弹性的应力和应变

合集下载

弹性体的应变与应力特性

弹性体的应变与应力特性

弹性体的应变与应力特性弹性体是一种特殊的材料,具有独特的应变和应力特性。

在应用中,了解弹性体的应变和应力特性对于设计和制造具有弹性特性的产品至关重要。

首先,了解什么是应变。

应变是弹性体在受力作用下发生的形变量。

它通常以变形体积与初始体积之比来表示。

当施加外力时,弹性体内的分子或原子之间的相对位置会发生变化,从而引起材料的形变。

应变是弹性体发生的可逆性变形,即当外力消失时,弹性体会恢复到原始形态。

而应力则是弹性体内部由于外界施加力而产生的内部力。

应力和力的大小成正比,与受力点附近的弹性体横截面积成反比。

应力可以分为拉伸应力、压缩应力和剪切应力等。

在材料的应变-应力曲线中,通常可以观察到不同阶段的特征。

首先是线性弹性阶段,这个阶段的特点是应变与应力成正比。

当外力移除时,弹性体会回到原始状态,没有留下永久变形。

接着是屈服点之后的塑性变形阶段。

在这个阶段,应变增加,但材料没有完全失去可逆性。

当外力移除后,材料会部分恢复,但仍然存在永久塑性变形。

最后是断裂阶段,材料无法恢复原状,会发生破裂。

这时,应变和应力之间的关系失去线性关系,也就是材料的断裂点。

弹性体的应变和应力特性对于产品设计和材料选择至关重要。

学习和预测这些特性可以帮助工程师选择恰当的材料,并了解产品在受力时的行为。

例如,汽车制造业中常用的悬挂系统。

这些悬挂系统需要具有弹性特性,以吸收和缓解车辆在不平路面上的震动和冲击。

由于弹性体的应变和应力特性,悬挂系统可以使车辆在行驶过程中保持稳定性和驾驶舒适度。

另一个例子是运动鞋的制造。

在设计运动鞋的缓震系统时,工程师必须考虑弹性体的应变和应力特性。

优秀的缓震系统可以缓解由于跑步等运动产生的震动和冲击,为运动员提供更加舒适和安全的体验。

除了产品设计,了解弹性体的应变和应力特性还有助于研究材料的性能和改进材料的制造工艺。

利用工程分析和模拟方法,可以精确地预测弹性体在不同受力情况下的行为,进而优化产品的设计和生产过程。

弹性体力学中的应变与应力关系

弹性体力学中的应变与应力关系

弹性体力学中的应变与应力关系弹性体力学是研究物体在力的作用下变形和恢复原状的力学分支学科,研究的对象主要是固体物质。

在弹性体力学中,应变与应力是两个重要的概念,它们描述了物体的变形和受力状态。

应变和应力之间的关系在弹性体力学中具有重要意义,它们可以通过材料力学模型来描述。

应变是物体在受力作用下发生形变的程度。

一般来说,我们可以将应变分为线性应变和非线性应变。

线性应变是指物体的形变与受力成正比。

例如,当我们拉伸一根弹簧时,弹簧的长度会发生变化,而这种形变与拉力之间是线性相关的。

用数学的语言来表达,线性应变可以用应变量ε表示,其与外力F之间存在着关系ε=ΔL/L,其中ΔL为物体长度的增量,L为物体的原始长度。

非线性应变则是指物体的形变与受力不成比例。

在高强度材料的情况下,非线性应变是不可忽视的。

非线性应变与材料的本构关系有关,常用的本构关系模型包括背应变率本构关系、黏弹性本构关系等。

这些模型可以更准确地描述材料的力学行为,使得我们能够更准确地计算应变。

与应变相对应的是应力。

应力可以看作是物体单位面积的受力情况。

一般来说,应力可以分为正应力和剪应力。

正应力是指垂直于物体内部某一面的力的作用情况。

例如,当我们用一把剪刀剪断一根木棍时,剪刀的受力情况可以被描述为正应力。

剪应力则是指平行于物体内部某一面的力的作用情况。

例如,当我们剪断一个绳索时,绳索的受力情况可以被描述为剪应力。

应变与应力之间的关系又可以通过应力-应变曲线来描述。

应力-应变曲线是弹性体力学研究中的一个重要工具,它可以体现材料的力学性质。

一般来说,应力-应变曲线可以分为弹性阶段、屈服阶段、塑性阶段和断裂阶段。

在弹性阶段,应力与应变成正比。

这个阶段的曲线是一个直线,斜率即为弹性模量,用来描述材料的刚度。

当应力超过一定值时,物体进入屈服阶段。

在屈服阶段,物体的应变不再与应力成正比,而是呈现出非线性关系。

此时物体会发生塑性变形,形成剩余应变。

当应力进一步增加时,物体可能发生断裂。

材料力学中的应力与应变关系

材料力学中的应力与应变关系

材料力学中的应力与应变关系引言:材料力学是研究材料在外力作用下的力学性能和变形规律的学科,应力与应变是材料力学中最基础的概念之一。

