双闭环不可逆直流调速系统实验报告
双闭环不可逆直流调速系统实验报告
双闭环不可逆直流调速系统实验报告
实验目的:
1. 理解双闭环不可逆直流调速系统的原理和特点。
3. 熟悉实验设备的使用和实验过程。
实验原理:
双闭环不可逆直流调速系统由速度环和电流环两个闭环组成,其基本原理如下:
1. 速度环控制
在速度环内部,输入为期望转速,输出为电压控制器的输出信号。
速度环主要根据实
际转速和期望转速之间的差异,计算出电压控制器的控制量,并根据电压控制器的输出改
变电机的电压,以达到调速的目的。
实验步骤:
1. 准备实验设备:电机、电压变压器、电流反馈电阻、示波器、信号源、功率放大器、控制器等。
2. 按照实验原理中的模型,建立电机的电压-转速模型和电机的电流-转矩模型。
3. 根据模型,编写控制算法。
4. 将实验设备连接好,将模型和算法输入控制器。
5. 设置期望转速和电流控制量,并启动电机。
6. 分析实验结果,评估控制系统的性能。
实验结果:
本次实验中,我们成功建立了双闭环不可逆直流调速系统的模型,并利用控制器实现
了系统的控制。
我们通过改变期望转速和电流控制量,观察了系统的实际转速和转矩变化。
实验结果表明,双闭环控制系统的性能稳定,具有较好的调速性能和响应速度。
结论:。
电机控制实验一双闭环晶闸管不可逆直流调速系统实验报告
课程名称:电机控制指导老师:_ _______成绩:__________________ 实验名称:双闭环晶闸管不可逆直流调速系统实验类型:__同组学生姓名:一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一.实验目的1.深化对双闭环、不可逆晶闸管—直流调速系统原理、组成、部件调试及实验方法的了解和掌握。
2.对比开环、闭环静态机械特性的差异,学习机械特性的描述及量化指标的计算。
3.研究调节器参数对系统动态特性的影响。
二.实验内容和原理1、实验原理:双闭环晶闸管不可逆直流调速系统由电流和转速两个调节器综合调节,由于调速系统的主要参量为转速,故转速环作为主环放在外面,电流环作为副环放在里面,这样可抑制电网电压扰动对转速的影响,实验系统的组成如下图所示。
系统工作时,先给电动机加励磁,改变给定电压Ug的大小既可以方便地改变电机的转速。
ASR.ACR 均设有限幅环节,ASR 的输出作为ACR 的给定,利用ASR 的输出限幅可以达到限制起动电流的目的,ACR 的输出作为移相触发电路GT 的控制电压,利用ACR 的输出限幅可以达到限制αmin的目的。
起动时,当加入给定电压Ug 后,ASR 即饱和输出,使电动机以限定的最大起动电流加速起动,直到电机转速达到给定(即Ug=Ufn),并在出现超调后,ASR 退出饱和,最后稳定在略低于给定转速的数值上。
图1 实验原理图图2 实验接线图2、实验内容:1).单元整定①锯齿波移相触发系统脉冲零位调整②PI调节器调零③PI调节器的限幅调零2).机械特性测试①开环n=1400r/min,n=f(Id)②闭环n=1400r/min,n=f(Id)n= 800r/min,n=f(Id)3).闭环控制特性n=f(Ug)的测定。
4).观察、记录系统动态波形。
三.实验仪器设备1.MCL现代运动控制技术实验台主控屏2.直流电动机—测功机—测速发电机3.给定.零速封锁器.速度变换器.速度调节器.电流调节器组件挂箱4.双踪记忆示波器5.数字式万用表四.实验操作步骤1.线路连接㈠主电路(1)SCR 整流桥——用I 组VT1 ~VT6使用内部锯齿波移相触发脉冲必须:①U blf 接地(I 组触发脉冲处,左侧)②给定G 须与FBS 地相连(2)电枢平波电抗器接L=700 ~1000mH(3)注意用强电接线(粗接线柱)(5)直流实验的输入交流电压调至220V(6)额定电流IdN =1A,电流表用表Ⅱ(5A表)(7)负载为测功机,注意负载调节为“转矩”(8)直流电压表量程300V,直流电流表量程5A㈡控制回路(1)给定G(3)零速封锁器DZS(2)速度变换器FBS(5)速度调节器ASR(4)电流反馈与保护(FBC+FA)(6)电流调节器ACR(7)触发器(Uct+Ublf )㈢接线(1)区分功率线及控制线(接头不同)(2)尽量接短线(先用短线)(3)三相输入套管线注意相序(颜色)对应(4)FBS 并电容,抗振荡(5)连接G与FBS 地线(6)转速闭环线的连接(7)经检查方能做实验2.单元部件调试【1】脉冲零位调整①脉冲零位定义移相电压Uct=0 时α的位置不可逆系统α=90°②做法I Uct 接地(=0)II 带地线第一通道观察锯齿波无地线第二通道观察双脉冲III 两通道断续扫描IV 注意相序U 相:U g1,4V 相:Ug 3,6W 相:Ug 5,2V 调节偏移电压Ub,使呈VI 以后固定Ub 不动(靠Uct移α)【2】测αmin=0°ACR限幅值①去掉Uct接地,接入正给定G②增加Uct,使α=0°③用万用表记下此时Uct 值,作为ACR正限幅【3】PI 调节器调零步骤①输入接地(ASR为 2 端,ACR为3/5端)②短接反馈电容,使成P 调节器(ASR为5、6端短接,ACR 为9、10 端短接)③激活调节器(ASR4端、ACR8端接-15V)④输出接万用表mV档⑤调节RP5 使输出为0(以后不动)【4】PI 调节器调限幅步骤①接入给定(ASR 为2 端ACR为3/5 端)约1V②除反馈电容短接线,使成PI调节器③激活调节器(ASR4端、ACR8端接-15V)④输出接万用表20V档⑤按正给定调负限幅RP2,按负给定调正限幅RP1.输出要求:ASR为+-6V,ACR为-0.7V五、实验数据记录及处理1、开环外特性的测定(1)控制电压U ct由给定器输出U g直接接入,合上测功机的“突加给定”开关。
双闭环晶闸管不可逆直流调速实验报告
双闭环晶闸管不可逆直流调速实验报告一、实验目的1.了解双闭环晶闸管不可逆直流调速系统的基本原理和结构。
2.掌握双闭环晶闸管不可逆直流调速系统的调试方法。
3.熟悉双闭环晶闸管不可逆直流调速系统的性能指标。
二、实验原理双闭环晶闸管不可逆直流调速系统是一种常用的电力调节系统,它由电源、整流器、滤波器、逆变器、电机、传感器、控制器等组成。
其中,电源提供直流电源,整流器将交流电转换为直流电,滤波器对直流电进行滤波,逆变器将直流电转换为交流电,电机将交流电转换为机械能,传感器检测电机的转速和位置,控制器根据传感器的反馈信号控制逆变器输出电压和频率,从而实现电机的调速。
双闭环晶闸管不可逆直流调速系统的控制器采用双闭环控制结构,即速度环和电流环。
速度环控制电机的转速,电流环控制电机的电流。
速度环和电流环之间通过PID控制器进行耦合,实现系统的稳定性和动态性能。
三、实验器材1.双闭环晶闸管不可逆直流调速系统实验箱。
2.直流电机。
3.数字万用表。
4.示波器。
5.电阻箱。
6.电容。
7.电感。
8.开关。
9.电源。
四、实验步骤1.将实验箱中的电源、整流器、滤波器、逆变器、电机、传感器、控制器等连接好。
2.将电机连接到逆变器的输出端口。
3.将传感器连接到电机的轴上。
4.将数字万用表和示波器连接到控制器的输出端口。
5.将电阻箱、电容、电感、开关等连接到控制器的输入端口。
6.按照实验箱的说明书进行调试,调整控制器的参数,使得电机能够稳定运行,并且能够实现调速。
7.记录电机的转速、电流、电压等参数,并且分析系统的性能指标。
五、实验结果经过调试,双闭环晶闸管不可逆直流调速系统能够稳定运行,并且能够实现调速。
在不同的负载下,电机的转速、电流、电压等参数均能够满足要求。
通过分析系统的性能指标,发现系统的响应速度较快,稳态误差较小,动态性能较好。
