catia参数化齿轮设计

合集下载

CATIA齿轮建模(直齿和斜齿)

CATIA齿轮建模(直齿和斜齿)

直齿轮参数化建模预备工作,在设置里面将参数和关系显示出来1、齿轮参数的创建2、渐开线的创建X—xx=db/2*cos(PI/2*t)+db/2*PI/2*t*sin(PI/2*t)Y—yy=db/2*sin(PI/2*t)-db/2*PI/2*t*cos(PI/2*t)t=0,0.1,0.2,0.3,0.4以t=0为例说明3、在创成式模块中点击点,弹出4、在x栏右键单击,点击编辑公式,弹出5、在模型树上双击法则曲线.x,在字典里选择规则,在双击规则成员里的内容,将()里设置为0,再确定即可,完成t=0时x的创建,同理完成t=0时y的创建,z=0,就创建好了(x(0),y(0)z(0))的创建,其他照此6、将上述点用样条曲线连接,如图7、创建对称渐开线,修剪如图8、拉伸,拉伸齿宽时在长度栏右键,其过程同上,选择参数b,如图9、阵略,如图10、完成(键槽简单,省略)斜齿轮参数化建模预备工作,在设置里面将参数和关系显示出来1、齿轮参数的创建2、渐开线的创建X—xx=db/2*cos(PI/2*t)+db/2*PI/2*t*sin(PI/2*t) Y—yy=db/2*sin(PI/2*t)-db/2*PI/2*t*cos(PI/2*t) t=0,0.1,0.2,0.3,0.4,以t=0为例说明3、在创成式模块中点击点,弹出4、在x栏右键单击,点击编辑公式,弹出5、在模型树上双击法则曲线.x,在字典里选择规则,在双击规则成员里的内容,将()里设置为0,再确定即可,完成t=0时x的创建,同理完成t=0时y的创建,z=0,就创建好了(x(0),y(0)z(0))的创建,其他照此将上述点用样条曲线连接,如图6、创建对称渐开线,修剪如图7、将此渐开线投影到另一面上,并且绕z轴旋转一定角度7、将对应齿根圆上的点用直线连接起来,然后在分别投影到齿根圆柱上8、在零部件设计中运用多截面实体,扫略成齿形9、阵略完成(键槽简单,省略)。

在 CATIA 中创建齿条和小齿轮运动

在 CATIA 中创建齿条和小齿轮运动

教程:在CATIA 中创建齿条和小齿轮运动
以下是在CATIA 中创建齿轮齿条机构的方法
步骤1:
打开Create_Rack2.CATProduct 文档。

步骤2:
单击Kinematics Joints 工具栏中的Rack Joint 图标,或选择Insert -> New Joint ->Rack...从菜单栏。

步骤3:
在规范树中选择Prismatic.2。

步骤4:
在规范树中选择Revolute.1。

步骤5:
分配一个命令,例如选中Angle driven for revolute 复选框。

步骤6:
单击Ok 结束机架接榫创建。

机架接头在规范树中创建和标识。

可以模拟您的机制,并显示一条消息。

步骤7:
双击Mechanism.1 以启动带有命令功能的仿真。

步骤8:
让我们修改RATIO。

双击规范树中的Rack.3
步骤9:
单击Define 按钮。

此时将显示Rack Ratio Definition 对话框:
步骤10:
Select a circle in the geometry area. The ratio is automatically calculated.
步骤11:
该比率是自动计算的。

步骤12:
单击确定。

可以模拟Your Mechanism。

基于CATIA的渐开线内齿轮参数化辅助设计

基于CATIA的渐开线内齿轮参数化辅助设计

2.1 设置参数变量
(1)启动 CATIA V5 进入创成式曲面设计(Generative shape Design)模块。
(2)用 Knowledge 工具栏中的公式 f (x) 功能,设置内齿轮的主要参数 m 、 z 、α ,
60 参数类型如表 1。
(3)再次用 f (x) 功能,插入辅助参数 d 、 db 、 d f 、 da ,应用 Formula 对其进行公
40 1 内齿轮渐开线数学模型
如图 1 所示,当一直线 n – n 沿一个圆的圆周作纯滚动时,直线上任意一点 K 的轨迹
作者简介:高明峰,(1985-),男,硕士,主要从事:先进设计理论研究 通信联系人:李苏红,(1964-),男,副教授,主要研究方向:CAD&CG 的研究. E-mail: lish02@
d f = d + 2hf
db
Length
db = d cosα
c
Length
c = c*m
2.3 齿形的绘制
75
在绘制齿形渐开线以前,先引进一个实数型的参数 t 。在这里令 t ∗ PI = ϕ ,其中 PI 代
表圆周率,公式(1)相应地变成如下形式:
⎧ ⎨ ⎩
x y
= =
rb rb
∗ ∗
sin(t ∗ PI cos(t ∗ PI
符号
参数类型
公式 / 初值
性质
m
Real
4 mm

z
Integer
20

α
Angle
20 D

d
Length
d = mz
h a*
Real
1
c*
Real

catia齿轮全参数化设计

catia齿轮全参数化设计

文档Designing parametricabout Bevel Wheel and Spur Gear Wheel with Catia V5用CATIA V5来设计斜齿轮与直齿轮的参数目录一齿轮参数与公式表格————————————————————————PAGE 3二参数与公式的设置—————————————————————————PAGE 5 三新建零件—————————————————————————————PAGE 7 四定义原始参数———————————————————————————PAGE 8 五定义计算参数———————————————————————————PAGE 10 六核查已定义的固定参数与计算参数——————————————————PAGE 13 七定义渐开线的变量规则———————————————————————PAGE 14 八制作单个齿的几何轮廓———————————————————————PAGE 16 九创建整个齿轮轮廓—————————————————————————PAGE 32 十创建齿轮实体———————————————————————————PAGE 35文档一齿轮参数与公式表格序号参数类型或单位公式描述1 a 角度(deg) 标准值:20deg 压力角:(10deg≤a≤20deg)2 m 长度(mm) ——模数3 z 整数——齿数(5≤z≤200)4 p 长度(mm) m * π齿距5 ha 长度(mm) m 齿顶高=齿顶到分度圆的高度6 hf 长度(mm) if m > 1.25 ,hf = m * 1.25;else hf = m * 1.4齿根高=齿根到分度圆的深度7 rp 长度(mm) m * z / 2 分度圆半径8 ra 长度(mm) rp + ha 齿顶圆半径9 rf 长度(mm) rp - hf 齿根圆半径10 rb 长度(mm) rp * cos( a ) 基圆半径11 rr 长度(mm) m * 0.38 齿根圆角半径12 t 实数0≤t≤1 渐开线变量13 xd 长度(mm) rb * ( cos(t * π) +sin(t * π) * t * π ) 基于变量t的齿廓渐开线X坐标14 yd 长度(mm) rb * ( sin(t * π) -cos(t * π) * t *π ) 基于变量t的齿廓渐开线X坐标15 b 角度(deg) ——斜齿轮的分度圆螺旋角16 L 长度(mm) ——齿轮的厚度(在定义计算参数中舔加公式时,可以直接复制公式:注意单位一致)文档文档二参数与公式的设置文档文档三新建零件依次点击————————Array点击按钮现在零件树看起来应该如下:文档四.定义原始参数点击按钮,如图下所示:这样就可以创建齿轮参数:1.选择参数单位(实数,整数,长度,角度…)2.点击按钮3.输入参数名称4.设置初始值(只有这个参数为固定值时才用)文档现在零件树看起来应该如下:文档文档(直齿轮) (斜齿轮)多了个参数:b 分度圆螺旋角五 定义计算参数大部分的几何参数都由z,m,a 三个参数来决定的,而不需要给他们设置值,因为CATIA 能计算出他们的值来。

[整理]catia参数化设计.

