八年级下学期数学专题-反比例函数有关的面积问题

合集下载

浙教版八年级下专题九 反比例函数与图形的面积

浙教版八年级下专题九 反比例函数与图形的面积

专题九反比例函数与图形的面积(教材P147作业题第3题)已知反比例函数y=kx(k≠0)的图象上一点的坐标为(-1,-4),求这个反比例函数的表达式,并画出它的图象.解:y=4x,图略.【思想方法】反比例函数k的几何意义:反比例函数图象上的点(x,y)的横,纵坐标之积(xy=k)为常数这一特点,即过双曲线上任意一点,向两坐标轴分别作垂线,两条垂线与两坐标轴所围成的矩形的面积为常数,即S=|k|.一反比例函数与矩形的面积[2011·漳州]如图1,点P(x,y)是反比例函数y=3x的图象在第一象限分支上的一个动点,P A⊥x轴于点A,PB⊥y轴于点B,随着自变量x的增大,矩形OAPB的面积(A)图1A.不变B.增大C.减小D.无法确定[2012·丹东]如图2,点A是双曲线y=kx在第二象限分支上的任意一点,点B,C,D分别是点A关于x轴,坐标原点,y轴的对称点.若四边形ABCD的面积是8,则k的值为(D)图2A.-1B.1C.2D.-2【解析】先判定出四边形ABCD是矩形,再根据反比例函数的系数的几何意义,用k表示出四边形ABCD的面积.∵四边形ABCD的面积是8,∴4×|-k|=8,解得|k|=2,又∵双曲线位于第二、四象限,∴k<0,∴k=-2.[2012·黔东南州]如图3,点A是反比例函数y=-6x(x<0)的图象上的一点,过点A作▱ABCD,使点B、C在x轴上,点D在y轴上,则▱ABCD的面积为(C)图3A.1 B.3 C.6 D.12【解析】过点A作AE⊥OB于点E.变形3答图因为矩形ADOE的面积等于AD·AE,平行四边形ABCD的面积等于AD·AE,所以▱ABCD的面积等于矩形ADOE的面积,根据反比例函数k的几何意义可得:矩形ADOE的面积为6,即可得平行四边形ABCD的面积为6.故选C.如图4,A、B是双曲线y=kx上的点,分别过A、B两点作x轴、y轴的垂线段.S1,S2,S3分别表示图中三个矩形的面积,若S3=1,且S1+S2=4,则k值为(C)图4A.1 B.2 C.3 D.4如图5,反比例函数y=kx(x>0)的图象经过矩形OABC对角线的交点M,分别与AB、BC相交于点D、E.若四边形ODBE的面积为9,则k的值为(C)图5A .1B .2C .3D .4【解析】 由题意,得点E 、M 、D 位于反比例函数图象上,则S △OCE =|k |2,S△OAD =|k |2.过点M 作MG ⊥y 轴于点G ,作MN ⊥x 轴于点N ,则S 矩形ONMG =|k |, 又∵点M 为矩形ABCO 对角线的交点,则S 矩形ABCO =4S 矩形ONMG =4|k |.∵函数图象在第一象限,∴k >0,则k 2+k2+9=4k ,解得k =3.故选C.[2013·泸州]如图6,点P 1(x 1,y 1),P 2(x 2,y 2),…,P n (x n ,y n )在函数y =1x (x >0)的图象上,△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…,△P n A n -1A n 都是等腰直角三角形,斜边OA 1,A 1A 2,A 2A 3,…,A n -1A n 都在x 轴上(n 是大于或等于2的正整数),则点P 3的坐标是__(3+2,3-2)__;点P n 的坐标是__(n +n -1,n -n -1)__(用含n 的式子表示).图6二 反比例函数与三角形的面积[2012·毕节]如图7,双曲线y =kx (k ≠0)上有一点A ,过点A 作AB ⊥x轴于点B,△AOB的面积为2,则该双曲线的表达式为__y=-4x__.图7如图8,点A,B是函数y=2x的图象上关于原点对称的任意两点,BC∥x轴,AC∥y轴,△ABC的面积记为S,则(B)图8A.S=2B.S=4C.2<S<4 D.S>4【解析】设点A的坐标为(x,y),则B为(-x,-y),xy=2.∴AC=2y,BC=2x.∴△ABC的面积为2x·2y÷2=2xy=2×2=4.[2012·岳阳]如图9,一次函数y1=x+1的图象与反比例函数y2=2x的图象交于A、B两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,连结AO,BO.下列说法正确的是(C)图9 A.点A和点B关于原点对称B.当x<1时,y1>y2C.S△AOC=S△BODD.当x>0时,y1,y2都随x的增大而增大正比例函数y=x与反比例函数y=1x的图象相交于A、C两点.AB⊥x轴于点B,CD⊥x轴于点D(如图10),则四边形ABCD的面积为(C)图10A.1 B.5 2C.2 D.2 5三反比例函数与其他几何图形如图11,菱形OABC的顶点B在y轴上,顶点C的坐标为(-3,2),若反比例函数y=kx(x>0)的图象经过点A,则k的值为(D)图11 A.-6B.-3C.3D.6[2012·荆门]如图12,点A是反比例函数y=2x(x>0)的图象上任意一点,AB∥x轴交反比例函数y=-3x的图象于点B,以AB为边作▱ABCD,其中点C,D在x轴上,则S▱ABCD为(D)图12A.2 B.3 C.4 D.5【解析】设A的纵坐标是b,则B的纵坐标也是b.把y=b代入y=2x ,得b=2x,则x=2b,即A的横坐标是2b;同理可得B的横坐标是-3b.则AB=2b -(-3b)=5b.则S▱ABCD=5b·b=5.如图13,已知函数y=2x和函数y=kx的图象交于A、B两点,过点A作AE⊥x轴于点E.若△AOE的面积为4,P是坐标平面上的点,且以点B、O、E、P为顶点的四边形是平行四边形,则满足条件的P点坐标是__P1(0,-4),P2(-4,-4),P3(4,4)__.图13[2012·丽水]如图14,等边△OAB和等边△AFE的一边都在x轴上,双曲线y=kx(k>0)经过边OB的中点C和AE的中点D,已知等边△OAB的边长为4.图14(1)求该双曲线所表示的函数解析式;(2)求等边△AEF的边长.解:(1)过点C作CG⊥OA于点G.∵点C是等边△OAB的边OB的中点,∴OC=2,∠AOB=60°,∴OG=1,CG=3,∴点C的坐标是(1,3).由3=k1,得k=3,∴该双曲线所表示的函数解析式为y=3x.(2)过点D作DH⊥AF于点H,设AH=a,则DH=3a,∴点D的坐标为(4+a,3a).上的点,由xy=3,得∵点D是双曲线y=3x3a(4+a)=3,即a2+4a-1=0,解得a1=5-2,a2=-5-2(舍去),∴AD=2AH=25-4.∴等边△AEF的边长是(45-8).。

例谈反比例函数中的面积问题

例谈反比例函数中的面积问题

例谈反比例函数中的面积问题———— 一道习题的延伸山东省莱阳市穴坊镇中心中学 王良良在鲁教版初中数学课本八年级下册P106页提出了这样一个问题:在一个反比例函数图象上任取两点P 、Q ,过点P 分别作x 轴和y 轴的平行线,与坐标轴围成的矩形面积为S 1,过点Q 分别作x 轴和y 轴的平行线,与坐标轴围成的矩形面积为S 2,那么S 1与S 2有什么关系?为什么?对于上面的问题,应结合反比例函数中的几何意义来解决。

如图1所示,若P(x,y)是双曲线y =xk (k ≠0)上任意一点,过P 作PB ⊥x 轴于B ,PC ⊥y 轴于C ,则OB=|x|,OC=|y|,所以S 矩形PBOC =OB ·OC=|xy|,又因xy=k ,即S 矩形PBOC =|k|,将其继续推广,可得S △POB =S △POC =2||k ,由此可以很容易解决课本中的问题。

将反比例函数和正比例函数的图像结合,也会有意想不到的结论。

如图2所示,反比例函数y =xk 与正比例函数y=mx 相交于两点A 、B ,过其中任意一点向某一坐标轴作垂线,由交点与垂足所构成的三角形的面积S △ABC =|k|。

若借助于这些基本图形,学生在解决反比例函数面积类的问题时,就不会觉得困难了。

下面结合几个例题分析此类问题的解法,供参考。

例1 如图3,一次函数的图象y=21x-2分别交x 轴、y 轴于A 、B ,P 为AB 上一点,且PC 为△AOB 的中位线,PC 的延长线交反比例函数y =x k (k ≠0)的图象于点Q ,S △OCQ =23,求k 的值和点Q 的坐标。

解析:因为S △OCQ =23,所以k=2×23=3,易求得点A(4,0),点C 的横坐标为2,代入y=x 3,得y=23,所以点Q 的坐标为(2,3)。

例2 两个反比例函数y =x k (k ≠0)和y=x1在第一象限内的图象如图4所示,点P 在y =x k 的图象上,PC ⊥x 轴于点C,交y=x1的图象于点A ,PD ⊥y 轴于点D ,交y=x 1的图象于点B ,当点P 在y =xk 的图象上运动时,以下结论:①△ODB 与 △OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等;④当A 是PC 中点时,点B 一定是PD 的中点。

