mv2—
1 2
mv02
d
v = v02 2qU / m
m v0
v
q
若 v0 = 0 则
qU =
1 2
mv2
v = 2qU / m
带电粒子的偏转
带电粒子在电场中的偏转
v⊥
v
++++++
φபைடு நூலகம்
v0
-q
dd
v0
y
φ
l/2
- - - l- - -
§1-9带电粒子在电场中的运动
带电粒子在电场中的运动情况
1.若带电粒子在电场中所受合力为 零时,即F合=0时,粒子将保持静 止状态或匀速直线运动状态。
例、水平放置的两平行金属板相距为 d,充电后其间形成匀强电场,一带 电量为q,质量为m的液滴从下板边 缘射入电场,并沿直线恰从上板边缘 射出,求两金属板间的电势差为多少?
u
例、用一根绝缘绳悬挂一个带电小球, 小球的质量为1.0×10-2kg,所带的电 荷是为+2.0×10-8C,现加一水平方向
的匀强电场,平衡时绝缘绳与竖直方向 成300,求该匀强电场的场强?若剪断
绝缘绳,带电小球将做什么运动?
3 .若F合≠0,且与初速度方向不 在同一直线上,带电粒子将做曲线 运动
带电粒子在电场中的运动综合专题
带电粒子在电场中的运动综合专题知识要点梳理1、带电粒子在电场中的加速运动要点诠释:(1)带电粒子在任何静电场中的加速问题,都可以运用动能定理解决,即带电粒子在电场中通过电势差为U AB的两点时动能的变化是,则(2)带电粒子在静电场和重力场的复合场中的加速,同样可以运用动能定理解决,即(W为重力和电场力以外的其它力的功)(3)带电粒子在恒定场中运动的计算方法带电粒子在恒力场中受到恒力的作用,除了可以用动能定理解决外还可以由牛顿第二定律以及匀变速直线运动的公式进行计算。
2、带电粒子在偏转电场中的运动问题(定量计算通常是在匀强电场中,并且大多数情况是初速度方向与电场线方向垂直)要点诠释:(1)运动性质:受到恒力的作用,初速度与电场力垂直,做类平抛运动。
(2)常用的关系:(U为偏转电压,d为两平行金属板间的距离或沿着电场线方向运动的距离,L为偏转电场的宽度(或者是平行板的长度),v0为经加速电场后粒子进入偏转电场时的初速度。
)带电粒子离开电场时:沿电场线方向的速度是;垂直电场线方向的速度合速度大小是:方向是:离开电场时沿电场线方向发生的位移3、带电微粒或者带电物体在静电场和重力场的复合场中运动时的能量守恒要点诠释:(1)带电物体只受重力和静电场力作用时,电势能、重力势能以及动能相互转化,总能量守恒,即(2)带电物体除受重力和静电场力作用外,如果还受到其它力的作用时,电势能、重力势能以及动能之和发生变化,此变化量等于其它力的功,这类问题通常用动能定理来解决。
规律方法指导1、理解物体做直线运动的条件和曲线运动的条件(1)物体做直线运动的条件:物体受到合外力为零或者合外力与速度共线;(2)物体做曲线运动的条件:物体受到的合外力与速度不共线。
当合外力方向与速度方向成锐角时,物体做加速曲线运动;成钝角时做减速曲线运动。
2、带电粒子或者带电物体在恒定的场中时,除了匀变速直线运动外,就是做类抛体运动,灵活地将运动分解是顺利解题的关键所在。
高中物理必修三专题强化训练—带电粒子在交变电场中的运动
高中物理必修三专题强化训练—带电粒子在交变电场中的运动一、带电粒子在交变电场中的直线运动1.此类问题中,带电粒子进入电场时初速度为零,或初速度方向与电场方向平行,带电粒子在交变静电力的作用下,做加速、减速交替的直线运动.2.该问题通常用动力学知识分析求解.重点分析各段时间内的加速度、运动性质、每段时间与交变电场的周期T间的关系等.常用v-t图像法来处理此类问题,通过画出粒子的v-t图像,可将粒子复杂的运动过程形象、直观地反映出来,便于求解.在如图1所示的平行板电容器的两板间分别加如图2甲、乙所示的两种电压,开始B板的电势比A板高.在静电力作用下原来静止在两板中间的电子开始运动.若两板间距足够大,且不计重力,试分析电子在两种交变电压作用下的运动情况,并定性画出相应的v-t图像.图1图2答案见解析解析t=0时,B板电势比A板高,在静电力作用下,电子向B板(设为正向)做初速度为零的匀加速直线运动.对于题图甲所示电压,在0~12T内电子做初速度为零的正向匀加速直线运动,12T~T内电子做末速度为零的正向匀减速直线运动,然后周期性地重复前面的运动,其速度—时间图像如图(a)所示.对于题图乙所示电压,在0~T2内做类似题图甲0~T的运动,T2~T内电子做反向先匀加速、后匀减速、末速度为零的直线运动.然后周期性地重复前面的运动,其速度—时间图像如图(b)所示.针对训练1(多选)如图3(a)所示,A、B是一对平行的金属板,在两板间加上一周期为T的交变电压U,A板的电势φA=0,B板的电势φB随时间的变化规律如图(b)所示.现有一电子从A板上的小孔进入两板间的电场区域,设电子的初速度和重力可忽略.则()图3A.若电子是在t=0时刻进入的,它将一直向B板运动B.若电子是在t=T8时刻进入的,它可能时而向B板运动,时而向A板运动,最后打在B板上C.若电子是在t=38T时刻进入的,它可能时而向B板运动,时而向A板运动,最后打在B 板上D .若电子是在t =T 2时刻进入的,它可能时而向B 板运动,时而向A 板运动答案AB 解析根据电子进入电场后的受力情况和运动情况,作出如图所示的图像.由图丁可知,当电子在t =0时刻进入电场时,电子一直向B 板运动,A 正确.若电子在T 8时刻进入电场,则由图丁知,电子向B 板运动的位移大于向A 板运动的位移,因此最后仍能打在B 板上,B 正确.若电子在3T 8时刻进入电场,则由图丁知,在第一个周期电子即返回至A 板,C 错误.若电子在T 2时刻进入电场,则它一靠近小孔便受到排斥力,根本不能进入电场,即D 错误.二、带电粒子在交变电场中的曲线运动带电粒子以一定的初速度垂直于电场方向进入交变电场,粒子做曲线运动.(1)若带电粒子的初速度很大,粒子通过交变电场时所用时间极短,故可认为粒子所受静电力为恒力,粒子在电场中做类平抛运动.(2)若粒子运动时间较长,在初速度方向做匀速直线运动,在垂直初速度方向利用v y -t 图像进行分析:①v y =0时,速度方向沿v 0方向.②y 方向位移可用v y -t 图像的面积进行求解.如图4甲所示,极板A 、B 间的电压为U 0,极板C 、D 间的间距为d ,荧光屏到C 、D 板右端的距离等于C 、D 板的板长.A 板O 处的放射源连续无初速度地释放质量为m 、电荷量为+q 的粒子,经电场加速后,沿极板C 、D 的中心线射向荧光屏(荧光屏足够大且与中心线垂直),当C 、D 板间未加电压时,粒子通过C 、D 板间的时间为t 0;当C 、D 板间加上图乙所示电压(图中电压U 1已知)时,粒子均能从C 、D 板间飞出,不计粒子的重力及粒子间的相互作用.求:图4(1)C 、D 板的长度L ;(2)粒子从C 、D 两极板间飞出时垂直于极板方向偏移的最大距离;(3)粒子打在荧光屏上区域的长度.答案(1)t 02qU 0m (2)qU 1t 022md (3)3qU 1t 022md解析(1)粒子在A 、B 板间,有qU 0=12mv 02,在C 、D 板间有L =v 0t 0,解得L =t 02qU 0m .