[整理]catia参数化设计.

参数化一.斜齿圆柱齿轮的几何特征斜齿轮齿廓在啮合过程中,齿廓接触线的长度由零逐渐增长,从某一个位置开始又逐渐缩短,直至脱离接触,这种逐渐进入逐渐脱离的啮合过程减少了传动时的冲击、振动和噪声,从而提高了传动的稳定性,故在高速大功率的传动中,斜齿轮传动获得了较为广泛的应用。

二.斜齿圆柱齿轮与直齿圆柱齿轮的几何关系三.catia画图思路我们已经看到了,斜齿圆柱齿轮与直齿圆柱齿轮相比,就是斜齿圆柱齿轮两端端面旋转了一个角度,如果旋转角度为零,那这个斜齿圆柱齿轮就是一个直齿圆柱齿轮了,因而直齿圆柱齿轮就是螺旋角为零的特殊斜齿圆柱齿轮。

因此,我们可以将直齿圆柱齿轮和斜齿圆柱齿轮用同一个画法画出来,只改变一下参数(为端面的参数)就可以输出不同的直齿或者斜齿的齿轮,大概思路如下:a.首先用formula输入齿轮各参数的关系;b.画出齿轮齿根圆柱坯子;c.通过输入的公式得出一个齿的齿廓;d.在曲面设计模块下将齿廓平移到坯子的另一端面(通过平移复制一个新的齿廓到另一端面);e.将新的齿廓旋转到特定角度;f.多截面拉伸成形一个轮齿;g.环形阵列这个轮齿这样,斜齿圆柱齿轮就画完了。

四.catia绘图步骤1.设置catia,通过tools-->options将relation显示出来,以便待会使用,如图所示:2.输入齿轮的各项参数斜齿圆柱齿轮中有如下参数及参数关系,不涉及法向参数齿数 Z模数 m压力角 a齿顶圆半径 rk = r+m分度圆半径 r = m*z/2基圆半径 rb = r*cosa齿根圆半径 rf = r-1.25*m螺旋角 beta齿厚 depth进入线框和曲面建模模块(或part design零件设计模块)如图:输入各参数及公式,如图所示:3.点击fog按钮,建立一组X,Y,关于参数t的函数,方程为:x=rb*sin(t*PI*1rad)-rb*t*PI*cos(t*PI*1rad)y=(rb*cos(t*PI*1rad))+((rb*t*PI)*sin(t*PI*1rad))如图所示:4.同样的方法建立Y的关系函数,建议把函数名字改成x和y,方便辨认。

catia齿轮参数化建模的过程

catia齿轮参数化建模的过程

catia齿轮参数化建模的过程我们需要在CATIA中创建一个新的零件文件。

在零件文件中,我们可以使用齿轮工具栏上的齿轮生成命令来创建基本的齿轮轮廓。

我们可以指定齿轮的模数、齿轮的齿数、齿轮的压力角等参数,CATIA会根据这些参数生成相应的齿轮模型。

在创建齿轮的过程中,我们可以使用CATIA软件提供的参数化建模功能来实现齿轮的参数化。

参数化建模功能可以将齿轮的各个参数与齿轮模型的几何特征关联起来,当我们修改齿轮的参数时,齿轮模型会自动更新。

例如,我们可以将齿轮的模数与齿轮的齿宽关联起来,当我们修改齿轮的模数时,齿轮的齿宽也会相应地改变。

这样,我们可以通过修改一个参数来改变齿轮的多个几何特征,而无需手动修改每个几何特征。

除了基本的齿轮参数外,我们还可以使用CATIA的表格功能来实现更复杂的参数化。

表格功能可以将齿轮的参数与一个表格中的数值关联起来,当我们修改表格中的数值时,齿轮的参数也会相应地改变。

这样,我们可以通过修改表格中的数值来批量生成不同参数的齿轮模型。

在完成齿轮的参数化建模后,我们可以使用CATIA的装配功能来进行齿轮的装配。

装配功能可以将多个零件组装在一起,并根据零件之间的约束关系来自动调整零件的位置和姿态。

在齿轮的装配过程中,我们可以使用CATIA的参数化装配功能来实现齿轮的参数化装配。

参数化装配功能可以将齿轮的装配位置与齿轮的参数关联起来,当我们修改齿轮的参数时,齿轮的装配位置也会相应地改变。

这样,我们可以通过修改一个参数来改变齿轮的装配位置,而无需手动调整每个齿轮的位置。

通过以上的步骤,我们可以使用CATIA软件实现齿轮的参数化建模。

参数化建模可以大大提高设计效率和灵活性,使我们能够快速生成不同参数的齿轮模型,并进行齿轮的装配和分析。

CATIA的强大的参数化建模功能为我们提供了一种高效、精确的齿轮设计方法,使我们能够更好地满足不同齿轮设计的需求。

总结起来,CATIA齿轮参数化建模的过程包括创建零件文件、使用齿轮工具栏生成齿轮轮廓、使用参数化建模功能实现齿轮的参数化、使用装配功能进行齿轮的装配和使用参数化装配功能实现齿轮的参数化装配。

CATIA参数化齿轮建立(图文运用)

CATIA参数化齿轮建立(图文运用)

画齿轮主要是确定渐开线方程,这里我就简单介绍一下一种种常见的渐开线绘制方法,就是绘制型值点,然后用样条线连接,得到渐开线后,对称,然后用齿顶圆齿根圆修剪围成齿轮轮廓,拉伸成凸台即可。

(这里就默认是直齿圆柱齿轮)首先用参数工具建立六个主要参数:模数m=4mm齿数z=20压力角a=20degha*=1c*=0.25齿厚s=10mm然后建立基本的几个公式:分度圆直径d=`模数m` *`齿数Z`齿顶圆直径da=(`齿数Z` +2*`ha*` )*`模数m`齿根圆直径df=(`齿数Z` -2*`ha*` -2*`c*` )*`模数m`基圆直径db=`分度圆直径d` *cos(`压力角a` )齿距p=PI*`模数m`由于渐开线极坐标方程为r(k)=r(b)/cosα(k)invα(k)=tanα(k)-α(k)我就不证明了,反正通过转换我得到了x轴和y轴关于渐开线转动角ak的对应方程。

建立X轴法则曲线:创建长度X 创建角度akx=(`基圆直径db`/2 /cos(ak))*cos(tan(ak)*1rad-ak/180deg *(PI*1rad))建立Y轴法则曲线:创建长度y 创建角度aky=(`基圆直径db` /2 /cos(ak))*sin(tan(ak)*1rad-ak/180deg *(PI*1rad))现在我们完成了所有的准备工作,可以创建齿轮了。