最新初中数学思维技巧专项训练(一) 反比例函数中有关图形面积问题的解法

最新初中数学思维技巧专项训练(一) 反比例函数中有关图形面积问题的解法

反比例函数中有关图形面积问题的解法类型一 利用反比例函数k 的几何意义解决有关图形的面积问题如图1-Y -1,过反比例函数y =kx (k ≠0)的图象上任意一点P (x ,y ),作x 轴、y 轴的垂线P A ,PB ,则有:(1)矩形P AOB 的面积S =P A ·PB =|y |·|x |=||xy =||k (当k >0时,S =k ;当k <0时,S =-k );(2)S △PBO =S △P AO =|k |2(当k >0时,S △PBO =S △P AO =k 2;当k <0时,S △PBO =S △P AO=-k2).图1-Y -11.位于第一象限的点E 在反比例函数y =kx 的图象上,点F 在x 轴的正半轴上,O 是坐标原点.若EO =EF ,△EOF 的面积等于2,则k 的值为( )A .4B .2C .1D .-22.如图1-Y -2,直线l 和双曲线y =kx (k >0)交于A ,B 两点,P 是线段AB 上的点(不与点A ,B 重合),过点A ,B ,P 分别向x 轴作垂线,垂足分别是C ,D ,E ,连接OA ,OB ,OP ,设△AOC 的面积是S 1,△BOD 的面积是S 2,△POE 的面积是S 3,则( )图1-Y -2A .S 1<S 2<S 3B .S 1>S 2>S 3C .S 1=S 2>S 3D .S 1=S 2<S 33.如图1-Y -3,矩形ABCD 的对角线BD 经过坐标原点,矩形的边都平行于坐标轴,点C 在反比例函数y =k 2+2k +1x的图象上.若点A 的坐标为(-2,-2),则k 的值为( )图1-Y -3A .1B .-3C .4D .1或-34.如图1-Y -4,A ,B 是双曲线y =6x 上的点,分别过点A ,B 作x 轴和y 轴的垂线段.若图中阴影部分的面积为2,则两个空白矩形面积的和为________.图1-Y -45.如图1-Y -5,直线l ⊥x 轴于点P ,且与反比例函数y 1=k 1x (x >0)及y 2=k 2x (x >0)的图象分别交于点A ,B ,连接OA ,OB .已知△ABO 的面积为2,则k 1-k 2=__________.图1-Y -56.过反比例函数y =kx (k ≠0)图象上一点A 作x 轴、y 轴的垂线,垂足分别为B ,C ,若△ABC的面积为3,则k 的值为________.7.如图1-Y -6,在平面直角坐标系中,菱形OABC 的面积为12,点B 在y 轴上,点C 在反比例函数y =kx(x <0)的图象上,则k 的值为________.图1-Y -68.如图1-Y -7,已知点P (6,3),过点P 作PM ⊥x 轴于点M ,PN ⊥y 轴于点N ,反比例函数y =kx 的图象交PM 于点A ,交PN 于点B .若四边形OAPB 的面积为12,则k =________.图1-Y -79.如图1-Y -8,点A (x 1,y 1),B (x 2,y 2)都在双曲线y =kx (x >0)上,且x 2-x 1=4,y 1-y 2=2.分别过点A ,B 向x 轴、y 轴作垂线段,垂足分别为C ,E 和D ,F ,AC 与BF 相交于点G ,四边形FOCG 的面积为2,五边形AEODB 的面积为14,则双曲线的解析式为____________.图1-Y -8类型二 利用反比例函数k 的代数意义解决有关图形的面积问题(1)已知反比例函数y =kx(k ≠0)图象上一点的坐标为(x ,y ),则有k =xy ;(2)如图1-Y -9,已知反比例函数y =kx (k ≠0)图象上的两点A (x ,y ),D (m ,n ),则有xy=mn .图1-Y -910.如图1-Y -10,在平面直角坐标系中,一条直线与反比例函数y =8x (x >0)的图象交于点A ,B ,与x 轴交于点C ,且B 是AC 的中点,分别过点A ,B 作x 轴的平行线,与反比例函数y =2x(x >0)的图象交于点D ,E ,连接DE ,则四边形ABED 的面积为________.图1-Y -1011.如图1-Y -11,点A ,B 在反比例函数y =kx (k >0)的图象上,AC ⊥x 轴,BD ⊥x 轴,垂足C ,D 分别在x 轴的正、负半轴上,CD =k .已知AB =2AC ,E 是AB 的中点,且△BCE 的面积是△ADE 的面积的2倍,则k 的值是________.图1-Y -1112.如图1-Y -12,已知双曲线y =kx 与直线y =-x +6相交于A ,B 两点,过点A 作x 轴的垂线与过点B 作y 轴的垂线相交于点C ,若△ABC 的面积为8,则k 的值为________.图1-Y -1213.如图1-Y -13,已知反比例函数y =kx 的图象与直线y =-x +b 都经过点A (1,4),且该直线与x 轴的交点为B .(1)求反比例函数和直线的解析式; (2)求△AOB 的面积.图1-Y -1314.如图1-Y -14,在平行四边形ABCD 中,点A ,B ,C 的坐标分别是(1,0),(3,1),(3,3),双曲线y =kx(k ≠0,x >0)过点D .(1)求双曲线的解析式;(2)作直线AC 交y 轴于点E ,连接DE ,求△CDE 的面积.图1-Y -14类型三 利用正比例函数与反比例函数图象的中心对称性解决有关图形的面积问题 如图1-Y -15所示.图1-Y -15(1)(2)S △BOC =S △ODB =S △AOC =||k 2,S △ABC =||k .15.直线y =mx (m >0)与双曲线y =kx (k >0)交于点A ,B .过点A 作AM ⊥x 轴,垂足为M ,连接BM .若S △ABM =1,则k 的值是( )A .1B .m -1C .2D .m16.如图1-Y -16,正比例函数y =x 与反比例函数y =1x 的图象相交于A ,C 两点.AB⊥x 轴于点B ,CD ⊥x 轴于点D ,则四边形ABCD 的面积为( )图1-Y -16A .1 B.32 C .2 D.5217.如图1-Y -17,某正比例函数与反比例函数y =2x 的图象相交于A ,C 两点,过点A 作x 轴的垂线,垂足为B ,连接BC ,则△BOC 的面积为________.图1-Y -1718.如图1-Y -18所示,已知直线y =12x 与双曲线y =kx (k >0)交于A ,B 两点,且点A的横坐标为4.(1)求k 的值;(2)若双曲线y =kx(k >0)上一点C 的纵坐标为8,求△AOC 的面积;(3)过原点O 的另一条直线l 交y =kx (k >0)于P ,Q 两点(点P 在第一象限),若由点A ,B ,P ,Q 为顶点组成的四边形的面积为24,求点P 的坐标.图1-Y -18详解1.B [解析] 如图,过点E 作EM ⊥x 轴于点M ,因为EO =EF ,所以OM =MF , 所以S △MEO =S △MEF =12S △EOF =1,所以k2=1,所以k =2.2.D [解析] 结合题意可得点A ,B 都在双曲线y =kx 上,则有S 1=S 2.直线AB 上点A与点B 之间的部分在双曲线上方,故有S 1=S 2<S 3.故选D.3.D [解析] 设C (x ,y ).∵四边形ABCD 是矩形,对角线BD 经过坐标原点,∴S △BCD=S △BAD ,S △BEO =S △BFO ,S △DHO =S △DGO ,∴S 矩形CEOH =S 矩形AFOG , ∴k 2+2k +1=||-2×||-2=4, ∴k =1或k =-3.故选D.4.8 [解析] 如图,∵A ,B 是双曲线y =6x上的点,∴S 矩形ACOG =S 矩形BEOF =6. ∵S 阴影=2,∴S 矩形ACED +S 矩形BDGF =6+6-2-2=8. 故答案为8.5.4 [解析] ∵反比例函数y 1=k 1x (x >0)及y 2=k 2x (x >0)的图象均在第一象限内,∴k 1>0,k 2>0.∵AP ⊥x 轴,∴S △OAP =12k 1,S △OBP =12k 2,∴S △ABO =S △OAP -S △OBP =12(k 1-k 2)=2,∴k 1-k 2=4. 6.6或-67.-6 [解析] 如图,连接AC ,交y 轴于点D ,∵四边形OABC 为菱形,∴AC ⊥OB ,且CD =AD ,BD =OD . ∵菱形OABC 的面积为12, ∴△CDO 的面积为3, ∴│k │=6.∵反比例函数图象的一个分支位于第二象限, ∴k <0,则k =-6.故答案为-6.8.6 [解析] 由点P (6,3),得点A 的横坐标为6,点B 的纵坐标为3,代入反比例函数y =kx,得点A 的纵坐标为k 6,点B 的横坐标为k3,即AM =k 6,NB =k3.∵S 四边形OAPB =12,∴S 矩形OMPN -S △OAM -S △NBO =12,即6×3-12×6×k 6-12×3×k3=12,解得k =6. 故答案为6.9.y =6x [解析] ∵x 2-x 1=4,y 1-y 2=2,∴AG =2,BG =4,∴S △ABG =12AG ·BG =4.∵S长方形AEOC =S 长方形BFOD =||k =k ,∴k +k-2+4=14,∴k =6,即y =6x.10.92 [解析] ∵点A ,B 在反比例函数y =8x (x >0)的图象上, ∴设点B 的坐标为(8m,m ).∵B 为线段AC 的中点,且点C 在x 轴上, ∴点A 的坐标为(4m,2m ).∵AD ∥x 轴,BE ∥x 轴,且点D ,E 都在反比例函数y =2x (x >0)的图象上,∴点D 的坐标为(1m ,2m ),点E 的坐标为(2m ,m ),∴S 四边形ABED =12×(4m -1m +8m -2m )×(2m -m )=92.故答案为92.11.3 72 [解析] ∵E 是AB 的中点,∴S △ABD =2S △ADE ,S △BAC =2S △BCE .又∵△BCE 的面积是△ADE 的面积的2倍, ∴2S △ABD =S △BAC .设点A 的坐标为(m ,k m ),点B 的坐标为(n ,kn),则有⎩⎪⎨⎪⎧m -n =k ,k m =-2×k n,(m -n )2+(k m -k n )2=2km,解得⎩⎪⎨⎪⎧k =3 72,m =72,n =-7或⎩⎪⎨⎪⎧k =-3 72,m =-72,(舍去).n =7 故答案为3 72. 12.5 [解析] 由A ,B 两点在直线y =-x +6上,可设点A ,B 的坐标分别为(m ,-m+6),(n ,-n +6),所以AC =n -m ,BC =n -m ,所以S △ABC =12AC ·BC =12(n -m )2=8,所以n -m =4,即m =n -4,所以点A 的坐标为(n -4,10-n ).又A ,B 两点在双曲线y =k x上,所以(n -4)(10-n )=n (-n +6),解得n =5,所以点B 的坐标为(5,1),故k =5.13.解:(1)把A (1,4)代入y =k x,得k =1×4=4, 所以反比例函数的解析式为y =4x. 把A (1,4)代入y =-x +b ,得-1+b =4,解得b =5,所以直线的解析式为y =-x +5.(2)在y =-x +5中,令y =0,即-x +5=0,解得x =5,则B (5,0), 所以△AOB 的面积=12×5×4=10. 14.解:(1)∵在平行四边形ABCD 中,点A ,B ,C 的坐标分别是(1,0),(3,1),(3,3),∴点D 的坐标是(1,2). ∵双曲线y =k x(k ≠0,x >0)过点D , ∴2=k 1,得k =2, 即双曲线的解析式是y =2x.(2)S △CDE =S △EDA +S △ADC =(2-0)×12+(2-0)×(3-1)2=1+2=3. 15.A [解析] 由直线y =mx 与双曲线y =k x均关于原点对称,可得S △ABM =||k ,所以||k =1.又因为k >0,所以k =1.故选A.16.C [解析] 由直线y =x 与双曲线y =1x均关于原点对称,可得S △ADC =S △ABC =||k =1,∴四边形ABCD 的面积为2.故选C.17.118.解:(1)∵点A 的横坐标为4,点A 在直线y =12x 上,∴当x =4时,y =2, ∴点A 的坐标为(4,2).又∵点A 在双曲线y =k x(k >0)上, ∴k =4×2=8.(2)如图,分别过点C ,A 作x 轴的垂线,垂足为E ,F .∵点C 在双曲线y =8x上,当y =8时,x =1,∴点C 的坐标为(1,8).∵点C ,A 都在双曲线y =8x上, ∴S △COE =S △AOF =4,∴S △COE +S 梯形CEF A =S △AOC +S △AOF ,∴S △AOC =S 梯形CEF A .∵S 梯形CEF A =12×(2+8)×3=15,∴S △AOC =15.(3)∵反比例函数的图象是关于原点O 的中心对称图形, ∴OP =OQ ,OA =OB ,∴四边形APBQ 是平行四边形,∴S △POA =14S 平行四边形APBQ =14×24=6. 设点P 的横坐标为m (m >0且m ≠4),则点P 的坐标是⎝⎛⎭⎫m ,8m . 分别过点P ,A 作x 轴的垂线,垂足为E ,F .∵点P ,A 在双曲线上,∴S △POE =S △AOF =4.若0<m <4,如图①,∵S △POE +S 梯形PEF A =S △POA +S △AOF ,∴S 梯形PEF A =S △POA =6,即12·⎝⎛⎭⎫2+8m ·(4-m )=6, 解得m =2或m =-8(舍去),∴P (2,4).若m >4,如图②,∵S △AOF +S 梯形PEF A =S △POA +S △POE ,∴S 梯形PEF A =S △POA =6,即12·⎝⎛⎭⎫2+8m ·(m -4)=6, 解得m =8或m =-2(舍去),∴P (8,1). 综上,点P 的坐标是(2,4)或(8,1).。