(2)粒子从nt 0(n =0,2,4…)时刻进入C 、D 间,偏移距离最大,粒子做类平抛运动,偏移距离y =12at 02,加速度a=qU1 md,解得y=qU1t02 2md.(3)粒子在C、D间偏转距离最大时打在荧光屏上的位置距中心线最远,从C、D板飞出的偏转角tanθ=v y v0,v y=at0,打在荧光屏上的位置距中心线的最远距离s=y+L tanθ,粒子打在荧光屏上的区域长度Δs=s=3qU1t02 2md.针对训练2(多选)如图5甲所示,两平行金属板MN、PQ的板长和板间距离相等,板间存在如图乙所示的随时间周期性变化的电场,电场方向与两板垂直,不计重力的带电粒子沿板间中线且垂直于电场方向源源不断地射入电场,粒子射入电场时的初动能均为E k0,已知t=0时刻射入电场的粒子刚好沿上板右边缘垂直电场方向射出电场,不计粒子间的相互作用,则()图5A.所有粒子都不会打到两极板上B.所有粒子最终都垂直电场方向射出电场C.运动过程中所有粒子的最大动能不可能超过2E k0D.只有t=n T2(n=0,1,2,…)时刻射入电场的粒子才能垂直电场方向射出电场答案ABC解析带电粒子在垂直于电场方向上做匀速直线运动,在沿电场方向上,做加速度大小不变、方向周期性变化的变速直线运动.由t=0时刻进入电场的粒子运动情况可知,粒子在平行金属板间运动的时间为周期性变化的电场的周期的整数倍.在0~T2时间内带电粒子运动的加速度a=E0qm,由匀变速直线运动规律得v y=at=E0qmt,同理可分析T2~T时间内的运动情况,所以带电粒子在沿电场方向的速度v y与E-t图线所围面积成正比(时间轴下方的面积取负值).而经过整数个周期,E-t图像与坐标轴所围面积始终为零,故带电粒子离开电场时沿电场方向的速度总为零,B正确,D错误;在t=0时刻入射的带电粒子,侧向位移最大,故其他粒子均不可能打到极板上,A正确;当粒子在t=0时刻入射且经过时间T离开电场时,粒子在t=T2时达到最大速度,此时竖直方向的位移与水平方向的位移之比为1∶2,即v0t=2×12at2,可得v y=v0,故粒子的最大速度为v=2v0,因此最大动能为初动能的2倍,C正确.1.在如图1甲所示的平行板电容器A、B两板上加上如图乙所示的交变电压,开始时B板的电势比A板的高,这时两板中间原来静止的电子(图甲中黑点所示)在静电力作用下开始运动,则下列说法正确的是(不计电子重力)()图1A.电子先向A板运动,然后向B板运动,再返回A板做周期性往返运动B.电子一直向A板运动C.电子一直向B板运动D.电子先向B板运动,然后向A板运动,再返回B板做周期性往返运动答案C2.(多选)带正电的微粒放在电场中,场强的大小和方向随时间变化的规律如图2所示.带电微粒只在静电力的作用下由静止开始运动,则下列说法中正确的是()图2A.微粒在0~1s内的加速度与1~2s内的加速度相同B.微粒将沿着一条直线运动C.微粒将做往复运动D.微粒在第1s内的位移与第3s内的位移相同答案BD解析设微粒的速度方向、位移方向向右为正,作出微粒的v-t图像如图所示.由图可知B、D选项正确.3.在空间中有正方向水平向右、大小按如图3所示图线变化的电场,位于电场中A 点的电子在t=0时速度为零,在t=1s时,电子离开A点的距离为l.那么在t=2s时,电子将处在()图3A.A点B.A点左方l处C.A点右方2l处D.A点左方2l处答案D解析第1s内电场方向向右,电子受到的静电力方向向左,电子向左做匀加速直线运动,位移大小为l,第2s内电子受到的静电力方向向右,由于电子此时有向左的速度,因而电子继续向左做匀减速直线运动,根据运动的对称性,位移大小也是l,t=2s时电子的总位移大小为2l,方向向左,故选D.4.(多选)如图4甲所示,平行金属板中央有一个静止的电子(不计重力),两板间距离足够大.当两板间加上如图乙所示的交变电压后,下列四个选项中的图像,反映电子速度v、位移x和加速度a三个物理量随时间t的变化规律可能正确的是()图4答案AD解析由平行金属板间所加电压的周期性可推知粒子加速度的周期性,D项正确;由v=at可知,A项正确,C项错误;由x=12at2知x-t图像应为曲线,B项错误.5.(多选)如图5甲所示,两平行金属板竖直放置,左极板接地,中间有小孔,右极板电势随时间变化的规律如图乙所示,电子原来静止在左极板小孔处,不计电子的重力,下列说法正确的是()图5A.若t=0时刻释放电子,电子始终向右运动,直到打到右极板上B.若t=0时刻释放电子,电子可能在两板间往返运动C.若t=T4时刻释放电子,电子可能在两板间往返运动,也可能打到右极板上D.若t=3T8时刻释放电子,电子必然回到左极板答案AC解析若t=0时刻释放电子,电子将重复先匀加速后匀减速的运动,直到打到右极板,不会在两极板间做往返运动,所以选项A 正确,B 错误;若t =T 4时刻释放电子,电子先做匀加速运动后做匀减速运动,分析易知前T 2内电子可能到达右极板,若前T 2时间内电子未到达右极板,则电子将在两极板间做往返运动,所以选项C 正确;同理,若t =3T 8时刻释放电子,电子有可能到达右极板,也有可能回到左极板,这取决于两板间的距离,所以选项D 错误.6.如图6(a)所示,两平行正对的金属板A 、B 间加有如图(b)所示的交变电压,一重力可忽略不计的带正电粒子被固定在两板的正中间P 处,若在t 0时刻释放该粒子,粒子会时而向A 板运动,时而向B 板运动,并最终打在A 板上,则t 0可能属于的时间段是()图6A.0<t 0<T 4B.T 2<t 0<3T 4C.3T 4<t 0<T D .T <t 0<9T 8答案B 解析两板间加的是方波电压,刚释放粒子时,粒子向A 板运动,说明释放粒子时U AB 为负,所以选项A 、D 错误;若T 2<t 0<34T ,带正电粒子先加速向A 板运动、再减速运动至零;然后再反方向加速运动、减速运动至零;如此反复运动,每次向左运动的距离大于向右运动的距离,最终打在A 板上,所以选项B 正确;若34T <t 0<T ,带正电粒子先加速向A 板运动、再减速运动至零、然后再反方向加速运动、减速运动至零;如此反复运动,每次向左运动的距离小于向右运动的距离,最终打在B 板上,所以选项C 错误.7.(多选)如图7(a)所示,A 、B 表示真空中水平放置的相距为d 的平行金属板,板长为L ,两板间加电压后板间的电场可视为匀强电场.现在A 、B 两板间加上如图(b)所示的周期性的交变电压,在t =0时恰有一质量为m 、电荷量为+q 的粒子在左侧板间中央沿水平方向以速度v 0射入电场,忽略粒子的重力,则下列关于粒子运动状态的表述中正确的是()图7A.粒子在垂直于板的方向上的分运动可能是往复运动B.粒子在垂直于板的方向上的分运动是单向运动C.只要周期T 和电压U 0的值满足一定条件,粒子就可沿与板平行的方向飞出D.粒子不可能沿与板平行的方向飞出答案BC8.(多选)如图8甲所示,在A 、B 两极板间加上如图乙所示的交变电压,A 板接地,一质量为m 、电荷量为q 的电子在t =T 4时刻进入两极板,仅在静电力作用下,由静止开始运动,恰好能到达B 板,则()图8A.A、B两板间的距离为qU0T216mB.电子在两板间的最大速度为qU0mC.电子在两板间做匀加速直线运动D.