北师大版数学七年级下册第三章复习课 .ppt
(北师大版)七年级数学下册:第三章变量之间的关系3.3用图像表示的变量的关系第2课时 折线型图象备课素材
素材一新课导入设计情景导入置疑导入归纳导入复习导入类比导入悬念激趣情景导入图3-3-13抱犊崮,海拔584米,与龟龙湖交融一体,山水相连,壮观巍峨,为天下第一崮.恰值清明假期,小强一家前去踏春,兴之所至,小强用学过的变量的知识绘了一幅图(如图3-3-13)来表示他们当天的行程.其中横轴表示当时的时刻t(时),纵轴表示他们与家的距离s(千米).图3-3-14设疑:同学们,你能想象出他们一天的情境吗?说明:引导学生在欣赏抱犊崮秀丽的美景中,自然引入有趣的变量知识,既培养了学生从图象中获取信息的能力,又锻炼了学生的语言表达能力.建议:学生欣赏抱犊崮的美景,简单了解抱犊崮的有关知识.然后观察小强绘制的图象,从中获取两个变量之间关系的信息,叙述一天情境时,学生还是存在困惑,教师不要急着提示,进而指出这就是本节课要继续学习的内容——用图象表示的变量间关系.复习导入图3-3-15问题1:我们已经学习了哪几种表示变量之间关系的方法?问题2:某种西瓜子每千克2元,小明购买西瓜子的总价y元与购买的数量x千克之间有什么关系?(1)用表格的形式表示总价y与数量x的关系:(2)试写出y与x的关系式__y=2x__;(3)在下面的图象中能够正确表示总价y与数量x关系的图象是(C)图3-3-16说明:让学生通过表格、关系式、图象三种方式来表示西瓜子的总价与购买的数量之间的关系,旨在复习三种表示变量间关系的方法,并初步感受三种方法各自的优越性,为本节课的学习做好铺垫.建议:三种表示变量之间关系的方法可让学生快速回答,然后学生独立完成问题2中的三个题目,教师出示答案,及时纠正.教材母题挖掘74页随堂练习第2题一辆公共汽车从车站开出,加速行驶一段后开始匀速行驶.过了一段时间,汽车到达下一个车站.乘客上、下车后汽车开始加速,一段时间后又开始匀速行驶.下面的哪一幅图可以近似地刻画出汽车在这段时间内的速度变化情况?图3-3-17【模型建立】分析变量图形时要明确自变量和因变量,更要清楚每一个点对应的变量和它表示的实际意义以及整个图象变化的趋势,其中比较特殊的是当图象与横轴平行时,说明在对应的自变量的范围内因变量不发生变化.【变式变形】1.如图3-3-18,在直径为AB 的半圆O 上有一动点P 从点A 出发,按顺时针方向绕半圆匀速运动到点B ,然后再以相同的速度沿着直径回到点A 停止,线段OP 的长度d 与运动时间t 之间的函数关系用图象描述大致是(A )图3-3-18图3-3-19.如图3-3-19,爸爸从家(点O)出发,沿着扇形AOB 上OA →AB ︵→BO 的路径去匀速散步.设爸爸距家(点O)的距离为s ,散步的时间为t ,则下列各图中,能大致刻画s 与t 之间函数关系的图象是(C )图3-3-20图3-3-21.万州某运输公司的一艘轮船在长江上航行,往返于万州、朝天门两地.假设轮船在静水中的速度不变,长江的水流速度不变,该轮船从万州出发,逆水航行到朝天门,停留一段时间(卸货、装货、加燃料等)又顺水航行返回万州,若该轮船从万州出发后所用的时间为x(时),轮船距万州的距离为y(千米),则下列各图中,能反映y 与x 之间函数关系的大致图象是(C )图3-3-214.2013年“中国好声音”全国巡演重庆站在奥体中心举行.童童从家出发前往观看,先匀速步行至轻轨车站,等了一会儿,童童搭乘轻轨至奥体中心观看演出,演出结束后,童童搭乘邻居刘叔叔的车顺利到家.其中x表示童童从家出发后所用的时间,y表示童童离家的距离.下图能反映y与x的函数关系式的大致图象是(A)图3-3-22图3-3-235.甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如图3-3-23所示,则下列说法正确的是(B)A.甲、乙两人的速度相同B.甲先到达终点C.乙用的时间短D.乙比甲跑的路程多6.小红的爷爷每天坚持体育锻炼,某天他慢步行走到离家较远的公园,打了一会儿太极拳,然后沿原路跑步到家里,下面能够反映当天小红爷爷离家的距离y(米)与时间x(分)之间的关系的大致图象是(C)图3-3-24图3-3-257.某城市为了节约用水,采用分段收费标准,若某用户居民每月应交水费y(元)与用水量x(吨)之间的关系如图3-3-25所示,根据图象回答:(1)该市自来水收费时,每户用水不足5吨时,每吨收费多少元?超过5吨时,超过的部分每吨收费多少元?(2)若某用户居民某月用水3.5吨,应交水费多少元?若某月交水费17元,该用户用水多少吨?解:(1)由图象可知:当x =5时,y =10,所以用水不足5吨时,每吨交费105=2(元);当x =8时,y =20.5,故超过5吨部分每吨交水费20.5-108-5=3.5(元).(2)因为x =3.5<5,所以y =3.5×2=7(元);若交17元水费,则用水5+17-103.5=7(吨).考情考向分析利用图象分析、体现变量变化的趋势结合图象中每个点对应的自变量和因变量,可以得到变量变化的趋势,一般是随着自变量的变大(图象从左向右),图象对应的因变量的值的变化情况(上升为变大,下降为变小).如课本第79页复习题第11题.例1 某人匀速跑步到公园,在公园里某处停留了一段时间,再沿原路匀速步行回家,此人离家的距离y 与时间x 的关系的大致图象是(B )图3-3-26例2 图3-3-27中所反映的过程是:张强从家跑步去体图3-3-27育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家,其中x 表示时间,y 表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是(C )A .体育场离张强家2.5千米B .张强在体育场锻炼了15分钟C .体育场离早餐店4千米D .张强从早餐店回家的平均速度是3千米/时 利用图象给出的信息计算用图象表示变量之间的关系时,每一个点都有一定的实际意义,过图象上一点向横轴作垂线,垂足对应的数就是自变量,向纵轴作垂线,垂足对应的数就是对应的因变量.