苏科版八年级数学下册11.2《反比例函数的图像与性质-面积问题》课件

苏科版八年级数学下册11.2《反比例函数的图像与性质-面积问题》课件

变式1:如图,过反比例函数 y 2 (x 0)图象上任意两 点A、B分别作x轴的垂线,垂足分x别为C、D,连结OA
、OB,设AC与OB的交点为E,ΔAOE与梯形ECDB的
面积分别为 S1 、S2,比较它们的大小,可得 (B )
A.S1>S2
B.S1=S2
C.S1< S2 D.S1和S2的大小关系不确定
11.2 反比例函数的图像与性质 ——面积相关问题
回顾
如图,点P(m,n)是反比例函数 y k
x
图象上的一点,过点P分别向x轴、y轴作垂线,
垂足分别是点A、B,则S矩形OAPB=____k____.
结论1:
y
过双曲线上任意一点作x轴、 y轴的垂线,所得矩形的面 积S为定值,即S=|k|.
B P(m,n)
积为——8—— 。
F E
练习3 利用点求图形的面积或函数解析式
如图,已知双曲线 y k (x>0)经过矩形OABC
x
边AB的中点F,交BC于点E,且四边形OEBF
的面积为2,则k=__2___.
练习3利用坐标求图形的面积或函数解析式
变式1:如图,双曲线 y k (k 0)经过矩形OABC的
B P(m,n)
y轴)的垂线,所得直角三角
OA

x
形的面积S为定值,即S= 1 |k| .
2
回顾
图中这些三角形的 y 面积相等吗?
yk x
O
x
知识点
y k (k 0) x
y PB
y P
x A0
0Q
x
S矩形 k
k S三角形
2
例1 已知解析式 求图形的面积

反比例函数求面积问题

反比例函数求面积问题

摘要:初中阶段共学习了三种函数,而其中反比例函数是初中函数部分的重要教学内容,反比例函数题目里很多题型就是有关面积问题的:有已知,求面积;有面积,求未知;探索型面积问题等.这种题型难度相对较大,需要综合运用知识,并且主要以中高档题型出现,所以在课堂教学中,教师要注重方法的传授,提高学生解答有关面积问题题目的能力.关键词:反比例函数、面积、转化、初中数学中考试卷中的反比例函数问题,许多都是与三角形、四边形等图形的面积联系在一起的,其中常见的有已知反比例函数的解析式,求其图象围成的某一图形的面积;或已知某一图形的面积,求符合条件的反比例函数的解析式等题型。

下面笔者就有关反比例函数与图形面积的题型略加以说明。

结论1:过双曲线上任意一点作x轴、y轴的垂线,所得矩形的面积S为定值|k|对于下列三个图形中的情形,利用三角形面积的计算方法和图形的对称性以及上述结论,可得出对应的面积的结论为:结论2:在直角三角形ABO中,面积S=结论3:在直角三角形ACB中,面积为S=2|k|结论4:在三角形AMB中,面积为S=|k|一. 反比例函数与矩形面积例1. (01年山东荷泽)如图(1),P是反比例函数ykxk=≠()0的图象上一点,过P点分别向x轴、y轴作垂线,所得到的图中阴影部分的面积为6,则这个反比例函数的解析式为()图1解:设点P的坐标为(x,y)P评析:如图(2),若A AB垂直于x轴,垂足为B,AC的垂直于y轴,垂足为C图2例2. (01年福建福州)如图(3),已知正方形OABC的面积为9,点O为坐标原点,点A在x轴上,点C在y轴上,点B P(m,n)P分别作x轴、y轴的垂线,垂足分别为E、F,并设矩形OEPF和正方形OABC不重合部分的面积为S。

(1)求B点坐标和k的值;(2P的坐标;(3)略图3解:(1点的坐标为(3,3)P在第一象限(2①②P的坐标为(66)(此种情况的求法与上述方法一样,在此不再详解)二. 反比例函数与三角形面积1. 反比例函数与直角三角形面积例3. (04年辽宁锦州)如图(4),点A AB垂直于x_____________。

中考数学复习指导:反比例函数图象中的面积问题

中考数学复习指导:反比例函数图象中的面积问题

1反比例函数图象中的面积问题在最近几年中考中,我们经常遇到一类与双曲线有关的面积问题.要解决这类问题,应掌握以下几个方面的基础知识:设反比例函数式为y =k x. (1)如图1,由双曲线上一点向两条坐标 轴作垂线段,由这两条垂线段与两坐标轴围 成的矩形的面积为:S 四边形OMPN =k .(2)如图2,由双曲线上一点向其中一条坐标轴的作垂线段,并连结这一点与原点的线段,由这两条线段与坐标轴围成的三角形的面积为:S △POM =S △PON =12k . (3)理解点的坐标的几何意义:点P 的坐标为(m ,n),则m 表示P 到y 轴的距离;n 表示P 到x 轴的距离.(4)双曲线关于原点O 对称,因此双曲线1k y x =与过原点O 的正比例函数y =k 2x 的交点关于原点O 对称.(5)点P 在双曲线y =k x的图象上,设P 点的横坐标为m ,则P 点的坐标可表示为(m ,k m). (6)利用割补法求面积.尤其要注意有时需先利用坐标轴构造出特殊图形(如矩形、梯形、直角三角形等).一、利用双曲线的对称性例1 如图3,A ,B 是函数y =2x的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则( )(A)S =2 (B)S =4(C)2<S<4 (D)S>4考点 反比例函数系数k 的几何意义.2分析 设点A 的坐标为(x ,y),则B (-x ,-y ),xy =2,∴AC =2y ,BC =2x , ∴S △ABC 的面积=2x ×2y ÷2=2xy =4.故选B .例2 如图4,点A 是双曲线y =k x在第二象限分支上的任意一点.点B 、点C 、点D 分别是点A 关于x 轴、坐标原点、y 轴的对称点,若四边形ABCD 的面积是8,则k 的值为( )(A)-1 (B)1 (C)2 (D)-2考点 反比例函数系数k 的几何意义,关于原点对称、x 轴、y 轴对称的点的坐标,矩形的判定和性质.分析 因为点B 、点C 、点D 分别是点A 关于x 轴、坐标原点、y 轴的对称点,所以四边形ABCD 是矩形.由四边形ABCD 的面积是8,得 4×k −=8,解得k =2.又∵双曲线位于第二、四象限,∴k<0,k =-2.故选D .二、利用点的坐标的几何意义例3 如图5,点A 是反比例函数y =2x (x>0)的图象上任意一点,AB ∥x 轴交反比例函数y =-3x的图象于点B ,以AB 为边作□ABCD ,其中C 、D 在x 轴上,则S △BCD 为( )(A)2 (B)3 (C)4 (D)5考点 反比例函数综合题,曲线上点的坐标与方程的关系,平行四边形的性质. 分析 设A 的纵坐标是a ,则B 的纵坐标也是a .3例4 如图6.,双曲线y =k x.经过Rt △OMN 斜边上的点A ,与直角边MN 相交于点B ,已知OA =2AN ,△OAB 的面积为5,则k 的值是_______.考点 反比例函数综合题.4三、利用分类讨论思想例3 如图7,正方形OABC 的面积为9,点O 是坐标原点,点A 在x 轴上,点C 在y 轴上,点B 在函数y =k x (k>0,x>0)的图象上,点P(m 、n)是函数y =k x上任意一点,过点P 分别作x 轴、y 轴的垂线,垂足分别为E 、F ,并设矩形OEPF 中和正方形OABC 不重合部分的面积为S .(1)求点B 的坐标和k 值;(2)当S =92时,求P点的坐标.四、利用“割补法”例4 如图8,点A 在双曲线y =1x 上,点B 在双曲线y =3x上,且AB ∥x 轴,点C 、D 在x 轴上,若四边形ABDC 为矩形,则它的面积为_______.考点 反比例函数系数k 的几何意义,分析 如图8,过A 点作AE ⊥y 轴,垂足为E .∵点A 在双曲线y =1x. ∴四边形AEOD的面积为1.∵点B在双曲线y=3x上,且AB∥x轴,∴四边形BEOC的面积为3.∴四边形ABCD为矩形,则它的面积为3-1=2.五、构造辅助图形例5 如图9,矩形ABCD中,C是AB的中点,反比例函数y=kx(k>0)在第一象限的图象经过A、C两点,若△OAB面积为6,则k的值为( )(A)2 (B)4 (C)8 (D)16考点反比例函数系数k的几何意义,三角形中位线定理.分析如图9,分别过点A、点C作OB的垂线,垂足分别为点M、点N.∵点C为AB的中点,∴CE为△AMB的中位线,故可设MN=NB=a,CN=b,AM=2b.又∵OM·AM=ON·CN,∴OM=a,∴△OAB的面积=3a.2b÷2=3ab=6.∴ab=2,∴k=a-2b=2ab=4.故选B.例8 如图10,已知正比例函数和反比例函数的图像都经过点M(-2,-1),且P(-1,-2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP的面积相等?如果存在,请求出点Q的坐标,如果不存在,请说明理由解(1)设正比例函数的关系式为y=kx,将点M(-2,-1)坐标代入,得k=12.∴正比例函数的关系式为y=12x.同理可得反比例函数的关系式为y=2x.(2)存在,当点Q在直线MO上运动时,设点Q的坐标为(m,12 m).5。

与反比例函数有关的面积问题解析

与反比例函数有关的面积问题解析

与反比例函数有关的面积问题解析王 涛(江苏连云港外国语学校,江苏连云港)反比例函数 面积问题 解析59(下转第5页)6120浅谈德育工作中的亲和力刘国文(湖南省耒阳市第七中学,湖南耒阳)目前,我们学校的德育工作在一定程度上仍存在着形式简单化,内容空、方法旧,灌输说教多、感情沟通少等问题。

