太阳能电池转换效率
太阳光电转换效率提升方法分析
太阳光电转换效率提升方法分析太阳能作为一种清洁、可再生的能源,逐渐得到了广泛的应用和重视。
然而,太阳能电池的转换效率一直是太阳能利用的瓶颈之一。
因此,研究如何提升太阳能电池的转换效率变得至关重要。
本文将分析几种提升太阳能电池转换效率的方法,并讨论它们的优缺点。
第一种方法是使用多结构太阳能电池。
多结构太阳能电池是由不同材料层次叠加而成,每一层材料都能吸收不同波长的太阳光。
通过合理设计多结构太阳能电池,可以实现更高的光电转换效率。
例如,通过在电池表面添加硅膜、氧化锌薄膜和有机聚合物薄膜,可以吸收多个波长范围内的光线。
多结构太阳能电池的优点是能够提高光电转换效率,并且不需要额外增加太阳能电池板的尺寸。
然而,缺点是制造过程复杂,成本较高,并且不同材料的耐久性和稳定性可能不同。
第二种方法是使用提高光吸收能力的纳米结构。
纳米结构是一种具有小尺寸、高比表面积和特殊光学性质的材料。
通过改变材料的纳米结构,可以增强太阳能电池对光的吸收能力,从而提高光电转换效率。
例如,使用金属纳米颗粒可以实现表面等离子共振效应,增强光的吸收。
纳米结构的优势在于能够提高太阳能电池对光的吸收能力,从而提高转换效率。
然而,制备纳米结构的过程可能比较复杂,并且对材料稳定性和成本也提出了挑战。
第三种方法是优化太阳能电池的界面和电子传输性能。
太阳能电池中,界面的质量和电子传输性能对于光电转换效率起着重要作用。
通过优化界面和电子传输性能,可以减少能量损失和电子复合现象,提高转换效率。
例如,通过优化电极界面的化学结构和物理形貌,可以改善电子的传输和减少界面反射,从而提高转换效率。
优化太阳能电池界面和电子传输性能的优势在于可以在不改变材料和器件结构的情况下,提高转换效率。
然而,这需要精密的制备工艺和复杂的界面工程。
第四种方法是增加太阳能电池的光利用率。
光利用率是指太阳能电池中光能转化为电能的比例。
通过增加光利用率,可以提高太阳能电池转换效率。
例如,通过将太阳能电池覆盖上表面纳米结构或反射膜,可以提高光的吸收和传输效率,增加光利用率。
太阳能电池效率极限
太阳能电池效率极限
太阳能电池的效率极限取决于许多因素,如电池的制造技术、材料的质量、太阳光的入射角度、环境条件等。
理论上,硅基太阳能电池的理论效率极限为29.4%。
钙钛矿太阳能电池的效率也受到限制,因为它们的电荷传输层是串联的,会产生所谓的“能量损失”。
在最新的接触电阻率下,Brendel公式估计的SHJ太阳能电池的理论极限效率为28.5%,与双面隧道氧化钝化接触(TOPCon)太阳能电池的28.7%相当。
此外,德国哈梅林太阳能研究所(ISFH)测算出P型单晶硅PERC电池理论转换效率极限为24.5%。
在更新的接触电阻率下,Brendel公式估计的SHJ太阳能电池的理论极限效率为28.5%,与双面隧道氧化钝化接触(TOPCon)太阳能电池的28.7%相当。
请注意,这些理论极限效率值并不代表实际生产中太阳能电池的平均或实际效率。
实际效率通常会低于这些极限值,并且还会受到其他因素的影响,如光照强度、温度、环境条件等。
因此,在实际应用中,需要综合考虑各种因素来提高太阳能电池的效率和性能。
光电转换效率计算公式
光电转换效率计算公式光电转换效率是衡量太阳能电池性能的一个关键指标,它能告诉我们太阳能电池把光能转化为电能的能力到底有多强。
咱先来说说光电转换效率的计算公式到底是啥。
简单来讲,光电转换效率(η)等于太阳能电池的输出功率(Pout)除以入射光功率(Pin),再乘以 100%,用公式写出来就是:η = (Pout / Pin)× 100% 。
那这里面的输出功率和入射光功率又咋算呢?输出功率就是太阳能电池产生的电能功率,它等于输出电压(V)乘以输出电流(I),也就是 Pout = V × I 。
而入射光功率呢,就是照射到太阳能电池上的光的功率,这个跟光的强度和照射面积有关系。
比如说,我有一次去参加一个科技展览,看到了各种各样的太阳能设备。
其中有一个小型的太阳能板,工作人员正在给大家讲解它的性能。
我就特别好奇,凑过去听。
他拿着一个测量仪器,给我们展示了这个太阳能板在当时的光照条件下产生的电压和电流,然后通过计算得出了输出功率。
接着,他又告诉我们当时的光照强度和太阳能板的面积,从而算出了入射光功率。
最后,按照光电转换效率的公式,算出了这块太阳能板的光电转换效率。
我当时就觉得,原来这些看似复杂的科学知识,通过实际的操作和计算,也能变得这么清晰易懂。
要想提高光电转换效率,那可不是一件简单的事儿。
这涉及到材料的选择、制造工艺的改进等等好多方面。
比如说,使用更高质量的半导体材料,能让电子和空穴的分离更有效,从而提高效率;优化电池的结构,像增加层数、改变形状,也能让更多的光被吸收和转化。
在实际应用中,光电转换效率的高低直接影响着太阳能产品的实用性和经济性。
效率越高,同样面积的太阳能板就能产生更多的电能,这对于大规模的太阳能电站或者是我们日常生活中使用的太阳能小设备,都太重要啦。
总之,光电转换效率的计算公式虽然看起来简单,但其背后涉及的科学知识和实际应用可真是不简单。
我们在不断探索和创新,就是为了让这个效率越来越高,让太阳能为我们的生活带来更多的便利和美好。
有机太阳能电池最高能量转换效率
有机太阳能电池最高能量转换效率
有机太阳能电池是一种新型的太阳能电池,它是由有机材料制成的,具有较高的柔韧性和可塑性,可以制成各种形状和尺寸的电池。
目前,有机太阳能电池的最高能量转换效率已经达到了17%左右,与传统的硅基太阳能电池相当,但是它具有更低的成本和更广泛的应用前景。
有机太阳能电池的高效率主要得益于其独特的材料结构和光电
性质。
有机材料可以通过化学合成或溶液加工的方法进行制备,因此制造成本低,生产效率高。
同时,有机材料具有较高的光吸收系数和光致电荷分离效率,可以将太阳光能够更高效地转化为电能。
此外,有机太阳能电池还具有较好的环境适应性和可再生性,符合可持续发展的理念。
有机太阳能电池的应用前景广阔,可以用于室内和室外照明、电子设备电源、智能建筑、移动电源等领域。
随着技术的不断进步和应用场景的不断扩大,有机太阳能电池将成为未来太阳能电池领域的重要研究方向之一。
- 1 -。
太阳能电池片效率功率对照表
太阳能电池片效率功率对照表一、引言二、太阳能电池片的效率和功率1. 效率:太阳能电池片的效率指的是将太阳辐射能转化为电能的能力。
一般来说,太阳能电池片的效率越高,其转换太阳能为电能的能力越强。
太阳能电池片的效率通常以百分比表示,常见的效率范围为15%至25%。
2. 功率:太阳能电池片的功率指的是单位时间内产生的电能。
功率是电流和电压的乘积,通常以瓦特(W)表示。
太阳能电池片的功率与其效率和面积有关,功率越高意味着太阳能电池片单位面积产生的电能越多。
三、太阳能电池片效率功率对照表以下是一些常见太阳能电池片的效率和功率数据:1. 单晶硅太阳能电池片:单晶硅太阳能电池片是目前应用最广泛的太阳能电池片之一。
其效率通常在15%至22%之间,功率在200W 至350W之间。
2. 多晶硅太阳能电池片:多晶硅太阳能电池片是制造成本相对较低的一种太阳能电池片。
其效率通常在13%至18%之间,功率在150W至250W之间。
3. 薄膜太阳能电池片:薄膜太阳能电池片具有较高的柔韧性和透明性,可以应用于一些特殊场景。
其效率通常在10%至15%之间,功率在100W至200W之间。
4. 高效率太阳能电池片:除了上述常见太阳能电池片外,还有一些高效率太阳能电池片在不断研发中。
例如,钙钛矿太阳能电池片的效率已经超过25%,显示出很大的应用潜力。
四、太阳能电池片的应用太阳能电池片广泛应用于各种领域,包括太阳能发电系统、太阳能充电器、太阳能灯具等。
随着太阳能技术的不断进步和成本的不断降低,太阳能电池片的应用也越来越广泛。
太阳能发电系统是太阳能电池片最常见的应用之一。
通过将太阳能电池片组装成太阳能电池板,并与逆变器和储能系统等设备连接,可以将太阳能转化为电能供家庭或工业使用。
太阳能充电器是另一种常见的太阳能电池片应用。
太阳能充电器利用太阳能电池片将太阳能转化为电能,可以为手机、平板电脑、摄像机等电子设备提供绿色能源充电。
太阳能灯具是利用太阳能电池片将太阳能转化为电能供灯具使用的产品。
太阳能电池板工作原理及转换效率影响因素解析
太阳能电池板工作原理及转换效率影响因素解析随着环保意识的不断增强和可再生能源的重要性日益凸显,太阳能作为清洁、无污染的能源来源,逐渐成为人们关注的焦点之一。
而太阳能电池板作为太阳能的主要收集器,其工作原理和转换效率的影响因素成为人们关注的重点之一。
一、太阳能电池板的工作原理1. 光伏效应当光线照射到太阳能电池板上时,光子会转化成电子,从而产生电流。
这种现象被称为光伏效应。
太阳能电池板内部的P-N结构能够将光子转化成电子-空穴对,从而产生电流。
2. 光生电荷分离在太阳能电池板的P-N结构中,当光子进入P-N结后,会激发电子跃迁至导带,同时留下空穴。
由于P-N结的内建电场作用,导致电子和空穴分别向P区和N区移动,从而产生电压。
3. 电荷收集经过光生电荷分离后,电子和空穴被迫向两端移动,形成电流,从而产生输出功率。
二、太阳能电池板转换效率影响因素1. 光照强度光照强度是影响太阳能电池板转换效率的关键因素之一。
光照强度越大,太阳能电池板吸收的光子就越多,从而产生更多的电子-空穴对,提高转换效率。
2. 温度温度的变化也会影响太阳能电池板的转换效率。
一般情况下,太阳能电池板的工作温度越低,其转换效率就会越高。
在实际应用中,需要考虑太阳能电池板的散热和降温措施。
3. 表面反射太阳能电池板的表面反射也会影响其转换效率。
在太阳能电池板的生产和安装过程中,需要考虑表面反射的控制,以提高光的吸收率,从而提高转换效率。
4. 材料特性太阳能电池板的材料特性也会影响其转换效率。
目前主要的太阳能电池板材料包括单晶硅、多晶硅、非晶硅等,不同材料的吸收光谱、光伏效率等特性不同,因此也会影响太阳能电池板的转换效率。
5. 光伏电池布局在太阳能电池板的布局中,需要考虑电池板的倾斜角、朝向等因素,以最大限度地吸收光能,提高转换效率。