图3-3-28例王大爷带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价出售一些后,又降价出售,售出土豆的千克数x与他手中持有的钱数y(含备用零钱)的关系如图3-3-28所示.根据图象回答下列问题:(1)王大爷自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?解:(1)根据图象可知王大爷自带的零钱是5元.(2)降价前,每千克土豆的价格是(20-5)÷30=0.5(元).(3)降价前,他一共卖了30千克土豆,手中的钱有20元;降价后,他卖完剩余的土豆,手中的钱有26元,降价后他收入了26-20=6(元),按每千克0.4元卖出,他卖出了6÷0.4=15(千克)土豆,他一共带的土豆有30+15=45(千克).素材四教材习题答案P74随堂练习1.柿子熟了,从树上落下来,下面的哪一幅图可以大致刻画出柿子下落过程中(即落地前)的速度变化情况?解:(3).2.一辆公共汽车从车站开出,加速行驶一段后开始匀速行驶. 过了一段时间,汽车到达下一个车站.乘客上、下车后汽车开始加速,一段时间后又开始匀速行驶.下面的哪一幅图可以近似地刻画出汽车在这段时间内的速度变化情况?解:(2).P74习题3.41.根据图3-7填写下面的表格:解:2.亮亮今天发烧了,早晨他烧得很厉害,吃过药后感觉好多了,中午时亮亮的体温基本正常.但是下午他的体温又开始上升,直到夜里亮亮才感觉身上不那么发烫了.下面哪一幅图能较好地刻画出亮亮今天体温的变化情况?解:(3).3.下面的图表示小明放学回家途中骑车速度与时间的关系,你能想象出他回家路上的情境吗?解:小亮刚出校门时加速行驶一段后改成匀速行驶,在离家不远处减速行驶,到家后停下.4.小明站在离家不远的公共汽车站等车.图中哪一个图能最好地刻画等车这段时间离家距离与时间的关系?解:(3).图书增值练习专题一曲线型图象1.温度的变化是人们经常谈论的话题.请你根据图象,讨论某地某天温度变化的情况如图所示:(1)上午10时的温度是度,14时的温度是度;(2)这一天最高温度是度,是在时达到的;最低温度是度,是在时达到的;(3)这一天从最低温度到最高温度经过了小时;(4)温度上升的时间范围为,温度下降的时间范围为;(5)你预测次日凌晨1时的温度是.2.如图,水以恒速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中.(1)请分别找出与各容器对应的水的高度h和时间t的变化关系的图象,用直线段连接起来;(2)当容器中的水恰好达到一半高度时,请在关系图的t轴上标出此时t值对应点T的位置.专题二折线型图象1.如图,表现了一辆汽车在行驶途中的速度随时间的变化情况.(1)A、B两点分别表示汽车是什么状态?(2)请你分段描写汽车在第0分钟到第19分钟的行驶状况.(3)司机休息5分钟后继续上路,加速1分钟后开始以60 km/h的速度匀速行驶,5分钟后减速,用了2分钟汽车停止,请在原图上画出这段时间内汽车的速度与时间的关系图.【知识要点】图象法:用图象来表示两个变量之间的关系的方法叫做图象法.在用图象法表示变量之间的关系时,通常用水平方向的数轴(称为横轴)上的点表示自变量,用竖直方向的数轴(称为纵轴)上的点表示因变量,图象上每个点都表示自变量和因变量之间的相互关系.【温馨提示】图象法能直观、形象地描述两个变量之间的关系,但只是反映两个变量之间的关系的一部分,而不是整体,且由图象确定的数值往往是近似的.【方法技巧】1.借助图象,过某点分别向横轴、纵轴作垂线可以知道自变量取某个值时,因变量取什么值.1.借助图象可判断因变量的变化趋势:图象自左向右是上升的,则说明因变量随着自变量的增大而增大,图象自左向右是上升下降的,则说明因变量随着自变量的增大而增大减小,图象自左向右是与横轴平行的,则说明因变量在自变量的增大的过程中保持不变.答案:1.(1)4 10(2)10 14 -2 4(3)12(4)4 h~14 h 0 h~4 h和14 h~24 h(5)1℃2.解:(1)对应关系连接如下:(2)当容器中的水恰好达到一半高度时,关系图上T的位置如上图.3.解:(1)A点表示匀速运动,B点表示停止;(2)0到3分钟加速,3到12分钟匀速,速度为90 km/h,12到15分钟减速,减到约每小时20千米,后再匀速到18分钟开始减速,19分钟运动停止.(3)司机休息5分钟后的运动情况如图所示.素材六数学素养提升情景中图象信息题将实际生活中蕴涵的变量关系,用图形的方式呈现出来,图文并茂,富有生活气息,不仅提高我们从图形中获取信息的能力,而且是数形结合思想应用的重要体现,请看举例..例1商店里把塑料凳整齐地叠放在一起,据图1的信息,解答下列问题(1)当有10张塑料凳整齐地叠放在一起时的高度是多少?(2)求叠放塑料凳的个数x(个)与叠放的高度y(cm)之间的变量关系?图1分析:本题是一道图形信息试题,从图形观察可知:三个塑料凳的叠放在一起的高度是29cm,此时的29cm 包括凳子腿的高度和三个凳子面的厚度;五个塑料凳叠放在一起的高度为35cm,此时的35cm包括凳子腿的高度和5个塑料凳面的厚度.由此可知两个凳子面的厚度为35-29=6cm.所以一个凳子面的厚度为3cm,三个凳子叠放在一起高度减去三个凳子面的厚度,即可29-3×3=20为凳子腿的高度.这样可以求解(1),(2)两问.解:(1)观察图形,可得一个凳子面的厚度为3cm,凳子腿的高度为20cm.所以叠放10个凳子的高度为10×3+20=50cm;(2)y与x之间的关系为y=3x+20.评注:解决本题需要仔细观察图形中的数据信息以及塑料凳叠放的特征,根据这些特征确定一个凳子面的厚度以及凳子腿的高度 .例2请根据图2中给出的信息,解答下列问题:图2(1)放入一个小球量筒中水面升高 cm;(2)求放入小球后量筒中水面的高度y(cm)与小球个数x(个)之间的关系式;(3)量筒中至少放入几个小球时有水溢出?分析:本题是图形信息问题,解决问题需要从图形中正确得到解题信息,从前两个量筒可以观察到,当放入三个球时,水面增加6cm,这样可得到放入一个球水上升的高度,由此可得到放x个球时,水面高度y与x之间的关系式.解: (1)(36-30)÷3=2; 即放入一个小球量筒中水面升高2cm.(2) 放入小球后量筒中水面的高度y(cm)与小球个数x(个)之间的一次函数关系式y=30+2x(3) 当y=49时,30+2x=49,x=9.5, 所以至少放入10个小球时有水溢出.评注:解决图形信息问题,其关键是认真观察图形中的信息,从图形中发现存在的数量关系.。