教育是为了培养人的健康身心及知识的丰富性、多样性的,道德教育是基础。

德育教育要落到实处,才能促进学生各方面健康发展。

因此,教育要改变重智轻德轻情的教育观念和教育行为,以德育人,以情育人,实施富有亲和力的德育教育。

爱以情动人亲和力情感交融爱是教育学生的起点和基础。

情之所至,金石为开。

德育工作者只有对学生献上爱心,才能赢得学生的尊重、信任和亲近,从而奠定良好的情感基础,酿造良好的教育氛围,最终实现优化教育之效果。

那么,如何实现教育过程的以情动人呢?一、关爱学生,用爱滋润学生的心田关爱学生是搞好班级工作的前提。

只有热爱学生,才能教育好学生。

要把自己的温暖和感情倾注到每一个学生身上。

通过真情去拉近与学生的距离,滋润学生的心田,走进学生的心灵,感动学生,才能使学生乐于接受教育。

在实际教育活动中,有些老师把情感沟通过程简单化了,以为对学生生活上嘘寒问暖,学习上语重心长地提几点要求就是进行了情感教育。

其实,这是不够的。

教育者必须及时洞察学生的内心世界,准确把握学生的生活学习情况,从爱护的角度,因势利导,有的放矢,把爱洒到学生的心里,才能使教育出现事半功倍的效果。

二、为人师表,要处处以身作则要教育好学生,作为教师,首先必须加强自身修养。

因为在学生眼中,老师是导师、是长者,他们观察社会、观察人生,往往首先从老师开始。

因此,作为德育工作者,一定要严格要求自己,培养自己的良好思想修养和道德情操,要求学生做到的,自己首先做到。

只有这样,才能给学生以良好的影响,教育学生时才有说服力。

同时,教师要善于通过创设一定的道德情境,让学生在想象性的情感体验中,经历动机的冲突,情感的激荡,认识的升华。

反比例函数背景下的应用题(面积问题)

反比例函数背景下的应用题(面积问题)

反比例函数背景下的应用题(面积问题)
反比例函数背景下与面积相关的问题往往围绕着以下三个结论展开:①反比例函数上任意一点与坐标轴围成的矩形面积;②反比例函数上任意一点与坐标轴围成的三角形面积;③反比例函数上任意两点与原点围成的三角形面积.
解法分析:对于平面直角坐标系中三角形面积的求法问题有如下的解法策略:①当三角形的一边在坐标轴上或平行于坐标轴上时,可以直接求三角形面积;②当三角形中的任意一边不在坐标轴或不平行于坐标轴时,利用割补法(补成/分割成规则图形)面积进行求解。

本题中的△ABC的一边AC//x轴,则可以直接求解,需要注意的是当用点表示线段长度时,要加上绝对值。

解法分析:本题可以直接求三角形的面积,△MPQ的底PQ是可求的定值,而高是点M和点P横坐标差的绝对值,要注意M点可能在第二象限,也可能在第四象限,加上绝对值后就可以避免漏解了。

解法分析:本题首先需要联立正比例函数和反比例函数的解析式求出A、B两点的坐标,然后过A、B两点作x轴垂线构造梯形,求梯形面积即可。

解法分析:本题可以用代数法或几何法解决。

综合利用直角三角形的性质,三角形的面积比解决。

同时还要能够利用点的坐标表示线段的长度,灵活运用。

解法分析:本题主要考察了反比例函数上的点与坐标轴围成的矩形面积。

对于第2、3问,需要分类讨论,即P在B左侧或P在B右侧,进行计算。

解法分析:本题是反比例函数和正方形背景下的问题。

△BCE的面积可以直接求解,主要表示出E的坐标,再求出B'E的长度,即可求出△BCE的面积。

反比例函数面积问题专题

反比例函数面积问题专题

反比例函数面积问题专题反比例函数面积问题是数学中的一个重要问题,也是中学数学中常见的题型之一、这种问题涉及到两个变量的关系,其中一个变量的值与另一个变量的值成反比例关系。

在解决这类问题时,需要通过分析问题的条件和利用数学公式,找出两个变量之间的关系,并求解出所要求的面积。

首先,让我们来梳理一下反比例函数的基本概念。

反比例函数也被称为倒数函数或者比例函数的倒数。

当两个变量的乘积为常数时,我们就可以称它们之间存在反比例关系。

即当一个变量的值增大时,另一个变量的值就会减小,反之亦然。

反比例函数可以用以下的公式来表示:y=k/x其中,y和x分别代表两个变量的值,k为常数,表示两个变量的乘积。

通过这个公式,我们可以求出y与x的关系,也可以表示成x与y的关系。

反比例函数在数学学科中有着广泛的应用,并且有很多技巧可以帮助我们解决相关的问题。

接下来,让我们来讨论解决反比例函数面积问题的思路。

对于这类问题,我们通常需要求解一个围成面积的最大或者最小值。

我们可以按照以下的步骤来解决这类问题:1.确定问题的条件:首先,我们需要明确给定的条件,包括一些已知的数值和问题的限定条件。

2.建立模型并画图:根据给定条件,我们可以建立一个函数模型来描述两个变量的关系,同时我们还可以画出一个图形,以便更好地理解问题。

3.确定所要求的值:根据问题的要求,我们需要确定所要求的面积,是最大的还是最小的。

4.利用数学方法求解:根据问题的要求和模型函数,我们可以通过求导、解方程等数学方法,求得所要求的面积的最大或最小值。

最后,让我们来看几个实际的例子,以更好地理解反比例函数面积问题。

例子1:一个矩形的长和宽成反比例关系,如果矩形的周长为60,求矩形的最大面积。

解决思路:首先根据周长的公式可以得到l + w = 30,然后利用面积公式S = lw,将w表示成l的函数,即w = 30 - l。

将这个表达式代入面积公式中,得到S = l(30 - l) = 30l - l^2、这是一个二次函数,即S = -l^2 + 30l。

例谈与反比例函数有关的图形面积问题

例谈与反比例函数有关的图形面积问题

2022年8月下半月㊀解法探究㊀㊀㊀㊀例谈与反比例函数有关的图形面积问题◉湖北省建始县教学研究室㊀李翠芝㊀㊀摘要:反比例函数是初中数学的重点内容,也是中考考点之一.其中与反比例函数有关的图形面积问题又是重中之重,几乎年年考.有关解决反比例函数与图形面积问题的两种常用方法,一是直接利用反比例函数解析式中k 的几何意义求解,二是利用反比例函数关系式巧设点的坐标求解,这也是数形结合思想在初中数学中最直观的运用.关键词:反比例函数;图形面积;数形结合1引言反比例函数的学习是初中数学的一大难点,也是重点,是每年必考的内容.而数形结合思想是解决初中数学问题最重要㊁最基础的数学思想方法.如,借助数轴求不等式组的解集㊁借助画线段图解行程问题等都是运用数形结合思想.解决与反比例函数有关的图形面积问题时,如果我们也能运用数形结合思想,往往可以使复杂的问题简单化.下面举例说明.2基础题型引例㊀如图1,双曲线y =kx上点P 的坐标为(a ,b ),过点P 分别作x 轴,y 轴的垂线,垂足分别为M ,N .则有下列结论:①S 矩形P M O N =a b =a b =k ;②连接P O ,则S әP O M =S әP O N =12k.图1㊀㊀㊀图23简单应用例1㊀如图2,已知反比例函数y =6x和反比例函数y =3x在第一象限内的图象分别是C 1和C 2,点P 在C 1上,P A 垂直于x 轴于点A ,交C 2于点B ,则әP O B 的面积为㊀㊀㊀.解析:S әP O B =S әP O A -S әB O A=12ˑ6-12ˑ3=32.故填:32.变式㊀如图3,直线A B 平行于x 轴,与函数y =k 1x (k 1>0,x >0)的图象交于点A ,与y =k 2x(k 2>0,x >0)的图象相交于点B ,点A 在点B 的右侧,与y 轴交于点D ,点C 为x 轴上的一个动点,若әA B C 的面积为3,则k 1-k 2的值为㊀㊀.图3图4图5解析:如图4,连接O A ,O B ,则S әA B C =S әA B O =S әA O D -S әB O D=12k 1-12k 2=12(k 1-k 2)=3.所以,k 1-k 2=6.故填:6.例2㊀如图5,已知双曲线y 1=1x(x >0),y 2=4x (x >0),点P 为双曲线y 2=4x 上的一点,且P A 垂直于x 轴于点A ,P B 垂直于y 轴于点B ,P A ,P B 分别交双曲线y 1=1x于D ,C 两点,则әP C D 的面积为㊀㊀㊀.解析:设点P 的坐标为a,4a æèçöø÷,则点C 的坐标为a 4,4a æèçöø÷,点D 的坐标为a ,1a æèçöø÷.所以,S әP C D =12P D P C=124a -1a æèçöø÷a -a 4æèçöø÷=98.故填:98.4常考类型与中点相关这类题主要是利用线段的中点得到图形之间的35Copyright 博看网 . All Rights Reserved.解法探究2022年8月下半月㊀㊀㊀面积关系,一般只需直接应用k 的几何意义求解,但有时设坐标求解也比较简单.图6例3㊀如图6,A ,B 是双曲线y =kx上的两点,过点A 作A C 垂直于x 轴,交O B 于点D ,垂足为点C .若әA D O 的面积为1,D 为O B 的中点,则k 的值为(㊀㊀).A.43㊀㊀㊀B .83㊀㊀㊀C .3㊀㊀㊀D.4图7分析:如图7,过点B 作x 轴的垂线,垂足为E .由条件可知,S әC O D =14S әB O E =14ˑ12k =18k =18k ,而S әA O C -S әC O D =S әA O D ,即12k -18k =1,所以k =83.故选:B .点评:此题也可以设A ,D ,B 中任意一点的坐标,表示出另外两点的坐标,再根据面积求解.图8拓展㊀如图8,四边形O A B C 是矩形,边O A 在x 轴上,边O C 在y 轴上,双曲线y =kx与边B C 交于点D ,与对角线O B 交于点E ,且E 是O B 的中点,若әO B D 的面积为5,则k 的值是㊀㊀.解析:如图9,过点E 作E F 垂直于y 轴于点F.图9易证әO E F ʐәO B C .由中点条件易得S әB O C =4S әE O F =4ˑ12k =-2k .S әB O C -S әC O D =S әB O D ,即-2k -12ˑ(-k )=5.解得,k =-103.故填:-103.图10提升㊀如图10,在平面直角坐标系中,矩形A B C D 的顶点A ,B 在x 轴的正半轴上,反比例函数y =kx(k >0,x >0)的图象经过顶点D ,分别与对角线A C ,边B C 交于点E ,F ,连接E F ,A F ,若E 为A C 的中点,әA E F 的面积为2,则k 的值为(㊀㊀).A.245B .3C .4D.6分析:此题的矩形和三角形顶点都不在原点,不能直接用k 值表示图形面积,适合设坐标求解.解析:设A (a ,0).由四边形A B C D 是矩形,点D 在y =k x 上,得D a ,k a æèçöø÷,则点C 的纵坐标为k a .因为E 为A C 的中点,所以点E 的纵坐标为k2a,E 2a,k 2a æèçöø÷.于是,C 3a ,k a æèçöø÷,F 3a ,k 3a æèçöø÷.由әA E F 的面积为2,A E =E C ,得S әA C F =4,即12ˑk a -k 3a æèçöø÷ˑ2a =4,解得k =6.故选:D .5直击中考综合题举例图11例4㊀如图11,在平面直角坐标系中,坐标原点O 是R t әA O B的直角顶点,øO A B =30ʎ,若点A 在反比例函数y =12x(x >0)的图象上.(1)求经过点B 的反比例函数解析式;(2)设点B 的坐标为(-2,a ),过点B 作B E 平行于x 轴,与反比例函数y =12x(x >0)交于点E ,求әA O E 的面积.图12分析:(1)如图12,分别过点A 和点B 作x 轴的垂线,垂足分别为D ,C .易证әA O D ʐәO B C ,于是S әO B C ʒS әA O D =(O B ʒO A )2=(1ʒ3)2=1ʒ3.所以,S әO B C =13S әA O D =13ˑ12k =16ˑ12=2.因此,经过点B 的反比例函数的解析式为y =-4x.(2)先求点B 的纵坐标,由此可得点E 的纵坐标,再把点E 的纵坐标代入y =12x可求得点E 的坐标,利用A ,E 的坐标可求әA O E 的面积.点评:第(1)问也可设点A 的坐标,利用三角形相似,由线段之间的关系表示出点B 的坐标再求函数关系式.写反比例函数关系式时要注意k 值的正负.第(2)问的解答要过点E 作x 轴的垂线,关键是把求三角形的面积转化成直角梯形的面积问题.6结语综上所述,在解与反比例函数有关的图形面积问题时,一般有两种途径:一是直接利用反比例函数解析式中k 的值求解;二是利用函数解析式和图形中的点之间的特殊关系巧设点的坐标求解.即要解决形的问题,我们抓住形的特征,以及形和数之间的特殊关系,把形的问题直接转化成数的问题来求解.这里转化的桥梁就是反比例函数图象上点的坐标.Z45Copyright 博看网 . All Rights Reserved.。