首先在平面上绘制直径同参数中数据一致的基圆,分度圆,齿顶圆,齿根圆然后绘制该平面上点,注意每一点对应的x y坐标与X、Y法则曲线在同一ak值下值一一对应。

即:`关系\渐开线方程X` ->Evaluate(ak)`关系\渐开线方程Y` ->Evaluate(ak)为了简化对象和保证精度,我取ak值分别为:0deg 15deg 22deg 29deg 35deg 40deg 50deg得到这七个点(保证在渐开线上,如果需要更高精度,可以增加点个数,但是太高阶的曲线容易产生振荡,所以不建议采用)用样条线连接。

基于catia的渐开线齿轮参数化精确建模与应用(一)

基于catia的渐开线齿轮参数化精确建模与应用(一)

基于catia的渐开线齿轮参数化精确建模与应用(一)基于Catia的渐开线齿轮参数化精确建模与应用引言Catia是一款强大的计算机辅助设计软件,通过其参数化建模功能,可以实现渐开线齿轮的精确建模与应用。

本文将详细讲解基于Catia的渐开线齿轮参数化精确建模与应用的一些方面。

1. 渐开线的概念及应用渐开线是一种特殊的曲线,广泛应用于齿轮设计中。

它能够使齿轮传递动力更加平稳,减少噪音与磨损,并提高传动效率。

基于Catia 的参数化建模功能,可以方便地生成具有渐开线的齿轮模型,并通过调整参数来实现不同需求的设计。

2. Catia的参数化建模功能Catia具有强大的参数化建模功能,可以通过定义参数和约束条件,灵活地调整模型的尺寸与形状。

在渐开线齿轮设计中,我们可以通过Catia的参数化建模功能,将齿轮的齿数、模数、齿宽等参数定义为变量,以便随时调整齿轮的尺寸与形状。

3. 渐开线齿轮的精确建模基于Catia的参数化建模功能,可以实现渐开线齿轮的精确建模。

首先,我们可以通过定义齿轮的基本参数,如齿数、模数、齿宽等,来生成齿轮的齿廓曲线。

然后,我们可以通过Catia的绘图工具,绘制渐开线曲线,并将其应用到齿轮的齿廓上。

4. 渐开线齿轮的应用场景渐开线齿轮广泛应用于各种机械传动系统中,如汽车发动机、工业机械设备等。

其具有传动效率高、噪音低、磨损小等优点,使其成为理想的传动元件。

通过基于Catia的参数化建模功能,我们可以根据具体的应用场景,灵活地调整渐开线齿轮的参数,并生成精确的齿轮模型。

结论基于Catia的渐开线齿轮参数化精确建模与应用具有很大的优势,不仅能够提高齿轮设计的效率,还能够满足不同场景下的需求。

通过合理利用Catia的参数化建模功能,我们能够快速生成精确的渐开线齿轮模型,并在实际应用中发挥其优越性能。

5. 渐开线齿轮的优势与特点渐开线齿轮相对于其他齿轮类型有一些独特的优势和特点。

首先,渐开线齿轮的传动效率很高,因为其齿形能够使齿轮与齿轮之间的载荷分布更加均匀,减少了啮合损失。

基于CATIA的渐开线圆柱齿轮参数化设计

基于CATIA的渐开线圆柱齿轮参数化设计

1 引言
渐开线圆柱齿轮是现代机械中最常见的一种 传动机构 , 广泛应用于机床传动装置 、各种减速 器以及车辆的变速箱等 , 是最具代表性的一种齿 轮 。用数控机床加工渐开线齿轮时 , 首先需对其 进行三维造型设计 , 造型的准确性将直接影响加 工精度 , 因此为其提供精确的渐开线齿轮模型非 常重要 。按照传统的设计方法 , 每次都要进行计
摘 要 : 简要介绍了在 CATIA中进行参数化设计的基本方法与设计步骤 , 通过渐开线圆柱齿轮的参数化设 计 , 详细阐述了基于 CATIA的渐开线公式的建立方法 , 精确绘制了渐开线齿廓 , 建立了产品知识库 , 提高了产 品的设计效率 。
关键词 : 渐开线齿轮 ; CATIA; 参数化设计 Abstract: Basic methods and design p rocedures are described1 Parameterized design of involute gear is performed based on CATIA , and the related formulas are derived and accurate involute gear tooth p rofile is drawn1A lso, part know l2 edge library is established to imp rove design efficiency1 Keywords: involute gear; CATIA; parameterized design
有的知识单元用参数 ( Parameters) 、关系 ( Rela2 tions) 、行 为 ( B ehaviors ) 来 表 达 , 以 设 计 表 (Design Table) 的形式形成产品知识库 , 再利用知 识库的知识 , 定义相关的工程参数 , 形成以数学 公式 、函数关系形式表达的工程规则 , 并根据设 计需要建立规则的设计引导过程 , 以实现从工程 参数到几何参数的驱动过程 。