六、实验结论双闭环晶闸管不可逆直流调速系统是一种常用的电力调节系统,它能够实现电机的调速,并且具有较好的动态性能和稳态性能。
V-M双闭环不可逆直流调速系统设计报告(含电气原理图)
双闭环直流调速系统课程设计报告摘要:本设计是一个双闭环不可逆直流调速系统,采用了晶闸管---直流调速装置来调节直流电动机的转速。
采用晶闸管的好处是能使该直流电动机进行连续平滑的调速,且具有较宽地转速调速范围(D≥10)。
此装置有可靠的过电压过电流保护措施,该调速装置在5%负载以上变化的运行范围内工作时,晶闸管的输出电流连续,并且具有良好的静特性与动态性能。
关键词:双闭环晶闸管转速调节器电流调节器第1章主电路各器件的选择和计算1.1 变流变压器容量的计算和选择在一般情况下,晶闸管装置所要求的交流供电电压与电网电压往往不一致;此外,为了尽量减小电网与晶闸管装置的相互干扰,要求它们相互隔离,故通常要配用整流变压器,这里选项用的变压器的一次侧绕组采用△联接,二次侧绕组采用Y联接。
S为整流变压器的总容量,S为变压器一次侧的容量,1U为一次侧电压,I为一次侧电流, 2S为变压器二次侧的容量,2U为二次侧电压,1I为二次侧的电流,1m、2m为相数,以下就是各量的推导和计算过程。
2为了保证负载能正常工作,当主电路的接线形式和负载要求的额定电压确定之后,晶闸管交流侧的电压U只能在一个较小的范围内变化,2为此必须精确计算整流变压器次级电压U。
2影响2U 值的因素有:(1)2U 值的大小首先要保证满足负载所需求的最大电流值的max d I 。
(2)晶闸管并非是理想的可控开关元件,导通时有一定的管压降,用T V 表示。
(3)变压器漏抗的存在会产生换相压降。
(4)平波电抗器有一定的直流电阻,当电流流经该电阻时就要产生一定的电压降。
(5)电枢电阻的压降。
综合以上因素得到的2U 精确表达式为:max 2max [1(1)]%[]100d N a T d d K d I U r nU I U I CU A B I ε+-+=-⋅ (4-1)式中 20U U A d =表示当控制角00α=时,整流电压平均值与变压器次级相电压有效值之比;d d U U B α=表示控制角为α时和00α=时整流电压平均值之比; C 是与整流主电路形式有关的系数;%K U 为变压器的短路电压百分比,100千伏安以下的变压器取5%=K U ,100~1000千伏安的变压器取%510K U =~;ε为电网电压波动系数。
电机控制实验一双闭环晶闸管不可逆直流调速系统实验报告
课程名称:电机控制指导老师:_ _______成绩:__________________实验名称:双闭环晶闸管不可逆直流调速系统实验类型:__同组学生姓名:一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一.实验目的1.深化对双闭环、不可逆晶闸管—直流调速系统原理、组成、部件调试及实验方法的了解和掌握。
2.对比开环、闭环静态机械特性的差异,学习机械特性的描述及量化指标的计算。
3.研究调节器参数对系统动态特性的影响。
二.实验内容和原理1、实验原理:双闭环晶闸管不可逆直流调速系统由电流和转速两个调节器综合调节,由于调速系统的主要参量为转速,故转速环作为主环放在外面,电流环作为副环放在里面,这样可抑制电网电压扰动对转速的影响,实验系统的组成如下图所示。
系统工作时,先给电动机加励磁,改变给定电压Ug的大小既可以方便地改变电机的转速。
ASR.ACR 均设有限幅环节,ASR 的输出作为ACR 的给定,利用ASR 的输出限幅可以达到限制起动电流的目的,ACR 的输出作为移相触发电路GT 的控制电压,利用ACR 的输出限幅可以达到限制αmin的目的。
起动时,当加入给定电压Ug 后,ASR 即饱和输出,使电动机以限定的最大起动电流加速起动,直到电机转速达到给定(即Ug=Ufn),并在出现超调后,ASR 退出饱和,最后稳定在略低于给定转速的数值上。
图1 实验原理图图2 实验接线图2、实验内容:1).单元整定①锯齿波移相触发系统脉冲零位调整②PI调节器调零③PI调节器的限幅调零2).机械特性测试①开环n=1400r/min,n=f(Id)②闭环n=1400r/min,n=f(Id)n= 800r/min,n=f(Id)3).闭环控制特性n=f(Ug)的测定。
4).观察、记录系统动态波形。
三.实验仪器设备1.MCL现代运动控制技术实验台主控屏2.直流电动机—测功机—测速发电机3.给定.零速封锁器.速度变换器.速度调节器.电流调节器组件挂箱4.双踪记忆示波器5.数字式万用表四.实验操作步骤1.线路连接㈠主电路(1)SCR 整流桥——用I 组VT1 ~VT6使用内部锯齿波移相触发脉冲必须:①U blf 接地(I 组触发脉冲处,左侧)②给定G 须与FBS 地相连(2)电枢平波电抗器接L=700 ~1000mH(3)注意用强电接线(粗接线柱)(5)直流实验的输入交流电压调至220V(6)额定电流IdN =1A,电流表用表Ⅱ(5A表)(7)负载为测功机,注意负载调节为“转矩”(8)直流电压表量程300V,直流电流表量程5A㈡控制回路(1)给定G(3)零速封锁器DZS(2)速度变换器FBS(5)速度调节器ASR(4)电流反馈与保护(FBC+FA)(6)电流调节器ACR(7)触发器(Uct+Ublf )㈢接线(1)区分功率线及控制线(接头不同)(2)尽量接短线(先用短线)(3)三相输入套管线注意相序(颜色)对应(4)FBS 并电容,抗振荡(5)连接G与FBS 地线(7)经检查方能做实验2.单元部件调试【1】脉冲零位调整①脉冲零位定义移相电压Uct=0 时α的位置不可逆系统α=90°②做法I Uct 接地(=0)II 带地线第一通道观察锯齿波无地线第二通道观察双脉冲III 两通道断续扫描IV 注意相序U 相:U g1,4V 相:Ug 3,6W 相:Ug 5,2V 调节偏移电压Ub,使呈VI 以后固定Ub 不动(靠Uct移α)【2】测αmin=0°ACR限幅值①去掉Uct接地,接入正给定G②增加Uct,使α=0°③用万用表记下此时Uct 值,作为ACR正限幅【3】PI 调节器调零步骤①输入接地(ASR为2 端,ACR为3/5端)②短接反馈电容,使成P 调节器(ASR为5、6端短接,ACR 为9、10 端短接)③激活调节器(ASR4端、ACR8端接-15V)④输出接万用表mV档⑤调节RP5 使输出为0(以后不动)【4】PI 调节器调限幅步骤①接入给定(ASR 为2 端ACR为3/5 端)约1V②除反馈电容短接线,使成PI调节器③激活调节器(ASR4端、ACR8端接-15V)④输出接万用表20V档⑤按正给定调负限幅RP2,按负给定调正限幅RP1.输出要求:ASR为+-6V,ACR为-0.7V五、实验数据记录及处理1、开环外特性的测定(1)控制电压U ct由给定器输出U g直接接入,合上测功机的“突加给定”开关。
电机控制实验一:双闭环晶闸管不可逆直流调速系统
课程名称:电机控制指导老师:成绩:实验名称:双闭环晶闸管不可逆直流调速系统实验类型:同组学生姓名:一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的和要求(1)了解双闭环不可逆直流调速系统的原理、组成以及各主要单元部件的原理(2)掌握双闭环不可逆直流调速系统的调速步骤、方法以及参数的整定(3)研究调节器参数对系统动态特性的影响二、实验内容和原理1.实验内容(1)各控制单元调试(2)整定电流反馈系数β、转速反馈系数α(3)测定开环机械特性及高、低速时完整的系统闭环静态特性(4)闭环控制特性的测定(5)观察、记录系统动态波形2.实验原理实验电路图如下图所示:双闭环晶闸管不可逆直流调速系统欧电流和转速两个小姐诶器综合调节。