若电子在t=T8时刻进入两极板,它将时而向B板运动,时而向A板运动,最终打在B板上答案AB解析电子在静电力作用下,加速度大小不变,方向变化,选项C错误;电子在t=T4时刻进入两极板,先加速后减速,在t=3T4时刻到达B板,设A、B两板的间距为d,则12·qU0mdT4=d2,解得d=qU0T216m,选项A正确;在t=T2时电子的速度最大,则v m=qU0md·T4=qU0m,选项B正确;若电子在t=T8时刻进入两极板,在T8~T2内电子做匀加速运动,位移x=12·qU0md3T82=9d8>d,说明电子会一直向B板运动并打在B板上,不会向A板运动,选项D错误.9.如图9甲所示,在xOy坐标系中,两平行金属板AB、OD水平放置,OD与x 轴重合,板的左端与原点O重合,板长L=2m,板间距离d=1m,紧靠极板右侧有一荧光屏.两金属板间电压U AO随时间的变化规律如图乙所示,变化周期为T=2×10-3s ,U 0=1×103V ,一带正电的粒子从左上角A 点,以平行于AB 边v 0=1000m/s 的速度射入板间,粒子电荷量为q =1×10-5C ,质量m =1×10-7kg.不计粒子所受重力.求:图9(1)粒子在板间运动的时间;(2)粒子打到荧光屏上的纵坐标的范围;(3)粒子打到荧光屏上的动能.答案(1)2×10-3s (2)范围在0.85m ~0.95m 之间(3)5.05×10-2J解析(1)板间粒子在水平方向上做沿x 轴方向的匀速直线运动,设运动时间为t ,则L =v 0t ,t =L v 0=2×10-3s.(2)t =0时刻射入的粒子在板间偏转量最大,设为y 1,y 1=12a U 0q d=ma ,解得y 1=0.15m.纵坐标y =d -y 1=0.85m ,t =1×10-3s 时刻射入的粒子在板间偏转量最小,设为y 2,y2=12a,解得y2=0.05m,纵坐标y′=d-y2=0.95m,所以打到荧光屏上的纵坐标的范围在0.85m~0.95m之间.(3)分析可知粒子打到荧光屏上的动能相同,设为E k,由动能定理得:U0dqy2=E k-12mv02,解得E k=5.05×10-2J.。
2022届高考物理二轮复习专题突破:专题三十一 带电粒子在电场中的运动
2022届高考物理二轮复习专题突破:专题三十一带电粒子在电场中的运动一、单选题1.(2分)如图所示,两金属板M、N带有等量异种电荷,正对且水平放置。
带正电小球a、b以一定的速度分别从A、B两点射入电场,两小球恰能分别沿直线AC、BC运动到C点,则下列说法正确的是()A.电场中的电势φC>φBB.小球a、b在C位置一定具有相等的电势能C.仅将下极板N向左平移,则小球a、b仍能沿直线运动D.仅将下极板N向下平移,则小球a、b仍能沿直线运动2.(2分)在空间中水平面MN的下方存在竖直向下的匀强电场,质量为m的带电小球由MN上方的A点以一定初速度水平抛出,从B点进入电场,到达C点时速度方向恰好水平,A、B、C三点在同一直线上,且AB=2BC,如图所示。
由此可知()A.小球从A到B到C的整个过程中机械能守恒B.电场力大小为2mgC.小球从A到B与从B到C的运动时间之比为√2∶1D.小球从A到B与从B到C的加速度大小之比为1∶23.(2分)真空中某竖直平面内存在一水平向右的匀强电场,一质量为m的带电微粒恰好能沿图示虚线(与水平方向成θ角)由A向B做直线运动,已知重力加速度为g,微粒的初速度为v0,则()A.微粒一定带正电B.微粒一定做匀速直线运动C.可求出匀强电场的电场强度D.可求出微粒运动的加速度4.(2分)在竖直放置的平行金属板A、B间加一恒定电压,质量相同的两带电小球M和N以相同的速率分别从极板A的上边缘和两板间的中线下端沿竖直方向进入两板间的匀强电场,恰好分别从极板B的下边缘和上边缘射出,如图所示,不考虑两带电小球之间的相互作用,下列说法正确的是()A.两带电小球所带电量可能相等B.两带电小球在电场中运动的时间一定相等C.两带电小球在电场中运动的加速度M一定大于ND.两带电小球离开电场时的动能M可能小于N5.(2分)示波器的内部结构如图所示,如果在电极YY之间加上图(a)所示的电压,在XX 之间加上图(b)所示电压,荧光屏上会出现的波形是()A.B.C.D.6.(2分)如图所示,场强大小为E、方向竖直向下的匀强电场中有一矩形区域abcd,水平边ab长为s ,竖直边ad 长为h 。
高中物理微型专题3 带电粒子在电场中的运动
微型专题3 带电粒子在电场中的运动[学科素养与目标要求]物理观念:1.掌握初速度与场强方向同直线时带电体做直线运动,初速度与场强方向垂直时带电体做类平抛运动.2.会分析圆周运动向心力的来源.科学思维:1.能够综合应用运动和力、功和能的关系分析带电粒子在电场中的运动问题,提高科学推理能力.2.建立带电粒子在交变电场中运动的思维模型.一、带电粒子在电场中的直线运动 1.带电粒子在电场中的直线运动(1)匀速直线运动:带电粒子受到的合外力一定等于零,即所受到的电场力与其他力平衡. (2)匀加速直线运动:带电粒子受到的合外力与其初速度方向相同. (3)匀减速直线运动:带电粒子受到的合外力与其初速度方向相反. 2.讨论带电粒子在电场中做直线运动(加速或减速)的方法 (1)力和加速度方法——牛顿运动定律、匀变速直线运动公式; (2)功和能方法——动能定理; (3)能量方法——能量守恒定律.例1 (2018·广州二中高二期中)如图1所示,水平放置的平行板电容器的两极板M 、N 接上直流电源,两极板间的距离为L =15cm.上极板M 的中央有一小孔A,在A 的正上方h 处的B 点有一小油滴自由落下.已知小油滴的电荷量q =3.5×10-14C 、质量m =3.0×10-9kg.当小油滴即将落到下极板时速度恰好为零.两极板间的电势差U =6×105V.求:(不计空气阻力,取g =10m/s 2)图1(1)两极板间的电场强度E 的大小为多少? (2)设平行板电容器的电容C =4.0×10-12F,则该电容器所带电荷量Q 是多少?(3)B 点在A 点的正上方的高度h 是多少? 答案 (1)4×106V/m (2)2.4×10-6C (3)0.55m解析 (1)由匀强电场的场强与电势差的关系式可得两极板间的电场强度为E =U L =4×106V/m(2)该电容器所带电荷量为Q =CU =2.4×10-6C(3)小油滴自由落下,即将落到下极板时,速度恰好为零 由动能定理可得:mg(h +L)-qU =0 则B 点在A 点的正上方的高度是h =qU mg -L =3.5×10-14×6×1053.0×10-9×10m -0.15m =0.55m. 二、带电粒子的类平抛运动 1.先求加速度.2.将运动分解为沿初速度方向的匀速直线运动和垂直初速度方向的匀加速直线运动,在两个方向上分别列运动学方程.3.涉及功能关系,也可用动能定理列方程.例2 (多选)(2018·上饶市高二期末)有三个质量相等,分别带正电、负电和不带电的油滴,从极板左侧中央以相同的水平初速度v 先后垂直电场射入,落到下极板A 、B 、C 处,如图2所示,则( )图2A.油滴A 带正电,B 不带电,C 带负电B.三个油滴在电场中运动时间相等C.三个油滴在电场中运动的加速度a A <a B <a CD.三个油滴到达下极板时动能E kA <E kB <E kC 答案 ACD解析 三个油滴的初速度相等,水平位移x A >x B >x C ,根据水平方向上做匀速直线运动,所以由公式x =vt 得t A >t B >t C ,三个油滴在竖直方向上的位移相等,根据y =12at 2,知a A <a B <a C .