分数百分数应用题典型解法的和复习
分数百分数应用题解题思想(一通百通)
分数应用题解题思想介绍金仁虎一、分配思想分配思想就是根据题中的数量关系,从已知条件入手,通过列式,先求出单位“1”,再由单位“1”的量进行分配。
其具体思路我们还是从第十一册教材第63页的思考题谈起。
1.基本题:同学们参加野营活动。
一个同学到负责后勤工作的老师那里去领碗,老师问他领多少,他说领55个。
又问:“多少人吃饭?” 他说:“一人一个饭碗,两人一个菜碗,三人一个汤碗。
”算一算这个同学给多少人领碗。
〔分析与解〕这是一道六年级的思考题,解答此题可以用多种方法。
(1)方程法。
设:共有X人X+X+X=55解得X=3O。
(2)算术法。
55÷(l++)=55÷1=3O(人)(3)此题还可以直接求最小公倍数来解。
根据“一人一个饭碗,二人一个菜碗,三人一个汤碗”的条件可得:[1、2、3]=6(6是1、2、3的最小公倍数)。
即:每6人为一桌,每桌所需的碗数为:饭碗:6÷l=6(个);菜碗:6÷2=3(个);汤碗:6÷3=2(个)。
共计:6+3+2=11(个)→每桌的总碗数。
这样野营的同学正好可以安排:55÷11=5(桌),而每桌都是6人,即共有6×5=3O人参加野营。
此题运用最小公倍数来解,不但可以拓宽六年级同学的解题思路,更重要的是为四、五年级同学开辟了一条解题途径。
2.变形题。
节日期间给某班同学发水果,每人3个桔子,每2人3个苹果,每4人3根香蕉,最后又给每人发1个梨,结果共发水果2OO个,求该班有多少个同学?每种水果各多少个?[分析与解] 每人所发水果情况:桔子3(个);苹果1(个);香蕉(个);梨1(个)。
(l)方程法。
设:共有X人X+3X+1X+X=200解得X=32(人)(2)算术法。
200÷(1+3+l+)=2OO÷6=32(人)(3)最小公倍数法(同学们自己思考列式)。
在求出单位“1”为32人以后,根据分配思想分别算出每种水果的个数,即:桔子3×32=96(个)苹果32×l=48(个)香蕉32×=24(个)梨子1×32=32(个)3.综合题:星期日某车间去郊外植树,休息时每人发2瓶汽水,每3人发2瓶果汁,每6人发2瓶雪碧,结果共发饮料180瓶,在这些人中,每人植一棵松树,每2人植5棵杨树,每3人植4棵柳树,每5人植3棵杏树,求该车间共植树多少棵?〔分析与解〕此题综合性很强,实际上是把前两个分配思想的小题合在一起。
分数百分数应用题复习课件
千克,已知出油率为40%,问共用了多
少花生去榨油?
2四.连续两次判断单位“1”的问题
3 6
7 1、元旦有3600人到动物园游玩,其 中数成的人34 ,占元25 ,旦成到人野人生数动相物当园于游小玩孩的人小 孩人数有多少人?
2、四年级有学生147人,五年级 学级生学的生人的数人是 数四相年当级于的五年23 ,级六的年67 。 六年级有学生多少人?
2、(1)某班50人,今天缺席2 人。 求出勤率。 (2)某班50人,今天出勤48人。 求出勤率。 (3)某班今天出勤48人,缺席2 人。求出勤率。
3、“求一个数比另一个多(少) 几分之几”的问题我们可以把它 转化为
“求相差量是单位“1”的几 分之几”的问题来解答,
相差量÷单位“1”=相差分率
相差量÷单位“1”=相差分率
模板中的图片展示页面,您可以根据需要
方法一:更改图片
† 在图“替换”下拉列表中选择要更改字体。(如下图)
•选中模版中的图片(有些图片与其他对象 ,而不是组合)。
1.单击鼠标右键,选择“更改图片”,选
† 在“替换为”下拉列表中选择替换字体。 † 点击“替换”按钮,完成。
(二)求一个数的几(百)分之几是多少:
2 5
A第:二一周本读书了90全0页书,的第一1周。读了全书的
1 9
,
10
(1)第一周读了多少页?——对应的分率是第一周读了
()
(2)第二周读了多少页?——对应的分率是第二周读了
()
(3)还剩下多少页?——对应的分率是还剩(
)
没读
(4)两周一共读多少页?——对应的分率是两周一共读
了( )
(5)第一周比第二周多读多少页?——对应的分率是第
百分数分数应用题分类复习总结
1、意义:表示一个数是另一个数的百分之几的数叫百分数,百分数又叫百分比或百分率,因为它只表示两个数量之间的关系,所以百分数后面没有单位。
2、读法:先读分母和分数线(即百分号),再读分子。
写法:先写分子,再写百分号。
3、互化:百分数化小数,小数点向左移两位,去掉百分号;小数化百分数,小数点向右移两位,添上百分号;百分数化分数,写成分母为100的分数,约分化简即可;分数化百分数,先把分数化成小数,再把小数化成百分数。
4、百分数的应用第一类:“求一个数是另一个数的几分之几(百分之几)”用除法:一个数÷另一个数(作为标准)=分率,例如:命中率、出勤率等等都是这个方法。
1、一本书100页,读了60页,读了这本书的几分之几?2、种子发芽的有48棵,不发芽的有2棵,求发芽率是多少。
第二类:“求一个数的几分之几(百分之几)是多少”用乘法。
(标准量)×分率=对应量1、全班有50人,女生占20%,男生有多少人?2、有一杯盐水,水和盐的比是1:3,这杯盐水共有180克,水和盐各有多少克?第三类:“已知一个数的几分之几(百分之几)是多少,求这个数(求单位1的量)”用除法:对应量÷对应分率=标准量1、路修了20%后,正好是40米,这条路有多少米?2、路修了20%后,还剩下40米没修,这条路有多少米?3、录音机每台降价30%后,售价350元,这种录音机原来售价多少元?第四类:求一个数比另一个数多(或少)百分之几(比字后的量为标准量)求甲比乙多百分之几表示甲比乙多的部分是乙的百分之几,用(甲-乙)÷乙求乙比甲少百分之几表示乙比甲少的部分是甲的百分之几,用(甲-乙)÷甲1、今年总产量是100吨,去年是80吨,今年比去年增产了百分之几。
总结:解应用题的画图的方法:1、找出标准量;2、画出单位1;3、根据题意在上方标出题目给的量(带单位数量);在下方标出分率(没带单位的分数或百分数)4、看求什么,是求对应量还是求标准量,如果已知单位“1”求对应量用乘法:(标准量)×分率=分率对应数量;如果未知单位“1”用除法:对应量÷对应分率=标准量,也可以用方程的:标准量(设为未知数)×分率=对应量方法练习题一.填空:1、一套西服,上衣840元,裤子210元,裤子的价钱是上衣的()%,上衣的价钱是这套西服的()%。
分数和百分数的应用问题解决
分数和百分数的应用问题解决分数和百分数是我们在日常生活中经常遇到的数学概念,也是应用广泛的数学工具。
本文将探讨分数和百分数的应用问题解决方法,帮助读者更好地理解和运用这些数学概念。
一、分数的应用问题解决1. 分数的加减乘除分数的加减乘除是我们解决分数应用问题的基础。
在进行分数的加减乘除时,我们可以先找到分母的最小公倍数,然后按照相同的分母进行计算。