结语太阳能电池板的工作原理是基于光伏效应、光生电荷分离和电荷收集等原理,并受到光照强度、温度、表面反射、材料特性和光伏电池布局等因素的影响。
提高太阳能电池转换效率的方法
提高太阳能电池转换效率的方法提高太阳能电池转换效率的方法随着全球对可再生能源需求的不断增长,太阳能电池成为了人们关注的焦点。
然而,太阳能电池的转换效率是其应用过程中一个重要的限制因素。
因此,提高太阳能电池的转换效率成为了科研人员和工程师们的重要任务。
以下列举了一些提高太阳能电池转换效率的方法。
一、材料优化1.选用更高性能的光伏材料。
不同材料对于太阳能的吸收和转化效率有着不同的表现。
一些新兴的材料,如钙钛矿太阳能电池,具有较高的能量转换效率和低制造成本,是提高太阳能电池效率的重要途径之一。
2.优化硅材料。
硅是太阳能电池中最常用的材料之一,科研人员通过改变硅材料的纯度、晶体结构等因素,提高其对太阳能的吸收和转化效率。
二、结构优化1.多结太阳能电池。
多结太阳能电池是一种将不同能隙的材料结合在一起,形成多个“结”的太阳能电池。
这种结构可以拓宽太阳能电池的吸收光谱范围,从而提高其转换效率。
2.倒置太阳能电池。
倒置太阳能电池是将传统太阳能电池的结构进行翻转,将电流收集层放在顶部,以提高电流的收集效率。
三、表面优化1.减小反射损失。
太阳能电池表面的反射损失是影响其转换效率的因素之一。
通过采用光学涂层、微观结构等方法,可以减小太阳能电池表面的反射损失,提高太阳能的吸收效率。
2.表面钝化。
表面钝化是一种通过降低太阳能电池表面反射率和增加光学厚度来提高其转换效率的方法。
通过钝化太阳能电池的表面,可以减少表面缺陷和载流子复合,提高载流子的收集效率。
四、光学优化1.采用透镜或反射镜。
通过采用透镜或反射镜等光学元件,可以将阳光集中到太阳能电池上,提高其转换效率。
这种技术对于空间太阳能电站等大型光伏系统具有重要意义。
2.光热转化。
光热转化是一种将太阳能转化为热能,再利用热能驱动光电转换过程的方法。
通过将太阳能聚集在热接收器上,提高温度并利用热电偶原理将热能转换为电能,可以提高太阳能电池的转换效率。
五、环境因素优化1.温度管理。
太阳能光伏电池的提高转换效率方法
太阳能光伏电池的提高转换效率方法太阳能光伏电池作为一种可再生的能源发电方式,已经得到广泛应用和研究。
然而,目前太阳能光伏电池的转换效率相对较低,限制了其在实际应用中的推广和利用。
因此,提高太阳能光伏电池的转换效率成为当前研究的焦点之一。
本文将就太阳能光伏电池提高转换效率的方法进行探讨和分析。
1. 优化电池材料太阳能光伏电池的转换效率与所使用的材料密切相关。
因此,选择合适的材料并进行优化是提高转换效率的重要一步。
目前,常见的太阳能光伏电池材料包括硅、铜铟硒(CIS)、氧化镉等。
通过在材料的选择和结构设计上进行改进,可以有效提高电池的光吸收能力和载流子的传输效率。
2. 提高光吸收效率光吸收是太阳能光伏电池转换能量的重要环节。
为了提高光伏电池的转换效率,需要增强材料对太阳光谱的吸收能力。
一种常见的方法是采用多晶硅或单晶硅,并通过表面工艺改善其吸收能力。
另外,利用纳米材料、光子晶体等新技术也可以提高光吸收效率。
3. 减少反射损失太阳能光伏电池在光的传输过程中会产生一定的反射损失。
为了提高转换效率,可以采用表面纳米结构或反射层来减少光的反射。
通过调整反射层的厚度和折射率,可以使光线更好地被吸收,减少能量损失。
4. 提高载流子收集效率在太阳能光伏电池工作过程中,及时高效地收集产生的载流子是提高转换效率的关键。
通过优化电极的设计和结构,可以减少载流子在电池中的复合和损失,提高载流子的收集效率。
此外,利用表面电场、电子和空穴传输层等技术也可以增强载流子收集效率。
5. 降低温度效应太阳能光伏电池的转换效率与温度密切相关。
高温会导致光伏电池内部电压降低,进而降低转换效率。
因此,降低光伏电池的温度是提高效率的一种重要方法。
可以通过冷却系统、散热材料等手段有效降低光伏电池的工作温度,提高转换效率。
综上所述,提高太阳能光伏电池的转换效率是太阳能研究的重要课题。
通过优化电池材料、提高光吸收效率、减少反射损失、提高载流子收集效率和降低温度效应等方法可以有效地提高太阳能光伏电池的转换效率,进一步推动太阳能的广泛应用和发展。
太阳能与光电池的能量转换效率研究
太阳能与光电池的能量转换效率研究自然界中,太阳是最主要的能源之一。
然而,人类如何有效地利用太阳能一直是一个热门话题。
光电池作为太阳能的直接转化技术,一直在近几十年中经历了巨大的突破和发展。
在这篇文章中,我们将探讨太阳能与光电池的能量转换效率相关的研究,以及未来的发展前景。
首先,我们来理解一下什么是能量转换效率。
能量转换效率被定义为能量转化为有用形式的比例,通常以百分比表示。
在太阳能和光电池领域,能量转换效率指的是太阳能被光电池转化为电能的比例。
这个比例越高,就意味着光电池利用太阳能的效率越高。
在过去的几十年中,研究人员一直致力于提高光电池的能量转换效率。
最早的太阳能电池是由单晶硅制成,其能量转换效率大约为6%左右。
然而,随着技术的发展,现代光电池的能量转换效率已经达到了超过20%的水平。
这主要归功于材料科学、工程技术和制造工艺的创新。
在材料科学方面,研究人员发现了许多具有良好光吸收和电导性能的材料,如多晶硅、硒化铜铟镓硫、钙钛矿等。
这些材料的光电转换效率优于传统的单晶硅材料。
此外,纳米技术和量子效应的应用也为光电池的效率提高提供了新的思路。
工程技术也起到了关键作用。
光电池的结构和组件的设计和优化对能量转换效率有着重要影响。
例如,光电池中的透明导电层和反射层的设计可以提高光的吸收和利用效率。
同时,光电池的电子传输和电荷分离能力也是关键因素。
通过合理设计最小化光电损失和电子回流,可以提高能量转换效率。
除了材料科学和工程技术,制造工艺也是关键环节。
高效率的光电池制造需要高质量的材料和精确的制造工艺。
不同的制造工艺将对光电池的效率产生直接的影响。
例如,表面处理、沉积和薄膜制备工艺等都是影响能量转换效率的因素。
因此,精细的制造工艺是提高效率的必要条件。
然而,尽管光电池的能量转换效率已经有了巨大的提高,但仍然面临一些挑战。
首先,光电池的高效率主要集中在实验室阶段,而在工业化生产过程中的应用还存在一些问题。
其次,光电池的制造成本较高,限制了其大规模应用的普及。
太阳能电池板的转化效率
太阳能电池板的转化效率抽象地说:转化效率就是电池的输出功率占入射光功率百分数!详细地说:采纳肯定功率密度的太阳光照耀电池,电池汲取光子以后会激发材料产生载流子,对电池性能有贡献的载流子最终要被电极收集,自然在收集的同时会伴有电流、电压特性,也就是对应一个输出功率,那么,用产生的这个功率除以入射光的功率就是转换效率了!二、理论公式:效率=(开路电压*短路电流*填充因子)/入射光功率密度=电池输出功率密度/入射光功率密度三、影响太阳能电池转换效率的因素影响太阳能电池转换效率的因素许多,简洁的归纳下吧:1)太阳能光强。
太阳能电池就是把太阳光转化为电的一种器件,在一般的状况下(留意条件),太阳能电池的效率随光强增加而增加的。
再进一步说就是太阳能电池效率和安装地的综合气候条件有关系。
2)电池的材料。
不同的材料对光的汲取系数不同,禁带宽度也不同,量子效率自然也不同,电池效率自然也不同了。
一般来说,单晶硅/多晶硅对光的系数系数远小于非晶硅的,所以非晶硅太阳能电池厚度仅仅有单晶硅/多晶硅厚度的百分之一即可较好的汲取太阳光。
另外理论上讲GaAs太阳能电池的极限效率要大于其他太阳能电池的极限效率,由于GaAs太阳电池的禁带宽度在1.4ev,和地面太阳光光谱能量的最值最为接近。
3)工艺水平。
不同的工艺水平,电池的效率自然也不同,看看各个厂子就很明白了,为什么原材料几乎都一样,做出来的电池效率却差别很大,缘由就在这。
工艺水平自然和设备水平有着重要的关系,一般来说设备越是先进工艺就越优秀,电池效率就越高(工艺是设备的产物,没有设备工艺无法实现,都是空想)。
典型的例子就是SiN:H减反膜以及倒金字塔结构,一块电池假如不采纳这两种工艺,效率差别会很大(也许8%左右)。
实际生产中典型的工艺有:尚德的"Pluto',晶澳的"Maple',英利的"熊猫'等等。
太阳能电池板光电转换效率测试加工
太阳能电池板光电转换效率测试加工太阳能电池板是目前最常见的太阳能利用方式之一。
将太阳能辐射转化为电能,实现了可再生能源的利用,是推动可持续发展的重要手段之一。
其中,光电转换效率是评价太阳能电池板性能的重要指标。
本文将介绍太阳能电池板光电转换效率测试及加工的相关知识。
一、太阳能电池板光电转换效率测试太阳能电池板的光电转换效率指的是将太阳能辐射转化为电能的效率,是评价太阳能电池板性能的重要指标。
光电转换效率测试是评价太阳能电池板性能的重要手段。
其中,传统的测试方法是使用太阳模拟器和多米诺效应器进行测试。
太阳模拟器是通过模拟太阳光谱和光强度来测试太阳能电池板功率输出的仪器。
多米诺效应器则是用来定量测量光电转换效率和光电导率的仪器。
然而,这种测试方法存在一些缺陷。
首先,太阳模拟器只能模拟太阳光谱和光强度,但无法模拟天气和季节的影响,因此测试结果难以达到实际情况。
其次,太阳模拟器成本较高,不利于大规模应用。
因此,近年来,多种新型测试方法被提出,如:现场光谱分析法、宽谱光谱分析法、电池音频法、光感电导谱法等。
这些新型测试方法能够更加准确地测试太阳能电池板的光电转换效率。
二、太阳能电池板加工技术太阳能电池板的加工技术影响着太阳能电池板的性能。
以下介绍几种常见的加工技术。
1.衬底制备技术衬底制备技术是太阳能电池板加工的基础,其稳定性、光滑度、反射率等性能,直接影响了太阳能电池板的光电转换效率。
常用的衬底材料有硅、玻璃等。
2.锗抛光技术锗抛光技术是提高太阳能电池板效率的重要手段之一。
锗是太阳能电池板的一种常见材料,其表面质量直接影响着太阳能电池板的效率。
通过锗抛光技术,可以将锗表面的缺陷减少到可接受的程度,提高太阳能电池板的效率。
