高一物理圆周运动单元测试与练习(word解析版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、第六章 圆周运动易错题培优(难)
1.两个质量分别为2m 和m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ’的距离为L ,b 与转轴的距离为2L ,a 、b 之间用强度足够大的轻绳相连,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,开始时轻绳刚好伸直但无张力,用ω表示圆盘转动的角速度,下列说法正确的是( )
A .a 、b 所受的摩擦力始终相等
B .b 比a 先达到最大静摩擦力
C .当2kg
L
ω=a 刚要开始滑动 D .当23kg
L
ω=b 所受摩擦力的大小为kmg 【答案】BD 【解析】 【分析】 【详解】
AB .木块随圆盘一起转动,静摩擦力提供向心力,由牛顿第二定律可知,木块受到的静摩擦力f =mω2r ,则当圆盘从静止开始绕转轴缓慢地加速转动时,木块b 的最大静摩擦力先达到最大值;在木块b 的摩擦力没有达到最大值前,静摩擦力提供向心力,由牛顿第二定律可知,f=mω2r ,a 和b 的质量分别是2m 和m ,而a 与转轴OO ′为L ,b 与转轴OO ′为2L ,所以结果a 和b 受到的摩擦力是相等的;当b 受到的静摩擦力达到最大后,b 受到的摩擦力与绳子的拉力合力提供向心力,即
kmg +F =mω2•2L ①
而a 受力为
f′-F =2mω2L ②
联立①②得
f′=4mω2L -kmg
综合得出,a 、b 受到的摩擦力不是始终相等,故A 错误,B 正确; C .当a 刚要滑动时,有
2kmg+kmg =2mω2L +mω2•2L
解得
34kg
L
ω=
选项C 错误;
D. 当b 恰好达到最大静摩擦时
2
02kmg m r ω=⋅
解得
02kg
L
ω=
因为
32432kg kg kg
L L L >>
,则23kg
L
ω=时,b 所受摩擦力达到最大值,大小为kmg ,选项D 正确。
故选BD 。
2.如图所示,有一可绕竖直中心轴转动的水平足够大圆盘,上面放置劲度系数为k 的弹簧,弹簧的一端固定于轴O 上,另一端连接质量为m 的小物块A (可视为质点),物块与圆盘间的动摩擦因数为μ,开始时弹簧未发生形变,长度为L ,若最大静摩擦力与滑动摩擦力大小相等,重力加速度为g ,物块A 始终与圆盘一起转动。则( )
A .当圆盘角速度缓慢地增加,物块受到摩擦力有可能背离圆心
B .当圆盘角速度增加到足够大,弹簧将伸长
C g
L
μ D .当弹簧的伸长量为x mg kx
mL
μ+【答案】BC 【解析】 【分析】 【详解】
AB .开始时弹簧未发生形变,物块受到指向圆心的静摩擦力提供圆周运动的向心力;随着圆盘角速度缓慢地增加,当角速度增加到足够大时,物块将做离心运动,受到摩擦力为指向圆心的滑动摩擦力,弹簧将伸长。在物块与圆盘没有发生滑动的过程中,物块只能有背离圆心的趋势,摩擦力不可能背离圆心,选项A 错误,B 正确;
C .设圆盘的角速度为ω0时,物块将开始滑动,此时由最大静摩擦力提供物体所需要的向心力,有
20mg mL μω=
解得
0ω=
选项C 正确;
D .当弹簧的伸长量为x 时,物块受到的摩擦力和弹簧的弹力的合力提供向心力,则有
2
mg kx m x L μω+=+()
解得
选项D 错误。 故选BC 。
3.如图所示,在水平圆盘上沿半径方向放置用细线相连的质量均为m 的A 、B 两个物块(可视为质点)。A 和B 距轴心O 的距离分别为r A =R ,r B =2R ,且A 、B 与转盘之间的最大静摩擦力都是f m ,两物块A 和B 随着圆盘转动时,始终与圆盘保持相对静止。则在圆盘转动的角速度从0缓慢增大的过程中,下列说法正确的是( )
A .
B 所受合力一直等于A 所受合力 B .A 受到的摩擦力一直指向圆心
C .B 受到的摩擦力先增大后不变
D .A 、B 两物块与圆盘保持相对静止的最大角速度ωm = 【答案】CD 【解析】 【分析】 【详解】
当圆盘角速度比较小时,由静摩擦力提供向心力。两个物块的角速度相等,由可知半径大的物块B 所受的合力大,需要的向心力增加快,最先达到最大静摩擦力,之后保持不变。当B 的摩擦力达到最大静摩擦力之后,细线开始提供拉力,根据
可知随着角速度增大,细线的拉力T 增大,A 的摩擦力将减小到零然后反向增大,当A 的摩擦力反向增大到最大,即时,解得
角速度再继续增大,整体会发生滑动。 由以上分析,可知AB 错误,CD 正确。 故选CD 。
4.如图所示,质量相等的A 、B 两个小球悬于同一悬点O ,且在O 点下方垂直距离h =1m
处的同一水平面内做匀速圆周运动,悬线长L 1=3m ,L 2=2m ,则A 、B 两小球( )
A .周期之比T 1:T 2=2:3
B .角速度之比ω1:ω2=1:1
C .线速度之比v 1:v 2=:
D .向心加速度之比a 1:a 2=8:3
【答案】BC 【解析】 【分析】 【详解】
AB .小球做圆周运动所需要的向心力由重力mg 和悬线拉力F 的合力提供,设悬线与竖直方向的夹角为θ。对任意一球受力分析,由牛顿第二定律有: 在竖直方向有
F cosθ-mg =0…①
在水平方向有
…②
由①②得
分析题意可知,连接两小球的悬线的悬点距两小球运动平面的距离为h =L cosθ,相等,所以周期相等
T 1:T 2=1:1
角速度
则角速度之比
ω1:ω2=1:1
故A 错误,B 正确; C .根据合力提供向心力得
解得
根据几何关系可知
故线速度之比
12v v =:故C 正确;
D .向心加速度a=vω,则向心加速度之比等于线速度之比为
12a a =:故D 错误。 故选BC 。