从而得知油滴B 仅受重力,油滴A 所受的电场力方向向上,油滴C 所受的电场力方向向下,所以油滴B 不带电,油滴A 带正电,油滴C 带负电,故A 、C 正确,B 错误.根据动能定理,三个油滴重力做功相等,电场力对油滴A 做负功,电场力对油滴C 做正功,又因为油滴A 、B 、C 的初动能相等,所以三个油滴到达下极板时的动能E kA <E kB <E kC ,故D 正确.三、带电体在电场(复合场)中的圆周运动解决电场(复合场)中的圆周运动问题,关键是分析向心力的来源,向心力的来源有可能是重力和电场力的合力,也有可能是单独的电场力.有时可以把复合场中的圆周运动等效为竖直面内的圆周运动,找出等效“最高点”和“最低点”.例3 (2018·江西师大附中高二月考)如图3所示,BCDG 是光滑绝缘的34圆形轨道,位于竖直平面内,轨道半径为R,下端与水平绝缘轨道在B 点平滑连接,整个轨道处在水平向左的匀强电场中.现有一质量为m 、带正电的小滑块(可视为质点)置于水平轨道上,滑块受到的电场力大小为34mg,滑块与水平轨道间的动摩擦因数为0.5,重力加速度为g.图3(1)若滑块从水平轨道上距离B 点s =3R 的A 点由静止释放,求滑块到达与圆心O 等高的C 点时对轨道的作用力大小;(2)为使滑块恰好始终沿轨道滑行(不脱离轨道),求滑块在圆形轨道上滑行过程中的最小速度. 答案 (1)74mg (2)5gR2解析 (1)设滑块到达C 点时的速度为v,滑块所带电荷量为q,匀强电场的场强为E,由动能定理有 qE(s +R)-μmgs-mgR =12mv 2qE =34mg解得v =gR设滑块到达C 点时受到轨道的作用力大小为N,则N -qE =m v2R解得N =74mg由牛顿第三定律可知,滑块对轨道的作用力大小为 N ′=N =74mg(2)要使滑块恰好始终沿轨道滑行,则滑至圆形轨道DG 间某点,由电场力和重力的合力提供向心力,此时的速度最小(设为v min )则有(qE )2+(mg )2=m v2min R解得v min =5gR 2. [学科素养] 复合场中的圆周运动,涉及受力分析、圆周运动、电场等相关知识点,既巩固了学生基础知识,又锻炼了学生迁移应用与分析的综合能力,较好地体现了“科学思维”的学科素养.四、带电粒子在交变电场中的运动1.当空间存在交变电场时,粒子所受电场力方向将随着电场方向的改变而改变,粒子的运动性质也具有周期性.2.研究带电粒子在交变电场中的运动需要分段研究,并辅以v-t图像.特别需注意带电粒子进入交变电场时的时刻及交变电场的周期.例4 在如图4所示的平行板电容器的两板A、B上分别加如图5甲、乙所示的两种电压,开始B板的电势比A板高.在电场力的作用下原来静止在两板中间的电子开始运动.若两板间距足够大,且不计重力,试分析电子在甲、乙两种交变电压作用下的运动情况,并定性画出相应的v-t图像.图4图5答案见解析解析t=0时,B板电势比A板高,在电场力作用下,电子向B板(设为正向)做初速度为零的匀加速直线运动.对于题图甲所示电压,在0~T2内电子做初速度为零的正向匀加速直线运动,T2~T内电子做末速度为零的正向匀减速直线运动,然后周期性地重复前面的运动,其速度-时间图线如图(a)所示.对于题图乙所示电压,在0~T2内做类似(1)0~T的运动,T2~T电子做反向先匀加速、后匀减速、末速度为零的直线运动.然后周期性地重复前面的运动,其速度-时间图线如图(b)所示.(a) (b)1.(带电粒子在交变电场中的运动)(2018·西安交大附中质检)如图6甲所示,在平行板电容器的A板附近,有一个带正电的粒子(不计重力)处于静止状态,在A、B两板间加如图乙所示的交变电压,带电粒子在电场力作用下由静止开始运动,经过3t0时间刚好到达B板,设此时粒子的动能大小为E k3,若用改变A、B两板间距的方法,使粒子在5t 0时刻刚好到达B 板,此时粒子的动能大小为E k5,则E k3E k5等于( )图6A.35B.53C.1D.925 答案 B解析 设两板间的距离为d,经3t 0时间刚好到达B 板时,粒子运动过程中先加速然后减速再加速,根据运动的对称性和动能定理,可得E k3=q U 03,若改变A 、B 两板间的距离使粒子在5t 0时刻刚好到达B 板,根据运动的对称性和动能定理,可得E k5=q·U 05,故E k3E k5=53,B 正确.2.(带电粒子在电场中的类平抛运动)如图7所示,阴极A 受热后向右侧空间发射电子,电子质量为m,电荷量为e,电子的初速率有从0到v 的各种可能值,且各个方向都有.与A 极相距l 的地方有荧光屏B,电子击中荧光屏时便会发光.若在A 和B 之间的空间加一个水平向左、与荧光屏面垂直的匀强电场,电场强度为E,且电子全部打在荧光屏上,求B 上受电子轰击后的发光面积.图7答案 2mlv 2πEe解析 阴极A 受热后发射电子,这些电子沿各个方向射入右边匀强电场区域,且初速率从0到v 各种可能值都有.取两个极端情况如图所示.沿极板竖直向上且速率为v 的电子,受到向右的电场力作用做类平抛运动打到荧光屏上的P 点. 竖直方向上y =vt, 水平方向上l =12·Ee mt 2.解得y =v2mlEe. 沿极板竖直向下且速率为v 的电子,受到向右的电场力作用做类平抛运动打到荧光屏上的Q 点,同理可得 y ′=v2ml Ee. 故在荧光屏B 上的发光面积S =y 2π=2mlv 2πEe.3.(带电体的直线运动)(2018·菏泽市高二期末)如图8所示,一带电液滴的质量为m 、电荷量为-q(q>0),在竖直向下的匀强电场中刚好与水平面成30°角以速度v 0向上做匀速直线运动.重力加速度为g.图8(1)求匀强电场的电场强度的大小;(2)若电场方向改为垂直速度方向斜向下,要使带电液滴仍做直线运动,电场强度为多大?带电液滴前进多少距离后可返回?答案 (1)mg q (2)3mg 2q v 2g解析 (1)因为带电液滴处于平衡状态,所以有Eq =mg 解得:E =mgq(2)电场方向改变,带电液滴受力分析如图所示.带电液滴做直线运动时,垂直速度方向的合力为零,即qE ′=mgcos30° 解得:E ′=mgcos30°q =3mg2q带电液滴在运动方向的反方向上的合力F =mgsin30°,由牛顿第二定律 做减速运动的加速度大小a =F m =gsin30°=g2带电液滴可前进的距离s =v 202a =v 2g .(或由动能定理:-mgsin30°·s=0-12mv 02得带电液滴可前进的距离s =v 202gsin30°=v 2g.)4.(带电粒子的圆周运动)(2017·宿迁市高一期末)如图9所示,在竖直平面内放置着绝缘轨道ABC,AB 部分是半径R =0.40m 的光滑半圆形轨道,BC 部分是粗糙的水平轨道,BC 轨道所在的竖直平面内分布着E =1.0×103V/m 的水平向右的有界匀强电场,AB 为电场的左侧竖直边界.现将一质量为m =0.04 kg 、电荷量为q =-1×10-4C 的滑块(视为质点)从BC 上的某点由静止释放,滑块通过A 点时对轨道的压力恰好为零.已知滑块与BC 间的动摩擦因数为μ=0.05,不计空气阻力,g 取10 m/s 2.