应力与应变关系的研究对于材料的设计、工程应用以及材料力学理论的发展具有重要意义。

本文将从宏观和微观两个角度出发,探讨材料力学中的应力与应变关系。

一、宏观角度下的应力与应变关系宏观角度下的应力与应变关系是指在宏观尺度上,材料在外力作用下的力学响应。

我们可以通过引入应力和应变的概念来描述材料的力学行为。

1. 弹性应力与应变关系弹性应力与应变关系是指材料在弹性阶段内,应力与应变之间的关系。

弹性材料在受力后能够恢复到原始形状,且应力与应变呈线性关系。

根据胡克定律,应力与应变之间的关系可以表示为:σ = Eε其中,σ表示应力,E表示弹性模量,ε表示应变。

弹性模量是材料的一种力学性能参数,反映了材料对外力的抵抗能力。

2. 塑性应力与应变关系塑性应力与应变关系是指材料在超过弹性极限后,发生塑性变形时的应力与应变关系。

塑性材料在受力后会发生永久性变形,应力与应变之间不再呈线性关系。

根据真应力与真应变的定义,塑性应力与应变关系可以表示为:σ' = Kε'其中,σ'表示真应力,K表示材料的强度系数,ε'表示真应变。

强度系数是衡量材料塑性变形能力的指标。

3. 强化应力与应变关系强化应力与应变关系是指材料在受到强化处理后,应力与应变之间的关系。

强化处理是通过改变材料的晶体结构或添加外部组分来提高材料的力学性能。

强化应力与应变关系的表达式与具体的强化方式有关,可以通过试验或模型计算得到。

二、微观角度下的应力与应变关系微观角度下的应力与应变关系是指材料在微观尺度上,原子或分子之间的相互作用导致的力学响应。

我们可以通过分子动力学模拟或统计力学方法来研究材料的微观力学行为。

1. 分子动力学模拟分子动力学模拟是一种通过求解牛顿运动方程来模拟材料微观力学行为的方法。

通过分子动力学模拟,我们可以得到材料的应力与应变关系,并研究材料的力学性能和变形机制。

弹性体的应力与应变

弹性体的应力与应变

弹性体的应力与应变弹性体是一种在受力作用下可以发生形变,但当受力停止时,能够恢复原来形状和大小的材料。

了解弹性体的应力与应变关系对于工程设计和材料科学具有重要意义。

在本文中,我们将探讨弹性体的应力与应变之间的关系,分析材料的弹性性质以及应力与应变的计算方法。

1. 应力的概念与计算方法应力是指单位面积上作用的力,合理地计算应力是分析弹性体性质的关键。

在计算应力时,常用到两种基本的力学概念:张力和压力。

张力是指沿一维方向的受力情况,通常用F表示,单位为牛顿。

而压力是指在一个平面上均匀分布的力,用P表示,单位是帕斯卡。

应力的计算公式如下:应力 = 受力 / 横截面积2. 应变的概念与计算方法应变是指材料在受力作用下发生的形变,一般用ΔL / L表示。

其中,ΔL是材料长度的变化量,L是材料的初始长度。

应变可以分为线性弹性应变和非线性应变。

线性弹性应变是指材料在受力作用下,形变与受力成正比的状态。

计算线性弹性应变的方法如下:应变 = 形变 / 初始长度而非线性应变则需要更复杂的计算方法来进行分析,涉及到材料的本构关系等。

3. 应力与应变的关系应力与应变之间存在一定的关系,即应力-应变曲线。

弹性体的应力-应变曲线通常可以分为三个阶段:弹性阶段、屈服点和塑性阶段。

在弹性阶段,材料受力时会产生应变,但当受力停止时,材料会完全恢复到原来的状态。

这是因为材料内部的原子或分子只发生了相对位移,而没有发生永久性的结构变化。

当应力超过材料的屈服点时,就进入了屈服点阶段。

在这个阶段中,材料开始发生塑性变形,不再能够完全恢复到原来的状态,具有一定的永久性形变。

塑性阶段是材料的应力与应变不再成正比,继续增加应力会导致更大的应变。

这是由于材料的内部结构发生了永久性的改变,无法恢复原状。

4. 弹性模量和刚度弹性模量是描述材料抵抗形变的能力,可以用来评估材料的刚度。

弹性模量越大,表示材料越难发生形变,具有较高的刚度。

常用的弹性模量有三种:杨氏模量、剪切模量和体积模量。

关于弹性体受力后某一方向的应力与应变关系

关于弹性体受力后某一方向的应力与应变关系

弹性力学中应力与应变为线性关系,应力与应变的比例常数E 被称为弹性系数或扬氏模量,不同的材料有其固定的扬氏模量。

虽然无法对应力进行直接的测量但是通过测量由外力影响产生的应变可以计算出应力的大小。

应力是应变的原因,应变是应力的结果。

应力概念解释:物体由于外因(受力、湿度、温度场变化等)而变形时,在物体内各部分之间产生相互作用的内力,以抵抗这种外因的作用,并力图使物体从变形后的位置回复到变形前的位置。