最后,我们还需要对结果进行化简,将其写为最简形式。
例如,要计算 1/4 + 2/3,我们可以找到 4 和 3 的最小公倍数为 12,将两个分数的分母都改为 12,得到 3/12 + 8/12 = 11/12。
最后,我们发现结果已经是最简形式,即 11/12。
2. 分数的比较当我们需要比较两个分数的大小时,可以通过化简分数的方法来进行。
我们将两个分数都化简为相同的分母,然后比较它们的分子大小。
分子大的分数较大,分子相同的情况下,分母小的分数较大。
例如,要比较 2/5 和 3/8 的大小,我们可以将两个分数化简为相同的分母,得到 16/40 和 15/40。
由于分子相同,所以分母小的 15/40 较大。
二、百分数的应用问题解决1. 百分数的转化在解决百分数应用问题时,我们有时需要将百分数转化为分数或小数,或者将分数或小数转化为百分数。
这需要我们熟练掌握百分数和分数、小数之间的转换方法。
例如,将 75% 转化为分数,我们可以将百分数的百分数记为分子,分母为 100,得到 75/100。
然后,我们还可以将分数化简为最简形式,得到 3/4。
2. 百分数的应用百分数在实际生活中有着广泛的应用。
例如,在商业中,我们常常会遇到打折、涨价等问题,这些都是通过百分数来表示的。
在解决此类问题时,我们可以将折扣或涨价的百分数应用于原价,来计算最终的价钱。
另外,百分数也常用于表示比率、概率和统计数据。
我们可以通过计算百分数来了解某个事件发生的可能性,或者分析某个群体的特征等。
三、分数和百分数应用问题的解决方法1. 建立数学模型在解决分数和百分数应用问题时,我们可以将问题转化为数学模型,以便更好地理解和解决问题。
分数百分数应用题典型解法的和复习精修订
分数百分数应用题典型解法的和复习GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-一桶油第一次用去51,第二次比第一次多用去20千克,还剩下22千克。
原来这桶油有多少千克?[分析与解]从图中可以清楚地看出:这桶油的千克数×(1-51-51)=20+22 则这桶油的千克数为:(20+22)÷(1-51-51)=70(千克)一堆煤,第一次用去这堆煤的20%,第二次用去290千克,这时剩下的煤比原来这堆煤的一半还多10千克,求原来这堆煤共有多少千克[分析与解]显然,这堆煤的千克数×(1-20%-50%)=290+10则这堆煤的千克数为:(290+10)÷(1-20%-50%)=1000(千克)量率对应是解答分数应用题的根本思想,量率对应是通过题中具体数量与抽象分率之间的对应关系来分析问题和解决问题的思想。
(量率对应常常和画线段图结合使用,效果极佳。
)练习题※一堆煤,第一次用去这堆煤的20%,第二次用去290千克,这时剩下的煤比原来这堆煤的一半还少10千克,求原来这堆煤共有多少千克缝纫机厂女职工占全厂职工人数的207,比男职工少144人,缝纫机厂共有职工多少人?解题的关键是找到与具体数量144人的相对应的分率。
从线段图上可以清楚地看出女职工占207,男职工占1-207=2013,女职工比男职工少占全厂职工人数的2013-207=103,也就是144人与全厂人数的103相对应。
全厂的人数为:144÷(1-207-207)=480(人) 菜农张大伯卖一批大白菜,第一天卖出这批大白菜的31,第二天卖出余下的52,这时还剩下240千克大白菜未卖,这批大白菜共有多少千克?[分析与解]从线段图上可以清楚地看出240千克的对应分率是第一天卖出31后余下的(1-52)。
则第一天卖出后余下的大白菜千克数为: 240÷(1-52)=400(千克)同理400千克的对应分率为这批大白菜的(1-31),则这批大白菜的千克数为:400÷(1-31)=600(千克)转化是解决数学问题的重要手段,可以这样说,任何一个解题过程都离不开转化。
分数和百分数应用题解题技巧
分数和百分数应用题解题技巧分数和百分数是我们在日常生活中经常遇到的数学概念,它们在实际应用中具有广泛的用途。
掌握解题技巧可以帮助我们更好地理解和运用这些概念。
首先,对于分数的应用题,我们需要注意以下几个技巧:1. 将问题转化为分数形式:有些问题可能给出了一个小数或百分数,我们需要将其转化为分数形式进行运算。
例如,如果题目给出了0.5,我们可以将其转化为1/2,这样更有利于计算。
2. 找到最小公倍数:在一些问题中,我们需要进行分数的加减运算,但分母不同。
这时,我们需要找到这些分母的最小公倍数,将分数转化为相同分母后再进行运算。
3. 分数的化简:有些问题中,我们需要将分数化简为最简形式。
这可以通过寻找分子和分母的最大公约数,将其约分得到最简形式。
其次,百分数的应用题也需要我们掌握一些技巧:1. 百分数的转化:有些问题可能给出了一个分数或小数,我们需要将其转化为百分数形式。
例如,如果题目给出了0.75,我们可以将其转化为75%。
2. 百分数的运算:在一些问题中,我们需要进行百分数的加减乘除运算。
对于加减运算,我们可以先将百分数转化为分数或小数,然后进行运算;对于乘除运算,我们可以直接将百分数转化为分数或小数后进行运算。
3. 百分数的应用:在实际应用中,百分数常常用于描述比例、增长率、减少率等。
因此,我们需要理解百分数与实际问题的关联,将其运用到解题过程中。
除了上述技巧,我们还需要注意解题过程中的细节。
例如,在进行运算时,要注意保留足够的有效数字;在解答问题时,要理解题目中的条件和要求,将其与分数和百分数的概念相结合。
总之,掌握分数和百分数应用题解题技巧,可以帮助我们更加灵活地运用这些概念解决实际问题。
通过不断练习和实践,我们可以在解题过程中更加熟练地应用这些技巧,提高数学解题的能力。
六年级上专题复习题及知识归纳(分数乘除、比、百分数应用、简便运算、解方程)
1、找单位“1”: 单位“1” 在分率句中分率的前面; 或在“占”、“是”、“比”“相当于”的后面。
2、写数量关系式的技巧: (1)“的” 相当于 “×”“占”、“相当于”“是”、“比”是 “ = ”2)分率前是“的”字:用单位“1”的量×分率=具体量一、已知单位“1”的量1、分率前是“多或少”的关系式: (比少):单位“1”的量×(1-分率)=具体量; (比多):单位“1”的量×(1+分率)=具体量2、求一个数的几倍是多少:用 一个数×几倍;3、求一个数的几分之几是多少: 用一个数×几分之几。
4、求几个几分之几是多少:用几分之几×个数5、已知一个部分量是总量的几分之几,求另一个部分量的方法:(1)、单位“1”的量×(1-分率)=另一个部分量(建议用) (2)、单位“1”的量 - 已知占单位“1”的几分之几的部分量=要求的部分量1、小明看一本120页的书,已看了52。
还剩下多少页没看?2、一台电脑原来售价7200元,现在降价81。