苏教版八年级下册第11章反比例函数知识要点及经典例题解析

苏教版八年级下册第11章反比例函数知识要点及经典例题解析

初二数学反比例函数知识要点及经典例题解析知识要点梳理知识点一:反比例函数的应用在实际生活问题中,应用反比例函数知识解题,关键是建立函数模型.即列出符合题意的反比例函数解析式,然后根据反比例函数的性质求解.知识点二:反比例函数在应用时的注意事项1.反比例函数在现实世界中普遍存在,在应用反比例函数知识解决实际问题时,要注意将实际问题转化为数学问题.2.针对一系列相关数据探究函数自变量与因变量近似满足的函数关系.3.列出函数关系式后,要注意自变量的取值范围.知识点三:综合性题目的类型1.与物理学知识相结合:如杠杆问题、电功率问题等.2.与其他数学知识相结合:如反比例函数与一次函数的交点形成的直角三角形或矩形的面积.规律方法指导这一节是本章的重要内容,重点介绍反比例函数在现实世界中无处不在,以及如何应用反比例函数的知识解决现实世界中的实际问题.学生要学会从现实生活常见的问题中抽象出数学问题,这样可以更好地认识反比例函数概念的实际背景,体会数学与实际的关系,深刻认识数学理论来源于实际又反过来服务实际.经典例题透析类型一:反比例函数与一次函数相结合1.(如图1,已知反比例函数与一次函数的图象在第一象限相交于点.(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点的坐标,并根据图象写出使反比例函数的值大于一次函数值的的取值范围.思路点拨:由于A在反比例函数图象上,由反比例函数定义得,从而求出A点的坐标.再由待定系数法求出一次函数解析式.联立一次函数和反比例函数解析式,可求出B点坐标。

根据数形结合的思想,求出反比例的图象在一次函数图象上方时x的取值范围.解析:(1)∵已知反比例函数经过点,∴,即∴∴A(1,2)∵一次函数的图象经过点A(1,2),∴∴∴反比例函数的表达式为,一次函数的表达式为。

(2)由消去,得。

即,∴或。

∴或。

∴或∵点B在第三象限,∴点B的坐标为。

由图象可知,当反比例函数的值大于一次函数的值时,的取值范围是或。

专题 反比例函数与面积问题

专题 反比例函数与面积问题

专题:反比例函数与面积问题1、如图,A 是反比例函数图象上一点,过点A 作AB ⊥y 轴于点B ,点P 在x 轴上,△ABP 的面积为2,求反比例函数的解析式.2、如图,点A 为双曲线2y x =的图象上一点,过A 作AB //x 轴交双曲线4y x=-于点B ,连AO 、BO ,求△AOB 的面积.3、如图,点A 在双曲线1y x =上,点B 在双曲线ky x=上,且AB //x 轴,AD ⊥y 轴,BC ⊥x 轴,C 、D 在x 轴上,若长方形ABCD 的面积为6,求k 的值.4、如图,在平面直角坐标系中,函数(0ky x x=>,常数0k >)的图象经过点A (1,2)和点B ,过点B 作y 轴的垂线,垂足为C ,若△ABC 的面积为2,求点B 的坐标.5、如图,直线24y x =-交x 轴、y 轴于B 、C ,交双曲线ky x=于E ,且BC =2BE ,求k .6、如图,点A 、B 在反比例函数ky x=的图象上,且点A 、B 的横坐标分别为a 、2a (0a >),AC ⊥x 轴于点C ,且△AOC 的面积为2. (1)求反比例函数的解析式;(2)求△AOB 的面积.7、如图,AB //x 轴,分别交双曲线1y x =和2y x=-于A 、B ,求ABO S △.8、如图,双曲线ky x=与直线y mx =交于点A 、B ,AC ⊥x 轴于C ,BC 交y 轴于D ,且2OCD S =△,求k 的值.9、如图,点B 为x 轴正半轴上一点,点A 为双曲线4y x=(x >0)上一点,且AO =AB ,过B 作BC ⊥x 轴交双曲线于C 点,求ABC S △.10、如图,直线y x b =-+与双曲线1y x=(x >0)交于A 、B 两点,与x 轴、y 轴分别交于E 、F 两点,AC ⊥x 轴于C ,BD ⊥y 轴于D ,当b 等于多少时,△ACE 、△BDF 和△ABO 的面积等于△EFO 面积的34.。

苏科版八年级下数学用反比例函数解决问题含答案

苏科版八年级下数学用反比例函数解决问题含答案

用反比例函数解决问题 (1)1.已知长方形的面积为20 cm 2,设该长方形一边长为ycm ,另一边长为x cm ,则y 与x 之间的函数图像大致是 ( )2.某种气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气球体积V 的反比例函数,其图像如图所示,当气球内的气压大于120 kPa 时,气球将爆炸,为了安全,气球韵体积应该 ( )A .不大于54m 3 B .小于54m 3 C .不小于54m 3 D .小于54m 3 3.圆柱的侧面积为8,高h 与底面半径r 间的函数关系式为_______.4.近视眼镜的度数y (度)与镜片焦距x (米)成反比例,已知400度近视眼镜镜片的焦距为0.25米,则眼镜度数y 与镜片焦距x 之间的函数关系式为_______.5.某乡镇要在生活垃圾存放区建一个老年活动中心,这样必须把1200m 3的生活垃圾运走.(1)假如每天能运xm 3,所需时间为y 天,写出y 与x 之间的函数关系式;(2)若每辆拖拉机一天能运12 m 3,则5辆这样的拖拉机要用多少天才能运完?(3)在(2)的情况下,运了8天后,剩下的任务要在不超过6天的时间内完成,那么至少需要增加多少辆这样的拖拉机才能按时完成任务?6.在公式I =U R中,当电压U 一定时,电流I 与电阻R 之间的函数关系可用图像大致表示为( )7.某厂现有500吨煤,这些煤能烧的天数y 与平均每天烧的吨数x 之间的函数关系是( )A .()5000y x x =>B .()5000y x x =≥C .y =500x(x ≥0)D .y =500x(x>0)8.有一面积为10的梯形,其上底长是下底长的13,若下底长为x ,高为y ,则y 与x 的函数关系是_______.9.你吃过兰州拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(cm)是面条粗细(横截面积)x(cm 2)的反比例函数,假设其图像如图所示,则y 与x 的函数关系式为_______.10.(2013.丽水)如图,科技小组准备用材料围建一个面积为60 m 2的矩形科技园ABCD ,其中一边AB 靠墙,墙长为12 m .设AD 的长为xm ,DC 的长为ym .(1)求y 与x 之间的函数关系式;(2)若围成的矩形科技园ABCD 的三边材料总长不超过26 m ,材料AD 和DC 的长都是整米数,求出满足条件的所有围建方案.11.水产公司有一种海产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y (千克)与销售价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.(1)写出这个反比例函数的解析式,并补全表格;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?(3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?用反比例函数解决问题 (2)1.(2013.泉州)为了更好保护水资源,造福人类,某工厂计划建一个容积V(m 3)一定的污水处理池,池的底面积S(m 2)与其深度h(m)满足关系式:V =Sh(V ≠0),则S 关于h 的函数图像大致是 ( )2.某闭合电路中,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例,如图表示的是该电路中电流I 与电阻R 之间函数关系的图像,则用电阻R表示电流I 的函数解析式为 ( )A .2I R =B .3I R= C .6I R = D .6I R=- 3.(2013.扬州)在温度不变的条件下,一定质量的气体的压强p 与它的体积V 成反比例,当V =200时,p =50,则当p =25时,V =_______.4.(2013.益阳)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x (小时)变化的匾数图像,其中BC 段是双曲线y =k x的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?(2)求k 的值;(3)当x =16时,大棚内的温度约为多少度?5.用电器的输出功率P 与通过的电流I 、用电器的电阻R 之间的关系是P =I 2R ,下面说法正确的是 ( )A .P 为定值,I 与R 成反比例B .P 为定值,I 2与R 成反比例C .P 为定值,I 与R 成正比例D .P 为定值,I 2与R 成正比例6.(2013.台州)在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改变容器的体积时,气体的密度也会随之改变,密度p(单位:kg/m 3)与体积V(单位:m 3)满足函数关系式p=kV(k为常数,k≠0),其图像如图所示,则k的值为( )A.9 B.-9 C.4 D.-47.如图,一块长方体大理石板的A、B、C三个面上的边长如图所示,如果大理石板的A 面向下放在地上时地面所受压强为m帕,则把大理石板B面向下放在地上,地面所受压强是_______m帕.8.已知,在对物体做功一定的情况下,力F(牛)与此物体在力的方向上移动的距离s(米)成反比例函数关系,其图像如图所示,则当力达到20牛时,此物体在力的方向上移动的距离是_______米.9.(2013.玉林)工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料煅烧到800℃,然后停止煅烧进行锻造操作.经过8 min时,材料温度降为600℃,煅烧时,温度y(℃)与时间x(min)成一次函数关系;锻造时,温度y(℃)与时间x( min)成反比例关系(如图),已知该材料初始温度是32℃.(1)分别求出材料煅烧和锻造时y与x的函数关系式,并且写出自变量x的取值范围;(2)根据工艺要求,当材料温度低于480℃时,须停止操作,那么锻造的操作时间有多长?10.甲、乙两家商场进行促销活动,甲商场采用“买200减100”的促销方式,即购买商品的总金额满200元但不足400元,少付100元;满400元但不足600元,少付200元;…,乙商场按顾客购买商品的总金额打6折促销.(1)若顾客在甲商场购买了510元的商品,付款时应付多少钱?(2)若顾客在甲商场购买商品的总金额为x(400≤x<600)元,优惠后得到商家的优惠率为p(p=优惠金额购买商品的总金额),写出p与x之间的函数关系式,并说明p随x的变化情况;(3)品牌、质量、规格等都相同的某种商品,在甲乙两商场的标价都是x(200≤x<400)元,你认为选择哪家商场购买商品花钱较少?请说明理由.参考答案1.C2.C 3.400 4.(1) 10小时(2)216 (3)13.5℃5.B6.A 7.38.369.(1)y=128x+32(0≤x≤6) ;(2)4分钟10.(1)310元;(2)p=200x,p随x的增大而减小;(3)两家商场花钱一样多参考答案1.B2.C3.h=4r4.y=100x5.(1)y=1200x天(2)20天运完;(3)增加5辆6.D7.A8.y=15 x9.y=128 x10.(1) y=60x(2)满足条件的围建方案:AD=5 m,DC=12 m或AD=6 m,DC=10 m或AD=10 m,DC=6 m11.(1)y=1200x表中填:300 50 (2)20天(3)60元/千克。