求:图9(1)滑块通过A 点时速度v A 的大小;(2)滑块在BC 轨道上的释放点到B 点的距离x ; (3)滑块离开A 点后在空中运动速度v 的最小值. 答案 (1)2m/s (2)5 m (3)1.94 m/s解析 (1)因为滑块通过A 点时对轨道的压力恰好为零, 所以有mg =mv 2AR ,解得v A =2m/s.(2)根据动能定理可得: |q|Ex -μmgx-mg·2R=12mv A 2,解得x =5m.(3)滑块离开A 点后在水平方向上做匀减速直线运动, 故有:v x =v A -|q|Em t =2-2.5t在竖直方向上做自由落体运动, 所以有v y =gt =10t,v =v 2x +v 2y =106.25t 2-10t +4 故v min =81717m/s ≈1.94 m/s.一、选择题考点一 带电粒子在电场中的直线运动1.(多选)如图1所示,平行板电容器的两个极板与水平面成一角度,两极板与一直流电源相连.若一带电粒子恰能沿图中所示水平直线通过电容器,则在此过程中,该粒子( )图1A.所受重力与电场力平衡B.电势能逐渐增加C.动能逐渐增加D.做匀变速直线运动答案BD解析对带电粒子受力分析如图所示,F合≠0,则A错误.由图可知电场力与重力的合力方向与v0方向相反,F合对粒子做负功,其中mg不做功,Eq做负功,故粒子动能减少,电势能增加,B正确,C错误.F合恒定且F合与v0方向相反,粒子做匀减速直线运动,D正确.2.如图2,一平行板电容器连接在直流电源上,电容器的极板水平;两微粒a、b所带电荷量大小相等、电性相反,使它们分别静止于电容器的上、下极板附近,与极板距离相等.现同时释放a、b,它们由静止开始运动.在随后的某时刻t,a、b经过电容器两极板间下半区域的同一水平面.a、b间的相互作用和重力可忽略.下列说法正确的是( )图2A.a的质量比b的大B.在t时刻,a的动能比b的大C.在t时刻,a和b的电势能相等D.在t时刻,a和b的速度大小相等答案 B3.(多选)(2018·宜昌市示范高中高二联考)如图3所示,一带电液滴受重力和匀强电场的作用力,从静止开始由b点沿直线运动到d点,且bd与竖直方向的夹角为45°,则下列结论中正确的是( )图3A.此液滴带负电B.液滴做匀加速直线运动C.合外力对液滴做的总功等于零D.液滴的电势能减少答案ABD解析液滴所受的合力沿bd方向,知电场力方向水平向右,则此液滴带负电,故A正确;液滴所受合力恒定,加速度恒定,做匀加速直线运动,故B正确;合外力不为零,则合外力做功不为零,故C错误;从b点到d点,电场力做正功,液滴电势能减小,故D正确.考点二带电粒子的类平抛运动4.(多选)如图4所示,一电子(不计重力)沿x轴正方向射入匀强电场,在电场中的运动轨迹为OCD,已知OA =AB,电子过C、D两点时竖直方向的分速度为v Cy和v Dy;电子在OC段和OD段动能的变化量分别为ΔE k1和ΔE k2,则( )图4A.v Cy∶v Dy=1∶2B.v Cy∶v Dy=1∶4C.ΔE k1∶ΔE k2=1∶3D.ΔE k1∶ΔE k2=1∶4答案AD解析电子沿x轴正方向射入匀强电场,做类平抛运动,沿x轴方向做匀速直线运动,已知OA=AB,则电子从O到C与从C到D的时间相等.电子在y轴方向上做初速度为零的匀加速运动,则有v Cy=at OC,v Dy=at OD,所以v Cy∶v Dy=t OC∶t OD=1∶2,故A正确,B错误;根据匀变速直线运动的推论可知,在竖直方向上y OC∶y OD=1∶4,根据动能定理得ΔE k1=qEy OC,ΔE k2=qEy OD,则得ΔE k1∶ΔE k2=1∶4,故C错误,D正确.5.如图5所示,质量相同的两个带电粒子P、Q以相同的速度沿垂直于电场方向射入两平行板间的匀强电场中,P从两极板正中央射入,Q从下极板边缘处射入,它们最后打在上极板的同一点(重力不计),则从开始射入到打到上极板的过程中( )图5A.它们运动的时间t Q >t PB.它们运动的加速度a Q <a PC.它们所带的电荷量之比q P ∶q Q =1∶2D.它们的动能增加量之比ΔE kP ∶ΔE kQ =1∶2 答案 C解析 设两板间距为h,P 、Q 两粒子的初速度为v 0,加速度分别为a P 和a Q ,粒子P 到上极板的距离是h2,它们做类平抛运动的水平位移均为l.则对P,由l =v 0t P ,h 2=12a P t P 2,得到a P =hv 20l 2;同理对Q,l =v 0t Q ,h =12a Q t Q 2,得到a Q =2hv 2l 2.由此可见t P =t Q ,a Q =2a P ,而a P =q P E m ,a Q =q Q E m ,所以q P ∶q Q =1∶2.由动能定理得,它们的动能增加量之比ΔE kP ∶ΔE kQ =ma P h2∶ma Q h =1∶4.综上所述,C 项正确.6.(2018·南京师大附中段考)如图6所示,正方体真空盒置于水平面上,它的ABCD 面与EFGH 面为金属板,其他面为绝缘材料.ABCD 面带正电,EFGH 面带负电.从小孔P 沿水平方向以相同速率射入三个质量相同的带正电液滴a 、b 、c,最后分别落在1、2、3三点,则下列说法正确的是( )图6A.三个液滴在真空盒中都做平抛运动B.三个液滴的运动时间不一定相同C.三个液滴落到底板时的速率相同D.液滴c 所带电荷量最多 答案 D解析 三个液滴在水平方向受到电场力作用,在水平方向并不是做匀速直线运动,所以三个液滴在真空盒中不是做平抛运动,选项A 错误;由于三个液滴在竖直方向做自由落体运动,故三个液滴的运动时间相同,选项B 错误;三个液滴落到底板时竖直分速度大小相等,而水平分位移不相等,水平分速度大小不相等,所以三个液滴落到底板时的速率不相同,选项C 错误;由于液滴c 在水平方向位移最大,故液滴c 在水平方向加速度最大,由牛顿第二定律知,液滴c 所受的电场力最大,故液滴c 所带电荷量最多,选项D 正确. 考点三 带电粒子在电场(复合场)中的圆周运动7.(多选)如图7所示,竖直向下的匀强电场中,用绝缘细线拴住的带电小球在竖直平面内绕O 做圆周运动,以下四种说法中正确的是( )图7A.带电小球可能做匀速圆周运动B.带电小球可能做非匀速圆周运动C.带电小球通过最高点时,细线拉力一定最小D.带电小球通过最低点时,细线拉力有可能最小 答案 ABD8.如图8所示的装置是在竖直平面内放置的光滑绝缘轨道,处于水平向右的匀强电场中,一带负电的小球从高为h 的A 处由静止开始下滑,沿轨道ABC 运动后进入圆环内做圆周运动.已知带电小球所受电场力是其重力的34,圆环半径为R,斜面倾角为θ=53°,轨道水平段BC 的长度s BC =2R.若使带电小球在圆环内恰好能做完整的圆周运动,则高度h 为( )图8A.2RB.4RC.10RD.17R 答案 C解析 带电小球所受的重力和电场力均为恒力,故两力可等效为一个力F =(mg )2+(34mg )2=54mg,方向与竖直方向的夹角为37°偏左下.若使带电小球在圆环内恰好能做完整的圆周运动,即通过等效最高点D 时带电小球与圆环间的弹力恰好为0,由圆周运动知识可得54mg =m v 2DR ,由A 到D 的过程由动能定理得mg(h -R-Rcos37°)-34mg(htan37°+2R +Rsin37°)=12mv D 2,解得h =10R,故选项C 正确,选项A 、B 、D 错误.