现在每台售价多少元?3、修一条长28千米的公路,上午修了41,下午修了72。
还剩下多少千米没修?4、白兔只数的512等于黑兔的只数,白兔有144只,黑兔有多少只?5、小华看一本72页的书,第一天看了全书的13 ,第二天看了第一天的14 ,小华第二天看了多少页?6、农具厂原计划全年生产农具7200件,实际每月都比计划增产110,照这样计算,全年一共增产多少件?7、一批水泥,用去12吨,剩下的是用去的59 ,这批水泥有多少吨?8、益华电脑城有电脑220台,第一天卖出14 ,第二天卖出剩下的415,第二天卖出后还剩多少台?9、饭店买来面粉78 吨,第一天用去它的314 ,第二天又用去316吨,两天共用去面粉多少吨?10、五年级同学收集树种56千克,六年级收集的比五年级多 47 ,六年级比五年级多收集树种多少千克?11、一根绳子长1513米,用去53。
(完整版)分数百分数应用题典型解法的整理和复习
分数(百分数)应用题典型解法的整理和复习分数(百分数)应用题是小学数学应用题的主要内容之一,它是整、小数倍数关系应用题的继续和深化,是研究数量之间份数关系的典型应用题。
分数应用题涉及的知识面广,题目变化的形式多,解题的思路宽,既有独特的思维模式,又有基本的解题思路。
小学即将毕业阶段,如何通过分数(百分数)应用题方法的复习,让孩子们掌握一些基本解题方法,感悟数学的基本思想,从而达到培养初步的逻辑思维能力和运用所学知识解决实际问题能力之目的,笔者根据长期的教学实践和体会,总结出以下一些典型方法,以飨读者。
一、数形结合思想数形结合是研究数学问题的重要思想,画线段图能将题目中抽象的数量关系,直观形象地表示出来,进行分析、推理和计算,从而降低解题难度。
画线段图常常与其它解题方法结合使用,可以说,它是学生弄清分数(百分数)应用题题意、分析其数量关系的基本方法。
1【例1】一桶油第一次用去-,第二次比第一次多用去20千克,还剩下22千克。
原5来这桶油有多少千克?[分析与解]| ■克剩下師克I _________ J_________ I _____________ I ______________* 7------ 卜--------------- *----------------- "第一挨用去第二;ir用去1 1从图中可以清楚地看出:这桶油的千克数X(1 -------------------- )=20+225 5则这桶油的千克数为:(20+22)-(1- 1—1)=70 (千克)5 5【例2】一堆煤,第一次用去这堆煤的20%,第二次用去290千克,这时剩下的煤比原来这堆煤的一半还多10千克,求原来这堆煤共有多少千克?[分析与解]显然,这堆煤的千克数X(1 —20%—50%)=290+10则这堆煤的千克数为:(290+10)-(1—20%—50%)=1000 (千克)、对应思想量率对应是解答分数应用题的根本思想,量率对应是通过题中具体数量与抽象分率之间的对应关系来分析问题和解决问题的思想。
六年级数学上册分数、百分数应用题复习题
六年级数学上册分数.百分数应用题复习题【知识要点】一、“求一个数的几分之几是多少用乘法计算”是分数应用题解题的根本依据,结合分数的定义来理解,就是把一个数(或是整体)平均分成分母份,取分子份.二、分数.百分数应用题的主要类型:(1)求一个数是另一个数的几(百)分之几:用“一个数÷另一个数”(2)求一个数的几(百)分之几是多少;(3)求比一个数多(少)几(百)分之几的数是多少:A. B.(4)求一个数比另一个数多(少)几(百)分之几(大数—小数)÷单位“1”的量,或者“相差数÷单位“1”的量”(5)已知一个数的几(百)分之几是多少,求这个数.A.或者B..设所求的数为未知数X,然后根据求这个数的几(百)分之几,用乘法列方程解.三、较复杂的分数(百分数)应用题是基本分数应用题的延续和发展,它的特点是已知条件之间.已知条件和所求问题之间不再有直接的对应量率关系.解题时一定要找准标准量(单位“1’),找准“与量对应的率”.“与率对应的量”,并利用线段图来帮助理解题意,分析数量关系.四、百分率问题:优秀率=优秀人数÷总人数×100%成活率=成活棵树÷总棵树×100%合格率=合格人数÷总人数×100%百分率=部分数÷总数×100%出粉率=面粉质量÷小面质量×100%花生出油率=花生油重量÷花生重量×100%现实生活中还有“及格率”.“出勤率”.“合格率”.“达标率”.“利息”.“成数”.“利润率”.“折扣”等含意相近的词,我们要灵活运用(百)分数知识,解决这些实际问题.五、按比例分配问题:按比例分配:把一个数按着一定的比来进行分配,这种分配方法通常叫做按比例分配.解答按比例分配问题,要根据已知条件,把已知数量与份数对应起来,转化为求一个数的几分之几来做.六、工程问题.解题指导:“工程问题”指的都是两个人以上合作完成某一项工作,有时还将内容延伸到相遇运动和向水池注水等等.解答工程问题时,一般都是把总工作量看作单位“1”,把单位“1”除以工作时间看成工作效率,因此,工作效率就是工作时间的倒数.工程问题关系式是:工作总量÷工作效率=工作时间工作总量÷工作效率和=合作时间【基础练习】一.求一个数是另一个数的几(百)分之几.1、光明小学有学生1200人,其中男生有576人,男生占全校人数几分之几?2、学校的果园里有梨树15棵,苹果树20棵.梨树的棵数是苹果树的百分之几?3、学校的果园里有梨树15棵,苹果树20棵.苹果树的棵数是梨树的几倍?二、求一个数的几(百)分之几是多少.1、一个排球定价60元,篮球的价格是排球的150% .篮球的价格是多少元?2、一本书有200页,小丽第一天看了全书的25%,第二天看了第一天的80%,第二天看了多少页?3、一块长方形玻璃长56厘米,宽是长的50%,这块玻璃的面积是多少平方厘米?4、商场搞打折促销,其中服装类打5折,文具类打8折.小明买一件原价320元的衣服,和原价120元的书包,实际要付多少钱?三、求比一个数多(少)几(百)分之几是多少1.一件衬衣原价125元,现在降价.现在售价是多少元?2、一件衬衣原价125元,现在涨价20%.现在售价是多少元?3、要挖一条长2000米的水渠,第一天挖了12.5%,还剩多少米没挖?4、一个果园里去年产了4500千克的苹果,今年因为气候好,比去年增产了2成,今年产了多少千克苹果?1、有一台空调,原价1600元,涨价后卖2000元,涨了百分之几?2、学校运来34吨煤,已经烧了18吨,烧掉的比剩下的多几分之几?3、光明小学去年有篮球24个,今年新买了6个.今年比去年增加了百分之几?4、有一个公园原来的门票是80元,国庆期间打8折,每张门票能节省多少元?相当于降价了百分之几?五、已知一个数的几(百)分之几是多少,求这个数.1、一个儿童体内所含水分有28千克,占体重的75%.这个儿童的体重有多少千克?2、小红家买来一袋大米,吃了15%,还剩15千克.