北师大版七年级数学下册《三章 变量之间的关系 复习题》公开课教案_6
七年级下册第三章变量之间的关系复习题(教学设计)教材分析函数是研究世界变化规律的一个重要模型,对它的学习是初中阶段数学学习的一个重要内容。
变量之间的关系是函数概念的一个核心要素。
通过这一章的学习,让学生对变量有一个初步认识,这是学习函数的基础。
现实生活中,存在着大量用变量来描述的数量关系。
这一章把学生从研究不变的量引导到研究变量之间的相依关系方面;把知识的学习置于与学生身边有关的情境之中,使学生怀着了解自己、认识世界的愿望积极投身探索活动之中,在探索变量之间关系的过程中,体会数学的思想方法,体会用数学的符号语言表示多彩世界的作用,发展学生的符号感,发展观察、分析、归纳能力和解决问题的能力。
学情分析在本章的学习中,学生已经分别从三种表示方法中对变量之间的关系进行了讨论。
本节课让学生对全章所学的内容进行回顾,系统地复习表示变量之间关系的三种方法,为学生以后顺利过渡到函数学习打下基础。
为了发展学生对函数思想的理解,提高学生的分析能力、表达能力及逻辑思维能力,鼓励学生运用自己的语言进行表述。
学生在本节课也将逐渐了解掌握几种常见的数学思想。
教学目标1、知识目标:回顾总结表示变量之间的方法,学会用变量之间关系的各种形式分析变量之间的关系,并做出预测。
2、能力目标:从常量的世界走入变量的世界,能用运动变化的观点去认识数学对象,发展符号感和抽象思维。
3、情感目标:体验从运动变化的角度认识数学对象的过程,体验成就感,获得学习的快乐,发展对数学更高层次的认识。
教学重难点1、重点:能从表格、图象中分析变量之间的关系,发展有条理地进行思考及表达的能力。
2、难点:根据各种表示方法对变量之间的关系作出预测。
教学方法自主探究与合作交流相结合。
教学过程(第一学时)【第一环节】完善知识结构在教师的引导下,师生总结本单元知识结构:(活动一)小组合作讨论交流:举一个生活中变量之间的关系的例子。
指出其中的自变量、因变量各是什么?(活动二)将复习题1~7,10~12题按其所用的表示方法进行分类,将题号直接写在相应方法的后面。
最新北师大版七年级数学下册总复习课件
第二章复习
易错警示 要能够准确判断同位角、内错角、同旁内角等各种位 置关系.
数学·新课标(BS)
第二章复习
►考点三 平行的性质
例 3 如图 2-3 所示,AB∥CD,∠1=105°,∠EAB=65°,
则∠E 的度数是
(B )
图 2-3 A.30° B.40° C.50° D.60°
数学·新课标(BS)
第二章复习
►考点二 平行的判定 例 2 如图 2-2 所示,要使 AE∥BC,需要添加一个
什么条件?有几种添加方法?
图 2-2
数学·新课标(BS)
第二章复习
解:添加∠DAE=∠ABC, 可得 AE∥BC(同位角相等,两直线平行); 添加∠EAC=∠ACB, 可得 AE∥BC(内错角相等,两直线平行); 添加∠BAE+∠ABC=180°, 可得 AE∥BC(同旁内角互补,两直线平行). 所 以 有三 种添 加方 法:∠DAE= ∠ABC, ∠EAC= ∠ACB,∠BAE+∠ABC=180°.
数学·新课标(BS)
第一章复习 针对训练 若 2x+y=3,则 4x·2y=____8____.
数学·新课标(BS)
第一章复习 针对训练 已知 a+b=3,ab=2,则-a2b-ab2=___-__6___.
数学·新课标(BS)
第一章复习 针对训练 若(x+a)(x+b)的积中不含 x 的一次项,则 a,b 的关系 满足_a_+__b_=__0_.
图 2-9
数学·新课标(BS)
第二章复习
解:方法一:延长 AO 到 C,测量∠BOC,利用邻补角 的数量关系即可求出∠AOB.∠AOB=180°-∠BOC. 方法二:延长 AO 到 C,延长 BO 到 D,测量∠DOC,利用对 顶角相等求∠AOB.∠AOB=∠DOC.
北师大版七年级数学下册教学课件3.3用图象表示的变量间关系——速度的变化
活动1 自主探究1 的形状是图中( )
根据图象的变化趋势或周期性特征,不仅可回顾事情的过去,还可预测事情的未来. (1)这是一次____m跑;
理阅解读分 教阅段材图P读7象3-的教7意4,材义完,成掌P下握73列分-问段7题图4,:完象各成个部下分列的含问义.题: 如理果解O分A范段、图B例象A分的1别意.(表义汕示,掌尾甲握、分中乙段两考图名象)学各汽生个运车部动分以的的路含6程0义s.和km时间/ht的的关速系,度根据在图公象判路断快上者匀的速速度比行慢驶者的,1速度h每后秒进快(入高)速 ((C2))甲18、分路乙钟两,继人中续___以_先1到(0D达0)2终0k分点m钟;/h的速度匀速行驶,则汽车行驶的路程s(km)与行驶的时间
第三章 变量之间的关系
课题 用图象表示的变量间关系——速度的变化
一、学习目标 1.理解分段图象的意义,掌握分段图象各个部分的含义. 2.复习巩固运用图象表示变量间关系的方法,能够运用其解决实际问题.
二、学习重难点 重点 学习速度型分段图象的意义,能说出各部分图象的含义.
难点 根据图象信息解决相关问题.
学时一致,那么他从学校到家需要的时间是( D )
(A)14分钟
(B)17分钟
(C)18分钟
(D)20分钟
练习 5.李明骑车上学,一开始以某一速度行进,途中车子发生故障,只好停 下来修车,车修好后,因怕耽误上学时间,于是加快马加鞭车速,在下 图中给出的示意图中(s为距离,t为时间)符合以上情况的是(D )
仿例5.如图,小亮在操场上玩,一段时间内沿M→A→B→M的路径匀速散步, 能近似刻画小亮到出发点M的距离y与时间x之间关系的函数图象是图中 的( C )
北师大版数学七年级下册第三章复习课ppt课件
根据油的流速和时间t的关系,可得到流出油量是0.2t; 然后根据“剩油量=存油量-流出油量”列出关系式, 将得到的关系式为Q=20-0.2t.