与反比例函数的图象有关的面积问题

与反比例函数的图象有关的面积问题

1
解析 由反比例函数的图象关于原点对称的性质
知 : 图中两个阴影部分 面积的和 恰好 是一个 圆的面 积 ,
而已知圆与 x轴相切 , A点纵坐标为 2,即 圆的半径为 2, 所求面积 = 22π = 4π.
例 3 ( 07年荆州 中考 ) 如图 3,边 长为 4 的正 方形
AB CD 的对称中心是坐标原点 O, AB ∥x轴 , BC∥y轴 , 反
足为 C , 过 点 B 作 y 轴 的 垂 线 , 垂 足 为 D. 记 △AOC , △BOD 的面积分别为 S1 和 S2 ,则 S1 和 S2 的大小关系怎 样?
解析 在如图 1 中 ,设点 A ( x1 , y1 ) , B ( x2 , y2 ) ,则
S1
=
1 2
x1 y1 , S2
=
Rt△AOD中 , 因为 ∠AOD = 30°,所 以 , AO = 2 y,根 据勾 股
定理得 :
AO2 = OD2 + AD2 ,即 4 y2 = x2 + y2 ,即 x2 = 3 y2

由点
A ( x,
y) 在双曲线
y
=
3 x;
( x > 0 ) 上知 : xy =
3,
于是 x2 y2 =3,
8, 选 D.
图 1 图 2
例 2 (改编题 ) 已知 ,如图 2,正比例函数 y = k1 x与
反比例函数
y=
k2 的图 象相交于 x
A, B 两点
( k1
> 0, k2
>
0) , A点坐标为 ( 4, 2) ,分别以 A、B 为圆心 的圆与 x轴相
切 ,则图中两个阴影部分面积的和为

八下第6章反比例函数专题十三与反比例函数有关的面积问题习题新版浙教版

八下第6章反比例函数专题十三与反比例函数有关的面积问题习题新版浙教版

【点拨】 如图,设 OE·BE=a①,OE·AE=-b②, ①+②,得 OE·BE+OE·AE=a-b, 即 a-b=4OE. 同理可得 a-b=3OF, ∴4OE=3OF,∴OE:OF=3:4. 又∵OF-OE=12,∴OE=32,OF=2,∴a-b=6.
【方法点拨】 根据反比例函数系数k与几何图形的面积的关系得到
|k|的值,再根据函数图象所在的象限确定k的正负.
【变式2-1】 如图,直线 y=mx 与双曲线 y=kx交于点 A,B.过点 A 作 AM⊥x 轴,垂足为 M,连结 BM.若 S△ABM=2,则 k 的值 是____2____.
【点拨】 ∵直线 y=mx 与双曲线 y=kx交于点 A,B, ∴点 A 与点 B 关于原点成中心对称, ∴OA=OB, ∴S△AMO= S△BMO=12S△ABM=12×2=1, 即12k=1,∴k=2. 又∵反比例函数的图象在第一、三象限,∴k=2.
x 轴和 y 轴分别作垂线,与坐标轴围成的矩形的面积是 定值|k|.
【变式1-1】 【2022·杭州】如图,在函数 y=2x(x>0)的图象上任取一 点 A,过点 A 作 y 轴的垂线交函数 y=-8x(x<0)的图象于 点 B,连结 OA,OB,则△AOB 的面积是( B )
A.3
B.5
C.6
D.10
与反比例函数有关的
专题十三
面积问题
【类型1】利用比例系数k的几何意义求面积
母题1 如图,若点 A 是反比例函数 y=2x(x>0)的图象上一点,过 点 A 作 x 轴的垂线交 x 轴于点 B,点 C 是 y 轴上任意一点,
则△ABC 的面积为( A )
A.1
B.2
C.3
D.4

69 反比例函数中的有关面积问题

69 反比例函数中的有关面积问题

反比例函数中的有关面积问题一、反比例函数k 的几何意义1.反比例函数k 的几何意义:如图,在反比例函数图象上任选一点,向两坐标轴作垂线,垂线与坐标轴所围成矩形的面积为k 。

如图二,所围成三角形的面积为2k二、利用k 的几何意义进行面积转化1.如图,直线AB 与反比例函数k y x =(0k ≠)交于A 、B 两点,与x 、y 轴的交点分别为C 、D ,那么OAB OCD OBD OAC S S S S ∆∆∆∆=--,此方法是绝大部分学生选用的方法。

但是,从效率来讲,就比较低2.如图,过点A 、B 作x 轴的垂线,垂足分别为E 、F ,则根据k 的几何意义可得,OBF OAE S S ∆∆=,而OBF OAB OAE ABFE S S S S ∆∆∆+=+梯形,所以OAB ABFE S S ∆=梯形,此方法的好处,在于方便,快捷,不易出错。