3.层状结构技术层状结构技术是对太阳能电池板的光电性能进行调控的一种方法。
通过在太阳能电池板表面加上一层金属薄膜,可以调节其反射率和透过率,从而提高太阳能电池板的效率。
三、结语太阳能电池板的光电转换效率测试及加工技术是目前太阳能电池板领域研究的热点问题。
太阳能发电系统电量计算方式
太阳能发电系统电量计算方式第一,太阳能的光能转换效率:太阳能的光能转换效率是指光能被太阳能电池板转换为电能的效率。
在计算太阳能系统的电量之前,需要先计算太阳能电池板的光能转换效率。
太阳能电池板的光能转换效率取决于多个因素,包括太阳能电池板的类型、质量、温度等。
一般来说,太阳能电池板的光能转换效率在15%到20%之间。
具体计算过程如下:首先,需要了解太阳能电池板的额定功率。
一般来说,太阳能电池板的额定功率是指在标准测试条件下,太阳辐射强度为1000瓦/平方米,温度为25摄氏度时,太阳能电池板的输出功率。
其次,根据太阳能电池板的额定功率和光能转换效率的定义,可以计算出太阳能电池板的光能转换效率。
光能转换效率(η)=太阳能电池板的实际输出功率/太阳能电池板的额定功率。
最后,根据太阳能电池板的光能转换效率,可以计算出太阳能系统的总输出功率。
总输出功率=太阳能电池板的光能转换效率×太阳能电池板的面积×太阳辐射强度。
第二,太阳能系统的电量输出:太阳能系统的电量输出是指太阳能电池板转换的电能被储存在电池中的电量。
在计算太阳能系统的电量输出时,需要考虑太阳能电池板的输出功率、储能池的容量以及太阳能电池板的工作时间等因素。
首先,需要了解太阳能电池板的输出功率。
太阳能电池板的输出功率取决于光能转换效率以及太阳能电池板的面积。
输出功率=光能转换效率×太阳能电池板的面积×太阳辐射强度。
其次,需要确定太阳能系统的工作时间。
太阳能系统的工作时间取决于太阳能电池板的工作时间以及太阳能电池板的输出功率。
最后,根据太阳能电池板的输出功率和工作时间,可以计算出太阳能系统每天或每年的电量输出。
电量输出=输出功率×工作时间。
需要注意的是,太阳能发电系统的电量计算还需要考虑一些实际因素,如太阳能电池板的损耗、天气状况等。
这些因素都会对太阳能发电系统的电量产生影响,需要在计算中进行综合考虑。
太阳能电池的光电转换效率提高研究
太阳能电池的光电转换效率提高研究一、太阳能电池的基本原理太阳能电池是一种将太阳能直接转化为电能的装置,其基本原理是光生电效应。
当光线照射到半导体表面时,能量激发半导体中的电子,使其跃迁到能级较高的位置,从而在半导体内部形成电荷的分离和集中。
这些电子和空穴被集中在半导体表面,形成一个电势差,在电池两端形成电场,从而产生电流,使太阳能电池发出电能。
二、太阳能电池的主要分类太阳能电池主要分为传统硅基电池和非晶硅太阳能电池。
传统的硅基太阳能电池又分为单晶硅、多晶硅和薄膜硅太阳能电池。
非晶硅太阳能电池是基于非晶硅材料制成的,具有较高的光电转换效率。
三、太阳能电池的光电转换效率太阳能电池的光电转换效率是指太阳能电池将太阳能转化为电能的能力,即能量转换效率。
光电转换效率的大小取决于太阳能电池所能吸收到的光谱范围和光强度,以及太阳能电池内部材料和结构的特性。
当前,太阳能电池的光电转换效率一般在15%-20%之间,但也有些前沿研究机构已经将太阳能电池的光电转换效率提高到了40%以上。
四、太阳能电池光电转换效率提高的方法为了提高太阳能电池的光电转换效率,目前研究主要是从以下几个方面入手:1.发掘高效率的材料目前,太阳能电池所使用的材料主要有硅、镓、铟、锗、硒化铜等。
而在这些材料中,铟镓硒太阳能电池是具有最高转换效率的一种太阳能电池。
同时,也有一些新兴材料,如有机太阳能电池和钙钛矿太阳能电池,在单一光谱上具有较高的转换效率。
2.提高光吸收率在太阳能电池吸收光线的过程中,光线的吸收率是非常重要的因素之一。
因此,研究人员通过改变太阳能电池的结构和材料,提高太阳能电池对光线的吸收率。
例如,通过制造微纳结构阵列或采用柔性薄膜太阳能电池的方式,可以增加太阳能电池的光吸收率,从而提高光电转换效率。
3.优化光电转化界面太阳能电池的有效光电转换需要一个完美的光电转化界面。
因此,研究人员通过优化太阳能电池材料之间的交界面,或引入新的转化材料,从而改善太阳能电池界面,提高太阳能电池光电转换效率。
太阳能电池的的性能主要取决于它的光电转换效率和输出功率
太阳能电池板太阳能电池的的性能主要取决于它的光电转换效率和输出功率.1.效率越大,一样面积的太阳能电池板输出功率也就越大, 用高效率的太阳能电池板可以节省安装面积, 但是价格更贵.2.太阳能电池的功率, 在太阳能电池板的反面标牌中, 有关于太阳能电池板的输出参数, 如VOC开路电压,ISC短路电流,VMP工作电压,IMP工作电流, 等. 但我们只需要用工作电压和工作电流就可以了, 这两个相乘就可以得这块太阳能电池板的输出功率.太阳能电池板介绍:采用高质量单晶/多晶硅材料,经精细设备树脂封装生产出来的太阳能板,有良好的光电转换效果,外形美观,使用寿命长。
太阳能电池板的作用是将太阳的光能转化为电能后,输出直流电存入蓄电池中。
太阳能电池板是太阳能发电系统中最重要的部件之一。
太阳能电池组件可组成各种大小不同的太阳能电池方阵,亦称太阳能电池阵列。
太阳能电池板的功率输出能力与其面积大小密切相关,面积越大,在一样光照条件下的输出功率也越大。
2.太阳能电池板的种类(1)单晶硅太阳能电池目前单晶硅太阳能电池的光电转换效率为15%左右,最高的到达24%,这是目前所有种类的太阳能电池中光电转换效率最高的,但制作本钱很大,以致于它还不能被大量广泛和普遍地使用。
由于单晶硅一般采用钢化玻璃以及防水树脂进展封装,因此其巩固耐用,使用寿命一般可达15年,最高可达25年。
(2)多晶硅太阳能电池多晶硅太阳能电池的制作工艺与单晶硅太阳能电池差不多,但是多晶硅太阳能电池的光电转换效率如此要降低不少,其光电转换效率约12%左右(2004年7月1日日本夏普上市效率为14.8%的世界最高效率多晶硅太阳能电池)。
从制作本钱上来讲,比单晶硅太阳能电池要廉价一些,材料制造简便,节约电耗,总的生产本钱较低,因此得到大量开展。
此外,多晶硅太阳能电池的使用寿命也要比单晶硅太阳能电池短。
从性能价格比来讲,单晶硅太阳能电池还略好。
:化学染料电池板:染料敏化太阳能电池。
有机太阳能电池最高能量转换效率
有机太阳能电池最高能量转换效率有机太阳能电池是一种应用有机聚合物材料制成的太阳能电池。
与传统的硅基太阳能电池不同,有机太阳能电池具有许多优点,包括低成本、轻量化、可弯曲、可印刷、高光波长吸收等。
因此,有机太阳能电池是一种具有巨大发展潜力的太阳能电池。
那么,有机太阳能电池最高能量转换效率是多少呢?这个问题需要分析有机太阳能电池的电子机理和性质。
有机太阳能电池的电子机理和性质有机太阳能电池是一种光电转换器件,其工作原理基于光电效应,即光子被吸收后,将激发器件内部的电子和空穴运动产生载流子。
这些载流子通过外部电路流动,从而产生电能。
有机太阳能电池中的聚合物材料具有很高的吸光度,可以在宽波长范围内吸收太阳光能,并通过光生电子和空穴来产生电荷分离。
聚合物材料中的电子和空穴运动受到一系列的影响,比如分子聚合度、晶体结构、杂质掺杂等,这些因素会影响有机太阳能电池的电子性质和性能。
有机太阳能电池的常见结构是:ITO(导电玻璃)/ PEDOT: PSS (缓冲层)/聚合物(光致电荷分离) / PCBM(电荷输运层)/ Al (电极)。
其中,PEDOT: PSS材料是一种准导体,它具有优异的导电性能和透明性能,能够提高有机太阳能电池的效率。
有机太阳能电池最高能量转换效率有机太阳能电池的最高能量转换效率目前已经达到了大约17.3%,这是由于新材料、新结构和新工艺的不断开发和创新。
相较于传统的硅基太阳能电池,有机太阳能电池的能量转换效率相对较低,这主要是因为有机聚合物材料的能带结构和分子结构的限制。
目前,有机太阳能电池的研究发展主要集中在改善其材料、结构和工艺,并提高电子传输率和空穴传输率,以达到更高的能量转换效率。
总结有机太阳能电池作为一种新型太阳能电池,具有许多优势,包括低成本、轻量化、可弯曲、可印刷、高光波长吸收等。
目前,其最高能量转换效率已经达到了17.3%。
随着材料、结构和工艺的不断改进,有机太阳能电池的发展前景十分光明。
太阳能电池板转换效率计算公式
太阳能电池板转换效率计算公式
转换效率=(输出电力/输入光能)×100%
其中,输出电力是太阳能电池板产生的电力,可以通过功率乘以工作时间来计算,即:
输出电力=太阳能电池板的功率×工作时间
输入光能是太阳能电池板从太阳光中吸收的能量,可以通过辐射强度乘以有效面积来计算,即:
输入光能=太阳光的辐射强度×太阳能电池板的有效面积
太阳光的辐射强度可以通过辐照度来衡量,单位为瓦特每平方米(W/m²)。
工作时间是指太阳能电池板实际工作的时间,通常以小时(h)为单位。
需要注意的是,太阳能电池板的转换效率是个动态值,会受到多种因素的影响,如温度、光谱分布等。
因此,在实际应用中,通常会根据不同的条件进行测试和计算,以得到更准确的转换效率。
总结起来,太阳能电池板转换效率的计算公式为:。
晶科能源太阳能电池转换效率
晶科能源太阳能电池转换效率晶科能源是一家专注于太阳能电池研发和生产的公司,其太阳能电池转换效率备受瞩目。
太阳能电池转换效率是衡量太阳能电池性能的重要指标,越高的转换效率意味着太阳能电池能够更高效地将太阳光转化为电能,从而提供更多的可再生能源。
晶科能源的太阳能电池转换效率在过去几年中不断提升,取得了显著的进展。
太阳能电池的转换效率与其材料、制造工艺以及结构设计等因素密切相关。
晶科能源通过持续的研发和创新,不断改进太阳能电池的各个环节,提高了转换效率。
晶科能源采用了高效的太阳能电池材料。
太阳能电池的核心是光伏材料,晶科能源选择了具有较高光电转换效率的多晶硅和单晶硅作为光伏材料。
这些材料具有良好的光吸收特性和较高的载流子迁移率,能够更好地转化太阳光能。
晶科能源注重优化太阳能电池的制造工艺。
制造工艺的改进可以提高太阳能电池的光电转换效率。
晶科能源引入了先进的制造设备和工艺技术,优化了光伏电池的生产过程,减少了能量损失和缺陷产生的可能性。