考点四 带电粒子在交变电场中的运动9.(多选)如图9所示,两平行金属板分别加上如下列选项中的电压,能使原来静止在金属板中央的电子(不计重力)有可能做往返运动的U -t 图像应是(设两板距离足够大)( )图9答案 BC解析 由A 图像可知,电子先做匀加速运动,12T 时速度最大,从12T 到T 内做匀减速运动,T 时速度减为零.然后重复这种运动,故选项A 错误.由B 图像可知,电子先做匀加速运动,14T 时速度最大,从14T 到12T 内做匀减速运动,12T 时速度减为零,从12T 到34T 反向匀加速运动,34T 时速度最大,从34T 到T 内做匀减速运动,T 时速度减为零,回到出发点.然后重复往返运动,故选项B 正确.由C 图像可知,电子先做加速度减小的加速运动,14T 时速度最大,从14T 到12T 内做加速度增大的减速运动,12T 时速度减为零,从12T 到34T 反向做加速度减小的加速运动,34T 时速度最大,从34T 到T 内做加速度增大的减速运动,T 时速度减为零,回到出发点.然后重复往返运动,故选项C 正确.由D 图像可知,电子0~T 2做匀加速运动,从12T 到T 内做匀速运动,然后重复加速运动和匀速运动一直向一个方向运动,故选项D 错误.10.(多选)如图10(a)所示,A 、B 表示真空中水平放置的相距为d 的平行金属板,板长为L,两板加电压后板间的电场可视为匀强电场.现在A 、B 两板间加上如图(b)所示的周期性的交变电压,在t =0时恰有一质量为m 、电荷量为+q 的粒子在左侧两板间中央沿水平方向以速度v 0射入电场,忽略粒子的重力,则下列关于粒子运动状态的表述中正确的是( )图10A.粒子在垂直于板的方向上的分运动可能是往复运动B.粒子在垂直于板的方向上的分运动是单向运动C.只要周期T 和电压U 0的值满足一定条件,粒子就可沿与板平行的方向飞出D.粒子不可能沿与板平行的方向飞出 答案 BC 二、非选择题11.如图11所示,长L =0.20m 的绝缘丝线的一端拴一质量为m =1.0×10-4kg 、带电荷量为q =+1.0×10-6C 的小球,另一端连在一水平轴O 上,丝线拉着小球可在竖直平面内做圆周运动,整个装置处在竖直向上的匀强电场中,电场强度E =2.0×103N/C.现将小球拉到与轴O 在同一水平面上的A 点,然后无初速度地将小球释放,取g =10 m/s 2,不计空气阻力.求:图11(1)小球通过最高点B 时速度的大小;(2)小球通过最高点B 时,丝线对小球拉力的大小. 答案 (1)2m/s (2)3.0×10-3N解析 (1)小球由A 点运动到B 点,其初速度为零,电场力对小球做正功,重力对小球做负功,丝线拉力不做功,则由动能定理有:qEL -mgL =12mv B 2v B =2(qE -mg )Lm=2 m/s. (2)设小球到达B 点时,受重力mg 、电场力qE 和丝线拉力T B 作用, mg =1.0×10-4×10 N =1.0×10-3N qE =1.0×10-6×2.0×103N =2.0×10-3N可知qE >mg,因为qE 方向竖直向上,mg 方向竖直向下,小球做圆周运动,其到达B 点时向心力的方向一定指向圆心,所以小球一定受到丝线的拉力T B 的作用,由牛顿第二定律有:T B +mg -qE =mv 2BLT B =mv 2B L+qE -mg =3.0×10-3N.12.(2018·德州市期末)如图12甲所示,水平放置的两平行金属板A 、B 相距为d,板间加有如图乙所示随时间变化的电压.A 、B 板中点O 处有一带电粒子,其电荷量为q,质量为m,在0~T2时间内粒子处于静止状态.已知重力加速度为g,周期T =d g.图12(1)判断该粒子的电性;(2)求在0~T2时间内两板间的电压U 0;(3)若t =T 时刻,粒子恰好从O 点正下方金属板A 的小孔飞出,那么U 0U x 的值应为多少.答案 (1)正电 (2)mgd q (3)13解析 (1)由平衡条件可知粒子带正电 (2)0~T2时间内,粒子处于平衡状态由mg =qU 0d 得:U 0=mgdq(3)在T 2~T 时间内有:d 2=12at 12mg +qU xd =mat 1=T 2=12d g由以上各式联立解得:U 0U x =13.。
高中物理重难点易错专题 带电粒子(带电体)在电场中的运动问题(解析版)
带电粒子(带电体)在电场中的运动问题目录一、考向分析二、题型及要领归纳热点题型一 优化场区分布创新考察电偏转热点题型二 利用交变电场考带电粒子在运动的多过程问题热点题型三 借助电子仪器考带电粒子运动的应用问题热点题型四 带电粒子(带电体)在电场和重力场作用下的抛体运动热点题型五 带电粒子(带电体)在电场和重力场作用下的圆周运动三、压轴题速练考向分析1.本专题主要讲解带电粒子(带电体)在电场中运动时动力学和能量观点的综合运用,高考常以计算题出现。
2.学好本专题,可以加深对动力学和能量知识的理解,能灵活应用受力分析、运动分析(特别是平抛运动、圆周运动等曲线运动)的方法与技巧,熟练应用能量观点解题。
3.用到的知识:受力分析、运动分析、能量观点。
4.带电粒子在电场中的运动(1)分析方法:先分析受力情况,再分析运动状态和运动过程(平衡、加速或减速,轨迹是直线还是曲线),然后选用恰当的规律如牛顿运动定律、运动学公式、动能定理、能量守恒定律解题。
(2)受力特点:在讨论带电粒子或其他带电体的静止与运动问题时,重力是否要考虑,关键看重力与其他力相比较是否能忽略。
一般来说,除明显暗示外,带电小球、液滴的重力不能忽略,电子、质子等带电粒子的重力可以忽略,一般可根据微粒的运动状态判断是否考虑重力作用。
5.用能量观点处理带电体的运动对于受变力作用的带电体的运动,必须借助能量观点来处理。
即使都是恒力作用的问题,用能量观点处理也常常更简捷。
具体方法有:(1)用动能定理处理思维顺序一般为:①弄清研究对象,明确所研究的物理过程。
②分析物体在所研究过程中的受力情况,弄清哪些力做功,做正功还是负功。
③弄清所研究过程的始、末状态(主要指动能)。
④根据W=ΔE k列出方程求解。
(2)用包括电势能和内能在内的能量守恒定律处理列式的方法常有两种:①利用初、末状态的能量相等(即E1=E2)列方程。
②利用某些能量的减少等于另一些能量的增加列方程。
高中物理精品PPT课件《带电粒子在电场中的运动》(23张)
下面我们来探讨带电粒子的偏转
二、带电粒子的偏转
+++++++++
d
q、m +
v0
U
--------
l
二、带电粒子的偏转
+++++++++
d v0
q、m +
UF
--------
l
1.q的受力怎样? -q的受力又怎样? 2.水平方向和竖直方向的运动性质怎样? 3.与学过的哪种运动形式类似? zxxk
二、带电粒子的偏转
带电粒子 沿垂直电场的方向进入匀强电场,
做类平抛运动:
垂直电场方向:zxxk 做匀速直线运动 平行电场方向: 做初速度为0的匀加速直线运动
二、带电粒子的偏转
+++++++++
d
q、m +
v0
UF
--------
偏移距离
y
+θ
v0
l
4.如何求粒子的偏移距离?
vy v
偏转角
5.如何求粒子的出射速度大小及偏转角?