由于调速系统的主要参量为转速,故转速环作为主环放在外面,电流环作为副环放在里面,这样可以抑制电网电压扰动对转速的影响。
系统工作时,先给电动机家里次,改变给定电压Ug的大小,即可方便地改变电机的转速、ASR、ACR均设有限幅环节,ASR的输出作为ACR的给定,利用ASR的输出限幅可以达到限制起动电流的目的,ACR 输出作为移相触发电路GT的控制电压,利用ACR的输出限幅可以达到限制αmin的目的起动时,当加入给定电压Ug之后,ASR输出饱和,使电动机以限定的最大起动电流加速起动,直到电机转速达到了给定转速,并且出现了超调后,ASR退出饱和,最后稳定运行在略低于给定转速的数值上。
在转速、电流双闭环系统中,速度调节器的作用:用于对电机转速进行控制,以保障:①调速精度,做到静态无差;使机械特性硬,满足负载要求。
②实现转速快速调节。
电流调节器的作用:实现对电流的控制,以保障:①精确满足负载转矩大小要求(通过电流控制);②调速的快速动态特性(转矩的快速响应)。
三、主要仪器设备MCL现代运动控制技术实验台主控屏、直流电动机——测功机——测速发电机组、给定、零速封锁器、速度变换器、速度调节器、电流调节器组件挂箱、双踪记忆示波器、数字式万用表四、操作方法和实验步骤1.开环外特性的测定(1)控制电压Uct由给定器输出Ug直接接入,合上测功机的“突加给定”开关(2)逐渐增加给定电压Ug,使电机起动、升速,调节Ug和测功机的转矩设定旋钮,使电动机电流Id=Icd 转速n=ned(3)调节测功机的加载旋钮,改变负载,即可测出系统的开环外特性,记录于下表中。
双闭环不可逆直流调速系统实验报告
双闭环不可逆直流调速系统实验报告公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]双闭环不可逆直流调速系统实验一、实验目的(1)了解闭环不可逆直流调速系统的原理、组成及各主要单元部件的原理。
(2)掌握双闭环不可逆直流调速系统的调试步骤、方法及参数的整定。
(3)研究调节器参数对系统动态性能的影响。
二、实验所需挂件及附件三、实验线路及原理许多生产机械,由于加工和运行的要求,使电动机经常处于起动、制动、反转的过渡过程中,因此起动和制动过程的时间在很大程度上决定了生产机械的生产效率。
为缩短这一部分时间,仅采用PI调节器的转速负反馈单闭环调速系统,其性能还不很令人满意。
双闭环直流调速系统是由速度调节器和电流调节器进行综合调节,可获得良好的静、动态性能(两个调节器均采用PI调节器),由于调整系统的主要参量为转速,故将转速环作为主环放在外面,电流环作为副环放在里面,这样可以抑制电网电压扰动对转速的影响。
实验系统的原理框图组成如下:启动时,加入给定电压Ug,“速度调节器”和“电流调节器”即以饱和限幅值输出,使电动机以限定的最大启动电流加速启动,直到电机转速达到给定转速(即Ug =Ufn),并在出现超调后,“速度调节器”和“电流调节器”退出饱和,最后稳定在略低于给定转速值下运行。
系统工作时,要先给电动机加励磁,改变给定电压Ug的大小即可方便地改变电动机的转速。
“速度调节器”、“电流调节器”均设有限幅环节,“速度调节器”的输出作为“电流调节器”的给定,利用“速度调节器”的输出限幅可达到限制启动电流的目的。
“电流调节器”的输出作为“触发电路”的控制电压Uct,利用“电流调节器”的输出限幅可达到限制αmax的目的。
在本实验中DJK04上的“调节器I”作为“速度调节器”使用,“调节器II”作为“电流调节器”使用;若使用DD03-4不锈钢电机导轨、涡流测功机及光码盘测速系统和D55-4智能电机特性测试及控制系统两者来完成电机加载请详见附录相关内容。
双闭环晶闸管不可逆直流调速系统实验报告
双闭环晶闸管不可逆直流调速系统实验报告一、实验目的本次实验的目的是通过搭建双闭环晶闸管不可逆直流调速系统并进行调试,了解其原理及实现方法,并通过实验数据观察系统的性能表现,进一步掌握电力电子技术及调速技术。
二、实验原理1. 双闭环调速系统双闭环调速系统是将速度控制回路和电流控制回路嵌套在一起,形成一个复杂的反馈系统。
在双闭环调速系统中,速度环的作用是根据给定的基准速度和实际速度之间的误差,输出相应的调节量,修改电压环的参考电压,从而使电机电压得到调整,达到所期望的速度。
而电流环的作用是监视电机输出的电流和给定电流之间的误差,并根据误差的大小调整电压环输出的电压,以便保证输出电流能够达到给定值。
2. 晶闸管调速晶闸管调速是目前最常用的调速方法之一。
其基本原理为对电机施加可调电压,改变电机绕组的通电时间与通电有效值,从而改变电机的转速。
控制晶闸管的导通角度可以控制电压大小,达到调速的目的。
3. 不可逆调速系统不可逆调速系统是指在调节速度的过程中,无法颠倒电机的运动方向。
该系统一般采用半控桥或全控桥电路驱动电机,晶闸管只能单向导通和封锁,从而保证电机的运动方向不会发生改变。
三、实验设备本次实验所用设备包括电机、电力电子实验箱、双闭环调速控制器、示波器、稳压电源等。
四、实验步骤1. 首先搭建实验电路,将电机与电力电子实验箱相连。
2. 打开稳压电源,将其输出调至所需的电压值。
3. 将示波器接至电力电子实验箱输出端口,用于观察系统状态和输出波形。
4. 将双闭环调速控制器与电力电子实验箱相连,并对控制器进行参数设置,包括速度环和电流环的比例、积分和微分系数等。
5. 启动电机,记录电机转速。
6. 通过调节控制器的参数和动态响应曲线,调整电机的速度和转矩,观察系统的性能表现。
7. 对实验数据进行分析总结,得出实验结论。
五、实验结果通过实验数据分析发现,双闭环晶闸管不可逆直流调速系统在调速过程中,可以准确实现给定速度的稳定运行,并且电机的运动方向始终不发生变化。
双闭环晶闸管不可逆直流调速实验报告
双闭环晶闸管不可逆直流调速实验报告一、实验目的本次实验旨在通过实验探究双闭环晶闸管不可逆直流调速的基本原理和实现方法,同时掌握实验设备的使用方法,加深对晶闸管调速技术的理解。
二、实验原理晶闸管调速是目前最常用的直流调速技术之一,其基本原理是通过改变晶闸管的导通角度来控制电机的转速。
在双闭环晶闸管不可逆直流调速系统中,输入电压经过升压变压器升高后,经过整流滤波电路得到直流电压,接着通过晶闸管的控制实现电机的调速。
具体来说,当电机转速低于设定值时,控制电路会向晶闸管的控制端送出一定的触发脉冲,使其导通,电机得到更大的电流,转速随之提高;当电机转速高于设定值时,控制电路会减少触发脉冲的宽度,使晶闸管的导通角度减小,电机的电流也随之减小,转速降低。
三、实验设备本次实验所用设备为直流电机、升压变压器、整流滤波电路、双闭环晶闸管控制电路等。
四、实验步骤1.将直流电机与升压变压器相连,接通电源,调节升压变压器的输出电压,使其符合实验要求。
2.将晶闸管控制电路与电机连接,调节控制电路的参数,使电机能够按照设定转速稳定运行。
3.通过实验验证双闭环晶闸管不可逆直流调速的基本原理和实现方法,并记录实验数据。
五、实验结果与分析经过实验,我们发现当设定转速为1000转/分时,电机的实际转速为980转/分左右;当设定转速为1500转/分时,电机的实际转速为1520转/分左右。
可以看出,双闭环晶闸管不可逆直流调速系统具有较高的稳定性和精度,能够满足不同场合的转速要求。
六、实验结论通过本次实验,我们深刻认识到了双闭环晶闸管不可逆直流调速的基本原理和实现方法,掌握了实验设备的使用方法,同时也加深了对晶闸管调速技术的理解。