通过精确的控制工艺参数,晶科能源能够生产出更高效的太阳能电池。
晶科能源还致力于改进太阳能电池的结构设计。
太阳能电池的结构设计直接影响着其光电转换效率。
晶科能源通过优化电池背面反射层、控制光伏材料厚度和电极设计等方式,提高了太阳能电池的光吸收和电流收集效率,从而提高了转换效率。
晶科能源通过不断的技术创新和优化,使得其太阳能电池的转换效率得到了显著提升。
据统计,晶科能源的太阳能电池转换效率已经达到了20%以上,其中一些高效太阳能电池的转换效率甚至超过了25%。
这一成就在全球范围内都属于领先水平。
太阳能电池的转换效率对于太阳能发电的经济性和可行性具有重要影响。
转换效率越高,太阳能电池发电的成本就越低,同时也能够获得更高的发电量。
因此,晶科能源的高效太阳能电池在推动可再生能源产业发展和应对能源危机方面具有重要意义。
晶科能源太阳能电池转换效率的不断提升是其持续创新和研发的结果。
通过选择高效的光伏材料、优化制造工艺和结构设计,晶科能源成功提高了太阳能电池的转换效率。
太阳能电池效率
太阳能电池效率
太阳能电池是利用太阳能转换成电能,广泛应用于工业、商业、住宅
等领域。
太阳能电池的效率是指在一个单元时间内能够将太阳能转换成多
少电能的比率,其通常由其功率密度和电池的材料来决定。
目前,太阳能电池的效率通常在20%到25%之间,而一些先进的太阳
能电池效率可以达到32%。
这些太阳能电池采用了新的结构和技术,使用
更少的材料,更薄的金属电极,以及反射等技术来提高太阳能电池的效率。
太阳能电池的高效率可以更容易、更有效地将太阳能转换成电能,从
而更好地发挥太阳能电池的功效,为人类提供更多的可再生能源。
因此,
它的发展具有重要的意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Research on New Technologies of Photoelectric Conversion Efficiency in Solar CellTianze LI, Chuan JIANG, Cuixia SHENG School of Electric and Electronic Engineering Shandong University of TechnologyZibo 255049 ,Chinae-mail: ltzwang@Hengwei LU,Luan HOU, Xia ZHANG School of Electric and Electronic Engineering Shandong University of TechnologyZibo 255049 ,Chinae-mail: henrylu007@Abstract—The characteristics of the solar energy and three conversion mode of solar energy including photovoltaic conversion, solar thermal conversion, and photochemical conversion are represented in this paper. On this basis,the materials used in solar cell, as well as the working principle of solar cells, the factors of low convert efficiency of solar cells and the two major bottlenecks encountered in the solar application are analyzed.The idea that spontaneous arrangement of compound organic molecules is achieved by changing the molecular arrangement structure of the organic thin-film solar is put forward. The new structure of liquid crystal layer come into being accordingly so that the electron donor and the receptor molecules of the mixture are separated, and the contacting area between them is enlarged. So the efficiency solar photovoltaic is improved. The research and development of this new technology can solve the technical problem of the low conversion efficiency of solar cell, and open up an effective way to improve the conversion efficiency of solar cells. At last,the prospect of solar photovoltaic technology, solar energy exploit technology and the development of industry is offered in the article.Keywords- photoelectric conversion efficiency; electron donor and recipient; photovoltaic generate power technologyI.I NTRODUCTIONEnergy is the material basis of human society survival and development. In the past 200 yearsˈthe energy system based on coal, oil, natural gas and other fossil fuel has greatly promoted the development of human society. However,material life and spiritual life is increasing, the awareness of serious consequences brought from the large-scale use of fossil fuels is increasing at the same time: depletion of resources, deteriorating environment, in addition to all of the above, it induce political and economic disputes of a number of nations and regions, and even conflict and war. After in-depth reflection of the development process of the past, human advance seriously the future path of sustainable development. Today in the 21st century, there is no a problem as important as a sustainable energy supply, especially for the benefit of solar energy development and has been highly concerned by all mankind. Around the world are faced with limited fossil fuel resources and higher environmental challenges, it is particularly important to adhere to energy conservation, improve energy efficiency, optimize energy structure, rely on scientific and technological progress, development and utilization of new and renewable sources.After analyzing two bottleneck problems which affect the conversion efficiency of the solar cell, we put forward a new structure of molecular arrangement of the solar cell to improve the conversion efficiency of the solar cell.II.T HE F EATURES O F S OLAR A ND T HREE C ONVERSIONM ODESA.The Features of SolarSolar resources are solar radiation energy on the entire surface of the earth. Solar energy has four features. Firstly, solar energy is sufficient. The gross of solar radiation energy on the surface of the earth is