第九讲-卡方检验PPT课件

合集下载

第九章 卡方检验12034 ppt课件

第九章   卡方检验12034 ppt课件
24.08, P0.05
结论与之相反。
二、两相关样本率检验 (McNemar检验)
配对四格表资料的 2 检验
与计量资料推断两总体均数是否 有差别有成组设计和配对设计一样, 计数资料推断两个总体率(构成比) 是否有差别也有成组设计和配对设计, 即四格表资料和配对四格表资料。
例 9-3 某 抗 癌 新 药 的 毒 理 研 究 中 , 将
(2 1 )2 ( 1 )1
以 = 1 查 附 表 8 的 2 界 值 表 得 P 0 . 005 。 按 0 . 05
检 验 水 准 拒 绝 H0, 接 受
H

1









阳性率显著高于健康人,提示可能具有临床诊断价
值。
四格表资料检验的专用公式
2
(adbc)2n
(ab)(ac)(bd)(cd)
表9-3 两种疗法治疗癫痫的效果
治 疗 方 法
治 疗 结 果
有 效
无 效
高 压 氧 组 66( 62.8)
4( 7.2)
常 规 组 38( 41.2)
8( 4.8)
合计 104
12
合 计 有 效 率 ( % )
70 46 116
94.3 82.6 89.7
H 0 :1 2 ,H 1 :1 2 , 0 .0 5
R ×C表 2 检验
行×列表资料
① 多个样本率比较时,有R行2列,称为R ×2表; ② 两个样本的构成比比较时,有2行C列,称
2×C表; ③ 多个样本的构成比比较,以及双向无序分类资
料关联性检验时,有行列,称为R ×C表。
检验统计量
2 n(

《卡方检验》课件

《卡方检验》课件

制作交叉表
确定交叉表的行列变量
根据研究目的和内容,选择合适的行列变量,构建交叉表。
制作交叉表
将分组后的数据按照行列变量制作成交叉表,以便于进行卡 方检验。
计算理论频数
确定期望频数
根据交叉表中的数据,结合各组 的概率计算期望频数。
计算理论频数
根据期望频数和实际频数计算理 论频数,为后续的卡方检验提供 依据。
计算卡方值
计算卡方值
使用卡方检验的公式计算卡方值,该 值反映了实际频数与理论频数的差异 程度。
自由度的确定
在计算卡方值时,需要确定自由度, 自由度通常为行数与列数的减一。
显著性水平的确定
选择显著性水平
显著性水平是衡量卡方值是否显著的指标,通常选择0.05或0.01作为显著性水 平。
判断显著性
根据卡方值和自由度,结合显著性水平判断卡方检验的结果是否显著,从而得 出结论。
3.84、6.63等),可以确定观测频数与期望频数之间的差异是否具有统
计学显著性。
02
卡方检验的步骤
收集数据
确定研究目的
制定调查问卷或收集程序
在开始收集数据之前,需要明确研究 的目的和假设,以便有针对性地收集 相关数据。
根据研究目的和内容,制定合适的调 查问卷或建立数据收集程序,确保数 据的完整性和准确性。
详细描述
例如,在市场调研中,我们可以通过卡方检验来分析不同年龄段、性别、职业等 人群对于某产品的态度或购买意愿是否有显著差异,从而为产品定位和营销策略 提供依据。
实际案例二:医学研究中的应用
总结词
在医学研究中,卡方检验常用于病例 对照研究和队列研究中的分类变量关 联性分析。
详细描述
例如,在病例对照研究中,我们可以 通过卡方检验来比较病例组和对照组 在某些基因型、生活方式或暴露因素 上的分布是否有统计学差异,从而探 讨病因或危险因素。

第九章 卡方检验 PPT课件

第九章 卡方检验 PPT课件

地区 城市
避孕方法 节育器 服避孕药 避孕套
153
33
165
农村 320
75
43
合计 473
108
208
其他 40 18 58
合计 431 518 949
2021/2/23
第七章 χ2检验χ2检验
27
(二)多分类情形— 2 × C列联表
2 × C列联表χ2检验的基本思想
2 × C列联表χ2检验公式
2
adbc
n22
n
abcdacbd
2021/2/23
第七章 χ2检验χ2检验
20
▪完全随机设计四格表资料χ2检验适用条件
当n≥40且Tmin ≥ 5时,χ2检验基本公式或四格表专用公式;
2 A TT2
2abc a d d b a c 2c nbd
当n≥40,1≤Tmin<5时,需对χ2值进行校正;
2021/2/23
第七章 χ2检验χ2检验
3
一、χ2分布和拟合优度检验
χ2分布(chi square distribution ) χ2分布的特征 χ2分布的图形形状取决于自由度ν χ2界值表
▪ 不同自由度ν下右侧尾部面积(概率)为α时临界值,
记为χ2 α,(ν)
▪ χ2界值表的特点 ▪ χ2界值表的作用
第九章 卡方检验 PPT课件
第九章 χ2检验
χ2检验(chi square test) 常用于分类变量资料的统计推断
χ2检验是以χ2分布和拟合优度检验为理论依 据的
2021/2/23
第七章 χ2检验χ2检验
2
第九章 χ2检验
χ2检验的用途
单个频数分布的拟合优度检验 完全随机设计两组或多组频数分布χ2检验 配对设计两组频数分布χ2检验 推断两个变量或特征之间有无关联性