【针对训练】1、如图,△BOD 都是等腰直角三角形,过点B 作AB ⊥OB 交反比例函数y =(x >0)于点A ,过点A 作AC ⊥BD 于点C ,若S △BOD ﹣S △ABC =3,则k 的值为.解:设A 点坐标为(a ,b ),∵△ABC 和△BOD 都是等腰直角三角形,∴BC =AC ,OD =BD∵S △BOD ﹣S △ABC =3,OD 2﹣AC 2=3,OD 2﹣AC 2=6,∴(OD +AC )(OD ﹣AC )=6,∴a •b =6,∴k =6.故答案为6.2、如图,△OAC 和△BAD 都是等腰直角三角,∠ACO =∠ADB =90°,反比例函数y =的图象经过点B ,则△OAC 与△BAD 的面积之差S △OAC ﹣S △BAD =.解:设△OAC 和△BAD 的直角边长分别为a 、b ,则点B 的坐标为(a +b ,a ﹣b ).∵点B在反比例函数y=的第一象限图象上,∴(a+b)×(a﹣b)=a2﹣b2=8.∴S△OAC﹣S△BAD=a2﹣b2=(a2﹣b2)=×8=4.故答案为:4.3、如图,一次函数y=x﹣3的图象与反比例函数y═kx(k≠0)的图象交于点A与点B(a,﹣4).(1)求反比例函数的表达式;(2)若动点P是第一象限内双曲线上的点(不与点A重合),连接OP,且过点P作y轴的平行线交直线AB于点C,连接OC,若△POC的面积为3,求出点P的坐标.【答案】(1)y=4x;(2)点P的坐标为(5,45)或(1,4)或(2,2).【解析】解:(1)将B(a,﹣4)代入一次函数y=x﹣3中得:a=﹣1∴B(﹣1,﹣4)将B(﹣1,﹣4)代入反比例函数y═kx(k≠0)中得:k=4∴反比例函数的表达式为y=4x;(2)如图:设点P的坐标为(m,4m)(m>0),则C(m,m﹣3)∴PC=|4m﹣(m﹣3)|,点O到直线PC的距离为m∴△POC的面积=12m×|4m﹣(m﹣3)|=3解得:m=5或﹣2或1或2∵点P不与点A重合,且A(4,1)∴m≠4又∵m>0∴m=5或1或2∴点P的坐标为(5,45)或(1,4)或(2,2).4、如图所示,函数y1=kx+b的图象与函数(x<0)的图象交于A(a﹣2,3)、B(﹣3,a)两点.(1)求函数y 1、y 2的表达式;(2)过A 作AM ⊥y 轴,过B 作BN ⊥x 轴,试问在线段AB 上是否存在点P ,使S △PAM =3S △PBN ?若存在,请求出P 点坐标;若不存在,请说明理由.【详解】解:(1)∵A 、B 两点在函数(x <0)的图象上,∴3(a ﹣2)=﹣3a =m ,∴a =1,m =﹣3,∴A (﹣1,3),B (﹣3,1),∵函数y 1=kx+b 的图象过A 、B 点,∴,解得k =1,b =4∴y 1=x+4,y 2=;(2)由(1)知A (﹣1,3),B (﹣3,1),∴AM =BN =1,∵P 点在线段AB 上,∴设P 点坐标为(x ,x+4),其中﹣1≤x≤﹣3,则P 到AM 的距离为h A =3﹣(x+4)=﹣x ﹣1,P 到BN 的距离为h B =3+x ,∴S △PBN =BN•h B =×1×(3+x )=(x+3),S △PAM =AM•h A =×1×(﹣x ﹣1)=﹣(x+1),=3S△PBN,∵S△PAM∴﹣(x+1)=(x+3),解得x=﹣,且﹣1≤x≤﹣3,符合条件,∴P(﹣,),综上可知存在满足条件的点P,其坐标为(﹣,).【点睛】本题主要考查一次函数和反比例函数的交点问题,在(1)中掌握交点坐标满足两函数解析式是解题的关键,在(2)中用P点坐标分别表示出△PBN和△PAM的面积是解题的关键.5、如图,直线y1=k1x+b与双曲线y2=在第一象限内交于A、B两点,已知A(1,m),B(2,1).(1)k1=,k2=,b=.(2)直接写出不等式y2>y1的解集;(3)设点P是线段AB上的一个动点,过点P作PD⊥x轴于点D,E是y轴上一点,求△PED的面积S 的最大值.解:(1)∵A(1,m),B(2,1)在双曲线y2=上,∴k2=m=2×1=2,∴A(1,2),则,解得:,∴k1=﹣1,k2=2,b=3;故答案为:﹣1,2,3;(2)由图象得:不等式y2>y1的解集是:0<x<1或x>2;(3)设点P(x,﹣x+3),且1≤x≤2,∵PD=﹣x+3,OD=x,则,∵,∴当时,S有最大值,最大值为.6、如图,在平面直角坐标系xOy中,函数y=﹣x+5的图象与函数y=(k<0)的图象相交于点A,并与x轴交于点C,S△AOC=15.点D是线段AC上一点,CD:AC=2:3.(1)求k的值;(2)根据图象,直接写出当x<0时不等式>﹣x+5的解集;(3)求△AOD的面积.解:(1)y=﹣x+5,当y=0时,x=5,即OC=5,C点的坐标是(5,0),过A作AM⊥x轴于M,=15,∵S△AOC∴=15,解得:AM=6,即A点的纵坐标是6,把y=6代入y=﹣x+5得:x=﹣1,即A点的坐标是(﹣1,6),把A点的坐标代入y=得:k=﹣6;(2)当x<0时不等式>﹣x+5的解集是﹣1<x<0;=15,(3)∵CD:AC=2:3,S△AOC==5.∴△AOD的面积=S△AOC7、如图,反比例函数y=经过点D,且点D的坐标为(﹣,2).(1)求反比例函数的解析式;(2)如图,直线AB交x轴于点B,交y轴于点A,交反比例函数图象于另一点C,若3OA=4OB,求△BOC的面积.解:(1)∵反比例函数y=经过点D(﹣,2).∴k=﹣=﹣1,∴反比例函数的解析式为y=﹣;(2)设直线AB的解析式为y=ax+b,∴A(0,b),B(﹣,0),∴OA=b,OB=,∵3OA=4OB,∴3b=,∴a=,∴y=x+b,∵直线AB经过D(﹣,2),∴2=×(﹣)+b,∴b=,∴y=x+,B(﹣2,0),解得或,∴C(﹣,),=2×=.∴S△BOC8、如图,在平面直角坐标系中,反比例函数y=的图象过等边三角形BOC的顶点B,OC=2,点A在反比例函数图象上,连接AC、AO.(1)求反比例函数解析式;(2)若四边形ACBO的面积为3,求点A的坐标.解:(1)作BD⊥OC于D,如图,∵△BOC为等边三角形,∴OD=CD=OC=1,∴BD=OD=,∴B(﹣1,﹣),把B(﹣1,﹣)代入y=得k=﹣1×(﹣)=,∴反比例函数解析式为y=;(2)设A(t,),∵四边形ACBO的面积为3,∴×2×+×2×=3,解得t=,∴A点坐标为(,2).9、如图,△AOB在平面直角坐标xOy中,反比例函数y1=的图象经过点A,反比例函数y2=的图象经过点B,作直线x=1分别交y1,y2于C,D两点,已知A(2,3),B(3,1).(1)求反比例函数y1,y2的解析式;(2)求△COD的面积.解:(1)∵反比例函数y1=的图象经过点A(2,3),反比例函数y2=的图象经过点B(3,1),∴k1=2×3=6,k2=3×1=3,∴y1=,y2=.(2)由(1)可知两条曲线与直线x=1的交点为C(1,6),D(1,3),∴CD=6﹣3=3,=1=.∴S△COD10、正方形ABCD的顶点A(1,1),点C(3,3),反比例函数y=(x>0).(1)如图1,双曲线经过点D时求反比例函数y=(x>0)的关系式;(2)如图2,正方形ABCD向下平移得到正方形A′B′C′D′,边A'B'在x轴上,反比例函数y=(x>0)的图象分别交正方形A′B′C′D′的边C'D′、边B′C′于点F、E,①求△A'EF的面积;②如图3,x轴上一点P,是否存在△PEF是等腰三角形,若存在直接写出点P坐标,若不存在明理由.解:(1)∵点A(1,1),点C(3,3),∴点D(1,3),将点D的坐标代入反比例函数表达式得:k=3,故反比例函数表达式为:y=;(2)平移后点A′、B′、C′、D′的坐标分别为:(1,0)、(3,0),(3,2)、(1,2),则平移后点E纵坐标为3,则点E(3,1),同理点F(,2),﹣S△A′B′E﹣S△A′D′F﹣S△EFC′=2×2×2×﹣2×1﹣××1=;△A'EF的面积=S正方形A′B′C′D′(3)点E、F的坐标分别为:(3,1)、(,2),设点P(m,0),则EF2=(3﹣)2+(2﹣1)2=,EP2=(m﹣3)2+1,PF2=(m﹣)2+4,当EF=EP时,即=(m﹣3)2+1,解得:m=或;当EF=PF时,同理可得:m=(舍去负值);当EP=PF时,同理可得:m=,故点P的坐标为(,0)或(,0)或(,0)或(,0).11、如图,单位长度为1的网格坐标系中,一次函数y=kx+b与坐标轴交于A、B两点,反比例函数y=(x>0)经过一次函数上一点C(2,a).(1)求反比例函数解析式,并用平滑曲线描绘出反比例函数图象;(2)依据图象直接写出当x>0时不等式kx+b>的解集;(3)若反比例函数y=与一次函数y=kx+b交于C、D两点,使用直尺与2B铅笔构造以C、D为顶点的矩形,且使得矩形的面积为10.解:(1)∵一次函数y=kx+b过点A(0,4),点B(8,0),∴,∴,∴一次函数解析式为:y=﹣x+4;∵点C在一次函数图象上,∴a=﹣×2+4=3,∵反比例函数y=(x>0)经过点C(2,3),∴m=6,∴反比例函数解析式为:y=,图象如图所示:(2)∵反比例函数y=与一次函数y=﹣x+4交于C、D两点,∴=﹣x+4,∴x1=2,x2=6,∴点D(6,1),由图象可得:当2<x<6时,y=kx+b的图象在y=图象的上方,∴不等式kx+b>的解集为2<x<6;(3)如图,若以CD为边,则矩形ABDC,矩形A'B'DC为所求,若以CD为对角线,则矩形DEDF为所求.12、如图,一次函数y=﹣x+3的图象与反比例函数y=(k≠0)在第一象限的图象交于A(1,a)和B两点,与x轴交于点C.(1)求反比例函数的解析式;(2)若点P在x轴上,且△APC的面积为5,求点P的坐标;(3)若点P在y轴上,是否存在点P,使△ABP是以AB为一直角边的直角三角形?若存在,求出所有符合条件的P点坐标;若不存在,请说明理由.解:(1)把点A(1,a)代入y=﹣x+3,得a=2,∴A(1,2),把A(1,2)代入反比例函数,∴k=1×2=2;∴反比例函数的表达式为;(2)∵一次函数y=﹣x+3的图象与x轴交于点C,∴C(3,0),设P(x,0),∴PC=|3﹣x|,=|3﹣x|×2=5,∴S△APC∴x=﹣2或x=8,∴P的坐标为(﹣2,0)或(8,0);(3)存在,理由如下:联立,解得:或,∴B点坐标为(2,1),∵点P在y轴上,∴设P(0,m),∴AB==,AP=,PB=,若BP为斜边,∴BP2=AB2+AP2,即=2+,解得:m=1,∴P(0,1);若AP为斜边,∴AP2=PB2+AB2,即=+2,解得:m=﹣1,∴P(0,﹣1);综上所述:P(0,1)或P(0,﹣1).13、如图,过原点的直线y1=mx(m≠0)与反比例函数y2=(k<0)的图象交于A、B两点,点A在第二象限,且点A的横坐标为﹣1,点D在x轴负半轴上,连接AD交反比例函数图象于另一点E,AC为∠BAD的平分线,过点B作AC的垂线,垂足为C,连接CE,若AD=2DE,△AEC的面积为.(1)根据图象回答:当x取何值时,y1<y2;(2)求△AOD的面积;(3)若点P的坐标为(m,k),在y轴的轴上是否存在一点M,使得△OMP是直角三角形,若存在,请直接写出点M的坐标;若不存在,请说明理由.解:(1)∵直线y1=mx(m≠0)与反比例函数y2=(k<0)的图象交于A、B两点,且点A的横坐标为﹣1,∴点A,点B关于原点对称,∴点B的横坐标为1,∴当x取﹣1<x<0或x>1时,y1<y2;(2)连接OC,OE,由图象知,点A,点B关于原点对称,∴OA=OB,∵AC⊥CB,∴∠ACB=90°,∴OC=AB=AO,∴∠OAC=∠OCA,∵AC为∠BAD的平分线,∴∠OAC=∠DAC,∴∠OCA=∠DAC,∴AD∥OC,∴S △AEO =S △ACE =,∵AD =2DE ,∴AE =DE ,∴S △AOD =2S △AOE =3;(3)作EF ⊥x 轴于F ,作AH ⊥x 轴于H ,则EF ∥AH ,∵AD =2DE ,∴DE =EA ,∵EF ∥AH ,∴==1,∴DF =FH ,∴EF 是△DHA 的中位线,∴EF =AH ,∵S △OEF =S △OAH =﹣,∴OF •EF =OH •HA ,∴OH =OF ,∴OH =HF ,∴DF =FH =HO =DO ,∴S △OAH =S △ADO =3=1,∴﹣=1,∴k=﹣2,∴y=﹣,∵点A在y=﹣的图象上,∴把x=﹣1代入得,y=2,∴A(﹣1,2),∵点A在直线y=mx上,∴m=﹣2,∴P(﹣2,﹣2),在y轴上找到一点M,使得△OMP是直角三角形,当∠OMP=90°时,PM⊥y轴,则OM=2,∴点M的坐标为(0.﹣2);当∠OPM=90°时,过P作PG⊥y轴于G,则△OPM是等腰直角三角形,∴OM=2PG=4,∴点M的坐标为(0.﹣4);综上所述,点M的坐标为(0.﹣2)或(0,﹣4).。

中考数学专题复习--反比例函数中与面积有关的问题及其解析

中考数学专题复习--反比例函数中与面积有关的问题及其解析

反比例函数中与面积有关的问题及解答反比例函数解析式及图象的特殊性与面积结合起来,既能考查反比例函数本身的基础知识,又能充分体现数形结合的思想方法,考查涉及的题型广泛,方法灵活,可较好地将知识与能力融合在一起。

下面就反比例函数中与面积有关的问题及解析归纳如下:利用反比例函数中|k|的几何意义求解与面积有关的问题设P为双曲线上任意一点,过点P作x轴、y轴的垂线PM、PN,垂足分别为M、N,则两垂线段与坐标轴所围成的的矩形PMON的面积为S=|PM|×|PN|=|y|×|x|=|xy|∴xy=k 故S=|k| 从而得结论1:过双曲线上任意一点作x轴、y轴的垂线,所得矩形的面积S为定值|k|。

对于下列三个图形中的情形,利用三角形面积的计算方法和图形的对称性以及上述结论,可得出对应的面积的结论为:k结论2:在直角三角形ABO中,面积S=2结论3:在直角三角形ACB中,面积为S=2|k|结论4:在三角形AMB 中,面积为S=|k|类型之一 k 与三角形的面积※问题1、如图,已知双曲线y=xk(k >0)经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C .若△OBC 的面积为6,则k=______.答案解析:过D 点作DE⊥x 轴,垂足为E , 由双曲线上点的性质,得S △AOC =S △DOE = 21k, ∵DE⊥x 轴,AB⊥x 轴, ∴DE ∥ AB ,∴△OAB ∽ △OED, 又∵OB=2OD,∴S △OAB =4S △DOE =2k ,由S △OAB -S △OAC =S △OBC ,得2k -21k=6,解得:k=4.故答案为:4.问题2.如图,分别过反比例函数y=x2018(x >0)的图象上任意两点A 、B 作x 轴的垂线,垂足分别为C 、D ,连接OA 、OB ,设△AOC 和△BOD 的面积分别是S 1、S 2,,比较它们的大小,可得A.S 1>S 2B.S 1=S 2C.S 1<S 2D.S 1、S 2大小不确定。

与反比例函数的图象有关的面积问题

与反比例函数的图象有关的面积问题
A. 2 B. 4 C. 6 D. 8
方形 、 圆等 几何 图形 的面积相关 的综 合性 问题 , 为一 作 种新颖 的试题 , 中考或 数学 竞赛试 卷 中频频 出现 , 在 这 类 问题将 函数知识与平面几何 知识有 机地融合 在一起 , 要求解题者不仅掌握反 比例 函数的 图象和性质 , 而且要 熟悉平面几何 图形 的性质 , 因而这类试题 倍受命题 者和
样?
的面积之 和就是 正方形 A c D的面积 的一半 : 1× 。 4:
8 选 D. ,
‘ YI
解析
5。:—