about 6h1017kWh every year. It can be used several billions of years, which is reproducible and cleanest. It isn’t monopolized by any groups or coutries. Secondly, the energy density of solar energy is low. People want to obtain higher energy density by condensers. Thirdly, because of climatic change, the solar energy is mutative. For example, cloudy day and rainy day, the solar energy is weak. People should consider energy storage or use auxiliary devices which provide conventional energy to use solar energy in a row. Forthly, because of the earth rotation, the earth revolution and the angle between the axis of rotation and the orbital plane, days and sensons must change on the earth, solar energy must change too. Fifthly, use of solar energy can make energy level appropriate allocation, so heat energy is made used of. When the sun light shines on the earth, part of the light is reflected or scattered, some light is absorbed, only about 70% of the light which are direct light and scattered light passes through the atmosphere to reach the surface of the earth. Part of the light on the surface of the earth is absorbed by the objects surface, another part is reflected into the atmosphere. Fig.1 shows the schematic diagram of the sun incident on the ground.Figure1. Schematic diagram of the sun incident on the ground978-1-4244-7739-5/10/$26.00 ©2010 IEEEB.Three Conversion ModesThe use of solar energy technologies are divided into the following three ways on the energy conversion methods, such as photoelectric conversion, light-heat conversion, photochemical convertion. The light-heat conversion among them is the most widely used, which is a TECHNOLOGY that can change solar radiant energy into heat energy.III.T HE P RINCIPLE A ND M ATERIAL O F T HE S OLAR C ELLA.The Principle of The Solar CellThe principle of Solar cell is based on the semiconductor photovoltaic volt effect. Solar radiation is direct converted to electrical energy. When p-type silicon and n-type silicon connect, the interface will be formed between p-type and n-type the silicon in the crystal, that is, a pn junction. The basic structure is a large-area plane pn junction. As a result of electron and hole diffusion near the junction area, form the built-in electric field pointing form n to p area in the junction area. If the light on the solar cell is absorbed in the interface, the photon with enough energy can inspire electron from the covalent bond in the p-type silicon and n-type silicon and then produce electronic - hole pair.The more electron in the interface,the greater electric current. Light energy absorbed by the interfacial layer is stronger and interface layer that is, the greater the battery area, and the current formed in the solar cellis also greater.Fig.2 shows schematic diagram of crystalline silicon solar cellFigure2. Schematic diagram of crystalline silicon solar cellB.Analysls of MaterialIn principle, all semiconductor materials have photovoltaic effect, which can be used for solar cells. So in theory, all of the semiconductor materials should be solar photovoltaic materials, photoelectric material has all physical appearance of semiconductor materials. There are three reasons. Firstly, limitof physical appearance of semiconductor materials makes theoretical conversion efficiency of solar cells produced by some materials low, which don’t have development and application value. Secondly, the purification and the preparation of materials are difficult, all semiconductor materials don’t satisfy the high purity which should be needed by produced solar cells in the present technical conditions. Thirdly, the cost of materials and producing solar cells limits development, if the cost is very high, it is of no concern to devlop and apply. Though there are many kinds of semiconductor materials, real practical application in solar cell industry of semiconductor materials must be rare.As materials of solar panels, there are a lot of soalr cells produced by silicon so far. Silicon is a semiconductor material. Controllable doping of boron or phosphorus is to change the conductivity of pure silicon. The outer shell of phosphorus has 5 electrons, combination with silicon crystal bonding only need 4 electrons. The fifth electron is close to freedom, which can