最新版整理ppt
12
优点:
直观反映变量的变 化趋势
图像法
缺点: 数值不具体,且要 取近似值,误差大
最新版整理ppt
变量的求值方法: 已知自变量,利用关系式求因变量的值,实际上就是求代数式 的值;已知因变量,利用关系式求自变量的值,实际上就是求 方程的根.
注意:在一些实际问题中,自变量只能取某个范围
内的值.
最新版整理ppt
11
跟踪训练
油箱中存油20升,油从油箱中均匀流出流速为0.2 升/分钟,则油箱中剩余油量 Q(升)与流出时间t
13
典型例题--图像
例3.小红与小兰从学校出发到距学校5千间的关系。根据图形尝试解决你们提出
的问题。
s/千米
实线---小兰 虚线---小红
5 4 3
2
1
0 10 20 30 40 50 60 t/分钟
((342))(小描1)兰红述小前与小红2小兰与0分兰离小钟从开兰的学学谁速校校先度到的出和书路发最店程?后的与谁1平时先0分均间达钟速的到的度变?速各
总结反思
速度-时间图象的意义
①代表物体从0开始加速运动. ②代表物体匀速运动. ③代表物体减速运动到停止.
【归纳总结】 在速度与时间的关系图象中,线段的倾斜程度表示速 度变化的快慢,线段的倾斜程度越平缓,速度变化越慢;线段的倾斜 程度越陡,速度变化越快.
最新版整理ppt
16
跟踪训练
1. 某天早晨,小强从家出发,以V1的速度前往 学校,途中在一饮食店吃早点,之后以V2的速 度向学校行进,V1>V2,下面的图象中表示小强 从家到学校的时间t(min)与路程s(km)之间的关系 是( A )
新教材【北师大版】七年级下册数学:第三章-变量之间的关系-章末复习(含答案)
(新教材)北师大版精品数学资料期末复习(三) 变量之间的关系01 知识结构本章知识是学习函数的基础,要求掌握表示变量之间关系的三种方法,学会分析变量之间的关系,并能进行简单的预测.02 典例精讲【例1】 下面的表格列出了一个试验的统计数据,表示将皮球从高处落下时,弹跳高度b 与下降高度d 的关系,下面能表示这种关系的式子是(C )A .b =d 2B .b =2C .b =d2D .b =d +25【思路点拨】 这是一个用图表表示的关系,可以看出d 是b 的2倍,即可得关系式.【方法归纳】 利用表格表示两个变量之间关系,其对应值清晰明了,但它们之间的关系不够明朗,要结合数据加以分析才能发现潜在的规律.从表示自变量与因变量的表格中辨识自变量与因变量,一般第一栏为自变量,第二栏为因变量.【例2】 下列四幅图象近似刻画两个变量之间的关系,请按图象顺序将下面四种情景与之对应排序(D )①一辆汽车在公路上匀速行驶(汽车行驶的路程与时间的关系);②向锥形瓶中匀速注水(水面的高度与注水时间的关系);③将常温下的温度计插入一杯热水中(温度计的读数与时间的关系);④一杯越来越凉的水(水温与时间的关系). A .①②④③ B .③④②① C .①④②③ D .③②④①【思路点拨】 观察图象的走势,并与实际情景相联系是解决此题的关键.【方法归纳】 解决此类题重在观察图象并对图象上的数量关系和走势进行分析,抓住图象的转折点,这些转折点往往是运动状态发生改变或者相互的数量关系发生改变的地方.【例3】 如图所示,圆柱的高为10 cm ,当圆柱的底面半径变化时,圆柱的体积也发生变化.(1)在这个变化过程中,圆柱的底面半径是自变量,圆柱的体积是因变量;(2)请你求出圆柱的体积V(cm 3)与圆柱的底面半径R(cm )之间的关系式; (3)R 的值能为负值吗?为什么?(4)当圆柱的底面半径从2 cm 变化到5 cm 时,圆柱的体积变化了多少?(最后结果保留π)【思路点拨】 (1)题目中有两个变量,主动变化的量是圆柱的底面半径,随之变化的是圆柱的体积;在(2)中,根据圆柱的体积=底面积×高即可求出V 与R 之间的关系式;由于R 为圆柱的底面半径,所以(3)中R 不能为负值;在(4)中,分别求出R 1=2 cm 和R 2=5 cm 时圆柱的体积,其差值即为体积的变化量. 【解答】 (2)因为圆柱的体积=底面积×高,所以V =πR 2×10=10πR 2.(3)因为R 为圆柱的底面半径,所以R>0,因此R 不能为负值.(4)因为10πR 22-10πR 21=10π·52-10π·22=10π·(52-22)=210π,所以圆柱体积增加了210π cm 3. 【方法归纳】 当变量之间的关系以图形形式表示时,可根据图形特点寻找有关变量的等量关系.然后根据等量关系列出关系式.值得注意的是,为使实际问题有意义,在求出变量之间的关系式后,要根据具体的题目要求,确定自变量的取值范围. 03 整合集训一、选择题(每小题3分,共30分)1.小亮以每小时8千米的速度匀速行走时,所走路程s(千米)随时间t(小时)的增大而增大,则下列说法正确的是(C ) A .8和s ,t 都是变量 B .8和t 都是变量 C .s 和t 都是变量 D .8和s 都是变量2.已知三角形ABC 的面积为2 cm 2,则它的底边a(cm )与底边上的高h(cm )之间的关系为(D ) A .a =4h B .h =4a C .a =h 4 D .a =4h3.对关系式的描述,不正确的是(D )A .x 看作自变量时,y 就是因变量B .x ,y 之间的关系也可以用表格表示C .x 在非负数范围内,y 的最大值为2D .当y =0时,x 的值为-24.如图所示y =2-x 是某市某天的气温随时间变化的图象,通过观察可知,下列说法中错误的是(C )A .这天15时气温最高B .这天3时气温最低C .这天最高气温与最低气温的差是13℃D .这天有两个时刻气温是30℃5.2017年1月4日上午,小华同学接到通知,他的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x ,录入字数为y ,下面能反映y 与x 的函数关系的大致图象是(C )6则表中a 的值为(B )A .21.5B .20.5C .21D .19.57.一个大烧杯中装有一个小烧杯,在小烧杯中放入一个浮子(质量非常轻的空心小圆球)后再往小烧杯中注水,水流的速度恒定不变,小烧杯被注满后水溢出到大烧杯中,浮子始终保持在容器的正中间.用x 表示注水时间,用y 表示浮子的高度,则用来表示变量y 与x 之间关系的选项是(B )8.(衡阳中考)小明从家出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家,如图描述了小明在散步过程中离家的距离s(米)与散步所用时间t(分钟)之间的关系,根据图象,下列信息错误的是(A )A .小明看报用时8分钟B .公共阅报栏距小明家200米C .小明离家最远的距离为400米D .小明从出发到回家共用时16分钟9.