解:垂直电场方向:飞行时间
t
l v0
平行电场方向:加速度 a F eU
m md
偏移距离
y
1 2
at 2
1 2
eUl2 mv02d
qUl
偏移角
vy a
tin
t
vy v0
带电粒子在电场中的运动专题
一、不计重力的带电粒子在电场中的运动1.带电粒子在电场中加速当电荷量为q、质量为m、初速度为v0的带电粒子经电压U加速后,速度变为v t,由动能定理得:qU=m v t2-m v02.若v0=0,则有v t=,这个关系式对任意静电场都是适用的.对于带电粒子在电场中的加速问题,应突出动能定理的应用.2.带电粒子在匀强电场中的偏转电荷量为q、质量为m的带电粒子由静止开始经电压U1加速后,以速度v1垂直进入由两带电平行金属板产生的匀强电场中,则带电粒子在匀强电场中做类平抛运动,其轨迹是一条抛物线(如图4-1所示).图4-1qU1=m v12设两平行金属板间的电压为U2,板间距离为d,板长为L.(1)带电粒子进入两板间后粒子在垂直于电场的方向上做匀速直线运动,有:v x=v1,L=v1t粒子在平行于电场的方向上做初速度为零的匀加速直线运动,有:v y=at,y=at2,a==.(2)带电粒子离开极板时侧移距离y=at2==轨迹方程为:y=(与m、q无关)偏转角度φ的正切值tan φ===若在偏转极板右侧D距离处有一竖立的屏,在求电子射到屏上的侧移距离时有一个很有用的推论,即:所有离开偏转电场的运动电荷好像都是从极板的中心沿中心与射出点的连线射出的.这样很容易得到电荷在屏上的侧移距离y′=.2.图示为一“滤速器”装置的示意图.a、b为水平放置的平行金属板,一束具有各种不同速率的电子沿水平方向经小孔O进入a、b两板之间.为了选取具有某种特定速率的电子,可在a、b间加上电压,并沿垂直于纸面的方向加一匀强磁场,使所选电子仍能够沿水平直线OO′运动,由O′射出.不计重力作用.可能达到上述目的的办法是[2006年高考·全国理综卷Ⅰ]( )A.使a板的电势高于b板,磁场方向垂直纸面向里B.使a板的电势低于b板,磁场方向垂直纸面向里C.使a板的电势高于b板,磁场方向垂直纸面向外D.使a板的电势低于b板,磁场方向垂直纸面向外3.如图所示,带正电的粒子以一定的初速度v0沿中线进入水平放置的平行金属板内,恰好沿下板的边缘飞出,已知板长为L,板间的电压为U,带电粒子所带电荷量为q,粒子通过平行金属板的时间为t,不计粒子的重力,则 ( )A.粒子在前时间内,电场力对粒子做的功为B.粒子在后时间内,电场力对粒子做的功为C.粒子在竖直方向的前和后位移内,电场力做的功之比为1∶2D.粒子在竖直方向的前和后位移内,电场力的冲量之比为1∶1二、带电粒子在电场中的加速与偏转图4-9●例2 喷墨打印机的结构简图如图4-9所示,其中墨盒可以发出墨汁微滴,其半径约为1×10-5m,此微滴经过带电室时被带上负电,带电荷量的多少由计算机按字体笔画的高低位置输入信号加以控制.带电后的微滴以一定的初速度进入偏转电场,带电微滴经过偏转电场发生偏转后打到纸上,显示出字体.无信号输入时,墨汁微滴不带电,径直通过偏转板而注入回流槽流回墨盒.偏转板长1.6 cm,两板间的距离为0.50 cm,偏转板的右端距纸3.2 cm.若墨汁微滴的质量为1.6×10-10 kg,以20 m/s的初速度垂直于电场方向进入偏转电场,两偏转板间的电压是8.0×103V,其打到纸上的点距原射入方向的距离是2.0 mm.求这个墨汁微滴通过带电室所带的电荷量的多少.(不计空气阻力和重力,可以认为偏转电场只局限于平行板电容器的内部,忽略边缘电场的不均匀性)为了使纸上的字放大10%,请你分析并提出一个可行的方法.【解析】设墨汁微滴所带的电荷量为q,它进入偏转电场后做类平抛运动,离开电场后做直线运动打到纸上,则距原入射方向的距离为:y=at2+L tan φ又a=,t=,tan φ=解得:y=(+L)代入数据得:q=1.25×10-13 C要将字体放大10%,只要使y增大为原来的1.1倍,可采用的措施为将两偏转板间的电压增大到8.8×103 V,或将偏转板右端与纸的间距增大到3.6 cm.[答案] 1.25×10-13C 将两偏转板间的电压增大到8.8×103V,或将偏转板右端与纸的间距增大到3.6 cm【点评】①本题也可直接根据推论公式y=(+L)tan φ=(+L)进行计算.②和平抛运动问题一样,这类题型中偏转角度的正切表达式在解题中往往较为关键,且有tan θ=2tan α(α为射出点的位移方向与入射方向的夹角)的特点.★同类拓展1 如图4-10甲所示,在真空中,有一半径为R的圆形区域内存在匀强磁场,磁场方向垂直纸面向外.在磁场右侧有一对平行金属板M和N,两板间距为R,板长为2R,板间的中心线O1O2与磁场的圆心O在同一直线上.有一电荷量为q、质量为m的带正电的粒子以速度v0从圆周上的a点沿垂直于半径OO1并指向圆心O的方向进入磁场,当从圆周上的O1点水平飞出磁场时,给M、N两板加上如图4-10乙所示的电压,最后粒子刚好以平行于N板的速度从N板的边缘飞出.(不计粒子所受到的重力、两板正对面之间为匀强电场,边缘电场不计)图4-10(1)求磁场的磁感应强度B.(2)求交变电压的周期T和电压U0的值.(3)当t=时,该粒子从M、N板右侧沿板的中心线仍以速度v0射入M、N之间,求粒子从磁场中射出的点到a点的距离.【解析】(1)粒子自a点进入磁场,从O1点水平飞出磁场,则其运动的轨道半径为R.由q v0B=m,解得:B=.(2)粒子自O1点进入电场后恰好从N板的边缘平行极板飞出,设运动时间为t,根据类平抛运动规律有:2R=v0t=2n·()2又t=nT (n=1,2,3…)解得:T= (n=1,2,3…)U0= (n=1,2,3…).图4-10丙(3)当t=时,粒子以速度v0沿O2O1射入电场,该粒子恰好从M板边缘以平行于极板的速度射入磁场,进入磁场的速度仍为v0,运动的轨迹半径为R.设进入磁场时的点为b,离开磁场时的点为c,圆心为O3,如图4-10丙所示,四边形ObO3c是菱形,所以Oc∥O3b,故c、O、a三点共线,ca即为圆的直径,则c、a间的距离d=2R.[答案] (1)(2) (n=1,2,3…) (n=1,2,3…) (3)2R【点评】带电粒子在匀强电场中偏转的运动是类平抛运动,解此类题目的关键是将运动分解成两个简单的直线运动,题中沿电场方向的分运动就是“受力周期性变化的加速运动”。
高中物理带电粒子在电场中的运动
带电粒子电场中的运动高考热点分析电场这部分知识,是历年高考中考点分布的重点区域,涉及选择题、填空题、计算题等题型,纵观近几年的高考,本章重点考查库仑定律、电场及其性质,电场中的导体、带电粒子在电场中的运动,平行板电容器等,尤其是带电粒子在电场中的运动,它巧妙地把电场的概念与牛顿运动定律、动能定理及磁场等知识有机地结合起来,除此之外,电场问题与生产技术、生活实际、科学研究等联系与很多。
如电容式传感器、静电的防止和应用、示波管的原理,静电筛选等都是综全题的命题素材。
高考中往往结合牛顿运动定律、功能关系、磁场等出一些难度较大的题目。
重点知识梳理一、库仑定律真空中两个点电荷之间相互作用的电力,跟它们的电荷量的乘积成正比,跟它们的距离的二次方成反比,作用力的方向在它们的连线上。
即:221rq kq F =其中k 为静电力常量, k ×10 9 N m 2/c 2 成立条件①真空中〔空气中也近似成立〕。
②点电荷。
即带电体的形状和大小对相互作用力的影响可以忽略不计。
注:这一点与万有引力很相似,但又有不同:对质量均匀分布的球,无论两球相距多近,r 都等于球心距;而对带电导体球,距离近了以后,电荷会重新分布,不能再用球心距代替r 。
二、电场的性质 〔一〕.电场力的性质电场的最基本的性质是对放入其中的电荷有力的作用。
1.电场强度〔1〕物理意义:描述电场的力的性质的物理量。
〔2〕定义:放入电场中某点的电荷所受的电场力F 跟它的电荷量q 的比值,叫做该点的电场强度,简称场强。
qF E =注意:①这是电场强度的定义式,适用于任何电场。
②其中的q 为试探电荷〔以前称为检验电荷〕,是电荷量很小的点电荷〔可正可负〕。
③电场强度是矢量,规定其方向与正电荷在该点受的电场力方向相同。
〔2〕求解电场强度的其它方法:①点电荷周围的场强公式是:2rkQE =,其中Q 是产生该电场的电荷,叫场电荷。
②匀强电场的场强公式是:dU E =,其中d 是沿电场线方向上的距离。
2025高考物理总复习带电粒子在电场中运动的综合问题
0
又 t1= t2
联立解得
故在
4 5
9
t1= T= T
25
25
7
0~50 T