transfer and form current in the crystal. The number of impurity in the crystal essentially determines the number of current carriers and electroconductibility of doped silicon by changing doping content for purpose. Doping phosphorus or other 5 valence atom called n-type silicon.Silicon can be doped by boron, the outer shell of which has 3 electrons. The boron atom is short of a electron and combines with the adjacent electron of silicon in the silicon crystal lattice. The vacancy location is called “ hole ”. The doped silicon by similar boron is called p-type silicon. PN junction exists joint between n-type silicon and p-type silicon, which is core of semiconductor and solar cell. According to solar spectrum filling the demand of photoelectric conversion, by theoretical analysis, the band gaps of semiconductor materials which are made solar cells are 1-2eV, and when the band gap is about 1.4eV, the transformation efficiency is highest. The semiconductor materials are divided into direct bandgap and indirect bandgap. The photoabsorption coefficient of semiconductor material of direct bandgap is high, and the photoabsorption coefficient of semiconductor material of indirect bandgap is low. Gallium arsenideof micron thickness of direct bandgap absorbs all soalr light, but above 100m silicon may comapare with.From 2003, there are two provision sources of international solar cell materials, such as semiconductor industries and specilized production.The solar cell materials of semiconductor industris are 50t/a. The semiconductor industry in China from grade material about 50t/a. Because of China semiconductor industry electronic level (EG) polysilicon production ability, ability of small ChanChang 100t/a, total 200t/a, insufficient reach high cost, scale, EG polycrystalline silicons are mostly imports, therefore, is not directly to provide DengWaiPin PV industry or scraps of polysilicon. China special grade silicon solar photovoltaic material research and production is almost blankIV.I NFLUENCE F ACTORS O F S OLAR B ATTERY C ONVERSIONE FFICIENCY A ND I MPROVING M EASURESA.Influence Factors of Solar Battery Conversion EfficiencyIn recent years,there are many problems in the application of solar energy technologies, especially the conversion efficiency of the battery technology has encountered many obstacles: the shading effects of grating on the surface of solar cell; the loss of surface reflection; the loss of optical transmission;the loss of internal composite; the loss of surfacecomposite. To solve these problems, the following newtechnologies are developed: PTP/OTP antireflection coating;laser carving groove buried grating technology; rongmian technology; back contact electrode which is to overcome the problem of surface grating shading;efficient back reflect technology; light absorption technology. With the application of these new technologies, issusing a series of studies which is focus on solar cell materials, conversion efficiency and stability ,inventing many new types of cell, which is greatly enhancing the conversion efficiency of solar cells.B.The Two Big Bottlenecks of Soalr Energy ApplicationThe core of solar energy appliction is generating electricity, generating electricity system is like a mini power station, which absorbs solar light, and directly changes solar into electrical energy. Not only satisfying their own electricity demand, excess electricity can also be incorporated into the power grid. The key bottleneck of limited solar energy application is technical environment and policy environment. Interconnection model with solar power equipment based on urban and rural power grid, far higher power grid companies may not buying grid type household solar power equipment redundant power. Even if the government subsidies, still quite difficult. To solve the key technical problems, is to reduce the cost of electricity can, in the true sense of the large-scale promotion.C.Solutions of Improving The Photovoltaic Efficiency ofSolar Cell and MeasuresTo improve solar cell conversion efficiency, reduce costs are the key to the development of photovoltaic technology.1˅Solutions of improving the photovoltaic efficiency of solar cellAt present the impact of major obstacle to large-scale application of photovoltaic cells