卡方检验ppt课件

卡方检验ppt课件
2检验 (chi-square test)
.5
.4
ν=1
.3
.2
ν=3
ν=6
.1
ν=பைடு நூலகம்0
0.0
0
5
10
15
20
25
1
主要内容
2分布
– 了解2分布的基本思想和2分布曲线
四格表资料的2检验
– 掌握应用条件、基本思想和检验过程
配对设计资料的2检验
– 掌握应用条件、基本思想和检验过程
2分布的形状依赖于自由度ν的大小,当 ν≤2时,曲线呈L型;随着ν的增加,曲线 逐渐趋于对称;当ν→∞时, 2分布趋向正 态分布。
3
2分布曲线
.5
.4
ν=1
.3
.2
ν=3
ν=6
.1
ν=10
0.0 0
5
10
15
20
25
4
2 检验
2检验是一种用途非常广泛的以2分布 为理论依据的假设检验方法,主要用于:
14
本例的2检验
H0:π1=π2,即两种给药方法的总体不良 反应发生率相同
H1:π1≠π2,即两种给药方法的总体不良 反应发生率不同
α=0.05
15
本例的2检验
2 (A T )2 (35 30.76)2 (74 78.24)2 (22 26.24)2 (71 66.76)2 1.771
实际频数:表内各格数字为实际资料的数字。
10
2 检验的基本思想
实际频数和理论频数差异的大小可以用2值的大
小来说明,当样本量n和各个按检验假设计算的理
论频数T都足够大时,比如n≥40,T≥5, 似于2分布,n越大,近似程度越好。