该技术具有稳定性高、精度高等优点,在工业生产中具有广泛的应用前景。
电机控制实验一双闭环晶闸管不可逆直流调速系统实验报告
电机控制实验一双闭环晶闸管不可逆直流调速系统实验报告实验目的:1.了解晶闸管非可逆直流调速系统的原理;2.掌握晶闸管开启和关断控制方法;3.了解直流电机的调速特性。
实验仪器:1.直流电机调速实验台2.万用电表3.示波器4.信号源实验原理:晶闸管非可逆直流调速系统是通过控制晶闸管的触发角来改变直流电机的电压和电流,从而实现电机的调速。
实验内容:1.搭建晶闸管非可逆直流调速系统,包括直流电源、晶闸管、直流电机和速度检测电路。
2.调整触发脉冲信号的幅值和信号源的频率,观察直流电机的转速变化,并记录相关数据。
3.调整触发脉冲信号的宽度,观察直流电机的转速变化,并记录相关数据。
4.改变直流电压的大小,观察直流电机的转速变化,并记录相关数据。
实验步骤:1.将直流电机连接到调速实验台,调整电机的负载为合适的值。
2.将触发脉冲信号连接到晶闸管的控制端,调整信号源的幅值和频率。
3.接通直流电源,调整触发脉冲信号的宽度,记录电机的转速。
4.改变直流电源的电压,再次记录电机的转速。
实验结果:1.观察电机转速随触发脉冲信号幅值和频率的变化,绘制转速和触发脉冲幅值以及频率的曲线图。
2.观察电机转速随触发脉冲宽度的变化,绘制转速和触发脉冲宽度的曲线图。
3.观察电机转速随直流电源电压变化,绘制转速和电压的曲线图。
实验讨论:1.分析调速系统的稳定性和动态特性;2.分析电机转速与触发脉冲幅值、频率、宽度以及电源电压的关系。
实验结论:通过本次实验,我们了解了晶闸管非可逆直流调速系统的原理和调速特性。
实验结果表明,在一定范围内,调节触发脉冲的幅值、频率和宽度,以及改变直流电源的电压,都可以实现对电机转速的控制。
了解了晶闸管非可逆直流调速系统的特点和应用范围,为今后工作中的调速系统设计提供了参考依据。
实验 双闭环晶闸管不可逆直流调速系统
实验双闭环晶闸管不可逆直流调速系统一.实验目的1.了解双闭环不可逆直流调速系统的原理,组成及各主要单元部件的原理。
2.熟悉电力电子及教学实验台主控制屏的结构及调试方法。
3.熟悉NMCL-18,NMCL-33的结构及调试方法。
4.掌握双闭环不可逆直流调速系统的调试步骤,方法及参数的整定。
二.实验内容1.各控制单元调试2.测定电流反馈系数。
3.测定开环机械特性及闭环静特性。
4.闭环控制特性的测定。
5.观察,记录系统动态波形。
三.实验系统组成及工作原理双闭环晶闸管不可逆直流调速系统由电流和转速两个调节器综合调节,由于调速系统调节的主要量为转速,故转速环作为主环放在外面,电流环作为付环放在里面,这样可抑制电网电压波动对转速的影响,实验系统的控制回路如图1-8b所示,主回路可参考图1-8a所示。
系统工作时,先给电动机加励磁,改变给定电压的大小即可方便地改变电机的转速。
ASR,ACR均有限幅环节,ASR的输出作为ACR的给定,利用ASR的输出限幅可达到限制起动电流的目的, ACR的输出作为移相触发电路的控制电压,利用ACR的输出限幅可达到限制αmin 和βmin的目的。
当加入给定U g后,ASR即饱和输出,使电动机以限定的最大起动电流加速起动,直到电机转速达到给定转速(即U g=U fn),并出现超调后,ASR退出饱和,最后稳定运行在略低于给定转速的数值上。
四.实验设备及仪器1.教学实验台主控制屏。
2.NMCL—31组件3.NMCL—33组件4.NMEL—03/4组件5.NMCL—18组件6.电机导轨及测功机、转速转矩测量、直流发电机M017.直流电动机M038.双踪示波器(自备)9.万用表(自备)五.注意事项1.三相主电源连线时需注意,不可换错相序。
2.系统开环连接时,不允许突加给定信号U g 起动电机3.改变接线时,必须先按下主控制屏总电源开关的“断开”红色按钮,同时使系统的给定为零。
4.进行闭环调试时,若电机转速达最高速且不可调,注意转速反馈的极性是否接错。
双闭环晶闸管不可逆直流调速系统实验报告
双闭环晶闸管不可逆直流调速系统实验报告实验目的:1.了解晶闸管直流调速系统的基本原理和结构;2.掌握双闭环调速系统的工作原理和调速性能;3.通过实验验证双闭环调速系统的可行性和优越性。
实验仪器:1.晶闸管直流调速系统实验装置;2.示波器;3.数字万用表。
实验原理:速度控制回路以驱动电机的速度为控制目标进行调节,电流控制回路以驱动电机的电流为控制目标进行调节。
速度闭环控制通过测量驱动电机的速度反馈信号和给定速度信号的差值来调节调速器的输出。
电流闭环控制通过测量驱动电机的电流反馈信号和给定电流信号的差值来调节控制器的输出。
实验步骤:1.将实验装置连接好,包括直流电源、晶闸管整流器、直流电机和负载。
2.调节负载的电阻,使驱动电机的电流在额定范围内。
3.使用数字万用表测量驱动电机的电压、电流和速度,记录实验数据。
4.将速度给定值调节到不同的数值,观察驱动电机的响应。
5.将电流给定值调节到不同的数值,观察驱动电机的响应。
6.根据实验数据分析双闭环调速系统的性能和优化空间。
实验结果与分析:1.驱动电机的速度响应曲线表明,双闭环调速系统能够实现较快的速度跟踪性能和较小的静态误差。
2.驱动电机的电流响应曲线表明,双闭环调速系统能够实现电流的快速稳定。
3.实验数据表明,双闭环调速系统能够实现可靠的调速性能和较高的控制精度。
4.实验结果可以用于评价双闭环调速系统的稳定性、响应速度和控制精度,并提供改进系统性能的依据。
总结与展望:通过本次实验,我们了解了双闭环晶闸管不可逆直流调速系统的原理和结构,掌握了双闭环调速系统的工作原理和调速性能,并验证了双闭环调速系统的可行性和优越性。
在今后的实际应用中,我们可以进一步优化系统性能,提高调速系统的响应速度和控制精度,以满足更高的工程需求。
双闭环晶闸管不可逆直流调速系统实验报告终审稿)
双闭环晶闸管不可逆直流调速系统实验报告文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-实验三十双闭环晶闸管不可逆直流调速系统实验报告一、实验目的(1)了解闭环不可逆直流调速系统的原理、组成及各主要单元部件的原理。
(2)掌握双闭环不可逆直流调速系统的调试步骤、方法及参数的整定。
(3)研究调节器参数对系统动态性能的影响。
二、实验内容(1)各控制单元调试。
(2)测定电流反馈系数β、转速反馈系数α。
(3)测定开环机械特性及高、低转速时系统闭环静态特性n=f(I)。
d)的测定。
(4)闭环控制特性n=f(Ug(5)观察、记录系统动态波形。
三、实验方法(1)DJK02和DJK02-1上的“触发电路”调试(2)双闭环调速系统调试原则(3)控制单元调试(4)开环外特性的测定),记录于下表中:该系统的开环外特性n =f(Id(5)系统静特性测试),并记录于下表中:n=l200rpm,可测出系统静态特性曲线n =f(Idn=800rpm时的静态特性曲线,并记录于下表中:调节U g 及R ,使I d =I ed 、n= l200rpm ,逐渐降低U g ,记录U g 和n ,即可测出闭环控制特性n= f(U g )。
(6)系统动态特性的观察四、实验报告(1)根据实验数据,画出闭环控制特性曲线n =f(U g )。
(2)根据实验数据,画出两种转速时的闭环机械特性n =f(I d )。
(3)根据实验数据,画出系统开环机械特性n =f(I d ),计算静差率,并与闭环机械特性进行比较。
由实验数据可知,开环系统的静差率S=3.6%(=1200),相对应的闭环系统的静差率S=0.67%(=1200)和S=0.1%(=800),可见系统的静差率减少了不少,在同样的负载下,闭环系统的转速降落明显低于开环系统,因此,闭环系统的机械特性硬很多,系统转速的相对稳定度也提高了不少。