is its high manufacturing costs. In many power generation technologies, solar photovoltaic is still one of the highest cost, therefore, the main objective to the development of solar power generation technology is to design new battery structure by improving the existing manufacturing processes, to develop new battery materials,so the manufacturing cost is lower and improve the efficiency of photoelectric conversion., there are two main factors to improve the efficiency of photovoltaic solar cells: First is how to make electron donor and receptor molecules in the mixture in the separate state; the second is how to expand the contact area between the two. In order to meet these two conditions, After studying the simulated new materials of molecular structure of the biofilm, hydrophobic side-chain and hydrophilic side-chain can be added,then to combine the two types of material to study the arrangement of the molecular structure, in order to form a liquid crystal state layered structure to improve the photoelectric conversion efficiency.2˅Measures of improving the photovoltaic efficiency of solar cellFirstly, according to the practical situation, policies and regulations which encourage use of renewable energy sources should be made.Secondly, encouraging industrial development, active exploring the market. In order to cause the solar energy to become one of following energy in the mid-21st century, must expand the investment, through the industrial production technology attack, the digestion absorption and so on, causes the light to bend down the manufacture industry technically to surpass the international standard, through the drive policy, encourages the Major industry to participate in the solar energy recovering technology positively the industry activity. Through encourages the policy to promote to expend, the development remote border district light bends down the market.Thirdly,China should be combined with "in western development strategy. Solar energy should be as a key construction project.The government should make implementing measures and programs of all use of solar energyin the western regions. Solar energy should be as the region's subsequent alternative sources.Forthly, Increasing introjection of basic research, such as new thin film solar cells, solar energy based materials, selective absorption films of solar spectral and other spectral reflection, the functional membrane, which greatly reduce the cost of using solar energy.V.S OLAR ENERGY T ECHNOLOGY A ND P ROSPECTWith the energy shortage growing and environmental pressures increasing, the depletion of oil is almost like a curse bringing disturbance to mankind. States have begun to develop renewable energy, in which development and utilization of solar energy has become the most hot "new favorite" of renewable energy. Development of solar energy has been the the general trend, and it is not far from solar energy era. The average annual growth rate of World PV modules was about 15% in the past 15 years. In the late 90s, the development is more rapid, and the average annual growth rate was more than 30% in the recent 3 years. The PV module production reached 200MW in 1999.In the industry, states has been to reduce cost by expanding the size ,improving the degree of automation, advancing the technical level, and opening up the market, and tremendous progress has been made. Efficiency of the Commercialization cell is from 10% ~13% to 13% ~ 15%, and the production scale develop from 1 ~ 5 MW/a to 5 ~ 25 MW/a and is expanding to 50MW even 100MW. PV component production cost down to below three dollars/W. India has the leading position in developing countries. There are currently more than 50 companies are involved in manufacturing about PV technology, including 6 solar cell manufacturing plants and 12 factories of components production, with 11MW annual production of components and about 40MW cumulative installed capacity. Promote the useof solar energy is of benefit to the people. Promotion and useof solar energy products in the the whole society, can directly reduce energy consumption, save money, reduce pollution and beautify their homes. Each unit, business, family and individual is the beneficiary of great significance.A.Applications in SpaceThe first