买来大米多少千克?3、水果店运一批水果.第一次运了50千克,第二次运了70 千克,两次正好运了这批水果的60%.这批水果有多少千克?4、要挖一条水渠,第一天挖了全长的12.5%,第二天挖了全长的27.5%,还剩1200米没挖,这条水渠长多少米?5、一件衬衣降价20%后,售价为100元.这件衬衣原价是所少元?6、一件衬衣涨价20%后,售价为120元.这件衬衣原价是多少元?六.百分率问题.1.大米加工厂用200千克的稻谷加工成大米时,共碾出大米160千克,求大米的出米率.2、林场春季植树,成活了175棵,死了25棵,求成活率.3、用一批玉米种子做发芽试验,结果发芽的有192粒,没有发芽的有8粒,求这一批种子的发芽率.4、菜籽的出油率是28%,若榨油84千克,需要菜籽多少千克?七.按比例分配问题.1.石灰水是用石灰和水按1:100配成的,要配制4545千克的石灰水,需石灰多少千克?2、一件衬衣售价为100元,一条长裤的价钱和这件衬衣的价钱之比是 .这条长裤售价是多少元?3、一块长方形地,周长400米,长和宽的比是3:2,这块地的面积是多少平方米?4、一种药水是用药物和水按3:400配制成的.(1)要配制这种药水1612千克,需要药粉多少千克?(2)用水60千克,需要药粉多少千克?(3)用48千克药粉,可配制成多少千克的药水?八.工程问题.1.一篇稿件,甲.乙两人合打.甲一个人完成要5小时,乙一个人完成要8小时,求两人合打几小时可以完成?2、一项工程,甲独立完成要12天,乙独立完成要15天,现两队合作,几天可以完成这项工程的?3、客车由甲城到乙城需行12小时,货车由乙城到甲城需行15小时,两车同时从两城相向开出,相遇时客车距离乙城还有360于米.两城相距多少千米?九.较复杂的分数.百分数应用题.1.一件衬衣售价为100元,一条长裤的价钱是这件衬衫的150%,这条长裤的价钱又是一双皮鞋的 .这双皮鞋售价是多少元?2.8月初鸡蛋价格比7月初上涨了10%,9月初又比8月初回落了15%.9月初鸡蛋价格比7月初涨了还是跌了?涨跌幅度是多少?3、长虹电视机进行促销活动,降价8%.在此基础上,商场又返还售价5%的现金.此时购买长虹牌电视机,相当于降价百分之多少?4、红光农场去年植树的数量比前年成活的树木多50%,去年的成活率是80%.去年成活的树木数量是前年成活树木的百分之多少?5、有科技书和文艺书360本,其中科技书占总数的1/9,现在又买来一些科技书,此时科技书占总数的1/6.又买来多少本科技书?6、有一堆糖果,其中奶糖占45%,再放16块水果糖后,奶糖就占25%,那么,这堆糖中奶糖有多少块?【综合练习一】1、地球上海洋面积是36000万平方千米,占地球总面积的 .地球总面积是多少万平方千米?2、三个同学跳绳.小明跳了120个,小强跳的是小明跳的,小亮跳的是小强跳的 .小亮跳了多少个?3、(1)五年级同学收集了165个易拉罐,六年级同学比五年级多收集了 .六年级收集了多少个易拉罐?(2)四年级比六年级少收集了,四年级收集了多少个易拉罐?4.(1)一个县迁建绿色蔬菜总产量720万千克,是去年绿色蔬菜总产量的 .去年全县绿色蔬菜总产量是多少万千克?(2)一个县迁建绿色蔬菜总产量720万千克,比去年少 .去年全县绿色蔬菜总产量是多少万千克?【综合练习二】1、一列火车的速度是180千米/时.一辆小汽车的速度是这列火车的,是一架喷气式飞机的 .这架喷气式飞机的速度是多少?2.(1)用84 长的铁丝围城一个长方形,这个长方形的长于宽的比是 .这个长方形的长与宽分别是多少?(2)用84 长得铁丝围成一个三角形,这个三角形三条边长度的比是3:4:5,.三条边各是多少厘米?3、取小麦500克,烘干后,还有428克.计算这种小麦的烘干率和含水率.4、在北纬以上的地方,一年连续约有2个月的时间没有夜晚,没有夜晚的时间约占全年的百分之几?5.由于纬度比较高,瑞典首都斯德哥尔摩七月份的每天平均日照时间大约是一天的75%,约有多少小时?【综合练习三】1、人体血液在动脉中的流动速度是50厘米/秒,在静脉中的流动速度是动脉中的 2/5,在毛细血管中的流动速度只有静脉中的 1/40.血液在毛细血管中每秒流动多少厘米?2、海象的寿命大约是40年,海狮的寿命是海象的 2/3,海豹的寿命是海狮的3/4 .海豹的寿命大约是多少年?3.蜜蜂每秒能振动翅膀236次,蝗虫每秒振动翅膀次数比蜜蜂少 109/118.蝗虫每秒能振动多少次?4、鸡的孵化期是21天,鸭的孵化期比鸡长1/3 .鸭的孵化期是多少天?5.严重的水土流失致使每年大约有16亿吨的泥沙流入黄河,其中25%的泥沙沉积在河道口,其余被带到入海口.有多少亿吨泥沙被带到入海口?6.一幢楼房共有15层,高约50米.小萍家住在7楼,小萍家的地板离地有多高?【综合练习四】1、一共有240千克水果糖,每袋装 1/4千克.已经装完了总量的3/4 ,已经装完了多少袋?2、我国幅员辽阔,东西相距5200km,东西距离是南北的52/55.南北相距多少千米?3、一杯250ml的鲜牛奶大约含有 3/10的钙质,占一个成年人一天所需钙质的 3/8.一个成年人一天大约需要多少钙质?4.一本课外读物,小芳读了35页,还剩下 2/7没有读.这本课外读物一共有多少页?5.体积相等的冰的质量比水的质量少 1/10,现有一块重9kg的冰,如果有一桶水的体积和这块冰的体积相等,这桶水有多重?6.一批大米运往灾区,运了4车才运走,平均每车运走这批大米的几分之几?剩下的大米还要几车才能运完?【综合练习五】1、某电视机厂去年全年生产电视机108万台,其中上半年产量是下半年的4/5.这个电视机厂去年上半年和下半年的产量分别是是多少?2、一套运动服共300元,裤子价钱是上衣的2/3.上衣和裤子的价钱分别是多少?3、中国农历中的“夏至”是一年中白昼最长.黑夜最短的一天.这一天,北京的黑夜时间是白天的3/5.白昼和黑夜分别是多少小时?4、挖一条水渠,王伯伯需要20天,李叔叔需要30天.两人合作,几天挖完这天水渠的一半?5、甲车从A城市到B城市要行驶12小时,乙车从B城市到A城市要行驶15小时.两车分别从A城市和B城市出发,几小时后相遇?6.甲乙两队合作种树,甲队单独种需要8天,乙队单独种需要10天.现在两队合作,5天能种完吗?【综合练习六】1、某妇产医院上月新生婴儿303名,男女婴儿人数之比是51:50.上月新生男.女婴儿各有多少人?2、学校把栽70棵树的任务按人数比分配给六年级三个班,一班有46人,二班有44人,三班有50人.三个班各应栽多少棵?3、刘大爷家里的菜地共800 ,刘大爷准备用2/5种西红柿,剩下的按2:1的面积比种黄瓜和茄子.三种蔬菜的面积分别是多少平方米?4、一种混凝土的水泥.沙子和石子的比是2:3:5.要搅拌20t这样的混凝土,需要水泥.沙子和石子各多少吨?。
六年级数学上应用题归纳