CATIA参数化建模实例分享

CATIA参数化建模实例分享

CATIA参数化建模实例分享CATIA是一款著名的三维计算机辅助设计软件,它具备强大的参数化建模功能。

参数化建模是一种基于参数的设计方法,通过给定参数来控制和调节模型的形状、尺寸以及其他属性,从而快速、灵活地生成不同变化的模型。

本文将分享一些CATIA参数化建模的实例,以展示其在工程设计领域中的应用。

一、齿轮模型的参数化设计齿轮是机械传动中常用的零件,其尺寸和齿数等参数直接影响着传动效果。

CATIA参数化建模可以轻松实现齿轮的可调节设计。

首先,我们可以定义齿轮的模块、齿数、齿宽等参数,然后通过公式和关系式,自动计算齿轮的齿高、齿厚、分度圆直径等尺寸。

这样,只需要修改参数数值,即可快速生成满足不同需求的齿轮模型,提高了设计效率和灵活性。

二、飞机机翼的参数化建模飞机机翼是飞行器结构中关键的组成部分,其形状和尺寸对飞行性能具有重要影响。

使用CATIA参数化建模,可以方便地调整飞机机翼的展弦比、翼根弦长、翼梢弦长等参数。

通过定义关系式和公式,改变参数数值后,CATIA会自动更新机翼的几何形状,实现快速的机翼设计。

这种参数化建模的方法,可以帮助工程师比较不同方案的飞机设计,提高设计优化的效率。

三、汽车车身的参数化设计在汽车设计中,车身的外形和尺寸常常需要多次调整和优化。

利用CATIA参数化建模的功能,可以轻松快速地设计不同类型和尺寸的汽车车身。

通过定义和调整参数,如车头长度、车轮间距、车身高度等,CATIA可以自动修改车身模型的各个部分,并保持其整体结构的一致性。

这使得汽车设计师可以快速生成满足不同需求的车身设计方案,并进行评估和比较。

四、建筑结构的参数化建模在建筑设计领域,参数化建模也有着广泛的应用。

例如,设计师可以通过定义楼板厚度、柱子间距、楼层高度等参数,使CATIA自动生成建筑结构的三维模型。

通过修改参数数值,可以快速调整和优化建筑结构的设计,满足不同的需求和规范要求。

参数化建模使得建筑设计师可以更加灵活地探索和调整设计方案,提高设计效率和质量。

基于CATIA的齿轮参数化设计建模及运动仿真

基于CATIA的齿轮参数化设计建模及运动仿真

基于CATIA的齿轮参数化设计建模及运动仿真齿轮是机械传动中常用的元件,用于传递动力和转动运动。

其设计和制造过程需要精确的参数化建模和运动仿真,以确保其稳定性和性能。

CATIA是一款功能强大的三维建模软件,可用于实现齿轮的参数化设计和运动仿真。

以下是基于CATIA的齿轮参数化设计建模及运动仿真的步骤:1.齿轮参数化设计:首先,需要确定齿轮的几何参数,如齿数、模数、压力角等。

在CATIA中,可以根据这些参数创建一个齿轮模型,并将其参数化,使得可以根据不同的参数值自动生成不同的齿轮模型。

参数化设计可以有效地提高设计效率和灵活性。

2.齿轮建模:基于确定的齿轮参数,使用CATIA中的齿轮建模工具创建齿轮的几何模型。

可以选择不同的齿轮类型,如圆柱齿轮、圆锥齿轮等,并根据需要进行形状调整和修饰。

3.齿轮装配:如果需要进行多个齿轮的装配设计,可以使用CATIA的装配设计工具来构建整个齿轮传动机构。

通过将不同的齿轮模型组装在一起,可以实现齿轮传动机构的建模和设计。

4.齿轮运动仿真:基于建立的齿轮模型和装配设计,在CATIA中进行运动仿真,以验证齿轮传动的性能和稳定性。

可以通过设置不同的运动参数和加载条件,模拟齿轮传动过程中的动态行为。

同时,可以进行动力学分析,评估齿轮传动的负载和力学特性。

5.优化和修改:根据仿真结果,可以对齿轮模型和装配设计进行优化和修改。

通过调整参数和改进设计,可以提高齿轮传动的效率和可靠性。

在CATIA中,可以直接修改参数,并自动更新齿轮模型和装配。

利用仿真结果的反馈信息进行优化设计,从而提高齿轮传动的性能。

总结:基于CATIA的齿轮参数化设计建模及运动仿真,可以有效地提高齿轮传动的设计效率和品质。

通过参数化设计和运动仿真,可以快速生成并优化齿轮模型,验证齿轮传动的性能,提高传动效率和可靠性。

同时,CATIA提供了丰富的工具和功能,可帮助工程师进行齿轮传动的设计和优化,提高产品的竞争力和市场价值。

基于catia的渐开线齿轮参数化精确建模与应用

基于catia的渐开线齿轮参数化精确建模与应用

基于catia的渐开线齿轮参数化精确建模与应用基于CATIA的渐开线齿轮参数化精确建模与应用引言:渐开线齿轮是一种常用的传动装置,具有高效率、精确传动和低噪音的优点,在工业领域得到广泛应用。

而CATIA作为一种流行的计算机辅助设计软件,能够帮助工程师们精确地进行渐开线齿轮的参数化建模与设计。

本文将详细介绍CATIA的应用技巧,以帮助读者更好地理解渐开线齿轮的建模方法和应用。

一、渐开线齿轮的基本原理1. 渐开线齿轮的定义渐开线齿轮是一种齿轮传动装置,其齿廓曲线为渐开线,能够在传动过程中实现连续的接触运动,减小了齿轮传动的冲击和噪音。

2. 渐开线齿轮的优点渐开线齿轮相比其他形式的齿轮具有以下优点:- 高效率:渐开线齿轮的齿形使得齿轮之间实现连续而平稳的接触,减少能量损失。

- 精确传动:渐开线齿轮的齿廓曲线能够保证准确的传动比和齿轮位置。

- 低噪音:渐开线齿轮的齿形使得齿隙过渡更加平缓,减少了传动过程中产生的噪音。

二、CATIA在渐开线齿轮建模中的应用1. CATIA软件简介CATIA是达索系统公司开发的一款广泛应用于机械设计、汽车工业、航空航天等领域的三维CAD软件,具有强大的建模功能和友好的用户界面,能够提供全面的设计支持。

2. 渐开线齿轮的参数化建模利用CATIA软件,可以通过以下步骤进行渐开线齿轮的参数化建模:- 绘制基准圆:根据齿轮的模数、齿数等参数,绘制齿轮的基准圆。

- 绘制齿廓曲线:利用齿轮的基准圆和模数,绘制渐开线的齿廓曲线。

- 齿距与厚度计算:根据齿数和齿廓曲线,计算齿距和齿轮的厚度。

- 生成齿轮:利用CATIA的齿轮生成功能,根据齿廓曲线和齿距生成齿轮的几何形状。

- 参数化设计:通过将齿轮的各项参数设置为可调节的参数,实现齿轮的参数化设计和调整。

3. 渐开线齿轮的应用渐开线齿轮广泛应用于各种机械传动装置,如汽车变速器、船舶传动系统和工业机械等。

CATIA软件能够提供精确的建模和分析工具,在设计和制造过程中起到重要的作用。

基于CATIA的齿轮参数化设计建模及运动仿真

基于CATIA的齿轮参数化设计建模及运动仿真

基于CATIA的齿轮参数化设计建模及运动仿真基于CATIA的齿轮参数化建模及运动仿真作者:许昌军指导老师:朱梅(安徽农业大学工学院 07机械设计制造及其自动化合肥230036)摘要:文章介绍了运用参数化三维软件CATIA对渐开线直齿轮及斜齿轮进行参数化三维建模。

通过GSD模块中的fog方式生成参数方程建立渐开线,再通过镜像、剪切、特征阵列等命令建立齿轮轮廓,通过拉伸、开槽等命令建立渐开线齿轮三维模型,大大提高了设计人员的工作效率。

然后用建模的直齿轮创建直齿轮库,最后进入电子样机运动模块(KIN)对两啮合齿轮进行运动仿真及干涉分析。

关键词:参数化 CATIA 运动仿真渐开线直齿轮1 引言本文基于CATIA 的三维建模环境, 设计开发了渐开线直齿轮参数化设计系统,建立零件的3D模型, 为渐开线直齿轮的传动、仿真、优化设计、有限元分析打下基础。

用户只需根据修改齿轮参数就可以生成新的渐开线直齿轮, 减少繁琐复杂的重复劳动, 从而大大提高设计效率。

1.1CATIA软件介绍CATIA(Computer Aided Tri-dimensional Interface Application) 是法国达索(Dassault Systemes)飞机公司于1975年开始发展起来的一整套完整的3D CAD/CAM/CAE软件,CATIA V5作为新一代的CATIA版本,提供更多的新功能,其界面更加人性化,基于Windows的操作界面非常友好,因此使得复杂、枯燥的设计工作变得轻松而又愉快。