此外,由闭环控制特性曲线可知,闭环系统有较宽的调速范围,D=10.1,而且调解过程中响应迅速。
实验二-双闭环晶闸管不可逆直流调速系统实验
实验二双闭环晶闸管不可逆直流调速系统实验一.实验目的1.了解双闭环不可逆直流调速系统的原理,组成及各主要单元部件的原理。
2.熟悉MCL—Ⅱ电机控制教学实验台主控制屏的结构及调试方法。
3.熟悉MCL-01, MCL-02,MCL-03 的结构及调试方法4.掌握双闭环不可逆直流调速系统的调试步骤,方法及参数的整定。
二.实验内容1.MCL-01 的调试。
2.各控制单元调试3.测定电流反馈系数ß,转速反馈系数α。
4.测定开环机械特性及闭环静特性。
5.闭环控制特性的测定。
6.观察,记录系统动态波形。
三.实验系统组成及工作原理仅有速度反馈的调速系统在调速过程中,当速度给定发生突变时,整流桥的输出电压很大,这可能引起电机电枢电流剧增,可能会使晶闸管损坏。
此外电流的急剧变化也会导致直流电机换向恶化,并引起电机转矩的剧变,对传动系统产生猛力的冲击,这是不允许的,在调速系统中还必须采取限制电流冲击的措施,现在普遍采用再加一级电流反馈构成双闭环调速系统。
图2-1 所示的是双闭环直流调速系统。
系统包括两个反馈控制环节,内环是电流控制环,外环是速度控制环。
内环由电流调节器、晶闸管移相触发器、晶闸管整流器和电动机电枢回路所构成。
电流调节器的给定信号与电流反馈信号相比较,其差值送入电流调节器,由调节器的输出通过移相触发器控制整流桥的输出电压。
在这个电压作用下电机的电流及转矩将相应地发生变化。
当电流调节器的给定信号大于电流反馈信号时,其差值为正,经过调节器控制整流桥的移相角,使整流桥输出电压升高,电枢电流增大。
反之,给定信号小于电流反馈信号时,使整流桥输出电压降低,电枢电流减小。
它力图使电枢电流与电流给定值相等。
外环是速度环,其中有一个速度调节器,在调节器的输入端送入一个速度给定信号,由它规定电机运行的转速,另一个速度反馈信号来自与电机同轴的测速发动机,这个速度给定信号和实际转速反馈信号之差输入到速度调节器,由速度调节器的输出信号作电流调节器输入送到电流调节器,通过电流调节环的控制作用调节电机的电枢电流和转矩,使电机转速发生变化,最后达到转速的给定值。
电机控制实验一双闭环晶闸管不可逆直流调速系统实验报告
课程名称:电机控制指导老师:_ _______成绩:__________________ 实验名称:双闭环晶闸管不可逆直流调速系统实验类型:__同组学生姓名:一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一.实验目的1.深化对双闭环、不可逆晶闸管—直流调速系统原理、组成、部件调试及实验方法的了解和掌握。
2.对比开环、闭环静态机械特性的差异,学习机械特性的描述及量化指标的计算。
3.研究调节器参数对系统动态特性的影响。
二.实验内容和原理1、实验原理:双闭环晶闸管不可逆直流调速系统由电流和转速两个调节器综合调节,由于调速系统的主要参量为转速,故转速环作为主环放在外面,电流环作为副环放在里面,这样可抑制电网电压扰动对转速的影响,实验系统的组成如下图所示。
系统工作时,先给电动机加励磁,改变给定电压Ug的大小既可以方便地改变电机的转速。
ASR.ACR 均设有限幅环节,ASR 的输出作为ACR 的给定,利用ASR 的输出限幅可以达到限制起动电流的目的,ACR 的输出作为移相触发电路GT 的控制电压,利用ACR 的输出限幅可以达到限制αmin的目的。
起动时,当加入给定电压Ug 后,ASR 即饱和输出,使电动机以限定的最大起动电流加速起动,直到电机转速达到给定(即Ug=Ufn),并在出现超调后,ASR 退出饱和,最后稳定在略低于给定转速的数值上。
图1 实验原理图图2 实验接线图2、实验内容:1).单元整定①锯齿波移相触发系统脉冲零位调整②PI调节器调零③PI调节器的限幅调零2).机械特性测试①开环n=1400r/min,n=f(Id)②闭环n=1400r/min,n=f(Id)n= 800r/min,n=f(Id)3).闭环控制特性n=f(Ug)的测定。
4).观察、记录系统动态波形。
三.实验仪器设备1.MCL现代运动控制技术实验台主控屏2.直流电动机—测功机—测速发电机3.给定.零速封锁器.速度变换器.速度调节器.电流调节器组件挂箱4.双踪记忆示波器5.数字式万用表四.实验操作步骤1.线路连接㈠主电路(1)SCR 整流桥——用I 组VT1 ~VT6使用内部锯齿波移相触发脉冲必须:①U blf 接地(I 组触发脉冲处,左侧)②给定G 须与FBS 地相连(2)电枢平波电抗器接L=700 ~1000mH(3)注意用强电接线(粗接线柱)(5)直流实验的输入交流电压调至220V(6)额定电流IdN =1A,电流表用表Ⅱ(5A表)(7)负载为测功机,注意负载调节为“转矩”(8)直流电压表量程300V,直流电流表量程5A㈡控制回路(1)给定G(3)零速封锁器DZS(2)速度变换器FBS(5)速度调节器ASR(4)电流反馈与保护(FBC+FA)(6)电流调节器ACR(7)触发器(Uct+Ublf )㈢接线(1)区分功率线及控制线(接头不同)(2)尽量接短线(先用短线)(3)三相输入套管线注意相序(颜色)对应(4)FBS 并电容,抗振荡(5)连接G与FBS 地线(6)转速闭环线的连接(7)经检查方能做实验2.单元部件调试【1】脉冲零位调整①脉冲零位定义移相电压Uct=0 时α的位置不可逆系统α=90°②做法I Uct 接地(=0)II 带地线第一通道观察锯齿波无地线第二通道观察双脉冲III 两通道断续扫描IV 注意相序U 相:U g1,4V 相:Ug 3,6W 相:Ug 5,2V 调节偏移电压Ub,使呈VI 以后固定Ub 不动(靠Uct移α)【2】测αmin=0°ACR限幅值①去掉Uct接地,接入正给定G②增加Uct,使α=0°③用万用表记下此时Uct 值,作为ACR正限幅【3】PI 调节器调零步骤①输入接地(ASR为 2 端,ACR为3/5端)②短接反馈电容,使成P 调节器(ASR为5、6端短接,ACR 为9、10 端短接)③激活调节器(ASR4端、ACR8端接-15V)④输出接万用表mV档⑤调节RP5 使输出为0(以后不动)【4】PI 调节器调限幅步骤①接入给定(ASR 为2 端ACR为3/5 端)约1V②除反馈电容短接线,使成PI调节器③激活调节器(ASR4端、ACR8端接-15V)④输出接万用表20V档⑤按正给定调负限幅RP2,按负给定调正限幅RP1.输出要求:ASR为+-6V,ACR为-0.7V五、实验数据记录及处理1、开环外特性的测定(1)控制电压U ct由给定器输出U g直接接入,合上测功机的“突加给定”开关。
电机控制实验一双闭环晶闸管不可逆直流调速系统实验报告
课程名称:电机控制指导老师:_ _______成绩:__________________ 实验名称:双闭环晶闸管不可逆直流调速系统实验类型:__同组学生姓名:一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一.实验目的1.深化对双闭环、不可逆晶闸管—直流调速系统原理、组成、部件调试及实验方法的了解和掌握。
2.对比开环、闭环静态机械特性的差异,学习机械特性的描述及量化指标的计算。
3.研究调节器参数对系统动态特性的影响。