时间内发出的粒子均可打到 B 上,所以一个周期内发出的粒子打
7
到 B 上所占百分比约为 η=50 ×100%=14%。
归纳总结
带电粒子在交变电场中运动的研究类型和方法及注意问题
类型:通常只讨论电压的大小不变、方向做周期性变化(如方波)的情形。
大小为2 =
23,sin 37°=0.6,cos 37°=0.8。求:
(1)物块第一次到达B点时的速度大小v1以及B、C两点间的距离x;
(2)小球过P点时的速度大小v以及S、C两点间的距离L;
(3)小球的质量。
2
答案 (1)gt1 10g1 -23R
(2)
5
2
9
R
5
(3)3m
解析 (1)物块从 A 点运动到 B 点的过程,根据牛顿第二定律有
解得
d=2
0
。
=
2 0 2
T
9
(3)若
φ=4φ0,d=5
2 0
,t0=2 ,设经过 t1 时间向上加速运动、再经过 t2 时间向
上减速运动的粒子恰好能打在 B 金属板上,粒子沿垂直金属板方向的运动有
1
2
0
·
2
·1 +
0
1
·
t1·
t2
2
·
·2 2 =d
行分析与研究。这类问题中常用到的基本规律有运动学公式、牛顿定律、
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
带电粒子在电场中的运动
新桥中学胡中兴
一、教材内容和学情分析:拓展二《第八讲A带电粒子在电场中的运动》,是在高二学习了基础教材电场、电场强度、电势差、电场力做功与电势能等内容的之后,再学习的拓展内容。
通过本专题的学习,进一步理解力与运动、功与能的关系。
把电场概念与运动学、力学中的平衡问题、匀变速运动问题、功、能等有机结合起来。
学习运用运动的合成与分解、牛顿定律、动能定理解题,提高分析问题能力、综合能力、用数学方法解决物理问题的能力。
在高考中,是重点内容。
要求学生有较高的综合解题的能力。
由于本校学生的基础比较差,学习时有一定难度,所以在题目设计上,尽可能比较简单的题,且对同一类型题,用多题强化。
二、课标要求和三维目标
课标要求:学习水平为c级,即能联系相关内容,解决简单问题。
2009高考手册要求为C 即:掌握。
(限于粒子的初速度与电场强度的方向平行或垂直的简单情况)。
三维目标:
知识与技能:
1.理解并掌握带电粒子在电场中加速和偏转的原理,
2.能用牛顿运动定律或动能定理分析带电粒子在电场中加速和偏转。
过程与方法:
1.体验类比平抛运动,运用分解的方法,处理曲线运动。
2.归纳用力学规律处理带电粒子在电场中运动的常用方法。
情感、态度和价值观:
1.感受从能的角度,用动能定理分析解答问题的优点,
2.进一步养成科学思维的方法。
三、知识结构疏理:
主要讨论两个问题:一是如何利用电场使带电粒子速度大小改变;二是如何利用电使带电粒子速度方向改变,发生偏转。
这里把它们分成四个小问题,用四课时来完成此内容。
带电粒子在电场中的加速问题
带电粒子在匀强电场中做类平抛运动
带电粒子在电场中的加速、偏转综合问题
带电粒子在交替变化的电场中的直线运动
用二课时来完成此内容。
四、教学重点难点及教学策略:
带电粒子在电场中加速和偏转的原理,是本节的重点。
通过观察带电粒子在电场中的加速、偏转实验来增加直观性。
由于带电粒子的偏转是曲线运动,比较复杂,学生理解起来有一定的困难,故作为本节的难点,通过类比重力场中的平抛运动突破难点。
对以上重难点内容,通过例题来突出和突破。
五、教学过程及说明(例题选用及其说明)
(一)、知识要点复习:一、带电粒子在电场中的直线运动(即如何利用电场使带电粒子速度大小改变)。
二、带电粒子在电场中的曲线运动(即如何利用电场使带电粒子速度方向改变,发生偏转)。
(二)、在学生自学教材内容,理解课本例题的基础上,补充下列例题:
例1. 在点电荷+Q的电场中有A、B两点,将质子和α粒子分别从A点由静止释放,已知质子和α粒子的电性相同,带电量之比为1:2,质量之比为1:4,则到达B点时,它们的速度大小之比为多少?
意图说明:明白带电粒子的运动为变加速运动,不可能通过力和运动的关系求解.但注意到W=qU这一关系式对匀强电场和非匀强电场都是适用的,因此用能量的观点入手由动能定理求解此题.
练习1. 在P板附近有一电子由静止开始向Q板运动,则关于电子到达Q板时的速率,下列解释正确的是()
A.两板间距离越大,加速时间就越长,则获得的速率就越大.
B.两板间距离越小,加速时间就越长,则获得的速率就越大
C.与两板间的距离无关,仅与加速电压有关
D.以上解释都不对.
意图说明:明白1.在带电粒子的加速运动中,电场力一定做正功,公式W=qU中q和U 的符号总是相同,列方程时代入绝对值即可。
2.电子做初速度为零的匀加速直线运动,本题也可用牛顿运动定律和运动学求解,还
可以用动能定理求解。
练习 2. 一束电子自下而上进人一水平方向的匀强电场后发生偏转,则电场方向为__________,进人电场后,电子的动能________(填”增加”、”减少”或”不变”).
解析:由于电子是基本粒子,其重力比电场力小得多,可忽略重力。
电子所受初速度与电场力(合外力)垂直,电子做“类平抛运动”电场力方向指向曲线的凹侧,应水平向右,电
场力做正功,电子的动能增加。
意图说明:明白根据带电粒子的轨迹求解有关问题时,
做出带电粒子的初速度和电场力矢量两个有向线段的
图示是解题的出发点。
例2. a、b、c、d为匀强电场中的四个等势面,一个电子从N点平行于等势面方向射入匀强电场后的运动轨迹如实线NM,由此可知()
A.电子在N的动能大于在M点的动能
B.电子在N点的电势能小于在M点的电势能
C.电场强度方向向左
D.电场中a点电势低于b电电势
意图说明:明白带电粒子在匀强电场中做“类平抛运动”
练习3 .如图是一个说明示波管工作的部分原理图,电子经过加速后以速度v0垂直进入偏转电场,离开偏转电场时偏移量为h,两平行板间距为d,电压为U,板长为L,每单位电压引起的偏移量(h/U)叫做示波管的灵敏度,为了提高灵敏度,可采用的办法是()A.增加两极板间的电势差U
B.尽可能缩短板长L
C.尽可能减小板间距d
D.使电子的入射速度v0大些
说明:先找到物理量表达式,
例3. 一个电子以4.0×106m/s的速度沿与电场垂直的方向从A点飞进匀强电场,并且从另一端B点沿与场强方向成1500角方向飞出,那么,A、B两点间的电势差为多少伏?(电子的质量为9.1×10-31 kg).
意图说明:明白学会用能量的观点处理带电粒子在电场中的运动问题;曲线运动的基本解法就是运动的合成和分解。
例4.一束电子流在经U1=5000V的加速电压加速后,在距两极板等距处垂直进入平行板间的匀强电场,如图所示,若两板间距d=1.0cm,板长L=5.0cm,那么,要使电子能从平行板间飞出,两个极板上最多能加多大电压?
意图说明:明白瞬时速度是联系两个过程的桥梁。
练习4. 静止的电子在加速电压U1的作用下从O经P板的小孔射出,又垂直进入平行金属板间的电场,在偏转电压U2的作用下偏转一段距离.现使U1加倍,要想使电子的运动轨迹不发生变化,应该()
A.使U2加倍
B.使U2变为原来的4倍
C.使U2变为原来的
倍
D.使U2变为原来的1/2倍
说明:电学情景,力学规律
练习5.电子在电势差为U1的加速电场中由静止开始运动,然后射入电势差为U2的两块平行板间的匀强电场中,在满足电子射出平行板区的条件下,下述四种情况中,一定能使电子的偏转角Φ变大的是()
A.U1变大,U2变大
B. U1变小, U2变大
C. U1变大, U2变小
D. U1变小, U2变小
意图说明:明白平抛运动不是分解速度,就是分解位移。
例5. 真空中相距d=5cm的两块平行金属板A、B与电源连接(图中未画出),其中B板接地(电势为零),A板电势变化的规律如图.将一个质量m=2.0×10-23 kg,电量q=+1.6×10-15C 的带电粒子从紧临B板处释放,不计重力.求(1)在t=0时刻释放该带电粒子,释放瞬间粒子加速度的大小. (2)若A板电势变化周期T=1.0×10-5s,在t=0时将带电粒子从紧临B板处无初速释放,求粒子到达A板时动量的大小.
意图说明:明白“图”在物理学中有着十分重要的地位,它是将抽象物理问题直观化、
2
形象化的最佳工具,中学物理中常用的图有示意图、过程图、函数图、矢量图、电路图和光路图等等,若题干或选项中已经给出了函数图,则需从图象纵、横坐标的物理意义以及图线中的“点”、“线”、“斜率”、“截距”和“面积”等诸多方面寻找解题的突破口。
用图象法解题不但快速、准确,能避免繁杂的运算,还能解决一些用一般计算方法无法解决的问题。
2008-12-2。