CATIA以强大的曲面设计功能在飞机、汽车、轮船等设计领域享有很高的荣誉。

2 CATIA参数化设计分析基于特征参数化设计的关键是特征及其相关尺寸、公差的描述,包括数据特性描述、规则特性描述、关系特性描述。

数据特性描述包含特征的静态信息和制造特性;规则或方法属性定义特征特定的设计和制造特性;关系特性描述特征间的相互依赖关系或定义形状特征间的位置关系。

CATIA斜齿轮全参数化曲面法三维数字建模及精度研究

CATIA斜齿轮全参数化曲面法三维数字建模及精度研究

CATIA 斜齿轮全参数化曲面法三维数字建模及精度研究*刘广武刘笑羽陶永兰冯增铭(吉林大学机械科学与工程学院,长春130025)Research CATIA helical gear to 3D full parametric surface of digital modelingand modeling accuracyLIU Guang-wu ,LIU Xiao-yu ,TAO Yong-lan ,FENG Zeng-ming(Jilin University Mechanical Science and Engineering Institute ,Changchun 130025,China )文章编号:1001-3997(2011)04-0074-03【摘要】依据斜齿轮机械原理基本理论,运用CATIAV5实体和高级曲面复合建模(Hybrid mod -eling )先进技术,提出了一种斜齿轮全参数化曲面法三维数字建模方法,构建了三维斜齿轮理论原型的参数化数字模型,并阐述了该数模的定量几何精度检验方法。

为齿轮传动系统的快速三维CAD 建模、运动学和动力学分析、强度有限元分析,提供了高精度的斜齿轮全参数化数字模板。

关键词:CATIA ;斜齿轮;参数化;曲面;数字模板【Abstract 】Based on the basic theory of helical gear mechanical principle ,using CATIAV5entities and high-level surface hybrid modeling (Hybrid modeling )of advanced technologies,presents a helical gearwhole parameter surface methodology 3D digital modeling method ,construct prototype models of the theory to the 3D digital helical gear ,and presents a quantitative test methods of geometric precision.For the gear transmission system ’s rapid 3D CAD modeling,kinematics and dynamics analysis,finite element analysis of strength,provides a high-precision helical gears whole parameter digital template.Key words :CATIA ;Helical gear ;Parameter ;Surface ;Digital template中图分类号:TH16,TP391.72文献标识码:A*来稿日期:2010-06-11*基金项目:吉林省教育教学研究重大项目(2006Z3-105)1引言齿轮、传动与驱动部件是机械基础零部件,也是各种装备机械的基础部件,同时还承担着机械传动、驱动的任务,而几乎所有的装备机械都需要传动,驱动部件[1]。

catia齿轮参数化设计

catia齿轮参数化设计

目录一齿轮参数取公式表格————————————————————————PAGE 3二参数取公式的树立—————————————————————————PAGE 5三新建整件—————————————————————————————PAGE 7四定义本初参数———————————————————————————PAGE 8五定义估计参数———————————————————————————PAGE 10六核查已定义的牢固参数取估计参数——————————————————PAGE 13七定义渐启线的变量准则———————————————————————PAGE 14八创制单个齿的几许表面———————————————————————PAGE 16九创制所有齿轮表面—————————————————————————PAGE 32十创制齿轮真体———————————————————————————PAGE 35一齿轮参数取公式表格(正在定义估计参数中舔加公式时,不妨间接复制公式:注意单位普遍)二参数取公式的树立三新建整件依次面打————————面打按钮当前整件树瞅起去该当如下:四.定义本初参数面打按钮,如图下所示:那样便不妨创制齿轮参数:1.采用参数单位(真数,整数,少度,角度…)2.面打按钮3.输进参数称呼4.树立初初值(惟有那个参数为牢固值时才用)当前整件树瞅起去该当如下:(直齿轮)(斜齿轮)多了个参数:b分度圆螺旋角五定义估计参数大部分的几许参数皆由z,m,a三个参数去决断的,而没有需要给他们树立值,果为CATIA能估计出他们的值去.果此代替树立初初值那个步调的是,面打按钮而后便启初编写公式:六核查已定义的牢固参数取估计参数七定义渐启线的变量准则上头咱们已经定义了估计参数的公式,当前咱们需要定义出能得到齿廓渐启线上的面的{X,Y}坐目标公式.寻常咱们画图也是给一系列渐启线上的面坐标x0,y0,x1,y1…,正在那里,CATIA提供了一个便当的工具去完毕它:变量准则.为了创制一个准则,面打按钮,而且输进准则称呼,如下所示:而后便不妨给渐启线上的X战Y坐标编写二条准则公式:◆xd= rb * ( cos(t * PI*1rad) +sin(t * PI*1rad) * t * PI )◆yd= rb * (sin (t * PI*1rad)-cos(t * PI*1rad) * t * PI )正在CATIA的公式编写器里的注意事项:◆三角函数功能中使用角度,而没有是数字,果此咱们必须使用角度常量,如1rad 大概者 1deg ◆PI代替数字π八创制单个齿的几许表面——为了取真体相辨别,利用几许图形集去完毕齿形表面线的画制——————所有齿轮是单个齿的圆形循环,底下将证明怎么样创制一个单齿:1.定义参数,常量取公式(已干).2.拔出5个面,其位子由xd(t)战yd(t)准则函数去定义:◇正在XY仄里上任性定义5个面(如下)◇代进xd(t)战yd(t)准则,从t=0到t=0.4编写面的H、V坐标:(大部分齿轮的渐启线变量没有会超出0.4)底下以t=0.2的渐启线面为例,编写其V坐标:面打————◇估计得到分歧变量t对于应的面的H、V坐标3.干一条包罗5个渐启线面的样条直线面打4.往齿轮的核心中插样条直线:◇渐启线直线的末面正在基圆上,基圆半径rb= rp * cos( 20° )≈rp*0.94.◇果此渐启线直线必须中伸去取齿根圆相接.(由体味公式,中伸少度=2*m)◆面打按钮◆定义少度公式2*m5.核查中伸靠近渐启线样条线的(0)面.6.定义交战面:point contact(渐启线直线取分度圆的相接面).◇根据准则,正在那面上,极坐标角度等于压力角◇此面的变量参数t=a/180deg◇果此咱们不妨像先前的构制面(如面1,面2…)那样估计它:7.定义一个通过齿轮轴线战交战面point contact的交战仄里plane contact:面打按钮8.定义一个齿的中值仄里plane median:◇正在一个对于称性齿轮中,单个齿的分度圆齿薄角度为180deg/z.◇果此中值仄里取交战仄里的角度为90deg/z.◇中值仄里定义为:交战仄里通过转动轴(齿轮轴线)转动90 deg/z的仄里:9.定义单个齿的初初仄里plane start :◇每个齿的表面面皆启初于齿根圆上,其为二个贯串的齿的中面.◇初初仄里定义为:交战仄里通过转动轴(齿轮轴线)转动-90 deg/z的仄里:◇通过那便能明黑,初初仄里取中值仄里对于称于交战仄里.10.画齿根圆circle roof:◆正在初初仄里plane start上,定义齿根圆的初初面point debut:◇V=0◇(大概者取之差异,总之要正在那个仄里上,且处于齿廓的寻常目标)◆用“核心战面”定义齿根圆:◇核心=0,0,0(point central)◇面=上头定义的初初面point start◇变量角度=0到90deg此表面包罗齿根圆、圆角取中插样条线,且多余的直线应被切除:面打按钮“核心战半径”画齿顶圆circle outer:◇核心=0,0,0(point central)◇收援里=XY仄里◇半径=ra=rp+ha=rp+m◇变量角度=0到90deg13.创制那个齿的另一边(取圆角对于称于中值仄里)面打按钮14.建剪圆角、对于称取齿顶圆得到单个齿的表面:面打按钮15.核查齿廓的截止:九创制所有齿轮表面齿轮表面是单个齿的圆形阵列:◇面打按钮◆阵列模式:完备径背◆转动轴:Z轴◆真例数量:f(x)=z◇接合阵列取单齿表面面打按钮底下的整件树隐现了完备的集中图集:十创制齿轮真体1.创制直齿轮真体:————面打按钮◇典型:尺寸◇少度:f(x)=l◇表面/直里:接合(正在上头所创制的几许图集)得到完备的直齿轮真体:2.创制斜齿轮真体:——形状——创成式形状安排根据斜齿轮的本量,若将斜齿轮分度圆柱里展启则螺旋线成为一条斜直线,斜直线战轴线之间的夹角即为分度圆上螺旋角b,CATIA中死产此斜线的要领是正在轴线的火仄仄里上画制斜线,画制时调用f(x)中的螺旋角b,使得所画制的斜线取轴线的夹角角度为螺旋角.正在将画制的斜直线投影到分度圆柱里上便不妨得到螺旋线.◆用“核心战半径”画出分度圆circle pitch◇核心=0,0,0(point central)◇收援里=XY仄里◇半径=rp◇变量角度=0到90deg◆分度圆的推伸直里:面打按钮◆画斜直线图:少度=l/cos(b)直线取Z轴角度=b直线一端取面point central 相合◆将斜直线投影到分度圆的推伸直里上面打按钮◆真体安排————面打按钮得到完备的斜齿轮真体:。