二.实验内容和原理1、实验原理:双闭环晶闸管不可逆直流调速系统由电流和转速两个调节器综合调节,由于调速系统的主要参量为转速,故转速环作为主环放在外面,电流环作为副环放在里面,这样可抑制电网电压扰动对转速的影响,实验系统的组成如下图所示。
系统工作时,先给电动机加励磁,改变给定电压Ug的大小既可以方便地改变电机的转速。
ASR.ACR 均设有限幅环节,ASR 的输出作为ACR 的给定,利用ASR 的输出限幅可以达到限制起动电流的目的,ACR 的输出作为移相触发电路GT 的控制电压,利用ACR 的输出限幅可以达到限制αmin的目的。
起动时,当加入给定电压Ug 后,ASR 即饱和输出,使电动机以限定的最大起动电流加速起动,直到电机转速达到给定(即Ug=Ufn),并在出现超调后,ASR 退出饱和,最后稳定在略低于给定转速的数值上。
图1 实验原理图图2 实验接线图2、实验内容:1).单元整定①锯齿波移相触发系统脉冲零位调整②PI调节器调零③PI调节器的限幅调零2).机械特性测试①开环n=1400r/min,n=f(Id)②闭环n=1400r/min,n=f(Id)n= 800r/min,n=f(Id)3).闭环控制特性n=f(Ug)的测定。
4).观察、记录系统动态波形。
三.实验仪器设备1.MCL现代运动控制技术实验台主控屏2.直流电动机—测功机—测速发电机3.给定.零速封锁器.速度变换器.速度调节器.电流调节器组件挂箱4.双踪记忆示波器5.数字式万用表四.实验操作步骤1.线路连接㈠主电路(1)SCR 整流桥——用I 组VT1 ~VT6使用内部锯齿波移相触发脉冲必须:①U blf 接地(I 组触发脉冲处,左侧)②给定G 须与FBS 地相连(2)电枢平波电抗器接L=700 ~1000mH(3)注意用强电接线(粗接线柱)(5)直流实验的输入交流电压调至220V(6)额定电流IdN =1A,电流表用表Ⅱ(5A表)(7)负载为测功机,注意负载调节为“转矩”(8)直流电压表量程300V,直流电流表量程5A㈡控制回路(1)给定G(3)零速封锁器DZS(2)速度变换器FBS(5)速度调节器ASR(4)电流反馈与保护(FBC+FA)(6)电流调节器ACR(7)触发器(Uct+Ublf )㈢接线(1)区分功率线及控制线(接头不同)(2)尽量接短线(先用短线)(3)三相输入套管线注意相序(颜色)对应(4)FBS 并电容,抗振荡(5)连接G与FBS 地线(6)转速闭环线的连接(7)经检查方能做实验2.单元部件调试【1】脉冲零位调整①脉冲零位定义移相电压Uct=0 时α的位置不可逆系统α=90°②做法I Uct 接地(=0)II 带地线第一通道观察锯齿波无地线第二通道观察双脉冲III 两通道断续扫描IV 注意相序U 相:U g1,4V 相:Ug 3,6W 相:Ug 5,2V 调节偏移电压Ub,使呈VI 以后固定Ub 不动(靠Uct移α)【2】测αmin=0°ACR限幅值①去掉Uct接地,接入正给定G②增加Uct,使α=0°③用万用表记下此时Uct 值,作为ACR正限幅【3】PI 调节器调零步骤①输入接地(ASR为 2 端,ACR为3/5端)②短接反馈电容,使成P 调节器(ASR为5、6端短接,ACR 为9、10 端短接)③激活调节器(ASR4端、ACR8端接-15V)④输出接万用表mV档⑤调节RP5 使输出为0(以后不动)【4】PI 调节器调限幅步骤①接入给定(ASR 为2 端ACR为3/5 端)约1V②除反馈电容短接线,使成PI调节器③激活调节器(ASR4端、ACR8端接-15V)④输出接万用表20V档⑤按正给定调负限幅RP2,按负给定调正限幅RP1.输出要求:ASR为+-6V,ACR为-0.7V五、实验数据记录及处理1、开环外特性的测定(1)控制电压U ct由给定器输出U g直接接入,合上测功机的“突加给定”开关。
电机控制实验一双闭环晶闸管不可逆直流调速系统实验报告
课程名称:电机控制指导老师:_ _______成绩:__________________ 实验名称:双闭环晶闸管不可逆直流调速系统实验类型:__同组学生姓名:一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一.实验目的1.深化对双闭环、不可逆晶闸管—直流调速系统原理、组成、部件调试及实验方法的了解和掌握。
2.对比开环、闭环静态机械特性的差异,学习机械特性的描述及量化指标的计算。
3.研究调节器参数对系统动态特性的影响。
二.实验内容和原理1、实验原理:双闭环晶闸管不可逆直流调速系统由电流和转速两个调节器综合调节,由于调速系统的主要参量为转速,故转速环作为主环放在外面,电流环作为副环放在里面,这样可抑制电网电压扰动对转速的影响,实验系统的组成如下图所示。
系统工作时,先给电动机加励磁,改变给定电压Ug的大小既可以方便地改变电机的转速。
ASR.ACR 均设有限幅环节,ASR 的输出作为ACR 的给定,利用ASR 的输出限幅可以达到限制起动电流的目的,ACR 的输出作为移相触发电路GT 的控制电压,利用ACR 的输出限幅可以达到限制αmin的目的。
起动时,当加入给定电压Ug 后,ASR 即饱和输出,使电动机以限定的最大起动电流加速起动,直到电机转速达到给定(即Ug=Ufn),并在出现超调后,ASR 退出饱和,最后稳定在略低于给定转速的数值上。
图1 实验原理图图2 实验接线图2、实验内容:1).单元整定①锯齿波移相触发系统脉冲零位调整②PI调节器调零③PI调节器的限幅调零2).机械特性测试①开环n=1400r/min,n=f(Id)②闭环n=1400r/min,n=f(Id)n= 800r/min,n=f(Id)3).闭环控制特性n=f(Ug)的测定。
4).观察、记录系统动态波形。
三.实验仪器设备1.MCL现代运动控制技术实验台主控屏2.直流电动机—测功机—测速发电机3.给定.零速封锁器.速度变换器.速度调节器.电流调节器组件挂箱4.双踪记忆示波器5.数字式万用表四.实验操作步骤1.线路连接㈠主电路(1)SCR 整流桥——用I 组VT1 ~VT6使用内部锯齿波移相触发脉冲必须:①U blf 接地(I 组触发脉冲处,左侧)②给定G 须与FBS 地相连(2)电枢平波电抗器接L=700 ~1000mH(3)注意用强电接线(粗接线柱)(5)直流实验的输入交流电压调至220V(6)额定电流IdN =1A,电流表用表Ⅱ(5A表)(7)负载为测功机,注意负载调节为“转矩”(8)直流电压表量程300V,直流电流表量程5A㈡控制回路(1)给定G(3)零速封锁器DZS(2)速度变换器FBS(5)速度调节器ASR(4)电流反馈与保护(FBC+FA)(6)电流调节器ACR(7)触发器(Uct+Ublf )㈢接线(1)区分功率线及控制线(接头不同)(2)尽量接短线(先用短线)(3)三相输入套管线注意相序(颜色)对应(4)FBS 并电容,抗振荡(5)连接G与FBS 地线(6)转速闭环线的连接(7)经检查方能做实验2.单元部件调试【1】脉冲零位调整①脉冲零位定义移相电压Uct=0 时α的位置不可逆系统α=90°②做法I Uct 接地(=0)II 带地线第一通道观察锯齿波无地线第二通道观察双脉冲III 两通道断续扫描IV 注意相序U 相:U g1,4V 相:Ug 3,6W 相:Ug 5,2V 调节偏移电压Ub,使呈VI 以后固定Ub 不动(靠Uct移α)【2】测αmin=0°ACR限幅值①去掉Uct接地,接入正给定G②增加Uct,使α=0°③用万用表记下此时Uct 值,作为ACR正限幅【3】PI 调节器调零步骤①输入接地(ASR为 2 端,ACR为3/5端)②短接反馈电容,使成P 调节器(ASR为5、6端短接,ACR 为9、10 端短接)③激活调节器(ASR4端、ACR8端接-15V)④输出接万用表mV档⑤调节RP5 使输出为0(以后不动)【4】PI 调节器调限幅步骤①接入给定(ASR 为2 端ACR为3/5 端)约1V②除反馈电容短接线,使成PI调节器③激活调节器(ASR4端、ACR8端接-15V)④输出接万用表20V档⑤按正给定调负限幅RP2,按负给定调正限幅RP1.输出要求:ASR为+-6V,ACR为-0.7V五、实验数据记录及处理1、开环外特性的测定(1)控制电压U ct由给定器输出U g直接接入,合上测功机的“突加给定”开关。