六年级数学上应用题归纳一、分数应用题1.求一个数是另一个数的几分之几解法:部分量÷标准量=分率2.已知一个数,求这个数的几分之几是多少(已知整体,求部分)解法:标准量×分率=部分量3.已知一个数的几分之几是多少,求这个数是几(已知部分,求整体)解法①:部分量÷分率=标准量解法②:(列方程)设这个数是x,则x×分率=部分量二、百分数应用题1. 求一个数是另一个数的百分之几解法:部分量÷标准量=百分率2. 已知一个数,求这个数的百分之几是多少(已知整体,求部分)解法:标准量×百分率=部分量3.已知一个数的百分之几是多少,求这个数是几(已知部分,求整体)解法①:部分量÷百分率=标准量解法②:(列方程)设这个数是x,则x×百分率=部分量分百应用题要找准题中的关键词,比如:是,比,占,相当于,等于,和“谁”比,谁就是单位“1”,就是标准量三、比的问题1.已知A,B比A多几分之几,求B解法:A×(1+分率)2.已知B,B比A多几分之几,求A解法:(列方程)设A为x,则x ×(1+分率)=B“少几分之几”的问题把加号改减号四、替换法替换的策略是指将题目中的一个量用另一个量表示,这样就将两个量替换成为一个量,将题目进行了简化,从而方便解题。
替换法体现了数学中等量代换的思想,在运用过程中一定要注意找准进行替换的量,只有相等的两个量才能够进行替换替换法一定要用“箭头()”表示清楚用哪个替换哪个,它们之间的数量关系是如何,五、假设法(“鸡兔同笼”问题)解法1:先假设它们全是兔.于是根据鸡兔的总只数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看相差多少.每差2只脚就说明有一只鸡;将所差的脚数除以2,就可以算出共有多少只鸡.我们称这种解题方法为假设法.概括起来,解鸡兔同笼问题的基本关系式是:鸡数=(每只兔脚数×兔总数- 实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数解法2:假设全是鸡(略)“鸡兔同笼”问题一定要先假设,假设为同一类,把问题简单化,然后再解替换法和假设法两类题解答完后一定要把答案代入题中验算,防止把两者对应答案搞错!!分数应用题在小学数学中非常重要,它不仅是考试中的重点,也是难点。
分数百分数应用题复习+分数百分数应用题解题方法
寒假专题——分数百分数应用题复习一、学习目标:1. 使学生进一步加深对基本数量关系的理解,加深对“转化”“对应”等数学思想的理解,掌握分析问题的思路与方法。
2. 能比较熟练的用算数方法和列方程法解答分数、百分数的应用题。
3. 通过一题多解、一题多编、一题多问、一图多用、补充条件编题、给出条件补充问题、题组练习等多种方式的学习,拓展思路,提高灵活运用基础知识,解决实际问题的能力。
二、重点、难点:重点:对分数、百分数应用题解题思路的分析及建立分数、百分数应用题与已有知识的联系。
难点:已知一个数的几分之几(或百分之几)是多少,求这个数的两步应用题及求一个数比另一个数多(少)百分之几的应用题。
三、考点分析:分数、百分数的知识,在日常生活和生产建设中有着广泛的应用,也是小学数学的一个重要内容。
这一部分内容要求会解答分数、百分数应用题,能够理解应用题的题意,掌握最基本的数量关系,正确判别计算的方法,会列式计算,并且善于检验答案的合理性与准确性。
并能够运用所学的知识解决生活中一些简单的实际问题,例如求一个数比另一个数增加或减少百(几)分之几的问题;求一个数增加(减少)它的几(百)分之几是多少的应用题以及这类问题的逆向问题。
本讲内容在考试中经常以解决问题的形式出现,分值大约为12~18分。
典型例题知识点一:思路分析:1)题意分析:本题主要考查同学们的审题能力。
2)解题思路:全校1200人是由男生人数和女生人数组成的,要求出女生的人数占全校人数的几分之几,可以先求出女生的人数,然后再用女生的人数除以全校人数,就是题目中的所求。
解答过程:女生人数有:1200-576=624(人)女生人数占全校人数的几分之几?解题后的思考:正确解决有关分数、百分数的应用题,常常将被比的量(标准量)看作单位“1”,再看与它相比的量(比较量)相当于单位“1”的几分之几,称作分率(百分率),认清其数量关系,是解决这类问题的突破口。
思路分析:1)题意分析:本题主要考查同学们能不能正确找出单位“1”。
分数、百分数应用题的一般解题方法
分数、百分数应用题的一般解题方法(总3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--分数、百分数应用题的一般解题方法一、解决分数乘法问题1、求一个数的几分之几是多少(单位“1”已知)单位“1”×分率=分率所对应的量2、求一个数比单位“1”多几分之几是多少(单位“1”已知)单位“1”×(1+分率)=分率所对应的量3、求一个数比单位“1”少几分之几是多少(单位“1”已知)单位“1”×(1-分率)=分率所对应的量二、解决分数除法问题1、已知一个数的几分之几是多少,求这个数(单位“1”未知)数量÷数量所对应的分率=单位“1”2、已知一个数比另一个数多几分之分,求这个数(单位“1”未知)数量÷(1+分率)=单位“1”3、已知一个数比另一个数少几分之分,求这个数(单位“1”未知)数量÷(1-分率)=单位“1”三、解决百分数问题1、求百分率的问题:一个数是另一个数的百分之几。
另一个数一个数×100%=百分率2、求一个数比另一个数多(少)百分之几。
相差数÷单位“1”=多(少)百分之几 对应量÷单位“1”-13、求一个数的百分之几是多少(单位“1”已知)单位“1”×百分率=分率所对应的量已知一个数的百分之几是多少,求这个数。
(单位“1”未知)数量÷数量所对应的百分率=单位“1”4、求比一个数多(少)百分之几的数是多少单位“1”×(1+百分率)=分率所对应的数量5、已知比一个数多(少)百分之几的数是多少,求这个数。
数量÷(1+对应分率)=单位“1”6、折扣问题原价×折扣=现价7、纳税问题收入×税率=应纳税额8、利息问题本金×利率×时间=利息利息×税率=利息税利息—利息税=税后利息本息=本金+税后利息。
分数百分数应用题的知识点总结
分数百分数应用题的知识点总结Revised by BLUE on the afternoon of December 12,2020.分数、百分数应用题的知识点总结我们可以把分数、百分数应用题分成两种类型:求分率、百分率的题目和求数量的题目。
以下所有类型的应用题的解决,都有一个步骤:1、先一定要确定单位1 2、然后看问题,明确这道题是求哪个类型的题目 3、最后按照不同的方法解答。
1、求分率、百分率的应用题。
(1)求“一个数是(占)另一个数的几分之几(百分之几)”,是或占前面的数量除以是或占后面的数量,如果题中没有告诉你具体的数量,也可以用分数或百分数来表示,再求出来。