在如图 1中 , 设点 A , ) B , , ( 。Y , ( Y) 则
. , = Y。 S 1

。: 而点 A, ), , B都在 反 比例 函数
例 4 (自编题 ) 如图 4所示 , 在直角坐标 系中, 正方

O D C
形 OB A C的顶点 A恰 好落在 双 曲线 y= ( 0 上 , > ) 此

图2
时 , A x: 0 . / O 3 。求正方形 O B _ A C的面积. 解析 欲求正方形 O B A C的面积 , 需要 求 出正方 形
1I \
_

: \


= ,
(> ) c 0 的图象上 , 以, 2 ,22 c 所 以 所 Y = cXY =2 ,
、 0 J

S l=S . 2

l \

J/
L Y

_





图3
图4
l 一 . Nhomakorabea即 4 +_ , y= y 即 =3 y
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学反比例函数面积基本模型:如图1,过双曲线()0ky k x=≠上的任一点(),P x y ,作x 轴(或y 轴)的垂线,则122AOPk S x y ∆=⋅=.如图2,过双曲线()0ky k x=≠上的 任一点(),P x y ,作x 轴、y 轴的垂线, 则AOBP S x y k =⋅=矩形.以上是反比例函数图象的一个重要性质,,有广泛的应用. 利用以上结论我们可以解决以下一系列的问题.【例1】如图3,在平面直角坐标系中,点A 、B 在反比例函数xk y =图象上,AC ∥y 轴,BD ∥x 轴,设△AOC 和△BOD 的面积分别 是S 1、S 2,比较它们的大小,可得( ) (A )S 1>S 2 (B )S 1=S 2(C )S 1<S 2 (D )大小关系不能确定【例2】如图4,点A 、B 是双曲线()0ky k x=>上的点,过点 A 作AC 垂直于x 轴,垂足为C ,过点B 作BD 垂直于x 轴,垂足为D ,设△AOE 和四边形ECDB 的面积分别是S 1、S 2, 比较它们的大小,可得( )(A )S 1>S 2 (B )S 1=S 2(C )S 1<S 2 (D )大小关系不能确定(图反比例函数与面积问题【例3】如图5,函数()0y mx m =≠与()0ky k x=≠交于A 、B 两点,过点A 作AC 垂直于x 轴,垂足为C ,则 ABC △的面积为.【例4】如图6-1,函数()0y mx m =≠与()0ky k x=≠垂直y 轴(亦可向x 轴作垂线图6-2)于点C 、D ,则四边形ACBD 的面积为 .【例5】如图7,函数()0y mx m =≠与()0ky k x =≠的图象交于A 、B 两点,AC 、BD 分别垂直x 与y 轴于点C 、D ,连结CD ,则四边形ACBD 的面积为. 【例6】如图8,函数()0y mx m =≠与()0ky k x=≠的图象交于A 、B 两点,AC 、BF 分别垂直x 于点C 、F , AE 、BD 分别垂直y 于点E 、D , 连结CD ,则六边形AEFBDC 的面积为 . 【例7】如图9,已知一次函数b kx y +=的图像与反比例函数12y x=的图像交于A 、B 两点,且点A 的横坐标是1,点B 的纵坐标是-1 , 求(1)一次函数的解析式; (2)△AOB 的面积.(图6-1)(图6-2) (图7)(图8)【例8】如图10-1,函数()0y mx n m =+≠与()0ky k x=≠的图象交于A 、B 两点,则AOB △的面积为 .【例9】如图11-1,双曲线y =xk经过矩形BDCO 的边CD 的中点A ,交BD 于点M,四边形OMDA 面积为2,则k 的值为( )(A )1 (B )2(C ) 4 (D ) 6【例10】如图12-1,双曲线y =xk交矩形BDCO 边BD 于点M ,交边CD 于点A ,且()1BD nBM n =>,四边形OMDA 面积为2,则k =_ _.(用含n 的代数式表示)当堂练习【练习1】(2009年钦州市)如图14是反比例函数y =kx在第二象限内的图象,若图中的矩形OABC的面积为2,则k =_ _.【练习2】(2009年常德市) 如图15-1,在平面直角坐标系中,矩形ABCD 的中心在原点,顶点A 、C 在反比例函数xky =的图象上,AB ∥y 轴,AD ∥x 轴,若ABCD 的面积为8,则k =( )(A )-2 (B )2 (C )-4 (D )4 【练习3】(2009年河池市) 如图17-1,A 、B 是函数2y x=的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则( )(A )2S = (B ) 4S = (C )24S << (D )4S >【练习4】(2009年青海省)如图18,函数y x =与4y x=的图象交于A 、B 两点,过点A 作AC 垂直于y 轴,垂足为C ,则ABC △的面积为 .【练习5】(2009年青海省)如图19-1,已知双曲线 经过直角三角形OAB 斜边OB 的中点C .若△OBC .(图17-1)(图17-2)(图14) (图15-1) (图15-2)(图18) (0)ky k x=>(图19-1)(图19-2)()20y x x=>【练习6】(2009年宁德市)如图20,已知点A 、B 在双曲线上,AC ⊥x 轴于点C ,BD ⊥y 轴于点D ,AC 与BD 交于点P ,P 是AC 的中点,若△ABP 的面积为3,则k = .【练习7】(2009年莆田市)如图21,在x 轴的正半轴上依次截取112233445OA A A A A A A A A ====,过点12345A A A A A 、、、、分别作x 轴的垂线与反比例函数 的图象相交于点12345P P P P P 、、、、,得直角三角形1112233344455OPA A P A A P A A P A A P A 2、、、、, 并设其面积分别为12345S S S S S 、、、、, 则5S 的值为 .【练习8】(2009年成都市) 如图16-1,正方形OABC 的面积是4,点B 在反比例函数(00)ky k x x=><,的图象上.若点R 是该反比例函数图象上异于点B 的任意一点,过点R 分别作x 轴、y 轴的垂线,垂足为M 、N ,从矩形OMRN 的面积中减去其与正方形OABC 重合部分的面积,记剩余部分的面积为S .则当S =m (m 为常数,且0<m <4)时, 点R 的坐标是________________________(用含m 的代数式表示)(图20)(图21)2ky x=【练习9】(2009年济南市)已知:如图23,正比例函数y ax =的图象与反比例函数的图象交于点()32A ,.(1)试确定上述正比例函数和反比例函数的表达式; (2)根据图象回答,在第一象限内,当x 取何值时,反比例函数的值大于正比例函数的值? (3)()M m n ,是反比例函数图象上的一动点,其中03m <<,过点M 作直线MN x ∥轴,交y 轴于点B ;过点A 作直线AC y ∥轴交x 轴于点C ,交直线MB 于点D .当四边形OADM 的面积为6时,请判断线段BM 与DM 的大小关系,并说明理由.(图23)武汉市中考、调考题集锦1.( 2012武汉中考)如图,点A 在双曲线y=k/x 的第一象限的那一支上,AB 垂直于x 轴与点B ,点C 在x 轴正半轴上,且OC=2AB ,点E 在线段AC 上,且AE=3EC,点D 为OB 的中点,若△ADE 的面积为3,则k 的值为________.2.(2011武汉中考)如图,□ABCD 的顶点A ,B 的坐标分别是)2,0(),0,1(--B A ,顶点C ,D 在双曲线xky =上,边AD 交y 轴于点E ,且四边形BCDE 的面积是ABE∆面积的5倍,则=k 。

3.(2011武汉4月考)反比例函数)0(>=x xk y 的图象如图,原点0与图象上的点之间的距离的最小值为3,则=k 。

4.(2010武汉中考)如图,直线b x y +-=33与y 轴交于点A ,与双曲线xky =在第一象限交于B 、C 两点,且4=⋅AC AB ,则=k 。

5.(2010武汉4月调考)如图,B 为双曲线)0(>=x xky 上一点,直线AB平行于y 轴交直线xy =于点A,若422=-AB OB ,则=k 。

6.(2010武汉5月调考)如图,A 、M 是反比例函数图象上的两点,过点M 作直线x MB //轴,交y 轴于点B ;过点A 作直线y AC //轴交x轴于点C,交直线MB 于点D .9:8=DM BM :, 当四边形OADM 的面积为427时,=k 。

7.(2009武汉4月调考)如图,直线xy =向右平移6个单位后得到直线l ,l 与函数)0(6>=x xy 相交于点A ,x 轴相交于点B,则=-22OB OA 。

8.(2008武汉4月调考)如图,直线3+=x y 与x 轴、y 轴分别交于A 、B 点,与)0(<=x xky 的图象交于C 、D 两点,点E 是点C 关于A 的中心对称点,OA EF ⊥于F 点.若AOD ∆的面积与AEF∆的面积之和为27时,则=k 。

9.(2008武汉5月调考)如图,正方形ABCD 的边BC 在x 轴负半轴上,),6(n E -是对角线AC 的中点,函数)0(<=x xky 的图象过D 、E 两点,则=k 。

10.(2007武汉4月调考)如图,直线bx y +-=与双曲线)0(1>=x xy 交于A 、B 两点,与x轴、y 轴分别交于E 、F 两点,x AC ⊥轴于C ,y BD ⊥轴于D ,求当b 的值为多少时, BDFACE ∆∆,与ABO ∆面积的和等于EFO ∆面积的43。

面积问题11、如图,已知双曲线)0(>=x xk y 经过矩形OABC 的边AB 、BC 的中点F 、E ,且四边形OEBF 的面积为2,则=k 。

12、如图,已知直线221+=x y 与坐标轴交于A 、B 两点,与双曲线xky =交于点C ,A 、D 关于y 轴对称,若6S =OBCD 四,则=k 。

13如图,双曲线xy 4-=交OAB Rt ∆的斜边OB 于E ,AB EF ⊥于F,21S =∆BEF ,则AF OA⋅= 。

14如图,直线82+-=x y 与x 轴交于A 点,与双曲线交于B 、C 两点,y CD ⊥轴于D ,若,1=-∆∆OCD OAB S S 则=k 。

15.如图,已知双曲线)0(>=k xky 经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C .若OBC ∆的面积为3,则=k 。

16如图,在直角梯形OABC 中,.//OC AB过B 点的双曲线)0(>=k xky 恰好过BC 的中点D ,且ABCOS 梯形=6,则=k 。

17如图,直线221+=x y 分别交x轴,y 轴于A 、C 两点,点P 是该直线与反比例函数xky =在第一象限内的一个交点,x PB ⊥轴于点B 且,9=∆ABPS 则=k18如图,直线bkx y +=与x 轴、y 轴交于点A 、B ,与双曲线xy 10=交于C ,若AB BC 2=,则AOB S ∆= 。

19如图,双曲线)0(<=k xky 与直线)1(++-=k x y 交于A 、C 两点,x AB ⊥轴于B 点,且23=∆ABO S ,则=∆ABCS 。

相关文档
最新文档