实验二双闭环晶闸管不可逆直流调速系统
实验二双闭环晶闸管不可逆直流调速系统一.实验目的1.了解双闭环不可逆直流调速系统的原理,组成及各主要单元部件的原理。
2.熟悉电力电子及教学实验台主控制屏的结构及调试方法。
3.熟悉NMCL-18,NMCL-33的结构及调试方法4.掌握双闭环不可逆直流调速系统的调试步骤,方法及参数的整定。
二.实验内容1.各控制单元调试2.测定电流反馈系数。
3.测定开环机械特性及闭环静特性。
4.闭环控制特性的测定。
5.观察,记录系统动态波形。
三.实验系统组成及工作原理双闭环晶闸管不可逆直流调速系统由电流和转速两个调节器综合调节,由于调速系统调节的主要量为转速,故转速环作为主环放在外面,电流环作为付环放在里面,这样可抑制电网电压波动对转速的影响,实验系统的控制回路如图1-8b所示,主回路可参考图1-8a 所示。
系统工作时,先给电动机加励磁,改变给定电压的大小即可方便地改变电机的转速。
ASR,ACR均有限幅环节,ASR的输出作为ACR的给定,利用ASR的输出限幅可达到限制起动电流的目的, ACR的输出作为移相触发电路的控制电压,利用ACR的输出限幅可达到限制αmin和βmin的目的。
当加入给定U g后,ASR即饱和输出,使电动机以限定的最大起动电流加速起动,直到电机转速达到给定转速(即U g=U fn),并出现超调后,ASR退出饱和,最后稳定运行在略低于给定转速的数值上。
四.实验设备及仪器1.教学实验台主控制屏;2.NMCL—31A组件;3.NMCL—33组件;4.NMEL—03组件;5.NMCL—18组件;6.电机导轨及测速发电机(或光电编码器)、直流发电机M01;7.直流电动机M03;8.双踪示波器(自备);9.万用表(自备)。
五.注意事项1.三相主电源连线时需注意,不可换错相序。
2.系统开环连接时,不允许突加给定信号U g起动电机3.改变接线时,必须先按下主控制屏总电源开关的“断开”红色按钮,同时使系统的给定为零。
2021年双闭环晶闸管不可逆直流调速系统实验报告
试验三十双闭环晶闸管不可逆直流调速系统试验汇报一、试验目(1)了解闭环不可逆直流调速系统原理、组成及各关键单元部件原理。
(2)掌握双闭环不可逆直流调速系统调试步骤、方法及参数整定。
(3)研究调整器参数对系统动态性能影响。
二、试验内容(1)各控制单元调试。
(2)测定电流反馈系数β、转速反馈系数α。
(3)测定开环机械特征及高、低转速时系统闭环静态特征n=f(I d)。
(4)闭环控制特征n=f(U g)测定。
(5)观察、统计系统动态波形。
三、试验方法(1)DJK02和DJK02-1上“触发电路”调试(2)双闭环调速系统调试标准(3)控制单元调试(4)开环外特征测定该系统开环外特征n =f(I), 统计于下表中:(5)系统静特征测试n=l200rpm, 可测出系统静态特征曲线n =f(I d), 并统计于下表中:n=800rpm时静态特征曲线, 并统计于下表中:0.259 0.428 0.648 0.778 0.880 1.015 1.190I d(A)调整U g及R, 使I d=I ed、 n= l200rpm, 逐步降低U g, 统计U g和n, 即可测出闭环控制特征n = f(U g)。
n(rpm)1200 961.9 807.1 658.9 557.5 428.0 310.7U g(V) 4.46 3.58 3.00 2.45 2.05 2.00 1.15(6)系统动态特征观察四、试验汇报(1)依据试验数据, 画出闭环控制特征曲线n =f(U g)。
(2)依据试验数据, 画出两种转速时闭环机械特征n =f(I d)。
(3)依据试验数据, 画出系统开环机械特征n =f(I d), 计算静差率, 并与闭环机械特征进行比较。
由试验数据可知, 开环系统静差率S=3.6%(=1200), 相对应闭环系统静差率S=0.67%( =1200)和S=0.1%(=800), 可见系统静差率降低了不少, 在一样负载下, 闭环系统转速降落显著低于开环系统, 所以, 闭环系统机械特征硬很多, 系统转速相对稳定度也提升了不少。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双闭环不可逆直流调速系统实验一、实验目的(1)了解闭环不可逆直流调速系统的原理、组成及各主要单元部件的原理。
(2)掌握双闭环不可逆直流调速系统的调试步骤、方法及参数的整定。
(3)研究调节器参数对系统动态性能的影响。
二、实验所需挂件及附件三、实验线路及原理许多生产机械,由于加工和运行的要求,使电动机经常处于起动、制动、反转的过渡过程中,因此起动和制动过程的时间在很大程度上决定了生产机械的生产效率。
为缩短这一部分时间,仅采用PI调节器的转速负反馈单闭环调速系统,其性能还不很令人满意。
双闭环直流调速系统是由速度调节器和电流调节器进行综合调节,可获得良好的静、动态性能(两个调节器均采用PI调节器),由于调整系统的主要参量为转速,故将转速环作为主环放在外面,电流环作为副环放在里面,这样可以抑制电网电压扰动对转速的影响。
实验系统的原理框图组成如下:启动时,加入给定电压U g,“速度调节器”和“电流调节器”即以饱和限幅值输出,使电动机以限定的最大启动电流加速启动,直到电机转速达到给定转速(即U g =U fn),并在出现超调后,“速度调节器”和“电流调节器”退出饱和,最后稳定在略低于给定转速值下运行。
系统工作时,要先给电动机加励磁,改变给定电压U g的大小即可方便地改变电动机的转速。
“速度调节器”、“电流调节器”均设有限幅环节,“速度调节器”的输出作为“电流调节器”的给定,利用“速度调节器”的输出限幅可达到限制启动电流的目的。
“电流调节器”的输出作为“触发电路”的控制电压U ct,利用“电流调节器”的输出限幅可达到限制αmax的目的。
在本实验中DJK04上的“调节器I”作为“速度调节器”使用,“调节器II”作为“电流调节器”使用;若使用DD03-4不锈钢电机导轨、涡流测功机及光码盘测速系统和D55-4智能电机特性测试及控制系统两者来完成电机加载请详见附录相关内容。
四、实验内容(1)各控制单元调试。
(2)测定电流反馈系数β、转速反馈系数α。
(3)测定开环机械特性及高、低转速时系统闭环静态特性n=f(I d)。
(4)闭环控制特性n=f(U g)的测定。
(5)观察、记录系统动态波形。
图5-10 双闭环直流调速系统原理框图五、实验方法(1)双闭环调速系统调试原则①先单元、后系统,即先将单元的参数调好,然后才能组成系统。
②先开环、后闭环,即先使系统运行在开环状态,然后在确定电流和转速均为负反馈后,才可组成闭环系统。
③先内环,后外环,即先调试电流内环,然后调试转速外环。
④先调整稳态精度,后调整动态指标。
(2)DJK02和DJK02-1上的“触发电路”调试①打开DJK01总电源开关,操作“电源控制屏”上的“三相电网电压指示”开关,观察输入的三相电网电压是否平衡。
②将DJK01“电源控制屏”上“调速电源选择开关”拨至“直流调速”侧。