(其中求百分率的题目也是属于这种类型的题目) 方法:一个数÷另一个数=几分之几(百分之几)。
举例:1、六(5)班男生人数25人,女生人数30人,男生人数是女生的几分之几?2、2000可花生仁榨出花生油760千克,求花生的出油率。
3、甲数是乙数的41,甲数是乙数的百分之几?(2)求“一个数比另一个数多(少)几分之几(百分之几)”,先两个数量进行比较,也就是求出多的数量和少的数量,再除以单位“1”的数量。
如果题中没有告诉你具体的数量,也可以用分数或百分数来表示,再求出来。
方法:多的数量÷单位“1”的数量=多几分之几(多百分之几)少的数量÷单位“1”的数量=少几分之几(少百分之几)举例: 1、停车场停了18辆大客车,15辆小汽车。
大客车比小汽车多几分之几?2、去年计划造林12公顷,实际造林15公顷,增产百分之几?3、甲数是乙数的41,甲数比乙数少百分之几?2、求数量的应用题。
(1)求另一个数量(求一个数的几分之几(或百分之几)是多少的题目也属于这种类型)先一定要确定单位“1”,然后找到表示问题的分率或百分率,再用单位“1”数量×表示问题的分率或百分率就可以求出答案来了。
当然这种问题也有稍复杂的情况,题中的分数不一定就表示最后的问题的分数,要求出最后的问题,你有可能先要求出其他数量或者分数。
六年级上册分数百分数应用题类型及解题方法
2Hale Waihona Puke 多/少百分之几六年级举行“小发明”比赛,六(1)班交了 32件作品,六(2)班交了40件作品。六(1) 班的作品比六(2)班的作品少几分之几? 分析:已知:六(1)班作品32件,六(2) 班作品40件 求:六(1)班作品比六(2)班作品 少几分之几
分析:少几分之几,即是求少的部分占单 位“1”的几分之几,就是少的部分÷单位 “1” 寻找单位“1”:比谁多,比谁少,即与谁相 比,谁就是单位“1”
小结:求谁占谁的几分之几,就用谁÷谁,
即:前一个量÷后一个量
六年级举行“小发明”比赛,六(1)班交 了 32件作品,六(2)班交了40件作品。六(1) 班的作品占六(2)班的百分之几? 分析:已知:六(1)班作品32件,六(2) 班作品40件 求:六(1)班作品占六(2)班作品 的百分之几
六(1)班作品÷六(2)班作品×100%
分数、百分数 应用题
1、占几分之几/百分之几
六年级举行“小发明”比赛,六(1)班交了 32件作品,六(2)班交了40件作品。六(1) 班的作品占六(2)班的几分之几? 分析:已知:六(1)班作品32件,六(2) 班作品40件 求:六(1)班作品占六(2)班作品 的几分之几
六(1)班作品÷六(2)班作品
小结:已知比较量,比较量比标准量多或少几分之 几,求标准量 即 :已知比较量,求单位“1”的量,用除法 解题步骤:1、先找出单位“1”,单位“1”未知,用 除法 2、再找出比较量对应的分率,多几分之 几,就是(1+几分之几),少几分之几,就是 (1-几分之几) 3、列式:比较量÷比较量对应的分率
小结:已知一个量,另一个量比已知量多或少几分 之几,求另一个量 即 :已知单位“1”的量,求比较量,用乘法 解题步骤:1、先找出单位“1”,单位“1”已知,用 乘法 2、再找出比较量对应的分率,多几分之 几,就是(1+几分之几),少几分之几,就是 (1-几分之几) 3、列式:比较量=单位“1”的量×比较 量对应的分率
分数和百分数应用练习题复习
精品文档分数和百分数应用题姓名:解题方法:找准单位“ 1 ”一、把分率作为突破口,找准单位“ 1”分数应用题存在着三种数量(即比较量、标准量和分率),这三种数量有着如下的关系:标准量×分率 = 比较量,比较量÷标准量 = 分率,比较量÷分率 = 标准量,要正确找准单位“ 1的”量(即标准量)必须从题目中的分率着手,看这个分率是哪个量的分率,哪个量就是标准量。
例如:幸福村有旱地300 亩,水田面积是旱地面积的3/5 ,水田面积有多少亩?这道题中的分率 3/5 是旱地面积的3/5 ,所以旱地面积是单位“ 1的”量。
二、部分数和总数有些分数应用题,存在着整体和部分两个数量,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“ 1。
”例如:我国人口约占世界人口的 1/5 ,世界人口是总数,我国人口是部分数,所以,世界人口就是单位“ 1。
”例如:食堂买来 100 千克白菜,吃了 2/5 ,吃了多少千克?在这里,食堂一共买来的白菜是总数,吃掉的是部分数,所以 100 千克白菜就是单位“ 1 。
”解答这类分数应用题,只要找准总数和部分数,确定单位“ 1就”很容易了。
三、两种数量比较分数应用题中,两种数量相比的关键句非常多。
有的是“比”字句,有的则没有“比”字,而是带指向性特征的“占”、“是”、“相当于”。
在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“ 1。
”例如:六( 2)班男生比女生多1/2 。
就是以女生人数为标准(单位“ 1)”,男生比女生多的人数作为比较量。
在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。
这个“占”,“相当于”,“是”后面的数量——谁就是单位“1”。
例如,一个长方形的宽是长的 5/12 。
在这关键句中,很明显是以长作为标准,宽和长相比较,也就是说长是单位“ 1。
用分数(百分数)解决实际问题题型总结超全
四、工程问题:(两人一直合作)
五.小明和爷爷一起去操场散步,小明走一圈需要6分钟,爷爷走一圈需要8分钟,(1)如果两人 同时同地出发,多少分钟相遇?
六.如果两人同时同地出发,同向而行,多少分钟后小明超爷爷一圈 6. 一个水池,有两个进水管,单开甲管8小时可以将水池放满,单开乙管6小时可以将水池放满 ,两管齐开多少小时可以将水池放满? 7. 一个水池可以装水360吨,有两个水管,单出水管8小时可以将满池水放完,单开进水管6小 时可以将水池放满,两管齐开多少小时可以将水池放满?(用两种方法解答)
○ 说明:题目中没有:比……多(少),也可能用单位1加减分数 ○ 整体为单位1
1)的前比后,的字优先 2)找多或少,谁比谁多或少,比后
3、原价100元,降低了1/5,现价是多3少)元整?体为单位1
4、降价1/5后现价为100元,原价是多少元?
5、提价1/5后现价为100元,原价是多少元?
3、甲36,乙是甲的4/9,丙是乙的3/4,求丙
4、甲36,是乙的4/9,丙是乙的3/4,求丙
5、甲36,是乙的4/9,乙是丙的3/4,求丙
率前面对应的量是部
分量,总数是单位1
6、出粉率是75%,要加工12吨面粉,需要多少小麦?
7、出粉率是75%,有12吨小麦,能加工多少吨面粉?
8、合格率是80%,不合格的有20个,求这批产品有多少?