基于CATIA的齿轮参数化设计说明书

基于CATIA的齿轮参数化设计说明书

基于CATIA的齿轮参数化设计摘要:齿轮传动是机械传动中最重要的传动之一,形式多种多样,应用十分广泛。

本文运用参数化三维软件CATIA对渐开线齿轮进行参数化三维建模。

通过GSD模块中的fog方式生成参数方程建立渐开线;通过镜像、剪切、特征阵列等命令建立齿形轮廓,通过拉伸、多面实体设计、开槽、实体圆周阵列等命令建立渐开线齿轮三维模型,从而达到了改变基本参数立即得到相应的渐开线齿轮三维模型的参数化驱动化设计,提高渐开线圆柱齿轮三维建模的效率。

关键字:渐开线,齿轮,参数化设计The parametric design of Gear based on the CATIA Abstract:Gears is one of the most important transmissions in the mechanical drive,its forms is very extensive. This paper uses parameterized 3DSoftware CATIA for involute gears for parameterized 3D modeling.Through the fog of GSD module generates parameter equationinvolute; through the “mirror”, “cut”, “characteristics of arrays”, etc.commands to establish a tooth profile, stretch, multi-sections soliddesign, grooving, entity circumference arrays command to establish athree-dimensional model of the involute gear, so as to achieve achange in the basic parameters immediately the involute gear of thethree-dimensional model of parameterized-driven design, improvingthe involute gear three-dimensional model of efficiency. Keywords:involute, gear,parametric design0 绪论CATIA是英文“Computer Aided Tri-Dimensional Interface Application”的缩写。

基于CATIA的斜齿轮全参数化建模方法

基于CATIA的斜齿轮全参数化建模方法

基于CATIA的斜齿圆柱齿轮全参数化建模方法作者:林波关键词:全参数化建模;斜齿圆柱齿轮;CATIA;渐开线;脊线1渐开线的绘制工业用斜齿圆柱轮的齿廓曲面大多是一个渐开线螺旋面,可以看成是沿一条螺旋线排列的无数个渐开线形成的曲面,因此建模的关键就是绘制精确的渐开线打开CATIA软件,首先新建“创成式外形设计”文件,点击下拉菜单“工具”,单击里面的“f(x)公式”,出现公式对话框,在其中输入表1中罗列的参数和公式,如图1所示。

图1输入参数和公式后的“公式”对话框1.2创建法则曲线工业用标准齿轮齿廓线大都为渐开线,CATAI软件中渐开线的创建依靠渐开线方程驱动,公式(1)和(2)为渐开线方程:x=rb*sin(PI*t*1 rad)-PI*t*rb*cos(PI*t*1 rad) (1)y=rb*cos(PI*t*1 rad)+PI*t*rb*sin(PI*t*1 rad) (2)x和y分别为渐开线上点的坐标值变量,PI相当于π,t为实数自变量,1rad 是角度。

下面利用CATIA软件里的fog命令创建法则曲线,步骤如下:(1)单击“知识工程”工具栏里的“规则(fog)”命令,首先创建x规则曲线,法则曲线名称为x。

在“规则编辑器”对话框中创建一个实数自变量t,另一个长度变量x,然后在右边按照公式(1)输入方程式,单击确定。

如图2所示。

偏移量为法则曲线方程x,即获得在yz 平面上的偏移曲线,x法则曲线平面上的偏移曲线,方法同x法则曲线,如图4所示。

图4 利用fog命令创建y法则曲线效果图得到过渡曲线后,有两种方式创建渐开线。

方法一:拉伸上一步中创建的两条过渡曲线,方向分别为x轴和y轴,得到两个相交的拉伸曲面,使用“相交”命令创建两曲面的交线,然后将其交线向xy 平面投影,投影即为渐开线;方法二:使用混合(combine) 命令,合并两条过渡曲线,然后将合并的曲线向 xy 平面投影。

这两种方法原理相同,都可以消去中间变量创建渐开线。

catia齿轮参数化设计

catia齿轮参数化设计

word 版本整理分享Designing parametricabout Bevel Wheel and Spur Gear Wheel with Catia V5用CATIA V5来设计斜齿轮与直齿轮的参数目录一齿轮参数与公式表格————————————————————————PAGE 3二参数与公式的设置—————————————————————————PAGE 5 三新建零件—————————————————————————————PAGE 7 四定义原始参数———————————————————————————PAGE 8 五定义计算参数———————————————————————————PAGE 10 六核查已定义的固定参数与计算参数——————————————————PAGE 13 七定义渐开线的变量规则———————————————————————PAGE 14 八制作单个齿的几何轮廓———————————————————————PAGE 16 九创建整个齿轮轮廓—————————————————————————PAGE 32 十创建齿轮实体———————————————————————————PAGE 35word版本整理分享一齿轮参数与公式表格序号参数类型或单位公式描述1 a 角度(deg) 标准值:20deg 压力角:(10deg≤a≤20deg)2 m 长度(mm) ——模数3 z 整数——齿数(5≤z≤200)4 p 长度(mm) m * π齿距5 ha 长度(mm) m 齿顶高=齿顶到分度圆的高度6 hf 长度(mm) if m > 1.25 ,hf = m * 1.25;else hf = m * 1.4齿根高=齿根到分度圆的深度7 rp 长度(mm) m * z / 2 分度圆半径8 ra 长度(mm) rp + ha 齿顶圆半径9 rf 长度(mm) rp - hf 齿根圆半径10 rb 长度(mm) rp * cos( a ) 基圆半径11 rr 长度(mm) m * 0.38 齿根圆角半径12 t 实数0≤t≤1 渐开线变量13 xd 长度(mm) rb * ( cos(t * π) +sin(t * π) * t * π )基于变量t的齿廓渐开线X坐标14 yd 长度(mm) rb * ( sin(t * π) -cos(t * π) * t *π )基于变量t的齿廓渐开线X坐标15 b 角度(deg) ——斜齿轮的分度圆螺旋角16 L 长度(mm) ——齿轮的厚度(在定义计算参数中舔加公式时,可以直接复制公式:注意单位一致)word版本整理分享word版本整理分享二参数与公式的设置word版本整理分享word版本整理分享三新建零件依次点击————————Array点击按钮现在零件树看起来应该如下:word版本整理分享四.定义原始参数点击按钮,如图下所示:这样就可以创建齿轮参数:1.选择参数单位(实数,整数,长度,角度…)2.点击按钮3.输入参数名称4.设置初始值(只有这个参数为固定值时才用)word版本整理分享现在零件树看起来应该如下:word版本整理分享word 版本整理分享(直齿轮) (斜齿轮)多了个参数:b 分度圆螺旋角五 定义计算参数大部分的几何参数都由z,m,a 三个参数来决定的,而不需要给他们设置值,因为CATIA 能计算出他们的值来。