贝贝利用计算机设计了一个程序,输入和输出的数据如下表:那么,当输入数据8 A.861 B.863 C.865 D.86710.如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t ,正方形除去圆部分的面积为S(阴影部分),则变量S 与t 的大致图象为(A )二、填空题(每小题4分,共20分)11.圆的周长C 与圆的半径r 之间的关系式为C =2πr ,其中常量是2,π.12.一蜡烛高20厘米,点燃后平均每小时燃掉4厘米,则蜡烛点燃后剩余的高度h(厘米)与燃烧时间t(时)之间的关系式是h =20-4t .13.如图是某个计算y 值的程序,若输入x 的值是32,则输出的y 值是12.14.(义乌中考)小明从家跑步到学校,接着马上原路步行回家.如图是小明离家的路程y(米)与时间t(分)的图象,则小明回家的速度是每分钟步行80米.15.下面由小木棒拼出的系列图形中,第n 个图形由n 个正方形组成,请写出第n 个图形中小木棒的根数S 与n 的关系式S =3n +1.三、解答题(共50分)16.某校一课外小组准备进行“绿色环保”的宣传活动,需要制作宣传单,校园附近有一家印刷社,收费y(元)与印刷数量x(张)之间关系如表:(1)(2)从上表可知:收费y(元)随印刷数量x(张)的增加而增大; (3)若要印制1 000张宣传单,收费多少元?解:(1)上表反映了印刷数量和收费两个变量之间的关系,印刷数量是自变量,收费是因变量. (3)由上表可知:印刷数量每增加100张,收费增加15元,所以每张的价格是0.15元. 所以收费y(元)与印刷数量x(张)之间的关系式为y =0.15x. 当x =1 000时,y =0.15×1 000=150(元). 故要印制1 000张宣传单,收费150元.17.(10分)青春期男、女生身高变化情况不尽相同,下图是小军和小蕊青春期身高的变化情况.(1)上图反映了哪两个变量之间的关系?自变量是什么?因变量是什么?(2)A,B两点表示什么?(3)小蕊10岁时身高多少?17岁时呢?(4)比较小军和小蕊青春期的身高情况有何相同与不同.解:(1)反映了身高随年龄的变化而变化的关系,自变量是年龄,因变量是身高.(2)A点表示小军和小蕊在11岁时身高都是140厘米,B点表示小军和小蕊在14岁时身高都是155厘米.(3)小蕊10岁时身高130厘米,17岁时身高160厘米.(4)相同点:进入青春期,两人随年龄的增长而快速长高,并且在11岁和14岁时两人的身高相同;不同点:11岁至14岁间小蕊的身高变化比小军的快些,14岁后小军的身高变化比小蕊的快些.18.(10分)如图所示,在△ABC中,底边BC=8 cm,高AD=6 cm,E为AD上一动点,当点E从点D沿DA向点A运动时,△BEC的面积发生了变化.(1)在这个变化过程中,自变量和因变量各是什么?(2)若设DE长为x(cm),△BEC的面积为y(cm2),求y与x之间的关系式.解:(1)ED长度是自变量,△BEC的面积是因变量.(2)y与x的关系式为y=4x.19.(10分)新成药业集团研究开发了一种新药,在试验药效时发现,如果儿童按规定剂量服用,那么2小时的时候血液中含药量最高,接着逐步衰减,每毫升血液中含药量y(微克)随时间x(小时)的变化如图所示.当儿童按规定剂量服药后:(1)何时血液中含药量最高?是多少微克?(2)A点表示什么意义?(3)每毫升血液中含药量为2微克以上时在治疗疾病时是有效的,那么这个有效期是多长?解:(1)服药后2小时血液中含药量最高,最高是4微克.(2)A点表示血液中含药量为0.(3)有效期为5小时.20.(10分)如图,用一段长为60 m的篱笆围成一个一边靠墙(墙的长度不限)的长方形菜园ABCD,设与墙平行的篱笆AB的长为x m,菜园的面积为y m2.(1)试写出y与x之间的关系式;(2)当AB 的长分别为10 m 和20 m 时,菜园的面积各是多少?解:(1)因为与墙平行的篱笆AB 的长为x m , 所以长方形的另一边长为60-x2 m ,则长方形的面积为60-x2·x m 2.所以y 与x 之间的关系式为: y =60-x 2·x =-12x 2+30x. (2)当x =10时,y =-12×102+30×10=250(m 2);当x =20时,y =-12×202+30×20=400(m 2).21.(12分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发.设慢车行驶的时间为x(h ),两车之间的距离为y(km ),图中的折线表示y 与x 之间的关系.根据图象解答下列问题: (1)甲、乙两地之间的距离为900km ; (2)请解释图中点B 的实际意义; (3)求慢车和快车的速度.解:(2)图中点B 的实际意义是:当慢车行驶4 h 时,慢车和快车相遇. (3)由图象可知,慢车12 h 行驶的路程为900 km , 所以慢车的速度为90012=75(km /h ).当慢车行驶 4 h 时,慢车和快车相遇,两车行驶的路程之和为900 km ,所以慢车和快车行驶的速度之和为9004=225(km /h ),所以快车的速度为225-75=150(km /h ).。
北师大版七年级数学下册课件:第三章复习课(共19张PPT)
解:(1)根据图象,学校的纵坐标为 1 500,小明家的纵坐标为 0,故小明家到 学校的路程是 1 500 m;
(2)根据题意,小明在书店停留的时间为从 8 min 到 12 min,故小明在书店停 留了 4 min;
(3)一共行驶的总路程为 1 200+(1 200-600)+(1 500-600)=2 700 m;共用了 14 min;
3.下表是丽丽往姥姥家打长途电话的收费记录: 时间(min) 1 2 3 4 5 6 7 电话费(元) 0.6 1.2 1.8 2.4 3.0 3.6 4.2
(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量? (2)如果用 x 表示时间,y 表示电话费,那么随着 x 的变化,y 的变化趋势是什 么? (3)丽丽打了 5 min 电话,那么需付多少元电话费? (4)你能帮丽丽预测一下,如果打 10 min 电话,需付多少元电话费?
解:(1)5 张白纸黏合后的长度是 30×5-4×3=138 cm; (2)y=30x-3(x-1)=27x+3, ∴y 与 x 之间的关系式为 y=27x+3(x 取正整数). 当 x=20 时,y=27×20+3=543; 当 y=813 时,x 满足 27x+3=813,∴x=30; (3)S=10y=10(27x+3)=270x+30. ∴当 x=30 时,S=270×30+30=8 130. 当 S=5 430 时,x 满足 270x+30=5 430, ∴x=20.