已知比一个数多(少)几分 之几(百分之几)
一.甲是3位1) =百分率
四、求多(少)几分之几(百分之几)
一.计划20万元,实际16万元,少用了几分之几(百分之几) 二.计划20万元,比实际多5万元,多用了几分之几(百分之几) 三.计划20万元,比实际少5万元,少用了几分之几(百分之几) 四.降价10元后的售价是40元,,降价几分之几(百分之几) 五.提价10元后的售价是100元,涨价几分之几(百分之几)
六年级分数(百分数)应用题典型解法的整理和练习
1、分数应用题类型总结第一类、一个数的几分之几。
已知单位“1”,用乘法。
“是”“比”“占”后面是单位1,已知单位“1”,用乘法。
“是比占”相当于“=” “的”相当于“×”例1: 已知甲数是乙数的53,乙数是25,求甲数是多少?甲数 = 乙数 ×53 即25×53=15 1.(1)某校有男生240人,女生是男生的 65,女生有多少人?第二类、一个数的几分之几。
未知单位“1”,用除法。
“是”“比”“占”后面是单位1,未知单位“1”,用除法。
“是比占”相当于“=” “的”相当于“×”例: 甲数是乙数的53,甲数是15,求乙是多少?甲 = 乙 × 53 即:15÷53=251、果园里有桃树120棵,桃树的棵数是梨树的41,果园里有桃树多少棵?第三类、两步乘除此类型的题是第一第二类题目综合运用,一般要经过两步才能得到答案。
1、A 、小明有图书48本,小芳的图书是小明的65,小利的图书是小芳的43,小利有图书多少本?分析:这种类型的题目要倒着分析,从问题开始分析。
思路:a 、看问题求小利有图书多少本; B 、小利的图书是小芳的3/4;从ab 看,如果知道小芳的图书本数,即可求出小利有多少本图书,小芳的图书是单位‘1’,小利图书=小芳图书×1/4,从题目看,小芳的图书本数没有直接给出,现在还不能求出小利的图书本数,接着看题目。
C 、小芳的图书是小明的5/6;如果知道小明的图书本数即可求出小芳的图书本数,小明的图书是单位‘1’,小芳图书=小明图书×5/6,随之可求出小利的图书本数; D 、最后,彩蛋来了,“小明有图书48本”有了这个条件,根据c 可求出小芳的图书本数,根据b 可求出小利图书本数。
看明白了吗?从问题开始分析,根据条件一步步得到答案,像柯南找破案一样,很酷吧。
自己尝试做一下吧B 、小利有图书45本,小芳的图书是小明的65,小利的图书是小芳的43,小明有图书多少本?2、A 、果园里有桃树80棵,梨树的棵树是桃树的169,又是苹果树的3215,果园里有多少棵苹果树?B 、果园里有桃树45棵,桃树的棵数是梨树的169,苹果树的棵数是梨树的2017,果园里有多少棵苹果树?第四类、比单位“1”多或者少,已知单位“1”.甲比乙多几分之几,已知乙,求甲。
分数、百分数应用题的分析及解答过程
分数、百分数应用题的分析及解答过程一、分数、百分数应用题的结构例。
小红有20元,小军是小红的6倍,小军有多少元?20 × 6 = 120 (元)求一个数的几倍是多少?例。
小红有20元,小军相当于小红0.7倍,小军有多少元?20 ×0.7 = 14 (元)求一个数的十分之几、百分之几、千分之几……是多少?例。
小红有20元,小军占小红3/10,小军有多少元?20 ×3/10 = 6 (元)求一个数的几分之几是多少?由于上面的三道题从文字的叙述方式和表达的意思是一致的,所以应用的解题方法也是相同的,根据整数、小数、分数乘法的意义都是用乘法进行计算。
也可以把它们统称为倍比应用题。
结合我们已经学过的倍数应用题的基本结构(“1”份数×倍数=几份数),可以归纳为:求一个数的几倍是多少?(整数乘法应用题——倍数应用题)求一个数的十分之几、百分之几、千分之几……是多少?(小数乘法应用题)求一个数的几分之几是多少?(分数乘法应用题)单位“1”×分率= 分率的对应量(量率相对应)在这里都是以“一个数”为标准,用“另一个数”来同“一个数”进行比较,每次比较都有一个“结果”。
因此我们把“一个数”称为单位“1”,把“另一个数”称为分率的对应量,把比较的“结果”称为分率。
注意在这里进行比较时,产生的关系是倍比关系(乘除关系)。
二、分数、百分数应用题的分析1.怎样判断分数、百分数应用题的单位“1”、分率、分率的对应量?首先,找出题中的分率。
分率的表现形式有:倍数、百分数、比、分数(不带计量单位)。
在一道题中如果有倍比关系,也就分率出现,而题中出现的倍数、百分数、比都是反映两个量之间的倍比关系,因此倍数、百分数、比都是分率。
当出现分数时,就有两种情况,如果分数的后面带有计量单位,那么这个分数表示的是具体的数量;如果分数的后面不带有计量单位,那么这个分数表示的是两个量之间的倍比关系,它就是分率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一桶油第一次用去51,第二次比第一次多用去20千克,还剩下22千克。
原来这桶油有多少千克[分析与解]从图中可以清楚地看出:这桶油的千克数×(1-51-51)=20+22则这桶油的千克数为:(20+22)÷(1-51-51)=70(千克)一堆煤,第一次用去这堆煤的20%,第二次用去290千克,这时剩下的煤比原来这堆煤的一半还多10千克,求原来这堆煤共有多少千克[分析与解]显然,这堆煤的千克数×(1-20%-50%)=290+10则这堆煤的千克数为:(290+10)÷(1-20%-50%)=1000(千克)量率对应是解答分数应用题的根本思想,量率对应是通过题中具体数量与抽象分率之间的对应关系来分析问题和解决问题的思想。
(量率对应常常和画线段图结合使用,效果极佳。
)练习题※一堆煤,第一次用去这堆煤的20%,第二次用去290千克,这时剩下的煤比原来这堆煤的一半还少10千克,求原来这堆煤共有多少千克 缝纫机厂女职工占全厂职工人数的207,比男职工少144人,缝纫机厂共有职工多少人 解题的关键是找到与具体数量144人的相对应的分率。
从线段图上可以清楚地看出女职工占207,男职工占1-207=2013,女职工比男职工少占全厂职工人数的2013-207=103,也就是144人与全厂人数的103相对应。
全厂的人数为:144÷(1-207-207)=480(人)菜农张大伯卖一批大白菜,第一天卖出这批大白菜的31,第二天卖出余下的52,这时还剩下240千克大白菜未卖,这批大白菜共有多少千克[分析与解]从线段图上可以清楚地看出240千克的对应分率是第一天卖出31后余下的(1-52)。
则第一天卖出后余下的大白菜千克数为: 240÷(1-52)=400(千克) 同理400千克的对应分率为这批大白菜的(1-31),则这批大白菜的千克数为:400÷(1-31)=600(千克)转化是解决数学问题的重要手段,可以这样说,任何一个解题过程都离不开转化。
它是把某一个数学问题,通过适当的变化转化成另一个数学问题来进行思考、求解,从而实现从繁到简、由难到易的转化。
复杂的分数应用题,常常含有几个不同的单位“1”,根据题目的具体情况,将不同的单位“1”转化成统一的单位“1”,使隐蔽的数量关系明朗化。