③用10芯的扁平电缆,将DJK02的“三相同步信号输出”端和DJK02-1“三相同步信号输入”端相连,打开DJK02-1电源开关,拨动“触发脉冲指示”钮子开关,使“窄”的发光管亮。
④观察A、B、C三相的锯齿波,并调节A、B、C三相锯齿波斜率调节电位器(在各观测孔左侧),使三相锯齿波斜率尽可能一致。
⑤将DJK04上的“给定”输出U g直接与DJK02-1上的移相控制电压U ct相接,将给定开关S2拨到接地位置(即U ct=0),调节DJK02-1上的偏移电压电位器,用双踪示波器观察A相同步电压信号和“双脉冲观察孔”VT1的输出波形,使α=150°(注意此处的α表示三相晶闸管电路中的移相角,它的0°是从自然换流点开始计算,而单相晶闸管电路的0°移相角表示从同步信号过零点开始计算,两者存在相位差,前者比后者滞后30°)。
⑥适当增加给定U g的正电压输出,观测DJK02-1上“脉冲观察孔”的波形,此时应观测到单窄脉冲和双窄脉冲。
⑦用8芯的扁平电缆,将DJK02-1面板上“触发脉冲输出”和“触发脉冲输入”相连,使得触发脉冲加到正反桥功放的输入端。
⑧将DJK02-1面板上的U lf端接地,用20芯的扁平电缆,将DJK02-1的“正桥触发脉冲输出”端和DJK02“正桥触发脉冲输入”端相连,并将DJK02“正桥触发脉冲”的六个开关拨至“通”,观察正桥VT1~VT6晶闸管门极和阴极之间的触发脉冲是否正常。
(3)控制单元调试①移相控制电压Uct调节范围的确定直接将DJK04“给定”电压U g接入DJK02-1移相控制电压U ct的输入端,“三相全控整流”输出接电阻负载R,用示波器观察U d的波形。
当给定电压U g由零调大时,U d将随给定电压的增大而增大,当U g超过某一数值时,此时U d接近为输出最高电压值U d',一般可确定“三相全控整流”输出允许范围的最大值为U dmax=',调节U g使得“三相全控整流”输出等于U dmax,此时将对应的U g'的电压值记录下来,U ctmax= U g',即U g的允许调节范围为0~U ctmax。
如果我们把输出限幅定为U ctmax的话,则“三相全控整流”输出范围就被限定,不会工作到极限值状态,保证六个晶闸管可靠工作。
记录U g'于下表中:将给定退到零,再按“停止”按钮,结束步骤。
②调节器的调零将DJK04中“调节器I”所有输入端接地,再将DJK08中的可调电阻120K接到“调节器I”的“4”、“5”两端,用导线将“5”、“6”短接,使“调节器I”成为P (比例)调节器。
用万用表的毫伏档测量调节器I的“7”端的输出,调节面板上的调零电位器RP3,使之电压尽可能接近于零。
将DJK04中“调节器II”所有输入端接地,再将DJK08中的可调电阻13K接到“调节器II”的“8”、“9”两端,用导线将“9”、“10”短接,使“调节器II”成为P(比例)调节器。
用万用表的毫伏档测量调节器II的“11”端,调节面板上的调零电位器RP3,使之输出电压尽可能接近于零。
③调节器正、负限幅值的调整把“调节器I”的“5”、“6”短接线去掉,将DJK08中的可调电容接入“5”、“6”两端,使调节器成为PI (比例积分)调节器,将“调节器I”所有输入端的接地线去掉,将DJK04的给定输出端接到调节器I的“3”端,当加+5V 的正给定电压时,调整负限幅电位器RP2,使之输出电压为-6V,当调节器输入端加-5V的负给定电压时,调整正限幅电位器RP1,使之输出电压尽可能接近于零。
把“调节器II”的“9”、“10”短接线去掉,将DJK08中的可调电容接入“9”、“10”两端,使调节器成为PI(比例积分)调节器,将“调节器II”的所有输入端的接地线去掉,将DJK04的给定输出端接到调节器II的“4”端。
当加+5V的正给定电压时,调整负限幅电位器RP2,使之输出电压尽可能接近于零;当调节器输入端加-5V的负给定电压时,调整正限幅电位器RP1,使调节器I的输出正限幅为U ctmax。
④电流反馈系数的整定直接将“给定”电压U g接入DJK02-1移相控制电压U ct的输入端,整流桥输出接电阻负载R,负载电阻放在最大值,输出给定调到零。
按下启动按钮,从零增加给定,使输出电压升高,当U d=220V时,减小负载的阻值,调节“电流反馈与过流保护”上的电流反馈电位器RP1,使得负载电流I d=l.3A时,“2”端I f的的电流反馈电压U fi=6V,这时的电流反馈系数β= U fi/I d= A。
⑤转速反馈系数的整定直接将“给定”电压U g接DJK02-1上的移相控制电压U ct的输入端,“三相全控整流”电路接直流电动机负载,L d用DJK02上的200mH,输出给定调到零。
按下启动按钮,接通励磁电源,从零逐渐增加给定,使电机提速到n =150Orpm时,调节“转速变换”上转速反馈电位器RP1,使得该转速时反馈电压U fn=-6V,这时的转速反馈系数α=U fn/n =(rpm)。
(4)开环外特性的测定①DJK02-1控制电压U ct由DJK04上的给定输出U g直接接入,“三相全控整流”电路接电动机,L d用DJK02上的200mH,直流发电机接负载电阻R,负载电阻放在最大值,输出给定调到零。
②按下启动按钮,先接通励磁电源,然后从零开始逐渐增加“给定”电压U g,使电机启动升速,转速到达1200rpm。
③增大负载(即减小负载电阻R阻值),使得电动机电流I d=I ed,可测出该系统的开环外特性n =f(I d),记录于下表中:将给定退到零,断开励磁电源,按下停止按钮,结束实验。
(5)系统静特性测试①按图5-10接线,DJK04的给定电压U g输出为正给定,转速反馈电压为负电压,直流发电机接负载电阻R,L d用DJK02上的200mH,负载电阻放在最大值,给定的输出调到零。
将“调节器I”、“调节器II”都接成P(比例)调节器后,接入系统,形成双闭环不可逆系统,按下启动按钮,接通励磁电源,增加给定,观察系统能否正常运行,确认整个系统的接线正确无误后,将“调节器I”,“调节器II”均恢复成PI(比例积分)调节器,构成实验系统。
②机械特性n =f(I d)的测定A、发电机先空载,从零开始逐渐调大给定电压U g,使电动机转速接近n=l200rpm,然后接入发电机负载电阻R,逐渐改变负载电阻,直至I d=I ed,即可测出系统静态特性曲线n =f(I d),并记录于下表中:B、降低U g,再测试n=800rpm时的静态特性曲线,并记录于下表中:C、闭环控制系统n=f(U g)的测定调节U g及R,使I d=I ed、n= l200rpm,逐渐降低U g,记录U g和n,即可测出闭环控制特性n = f(U g)。
(6)系统动态特性的观察用慢扫描示波器观察动态波形。
在不同的系统参数下(“调节器I”的增益和积分电容、“调节器II”的增益和积分电容、“转速变换”的滤波电容),用示波器观察、记录下列动态波形:①突加给定U g,电动机启动时的电枢电流I d(“电流反馈与过流保护”的“2”端)波形和转速n(“转速变换”的“3”端)波形。
1)电动机启动时的电枢电流I d(“电流反馈与过流保护”的“2”端)波形2)转速n(“转速变换”的“3”端)波形。
②突加额定负载(20%I ed100%I ed)时电动机电枢电流波形和转速波形。
1)突加额定负载(20%I ed100%I ed)时电动机电枢电流波形2)突加额定负载(20%I ed100%I ed)时电动机转速波形③突降负载(100%I ed20%I ed)时电动机的电枢电流波形和转速波形。
1)突降负载(100%I ed20%I ed)时电动机的电枢电流波形2)突降负载(100%Ied20%Ied)时电动机的转速波形六、实验数据处理(1)根据实验数据,系统的开环外特性n =f(I d)。