application field of photovoltaic technology is in space as a human satellite power, and later prevalence to the ground application.Solar cell can work in a wide range of sun intensity and temperature for a long period of time, with high reliability, high efficiency, long life and good anti-radiation properties, etc. making it obtain a wide range of application as a ideal space power. So far the vast majority of all types of aircraft launched into outer space by humanity are using solar cells as power supply.B.Solar LightThe solar light is a solar-powered light, which is composed of solar components, batteries, charge-discharge controller, lighting circuits and poles, etc. Light, electricity, machinery, control technologies etc.that the light is gather in integral whole, and often integrate with the surrounding scenic environment. As long as sunny is enough it can install in situ, the light is a green environmentally friendly product and free from the effects of power lines,without ditching and embedding, non- consumption of conventional energy,and attracted a wide spread attention and applicationC.Solar CarWith the arrival of the 21st century, the automotive industry advanced countries are researching and developing in energy saving and environment-friendly electric car. Solar-powered electric car developed rapidly in some developed countries as a result of advances in technology, especially the improvement of the cell and control technology. The primary users of solar-powered electric car are urban and rural middle-income residents, individual traders, and the tourism sector.D. The Application of PV in The Communications and The HighwayThe most familiar application of Solar photovoltaic power system is communications in the industrial field. Solar power used in unmanned microwave relay station, cable maintenance station, electricity / radio / communications / paging power systems, rural telephone carrier photovoltaic systems, small communication equipment, and soldier GPS-powered, etc.Because of their unique characteristics of the highway, it is one of the solar photovoltaics place. Power supply system of highway plays a crucial role in the safety of the highway. In the urban areas of less electricity, if you use mains as power supply, the cost of pull-based power grid is very expensive. If using solar energy photovoltaic power generation on the highway to supply power to necessary electrical facilities, it is energy saving, environmental protection and economic security. Its applications is in the following areas: First, the service area on the highway which is away from the city power can build photovoltaic power station or photovoltaic-diesel hybrid systems,to supply area lighting, catering and other power needs to the service; The second is the emergency telephone system. the highway pass through many remote areas, in order to deal with emergency incidents, an emergency call must be provided as a means of ing the solar-powered long-distance transmission distribution equipment is not necessary, there is no transmission loss, safe and reliable when operate.R EFERENCES[1]Xing Yunmin,Tao Yonghong. Modern energy and technology of powergeneration. Xian: Press of Xidian University, 2007[2]Prince M B. Silicon solar energy converters.J Appl Phys,26:534-540(1955)[3]Kallmann H,Pope M.Photovoltaic effect in organic crystals.J ChemPhys,30:585-586(1959)[4]Wu Zhijian, Ye Zhiquan, Shen Hui.The utilization of New energy andrenewable energy. Beijing: Press of Mechanical Industry, 2006[5]Zhao Yuwen, Wu Dacheng, Li Xudong, Song Shuang. Development ofChina's Photovoltaic industry and market. Solar (SOLAR ENERGY),(3):7-10(2007)[6]Chapin D M,Fuller C S,Pearson G L. A new Silicon p-n junctionphotocell for converting solar radiation into electrical power.J Applphys,25:676-677(1954)[7]Li Jianbao, Li jingFeng. The new energy material and applicationtechnology. Beijing: Tsinghua university press, 2005[8]Wang Gehua. Energy and sustainable development. Beijing: Chemicaltechnology press, 2005[9]Yang Deren. Solar battery materials. Beijing: Chemical technologypress, 2007[10]Tang Huixiang, Yan Mi, Zhang Hui. Study of CuInS2 produced bychemical bath deposition. The 21st century new solar technology.Shanghai: Shanghai jiaotong university press,2003。