《卡方检验方法》ppt课件

《卡方检验方法》ppt课件

在υ=1, 02.05,1u02.05/21.962
自在度一定时,P值越小, x2值越大, 反比关系。
当P 值一定时,自在度越大, x2越大。
=1时, P=0.05, x2 =3.84
P=0.01, x2 =6.63
P=0.05时, =1, x2 =3.84
=2, x2 =5.99
第一节 四格表资料χ2检验
2
0 2 , 1,2,3,...
2分布是一种延续型分布(Continuous
distribution),v 个相互独立的规范正态变量
(standard normal variable)
ui(i1,2, 的,)平
方和称为 2 变量,其分布即为 2 分布;自
在度(degree of freedom)为v 。
普通四格表的根本方式
B1
B2
合计
A1
a
b
a+b
A2
c
d
c+d
合计 a+c b+d n=a+b+c+d
表7-1 完全随机设计两样本率比较的四格表
处置组
属性
阳性
阴性
合计
1
A11 (T11) A12 (T12) n1(固定值)
2
A21 (T21) A22 (T22) n2(固定值)
合计
m1
m2
n
四格表2检验的公用公式
7
36
28
37
35
73
阳性率 〔%〕 80.56
24.32
52.05
2检验(Chi-square test)是现代统计学的 开创人之一,英国人K . Pearson〔 1857-1936〕于1900年提出的一种具有 广泛用途的统计方法。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0.471
154~ 155 124 0.38 0.07 0.23544 130
0.277
151~ 152 112 -2.62 -0.52 0.20615 114 0.035
148~ 149 80 -5.62 -1.11 0.12746 70
1.429
145~ 146 25 -8.62 -1.70 0.05562 31
量上的反应是否有显著差异。
[例]从四所幼儿园分别随机抽出6 岁儿童若 干,各自组成一个实验组,进行识记测
验。测验材料是红、绿、蓝三种颜色书
写的字母,以单位时间内的识记数量为
指标,结果如下。问四组数据是否可以
合并分析。
-
8
分组 1 2 3 4
红色字母 24 15 20 10
绿色字母 17 12 20 25
的6种儿童节目的偏好(态度),随机抽取 了300名儿童,问他们最喜欢哪一种节目( 每人只能选一种),得到的数据如下表:
节目1 节目2 节目3 节目4 节目5 节目6 85 80 55 10 40 30
问:就调查的300人而言,他们对6个节目的 偏好(体现在人数)是否存在显著的差
异?
-
4
-
5
⑵变量间的独立性检验
H0:
f f
0
e
即:实际观察次数与某分布理论次数
之间无差异;
H1:
f o
f e
-
16
⑵数理基础
H0:
f f
0
e
2
f f 2 K
o
e~ 2
f df
e
⑶依统计检验公式,计算实得卡方值
2
K
f
of f
e
2
e
f Np
e
e
⑷作出统计决断 2 ( df )
N:总数 Pe:具体类别理论概率
-
17
1.161
142~ 143 8 -11.62 -2.29 0.01710 9
139~ 140 4 -14.62 -2.88 0.00396 2
0.09
N552 S5.07 X 154.6-2
21
■分析
其一、分组数据第1组理论次数的计算
f p p y N
e1
e1
i
e1
Z S XC1
注: =i 组上限的Z值-组下限的Z值
3、离散型分布的拟合检验
■例 某项民意测验,答案有同意、不置可否、
不同意3种。调查了48人,结果同意的24人 ,不置可否的人12人,不同意的12人,问持 这3种意见的人数是否存在显著差异?
-
18
4、连续型分布拟合检验(例)
对于连续随机变量的测量数据,有时不知
道其总体分布,需要根据样本的次数分布的
大,卡方检验的结果就越可能拒绝无差
虚无)假设接受备择假设。
-理论次数 f 越大( f)拟5 合效果 越
e
e
好。
-
11
1、卡方检验基本公式
2
K
f
of f
e
2
e
■注
K 为类别的数目;
f是o 实际观察值;
f是理论(期待)次数; e
M是: 约束条件数或利用观察数据时使
用的样本统计量的数目;
-
12
2、卡方检验的假设
蓝色字母 19 9 14 28
-
9
二、 检2 验的基本原理
理论基础是1899年皮尔逊的工作:在分 布拟合优度检验中,实际观察次数 f 与理
o
论次数 f 之差的平方除以理论次数近似服 e
从 分2 布,即:
2
f f 2 K
o
e~ 2
f df
e
-
10
■注
-如果实际观察次数与理论次数的差异越
S
其二、拟合指标卡方值的计算
2
2
3.905 1.6 2
.05 93
-
22
5、二项分类的配合度检验与比率显著检验
⑴设总体比率为 p , 0
p且 q 时n p 5
0
0
0
Z
p p e
~ N 0,1
pq
00
n
pp npnp f f
Z
e
e o
e
pq 00 n
npq 00
f •1
e2
-
232Z f ff来自 22 o e22
~
d f1
e
■结论:Z检验与卡方检验一致 (样本比率p的真正分布是二项分布)
-
24
■例
某班有100名学生,男生的有42人,问男生
的比率是否与0.5有显著差异?
①比率显著性检验 Z ②用卡方检验(配合度)
p p
e 1.6
pq 00 n
24 55 2 02 0 5 55 8 02 0 2 .5 6 1 .6 2
-
14
三、卡方检验应用一——总体分布的拟合检 验(goodness of fit test 配合度检验) 由于检验内容仅涉及一个变量多项分类 的计数资料,也称one-way test) 1、配合度检验的一般问题 即检验实际观察数据的分布与某理 论分布是否有显著的差别。
-
15
2、检验过程
⑴统计假设
在对一批观察数据进行双向多项分类之 后,这两个分类特征是独立无关的还是具 有连带相关的关系?
-
6
■例
某师范大学为了了解广大师生对实行“中 期选拨”制度的态度。曾以问卷调查的形式 对977名低年级学生、790名高年级学生和 764名教师进行随机调查,调查结果:
-
7
⑶同质性检验
主要用于检验不同人群母总体在某一个变
第九讲 卡方检验
-
1
一、 检2 验的功能
1、适用资料─计数数据 计数数据的统计分析,测量数据的统计
方法并不适用,卡方检验是较为常用的一 种方法。
-
2
2、卡方检验的功能
⑴拟合优度检验[例] 即通过实际调查与观察所得到的一批
数据,其次数分布是否服从理论上所假 定的某一概率分布;
-
3
■例
某广播电视台为了了解广大儿童对其提供
⑴分类相互排斥,互不包容; ⑵观察值相互独立; ⑶期望次数的大小应大于或等于5(较好趋
近卡方分布的前提);
-
13
■注
①自由度小时,必须 f ,否5 则利用卡方 e 检验需要进行较正或用精确的分布 进行 检验;
②自由度大时,可以有少许类别的理论次 数少于5;
③应用卡方检验时,应注意取样设计,保 证取样的代表性,否则依据卡方检验的 结果难以保证结论的科学性;
2
15.38
7
12.38
Z分数 P
理论次数
f o
f
f
2
e
e
3.03 0.00237 1 2.44 0.01201 7
0.125
163~ 164 22 9.38 1.85 0.04260 24
0.167
160~ 161 57 6.38 1.26 0.10888 60
0.150
157~ 158 110 3.38 0.67 0.18858 104
信息判断其是否服从某种确定的连续性分布。
⑴检验方法
①将连续性的测量数据整理成次数分布表
②画出相应的次数分布曲线;
③选择恰当的理论分布;
④进行拟合检验;
-
19
■例:下表是552名学生的身高次数分布,问这 些学生的身高分布是否符合正态分布?
-
20
身高 组中值
169~ 170 166~ 167
次数 离均差
相关文档
最新文档