7.A,B 两地相距 20 km,甲、乙两人都从 A 地去 B 地,图 30-4 中 l1 和 l2 分 别表示甲、乙两人所走路程 s(km)与时间 t(h)之间的关系.下列说法:①乙晚出发 1 h;②乙出发 3 h 后追上甲;③甲的速度是 4 km/h;④乙先到达 B 地. 其中正确 的个数是( C )
北师大版七年级下册数学《用表格表示的变量间关系》变量之间的关系教学说课复习课件
1.30 1.35 1.68 1.32 1.52
(3)从1949年起,时间每向后推移10年,我国人口 是怎样变化的? 越来越多
讲授新课
议一议 我国从1949年到1999年的人口统计数据如下:
(精确到0.01亿):
时间/
年x 1949 1959 1969 1979 1989 1999
人口/ 亿y
5.42
七年级 下册 数学(北师大版)
第三章 变量之间的关系
3.1 用表格表示的变量间的关系
课件
学习目标
1.了解常量与变量的含义,能分清实例中的常量与 变量,了解自变量与因变量的意义. 2.能从表格中获得变量之间关系的信息,能用表格 表示变量之间的关系,尝试对变化趋势进行初步的 预测.
导入新课
我们生活在一个变化的世界中,很多东西都在悄悄地发生变化. 你能从生活中举出一些发生变化的例子吗?
9.75
11.07 12.59
(2)x和y哪个是自变量?哪个是因变量?
x是自变量,y是因变量.
讲授新课
议一议 我国从1949年到1999年的人口统计数据如下:
(精确到0.01亿):
时间/年
x 1949 1959 1969 1979 1989 1999
人口/亿 y
5.42
6.72
8.07
9.75
11.07 12.59
1.89秒
新知探究
下面是王波学习小组得到的数据:
支撑物高度/cm 10 20 30 40 50 60 70 80 90 100 h
小车下滑时间/s 4.23 3.00 2.45 2.13 1.89 1.71 1.59 1.50 1.41 1.35
t
1.23 0.55 0.32 0.24 0.18 0.12
北师大版七年级数学下册第三章变量之间的关系复习课 课件 (共20张PPT)
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
聪明在于学习,天才在于积累。 所谓天才,实际上是依靠学习。
—— 华罗庚
S
终点
S
终点
S
终点
S
终点
t A
t B
Ct
Dt
12.分析下面反映变量之间关系 的图像,想象一个适合它的实际情 境.
((14))可可以以把把x和x和y分y分别别代代表表时时间间和和距高离度,,那那 ((么2么3))这可这可个以个以图把图把可x就x和和以可yy描分以分述别描别为代述代:表为表小时:时华间一间骑和架和车速飞蓄从度机水学,从量校那一, 回定么那家的这么,飞个这一行图个段高可图时度以可间慢描以后慢述描,下为述停降:为下一一:来个辆一修高汽个车度车水,,,池然然减先后后速放 又在行水开这驶,始一一一往高段段家度时时走飞间间,行后后直了,,到一匀停回段速止家时行,;间驶随后了后,一,快段又到时接机间着,
因变量是 所走的路程
。
• 3、( 自变量 )引起( 因变量)的变 化;
• 4、( 因变量 )因( 自变量 )的变化 而变化;
(1)提出概念所用的 时间x和对概念接受能 用5的:时心间理x学(家单发位现:,分力自学)y变两生之量个对间,变概有y量是念如,因的下其变接关中量受系。x能(是力其y中与0提≤x出≤3概0)念所
边长;
(体 多3(系(的 是的少)12若)?)边y这在c体c哪长mm小个以3积3,个是正则?情上是是xy方境问c与多自m反题,形x变少之映中围的量c间了,成m边?3的哪若的?长哪关两设无当个是系个截盖x是5式变去长=c因2m是量的方.,变5之小体c那量m间正的体?么的方体积长关形积是方
北师大版七年级数学下册说课稿(含解析):第三章变量之间的关系章末复习
北师大版七年级数学下册说课稿(含解析):第三章变量之间的关系章末复习一. 教材分析北师大版七年级数学下册第三章《变量之间的关系》章末复习,主要目的是让学生巩固和掌握本章所学的内容,提高学生运用函数知识解决实际问题的能力。
本章主要包括一次函数、正比例函数和反比例函数的性质,以及如何根据实际问题建立函数关系式。
通过本章的学习,学生应能理解函数的概念,掌握三种基本函数的性质,并能运用函数知识解决实际问题。
二. 学情分析面对七年级的学生,他们在之前的学习中已经接触过一次函数、正比例函数和反比例函数的概念和性质,但对于如何运用这些知识解决实际问题可能还有一定的困难。
因此,在复习过程中,需要引导学生回顾和巩固所学知识,并通过具体的实例来提高他们运用函数知识解决实际问题的能力。
三. 说教学目标1.知识与技能:通过复习,使学生能熟练掌握一次函数、正比例函数和反比例函数的性质,理解函数的概念,提高学生运用函数知识解决实际问题的能力。
2.过程与方法:通过自主学习、合作交流的方式,培养学生主动探索、积极思考的能力,提高学生运用数学知识解决实际问题的能力。
3.情感态度与价值观:培养学生对数学的兴趣,增强学生自信,使学生感受数学在生活中的重要性。
四. 说教学重难点1.教学重点:一次函数、正比例函数和反比例函数的性质,函数的概念。
2.教学难点:如何运用函数知识解决实际问题,对函数概念的理解。
五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、教师讲解相结合的方法,引导学生回顾和巩固所学知识,并通过具体的实例来提高学生运用函数知识解决实际问题的能力。
2.教学手段:利用多媒体课件、黑板、粉笔等传统教学工具,结合学习任务单、小组讨论等新型教学方式,提高教学效果。
六. 说教学过程1.导入:通过一个实际问题,引导学生回顾本章所学内容,激发学生的学习兴趣。
2.自主学习:学生自主完成学习任务单,回顾和巩固一次函数、正比例函数和反比例函数的性质,以及函数的概念。
七年级数学北师大版下册初一数学--第一单元 整式的除法《整式的化简》课件
知2-讲
解:(1)由题意,5月份甲超市的销售额为a(1+x%)2,
乙超市的销售额为a(1-x% )2,
则甲、乙两超市的销售额的差为
a(1+x%)2- a(1-x% )2
a
1
2x 100
x2 10000
a
1
2x 100
x2 10000
ax . 25
解:(m+n)2+(m+n)(m-3n) =(m2+2mn+n2)+(m2-3mn+mn-3n2) =m2+2mn+n2+m2-3mn+mn-3n2 =2m2-2n2. 当m= 2, n=1时, 原式=2×( 2 )2-2×12=2×2-2×1=2.