CATIA关于球面渐开线标准直齿圆锥齿轮的参数化建模教程

CATIA关于球面渐开线标准直齿圆锥齿轮的参数化建模教程

CATIA关于球面渐开线标准直齿圆锥齿轮的参数化建模先看看建好的数模:以前,曾经发过一个“CATIA标准直齿圆锥齿轮的建模”教程。

用的是当量齿形生成圆锥齿轮轮齿的方法。

当量齿形生成的轮齿,先天就存在不足,因为齿形上天然就存在着误差。

尤其是在圆锥齿轮齿数较少的情况下,这种误差更会被放大。

当年学习机械原理的时候,关于圆锥齿轮,在教材上直接就教给我们用当量齿形来代替球面渐开线的齿形。

个人理解,是因为当时的三维制图软件还没有普及,而球面渐开线又是空间的曲线。

根本无法用二维制图准确的表达出来。

不得已的情况下,才采用存在一定误差,却能用二维图纸表达出来的当量齿形,来代替圆锥齿轮的球面渐开线齿形。

而现在,通过三维建模软件,完全可以准确的生成球面渐开线。

另外,以前的数控加工也不如现在普及。

现在的数控加工,完全能做到按照数模的建立精度加工出和数模一样的最终产品。

所以,个人认为,当量齿形生成圆锥齿轮轮齿的方法,已经不适合现在的生产需要了。

对于精锻圆锥齿轮来说,基于球面渐开线制作的模具,一定会比先天不足的当量齿形制作的模具,在各方面都具有更高和更准确的精度。

对于圆锥齿轮的切削刀具,基于球面渐开线制作的刀具,也一定会比当量齿形制作的刀具,在精度上具有更大的优势。

齿形精度的提高,对于减少圆锥齿轮传动的跳动误差和提高传动的重合度,是有非常重要的意义的。

当年之所以制作“CATIA标准直齿圆锥齿轮的建模”教程,是因为网上根本没有圆锥齿轮的CATIA建模教程,所以才试着制作了一个。

为了制作这个教程,甚至认真仔细的复习了一下机械原理里的圆锥齿轮方面的知识。

另外有感于当年学习CATIA时非常吃力的感受,把教程尽量做的详细,力求初学者也能按照详尽的步骤完成建模。

这次的教程也延续了前一个教程的初衷,尽量详尽、详细。

接下来正式开始:先做一个假设,一对正常啮合的渐开线标准直齿圆柱齿轮,以其中的一个公共端面为基准,按照定长度收缩到一个点,那么这对圆柱齿轮就转换成了圆锥齿轮。

利用CATIA进行差速器直齿圆锥齿轮参数化建模与有限元分析

利用CATIA进行差速器直齿圆锥齿轮参数化建模与有限元分析

利用CATIA进行差速器直齿圆锥齿轮参数化建模与有限元分析本文绍了利用CATIA软件对汽车差速器直齿圆锥齿轮进行参数化建模和有限元分析(FEA)的设计方法。

该方法最大的特点是建模与有限元分析使用同一软件平台,避免了接口传递可能产生的数据错误,是一种简便可行、运行效率高的齿轮设计与分析方法。

最后结合实例,完成了某型差速器直齿圆锥齿轮的建模和有限元分析。

引言差速器是汽车的重要总成,它能够消除由于左、右驱动车轮在运动学上的不协调,以保证汽车驱动桥两侧车轮在行程不等时能以相应的不同的转速旋转,从而满足汽车行驶运动学的要求。

差速器的结构型式有很多种,其中以普通对称式圆锥行星齿轮差速器应用最为广泛。

对称式行星齿轮差速器由差速器左、右壳体、半轴齿轮、行星齿轮(小型、微型汽车多采用2个,少数汽车采用3个)、行星齿轮轴以及齿轮垫片等组成,其中,作为主要传动部分的半轴齿轮和行星齿轮多为直齿圆锥齿轮。

圆锥齿轮能够传递任意两相交轴间的运动和动力,其中,直齿圆锥齿轮是圆锥齿轮中最简单的一种,其节锥齿线为径向直线形,轮齿走向沿圆锥母线方向,齿面节线通过节锥顶点,其齿长上各点的螺旋角都是零度。

因此它的轴向力是各种齿线型式锥齿轮中最小的。

直齿圆锥齿轮其特点是便于制作,轴向力较小,支承系统简单,甚至可以用滑动轴承,可以减少安装空间。

对直齿圆锥齿轮的强度校核通常采用齿轮手册中传统的校核计算方法,但随着现代齿轮加工工艺的迅速发展,尤其是齿轮精锻技术的进步,现在的汽车差速器采用精锻齿轮的日益广泛,相比传统工艺加工的齿轮,这类齿轮的尺寸更小,而强度更高,所以传统齿轮设计中采用的设计及校核方法显得相对保守。

为了更准确的对齿轮进行几何设计和强度分析,使用先进的CAE工具显得愈加重要。

本文利用CATIA软件强大的实体建模与有限元功能对差速器行星齿轮和半轴齿轮进行了建模与有限元分析,并通过具体实例说明了CAE工具在齿轮设计与分析方面的优势。

1直齿圆锥齿轮参数化建模2.1直齿圆锥齿轮建模原理圆锥齿轮齿廓表面为球面渐开线,其方程为图1球面渐开线形成过程中的几何关系2.2直齿圆锥齿轮的基本参数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

查看文章教程 用catia 画斜齿轮
2008-03-31 22:08
好像公式有些问题,等有空我仔细校正下一些工具吧,请大家注意啊
0:这种方法同样可以用于画直齿轮
一.斜齿圆柱齿轮的几何特征
斜齿轮齿廓在啮合过程中,齿廓接触线的长度由零逐渐增长,从某一个位置开始又传动时的冲击、振动和噪声,从而提高了传动的稳定性,故在高速大功率的传动
二.斜齿圆柱齿轮与直齿圆柱齿轮的几何关系
catia 小站
catia ,天马行空般的自由……
主页
博客相册|个人档案|好