1、从分数的意义出发,把分数变成份数进行“率”的转化 男生人数是女生人数的54,男生人数是学生总人数的几分之几 [分析与解] 男生人数是女生的54,是将女生人数看作单位“1”,平均分成5份,男生是这样的4份,学生总人数为这样的(4+5)份,求男生人数是学生总人数的几分之几就是求4份是(4+5)份的几分之几4÷(4+5)=94 兄弟两人各有人民币若干元,其中弟的钱数是兄的54,若弟给兄4元,则弟的钱数是兄的32,求兄弟两人原来各有多少元[分析与解]兄弟两人的总钱数是不变量,把它看作单位“1”,原来弟的钱数占两人总钱数的544+,后来弟的钱数占两人总钱数的322+,则两人的总钱数为: 4÷(544+-322+)=90(元)弟原来的钱数为:90×544+=40(元)兄原来的钱数为:90-40=50(元)2、直接运用分率计算进行“率”的转化 甲是乙的32,乙是丙的54,甲是丙的的几分之几 [分析与解]甲是乙的32,乙是丙的54,求甲是丙的的几分之几就是求54的32是多少54×32=158某工厂计划一月份生产一批零件,由于改进生产工艺,结果上半月生产了计划的53,下半月比上半月多生产了51,这样全月实际生产了1980个零件,一月份计划生产多少个[分析与解]51是以上半月的产量为“1”,下半月比上半月多生产51,即下半月生产了计划的53×(1+51)=2518。
则计划的(53+2518)为1980个,计划生产个数为: 1980÷[53+53×(1+51)]=1500(个)3、通过恒等变形,进行“率”的转化【例9】甲的54等于乙的73,甲是乙的几分之几[分析与解]由条件可得等式:甲×54=乙×73方法1:等式两边同除以54得:甲×54=乙×73÷54甲=乙×2518方法2:根据比例的基本性质得:甲∶乙=73∶54化简得:甲∶乙=15:28 即甲是乙的2518。
【例10】五(2)班有学生54人,男生人数的75%和女生人数的80%都参加了课外兴趣小组,而未参加课外兴趣小组的男、女生人数刚好相等,这个班男、女生各有多少人[分析与解] 由条件可得等式:男生人数×(1-75%)= 女生人数×(1-80%) 男生人数∶女生人数=4:5就是男生人数是女生人数的54。
女生人数:54÷(1+54)=30(人) 男生人数:54-30=24(人)分数(百分数)应用题中有许多数量前后发生变化的题型,一个数量的变化,往往引起另一个数量的变化,但总存在着不变量。
解题时要善于抓住不变量为单位“1”,问题就会迎刃而解。
1、部分量不变有两种糖放在一起,其中软糖占209,再放入16块硬糖以后,软糖占两种糖总数的41,求软糖有多少块 [分析与解]根据题意,硬糖块数、两种糖的总块数都发生变化,但软糖块数不变,可以确定软糖块数为单位“1”,则原来硬糖块数是软糖块数的(1-209)÷209=911倍。
加入16块硬糖以后,后来硬糖块数是软糖块数的(1-41)÷41=3倍,这样16块硬糖相当于软糖的3-911=916倍,从而求出软糖的块数。
16÷[(1-41)÷41-(1-209)÷209]=9(块) 小明看一本课外读物,读了几天后,已读的页数是剩下页数的81,后来他又读了20页,这时已读的页数是剩下页数的61,这本课外读物共有多少页[分析与解]根据题意,已读页数和未读页数都发生了变化,但这本书的总页数不变,可把总页数看作单位“1”,原来已读页数占总页数的811+,又读了20页后,这时已读页数占总页数的611+,这20页占这本书总页数的(611+-811+),则这本课外读物的页数为: 20÷(611+-811+)=630(页)【例13】兄弟三人合买一台彩电,老大出的钱是其他两人出钱总数的21,老二出的钱是其他两人出钱总数的31,老三比老二多出400元。
问这台彩电多少钱[分析与解]从字面上看21和31的单位“1”都是其他两人出钱的总数,但含义是不同的,21是以老二和老三出钱的总数为单位“1”, 31是以老大和老三出钱的总数为单位“1”。
但三人出钱的总数(彩电价格)是不变的,把它确定为单位“1”,老大出的钱数相当于彩电价格的211+,老二出的钱相当于彩电价格的311+,老三出的钱数相当于彩电价格的1-211+-311+=125,400元相当于彩电价格的125-311+=61。
这台彩电的价格为: 400÷(1-211+-311+-311+)=2400(元)五、假设思想假设思想是一种重要的数学思想,常用有推测性假设法和冲突式假设法。
1、推测性假设法推测性假设法是通过假定,再按照题的条件进行推理,然后调整设定内容,从而得到正确答案。
【例14】一条公路修了1000米后,剩下部分比全长的53少200米,这条公路全长多少米[分析与解]由题意知,假设少修200米,也就是修1000-200=800(米),那么剩下部分正好是全长的53,因此已修的800米占全长的(1-53),所以这条公路全长为:(1000-200)÷(1-53)=2000(米)2、冲突式假设法冲突式假设法是解应用题中常用的一种思维方法。
通过对某种量的大胆假设,再依照已知条件进行推算,根据数量上出现的矛盾冲突,进行比较,作适当调整,从而找到正确答案的方法。
【例15】甲、乙两班共有96人,选出甲班人数的41和乙班人数的51,组成22人的数学兴趣小组,问甲、乙两班原来各有多少人[分析与解]假设两班都选出41,则选出96×41=24(人),假设比实际多选出24-22=2(人)。
调整:这是因为把选出乙班人数的51假设为选出41,多算了41-51=201,由此可先算出乙班原来的人数。
(96×41-22)÷(41-51)=40(人)甲班原来的人数: 96-40=56(人)【例16】某书店出售一种挂历,每售出1本可得18元利润。
售出一部分后每本减价10元出售,全部售完。
已知减价出售的挂历本数是减价前出售挂历本数的32。
书店售完这种挂历共获利润2870元。
书店共售出这种挂历多少本[分析与解]根据减价出售的挂历本数是减价前出售挂历本数的32,我们假设减价前出售的挂历为3本,减价出售的挂历为2本,则售出这2+3=5(本)挂历所获的利润为: 18×3+(18-10)×2=70(元)这与实际共获利润2870元相矛盾,这是什么原因造成的呢调整:这是因为把出售的挂历假设为5本,根据实际共获利润是假设所获利润的2870÷70=41倍,实际共售出挂历的本数也应该是假设5本的41倍。
即5×41=205(本)六、用方程解应用题思想在用算术方法解应用题时,数量关系比较复杂,特别是逆向思考的应用题,往往棘手,而这些的应用题用列方程解答则简单易行。
列方程解应用题一开始就用字母表示未知量,使它与已知量处于同等地位,同时运算,组成等式,然后解答出未知数的值。
列方程解应用题的关键是根据题中已知条件找出的等量关系,再根据等量关系列出方程。
【例17】某工厂第一车间人数比第二车间的54多16人,如果从第二车间调40人到第一车间,这时两个车间的人数正好相等,原来两个车间各有多少人 [分析与解]根据题意,有如下数量关系:第一车间人数+40人=第二车间人数-40人 解:设第二车间有X 人。
54X+16+40=X -40 解得: X=480 第一车间人数为:54X+16=54×480+16=400(人)。