总结
知1-讲
化简时能用乘法公式的要用乘法公式,要注意解 题格式的规范性.
答:甲超市的销售额比乙超市多 ax 万元. 25
知2-讲
(2)当a=150,x=2时, ax 150 2 12. 25 25
答:甲超市的销售额比乙超市多12万元.
总结
知2-讲
在解答实际问题时,如果题目有字母就注意整式 的化简,化简后再代入数值.
知2-讲
例4 如图,某市有一块长为(3a+b)米,宽为(2a+b)米 的长方形地块,规划部门计划将该长方形地块进 行绿化,中间留出一块边长为(a+b)米的正方形区 域修建凉亭,则阴影部分的面积是多少平方米? 并求出当a=3,b=2时,阴影部分的面积.
A.0
B.2
C.-2
D.不能确定
3 若代数式x2+ax+9-(x-3)2的值等于零,则a的
值为( C )
A.0
B.-3
数学:3.4《第三章复习》课件(北师大版七年级下)
北师大版七年级下册数学《用图象表示的变量关系》变量之间的关系说课教学课件复习巩固
课堂检测
探索推广题
如果OA、BA分别表示甲、乙两名学生
运动的路程s和时间t的关系,根据图象
判断快者的速度比慢者的速度每秒快
(C )
A、2.5m
B、2m C、1.5m
D、1m
s (m)
64
A
B
12
0
t(s )
8
解析:由图象可知在8s时间内,学生甲的路程为64m,学生乙
的路程为(64-12)=52m,所以V甲=64/8=8(m/s)
课堂检测
基础巩固题
3.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总
结反思后,和乌龟约定再赛一场.图中的图象刻画了“龟兔
再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1
表示乌龟所行的路程,y2表示兔子所行的路程).下列说法
错误的是( B )
A.“龟兔再次赛跑”
的路程为1000米
B.兔子和乌龟同时从起点出发
哪队先到达终点?
例3
解:由纵坐标看出,这次龙舟
赛的全程是1000米;由横坐标
看出,乙队先到达终点;
探究新知
(2)求乙与甲相遇时乙的速度.
解:由图象看出,相遇是在乙加速
后,加速后的路程是1000-400=
600(米),加速后用的时间是3.8-
2.2=1.6(分钟),乙与甲相遇时乙
的速度600÷1.6=375(米/分钟).
V乙=52/8=6.5(m/s) 故V甲- V乙=1.5(m/s)
北师大版 数学 七年级 下册
第三章 变量之间的关系
用图象表示的变量关系
课件
学习目标
1、结合具体情境,能理解图象上的点所表示的意义。
2、能从图象中获取变量之间关系的信息,并对未来的
数学 七年级下册 北师大版 第三章 生活中的数据 课件3-06第三章复习题
6、精确度的两种形式(重点): 、精确度的两种形式(重点): (1)精确到哪一位 ) ( 2)有效数字 )
7、给一个近似数,正确指出精确到哪一位? 、给一个近似数,正确指出精确到哪一位? 有哪几个有效数字。(难点) 。(难点 有哪几个有效数字。(难点) 8、几点注意: 、几点注意: ( 1)两个近似数 与1.60表示的精确程度 )两个近似数1.6与 表示的精确程度 不一样。 不一样。 万与6.3精确到的数位不 (2)两个近似数 万与 精确到的数位不 )两个近似数6.3万与 同。
2、中国的国士面积约为 、中国的国士面积约为9596960平方千米美国 平方千米美国
和罗马尼亚的国士面积分别约为9364000(四舍 ( 和罗马尼亚的国士面积分别约为 五入到千位) 平方千米( 五入到千位)和240000平方千米(四舍五入到万 平方千米 )。如果要将中国国士面积与它们比较 如果要将中国国士面积与它们比较, 位)。如果要将中国国士面积与它们比较,那么 中国国士面积分别四舍五入到哪位时, 中国国士面积分别四舍五入到哪位时,比较起来 误差可能小一些? 误差可能小一些?
4、利用四舍五入法取一个数的近似数时, 利用四舍五入法取一个数的近似数时, 四舍五入到那一位, 四舍五入到那一位,就说这个近似数精 确到那一位。 确到那一位。 5、对于一个近似数,从左边第一个不是 对于一个近似数, 0的数起,到精确到的数(最后一位四舍 的数起, 的数起 到精确到的数( 五入所得的数)止,所有的数字都叫做 五入所得的数) 这个数的有效数字。 这个数的有效数字。
2.下列各数是用科学记数法表示的 2.下列各数是用科学记数法表示的, 下列各数是用科学记数法表示的, 请写出它们的原数: 请写出它们的原数:
1.295× 103 × =1295 -1.30× 109 =-1300000000 × 1.3× 105 =130000 × 1.02× 10-3 =0.00102 × -1.3× 10-5 =-0.000013 × 1.23× 10-6 =0.00000123 ×
北师大版七年级数学下册第三章复习课件.ppt
福鼎市第五中学 数学组
学习目标
能用熟悉的事物对百万分之一等较小的数据作 出描述,进一步发展数感。
能用科学记数法表示百万分之一等较小的数据; 能借助科学计算器进行有关科学记数法的计算。
了解近似数与有效数字的概念,能按要求取近 似数,体会近似数的意义及在生活中的作用。
通过实例,体验收集、整理、描述和分析数据 的过程。
(4)密云水库是北京市唯一的饮用水源,它的最大蓄水量约 为43.75亿米3,如果将1999年北京市
的降水总量全部注入密云水库,那么 大约能注满几个这样的水库?
[师生共析]
(1)两幅图表示的信息相同,在第一幅图中, 用“一个水滴”代表降水量最少的城市(银 川)1999年的平均降水量;在第二幅图中,用 “一个水滴”代表降水量最多的城市(广州)1999 年的平均降水量
(2)(只要学生回答合理即可)比如:1999年与 广州、上海相比北京、银川的降水量少得多.
(3)16807.8×10002米2×0.2798米≈47亿米3.
(4)密云水库的最大蓄水量为43.75亿米3,如果 将1999年北京市降水总量全部注入密云水库,那 么大约能注满一个这样的水库.