三.catia画图思路
我们已经看到了,斜齿圆柱齿轮与直齿圆柱齿轮相比,就是斜齿圆柱齿轮两端端面直齿圆柱齿轮了,因而直齿圆柱齿轮就是螺旋角为零的特殊斜齿圆柱齿轮。

因此变一下参数(为端面的参数)就可以输出不同的直齿或者斜齿的齿轮,大概思路如
a.首先用formula输入齿轮各参数的关系;
b.画出齿轮齿根圆柱坯子;
c.通过输入的公式得出一个齿的齿廓;
d.在曲面设计模块下将齿廓平移到坯子的另一端面(通过平移复制一个新的齿廓到
e.将新的齿廓旋转到特定角度;
f.多截面拉伸成形一个轮齿;
g.环形阵列这个轮齿
这样,斜齿圆柱齿轮就画完了。

四.catia绘图步骤
1.设置catia,通过tools-->options将relation显示出来,以便待会使用,如图所示
2.输入齿轮的各项参数
斜齿圆柱齿轮中有如下参数及参数关系,不涉及法向参数
齿数Z
模数m
压力角a
齿顶圆半径 rk = r+m
分度圆半径 r = m*z/2
基圆半径 rb = r*cosa
齿根圆半径 rf = r-1.25*m
螺旋角 beta
齿厚 depth
进入线框和曲面建模模块(或part design零件设计模块)如图
输入各参数及公式,如图所示:
3.点击fog按钮,建立一组X,Y,关于参数t的函数,方程为:x=rb*sin(t*PI*1rad)-rb*t*PI*cos(t*PI*1rad)
y=(rb*cos(t*PI*1rad))+((rb*t*PI)*sin(t*PI*1rad))
如图所示:
4.同样的方法建立Y的关系函数,建议把函数名字改成x和y,方便辨认。

这时候,可以看到关系树上新建的两个函数了:
5.在xy平面画一个点,坐标为(0,0),并以此点为圆心在xy平面上建立齿根圆
公式内输入rf,即齿根圆半径。

同样方法建立齿顶圆。

6.下面的工作就是画齿廓了。

在xy平面上作点,在输入框内右键选择公式如图所示:
然后按下图所示,输入x的坐标
同样的办法输入y的坐标值,然后在建几个点,比如选择t=0.1,0.2,0.25,0.3,0.35,0.用空间曲线连接各点:
在将这个曲线延伸,boundary取端点:
做导圆,如图:
建立一个平面A(通过z轴和渐开线与分度圆的交点),再建新平面B与A平面成一新过,改掉了有朋友提出的问题),请注意不是下图中的基准面了。

将轮廓线关于新建的平面做镜像
用split工具将轮廓线剪裁出来:
然后用join将这些线条连接起来:
这个时候,轮廓线就已经出来了,我们的工作也做了一大半了:
7.做出另一端面的轮廓线:用平移工具,创建轮廓线
用rotate工具修改轮廓线,将它旋转合适的角度,如图所示:
公式为:depth*tan(beta)/rk*57.3deg
现在工作已经快完了,耐心一会儿也就成功了。

8.我们先前做的齿根圆被切成齿廓线的一部分了,现在我们还要重新做一个齿根然后我们用extrude工具做出坯子。

9.用多截面曲面multisections做出齿曲面:
10.环形阵列得出齿轮
进入零件设计模块,用close surface命令分别将两个曲面闭合成实体
11.用环形阵列将齿轮的所有轮齿阵列出来:
生成后发现齿轮的齿并不是分布在整个圆周上,稍微改一下,将parameters 内的所示:
至此,整个齿轮画完了,看看效果:
再测验一下程序是否能跑的通,将beta 改成6de ,把depeth 改成25mm ,把齿数
Z
而将齿数Z改成35,将beta角度改成0deg,于是,就得出一个齿数为35的直齿圆
因而,我们发现,这个程序既能画出来直齿圆柱齿轮,也能画出来
斜齿圆柱齿轮类别:catia 使用 | | 添加到搜藏 | 分享到i 贴吧 | 浏览(9888) | 评论
(73)
相关文章:
•教程使用catia画渐开线齿轮•图文教程-用CATIA做玫瑰花•catia设计教程•免费学习,交流,下载catia教程网...•最珍贵CATIA测量教程•CATIA教程
最近读者:
2008-04-02 15:57 | 回复
caita是画图工具啊,画出来的图要加工的,加工的误差小不了
4匿名网友2008-05-06 23:10 | 回复
5.在xy平面画一个点,坐标为(0,0),并以此点为圆心在xy
6
saimachensi
找到了but第二步输入公式出现错误了。

告诉我参数值超出边
8
saimachensi
2008-05-10 10:29 | 回复
呵呵,那恭喜你了,多画画你就是高手了。

17网友:四楼2008-05-10 22:20 | 回复
有个问题不明白,那些个公式是怎么得出的?
18
saimachensi
2008-05-24 17:54 | 回复
先确定两个齿轮的中心距,然后在保证碰撞检测开启的状态下触了。

21
meijie0713
2008-06-01 13:38 | 回复
这篇文章的上一篇就是伞齿轮
24网友:王水2008-07-15 16:07 | 回复
多谢楼主了.真高人呀
25
lovekonady
2008-11-13 18:21 | 回复
楼主能加个QQ 么?我有个齿轮画不出来,希望指点指点!QQ:2
26匿名网友2008-12-05 20:35 | 回复
那个空间画圆工具在哪里?怎么看不到啊?请高人指点
27
saimachensi
2008-12-26 22:17 | 回复
如果不想交的话你可以看看在哪里导致的不相交,严格执的
在的齿轮程序,齿数太多都会出现问题),你可以先按照我的尺
30
lzoeozl
2009-02-02 23:39 | 回复
对的,有时候确实是这样的,齿数过多也不行的,问题很多的
33
xsf2001
34
saimachensi
2009-03-28 23:53 | 回复
更改图片的话,看这里.
/saimachensi/blog/item/9c3d3601ddcaba
37匿名网友2009-04-01 21:43 | 回复
感谢斑主。

很受用。

谢过了……
38匿名网友2009-04-09 09:01 | 回复
版主我按照你写的那个函数怎么会出现fog下面有个黄色的感叹
39
saimachensi
42匿名网友2009-04-20 20:22 | 回复
感谢楼主的帖子,我受用不浅!!!
43网友:小和2009-04-29 14:06 | 回复
有一个小问题.
44网友:小和2009-04-29 14:16 | 回复
“建立一个平面,新平面与yz平面成一夹角,如图所示,夹角用
度圆上e = S = πm/2。

应该通过渐开线与分度圆的交点与z轴创
45
saimachensi
不知道是哪邊錯誤
50网友:ICE2009-05-13 17:06 | 回复
大大我是樓上那位
我已經成功畫出來了
謝謝你^^b 讓我功力更進一步
51
saimachensi
2009-05-22 19:58 | 回复
第11步似乎有点问题,圆形阵列不应该选择“实例和总角度”
当选择“实例和角度间距”个数是z,角度间距是360deg/z
你很牛,所以纯探讨下
53
saimachensi
验证码:
请点击后输入四位验证码,字母不区分大小写
发表评论
©2010 Baidu PDF 文件使用 "pdfFactory Pro" 试用版本创建。

相关文档
最新文档