知识结构框架图
3.0.000000108用科学记数法表示为 __________
4.1.05×10-3用小数表示为_____________
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 用表格表示的变量间关系
总结反思
用表格表示两个变量,一般第一栏表示自变量,第 二栏表示因变量,要仔细观察数据变化趋势和变化幅 度,可以发现表格中因变量随自变量的变化存在一定 的规律,或增加或减少或呈现规律性的起伏变化,从 而利用变化趋势对结果作出预测.
跟踪训练
下表中的数据呈现了某地区入学儿童的变化趋势
14.5
用弹你((132x簧能))表上弹如哪的预示表果簧个长 测弹反此不是度当性映时挂自,挂限了弹物变那重度哪簧体量是么为内两最时?多随1物0个大的哪着千少体变挂长个?x克的的量重度是时质变之量是因,量化间为多变弹,,的少1量簧5用y关千??的的y系如克变表长?果,化示度 反期变1答0应 中 量:×1了 所当02.所挂5c所=m挂物挂5;物c物体m随体体的;着的质的1趋质2x+量质逐势量5=量是渐如为17自与增1何c0m变弹k加?g量簧,时,,的y逐弹弹长渐簧簧度长变的之度大长间为度的17为关cm因系,
始终不变的 量
优点:
列表法
直观而精确地呈现 一些具体的对应值
缺点: 不能全面地反映两 个变量之间的关系,
典型例题--表格
例1.一名同学在用弹簧做实验,在弹簧上 挂不同质量的物体后,弹簧的长度就会发生 变化,实验数据如下表:
所挂物体的质量/千克 0
1
2
3
4
5
弹簧的长度/cm
12 12.5 13
13.5 14
注意:在一些实际问题中,自变量只能取某个范围 内的值.
跟踪训练
油箱中存油20升,油从油箱中均匀流出流速为0.2 升/分钟,则油箱中剩余油量 Q(升)与流出时间
t(分钟)的关系式是 Q=20-0.2t..
根据油的流速和时间t的关系,可得到流出油量是0.2t; 然后根据“剩油量=存油量-流出油量”列出关系式, 将得到的关系式为Q=20-0.2t.
优点:
直观反映变量的变 化趋势
图像法
缺点: 数值不具体,且要 取近似值,误差大
典型例题--图像
例3.小红与小兰从学校出发到距学校5千米的
书店买书,下图反应了她们两人离开学校的路
程与时间的关系。根据图形尝试解决你们提出
的问题。
s/千米
实线---小兰 虚线---小红
5 4 3
2
1
0 10 20 30 40 50 60 t/分钟
((342))(小描1)兰红述小前与小红2小兰与0分兰离小钟从开兰的学学谁速校校先度到的出和书路发最店程?后的与谁1平时先0分均间达钟速的到的度变?速各 度是多少?怎样化是从关多图系少像。?上直观地反映速
答:小兰2 小02先0-红2 01: 10出5分千米5钟度发0/分的,1行千大走两米了小/ 分人2千?同米 时到达
2006+5=2011
优点:
表示变量之间的内 在联系且简洁明了,
关系式法
便于分析计算
缺点: 计算繁琐,不能呈 现数据变化趋势
典型例题--关系式 例2.如图:将边长为20cm的正方形纸片 的四个角截去相同的小正方形,然后将 截好的材料围成一个无盖的长方体。 y =x(20-2x)2
(1)在以上问题中,若设截去的小正方形的边长 是(2x)若cm,小围正成方的形无的盖边长长方是体5c的m,体那积么是长yc方m3体,则的y体与 x积之是间多的少关c系m3?式是____y__=_x_(_2_0_-_2_x_)_2_____ 当x=5时,y=5(20-2x5)2=500 答:长方体的体 积为500cm3
例2.如图:将边长为20cm的正方形纸 片的四个角截去相同的小正方形,然后 将截好的材料围成一个无盖的长方体。
y =x(20-2x)2
(3)根据以上关系式填下表:
x/cm y/cm3
123456789
324 512 588 576 500 384 252 128 36
(4)当x在什么范围变化时,y随x的增大 而增大,当x在什么范围变化时,y随x的 增大而减小?
第2课时 折线型图象
总结反思
速度-时间图象的意义
①代表物体从0开始加速运动. ②代表物体匀速运动. ③代表物体减速运动到停止.
【归纳总结】 在速度与时间的关系图象中,线段的倾斜程度表示速 度变化的快慢,线段的倾斜程度越平缓,速度变化越慢;线段的倾 斜程度越陡,速度变化越快.
跟踪训练
1. 某天早晨,小强从家出发,以V1的速度前往 学校,途中在一饮食店吃早点,之后以V2的速 度向学校行进,V1>V2,下面的图象中表示小强 从家到学校的时间t(min)与路程s(km)之间的关系 是( A )
学校 s(km)
2 1
0
(A)
学校 s(km)
2
线 3 段小2510越00兰--陡15630:速500分度分分钟6越0/钟钟大分,11线0静行千段止走米越平/不了分缓,动3千速度米越小
第2课时 折线型图象
总结反思
路程-时间图象的意义
①代表物体匀速运动. ②代表物体停止. ③代表物体反向运动直到回到原地.
【归纳总结】 在路程与时间的关系图象中,线段(或射线)与横轴所 夹的锐角越大,速度越快;线段(或射线)与横轴所夹的锐角越小, 速度越慢.
年份(x)
2006 2007 2008 …
入学人数(y) 2520 2330 2140 …
1.上表中 年份 是自变量,入学人数 是因变量 2.你预计该地区从 2011 年起入学儿童的人数 在1600人左右. 由表中的数据可知,每年的入学儿童人数都比上一 年减少190人,由题意可列式子 (2520-1600)÷190≈5,进而可求出答案
第三章
变量之间的关系(复习课)
北师大版数学七年级下册
知识回顾
丰富的现实情境
变量及其关系
利用变量之间 的关系解决问 题、进行预测
变量
自变量
因变量
探索变量之间的关系
变量之间的关系
列表法
表示方法
关系式
图像法
变量ห้องสมุดไป่ตู้
自变量
因变量
常量
先发生变化或 区
自主发生变化 别
的量
后发生变化或 随着自变量的 变化而发生变 化的量
2 用关系式表示的变量间关系
总结反思
列关系式的关键是写出一个含有自变量和因变量的等式,将 表示因变量的字母单独写在等号的左边,右边为含有自变量的 代数式,同时注意自变量必须在题目允许的范围内取值.
变量的求值方法: 已知自变量,利用关系式求因变量的值,实际上就是求代数式 的值;已知因变量,利用关系式求自变量的值,实际上就是求 方程的根.