在所考察的截面某一点单位面积上的内力称为应力。

同截面垂直的称为正应力或法向应力,同截面相切的称为剪应力或切应力。

拓展资料
应力会随着外力的增加而增长,对于某一种材料,应力的增长是有限度的,超过这一限度,材料就要破坏。

对某种材
料来说,应力可能达到的这个限度称为该种材料的极限应力。

极限应力值要通过材料的力学试验来测定。

将测定的极限应力作适当降低,规定出材料能安全工作的应力最大值,这就是许用应力。

材料要想安全使用,在使用时其内的应力应低于它的极限应力,否则材料就会在使用时发生破坏。

工程构件,大多数情形下,内力并非均匀分布,通常“破坏”或“失效”往往从内力集度最大处开始,因此,有必要区别并定义应力概念。

弹性力学中的应力与应变关系

弹性力学中的应力与应变关系

弹性力学中的应力与应变关系弹性力学是力学的一个重要分支,研究物体在外力的作用下产生的形变与应力的关系。

在弹性力学理论中,应力与应变关系是最为核心的概念之一。

本文将探讨弹性力学中的应力与应变关系的基本原理,并从不同角度对其进行分析。

一、基本概念在弹性力学中,应力是描述物体内部单位面积受力情况的物理量。

它可以分为正应力和剪应力。

正应力表示物体在垂直于某一平面上的受力情况,剪应力表示物体在平行于某一平面上的受力情况。

应力的大小一般采用希腊字母σ表示。

应变是描述物体形变情况的物理量。

它可以分为线性应变和体积应变。

线性应变表示物体中某一方向上的长度相对变化,体积应变表示物体在各个方向上的体积变化。

应变的大小可以用希腊字母ε表示。

二、胡克定律胡克定律是描述弹性体材料中应力与应变关系最基本的定律。

其数学表达式为σ = Eε,即应力等于弹性模量与应变之积。

其中,弹性模量E是描述物体对应变的抵抗能力的物理量。

根据胡克定律,应力与应变之间的关系是线性的,即若应变增大,则应力也会相应增大。

胡克定律适用范围有限,对于非线性应力-应变关系的材料,需要采用其他力学模型进行描述。

例如,当外力作用超出一定范围时,弹性体会发生塑性变形,此时应力和应变之间的关系就无法再用胡克定律来描述。

三、材料力学模型由于胡克定律的局限性,研究者们提出了各种各样的材料力学模型来描述应力与应变之间的关系。

其中,最常用的有线性弹性模型、非线性弹性模型和本构模型。

线性弹性模型是胡克定律的拓展,它适用于应力与应变关系呈线性关系的情况。

在这种模型中,应力与应变之间的关系是单一的、唯一的。

当外力作用停止后,物体能够完全恢复到初始状态。

非线性弹性模型适用于应力与应变关系不再呈线性关系的情况。

它可以更好地描述材料的实际变形情况。

在这种模型中,应力与应变之间的关系可以是非线性的、曲线状的。

本构模型是一种综合考虑多种因素的力学模型,它可以更全面地描述材料的应力与应变关系。

弹性体的应力和应变

弹性体的应力和应变

弹性体的应力和应变应力和应变是弹性体力学中重要的概念。

弹性体是指在受力作用下能够发生形变,但在去除力后能够恢复原状的物质。

应力是表示物体内部各点在力作用下的应对程度的物理量,而应变则是表示物体形变程度的物理量。

在本文中,我们将探讨弹性体的应力和应变之间的关系,以及弹性体在不同应力条件下的行为。

首先,我们来介绍应力的概念。

应力是由于外部力作用于物体而引起的内部应力,即单位面积上作用的力。

通常情况下,应力可以分为三种类型:拉应力、压应力和剪应力。

拉应力是指沿物体的长度方向作用的力,压应力则是指作用于物体表面的垂直方向力,而剪应力则是作用于物体表面的平行于其平面的力。

这些应力可以通过数学计算来求得。

对于拉伸或压缩情况下的应力,一般可以通过应力=外力/截面积来计算。

而对于剪切情况下的应力,则可以通过应力=外力/接触面积来计算。

接着,我们来谈谈应变的概念。

应变是指物体由于受到外力作用而产生的形变程度。

同样,应变也可以分为三种类型:线性应变、体积应变和剪切应变。

线性应变是指物体沿作用力方向的长度变化与未受力前的原始长度之比,体积应变则是物体单位体积的变化量与未受力前的原始体积之比,剪切应变是物体平行于受力平面上的平面与未受力前的原始平面之间的夹角变化。

这些应变可以通过数学计算来求得。

通常情况下,线性应变可以通过应变=位移/原始长度来计算,体积应变可以通过应变=体积变化/原始体积来计算,而剪切应变可以通过应变=变形角度/90度来计算。

在了解了应力和应变的概念后,我们可以进一步讨论弹性体在不同应力条件下的行为。

根据背景和材料性质的不同,弹性体在应力作用下会出现不同的应变情况。

当应力作用于弹性体时,弹性体会发生形变,但在去除应力后,弹性体又会恢复到原来的形状。

这种恢复力就是弹性体的回弹力,是由于弹性体内部的分子结构和键的特性所决定的。

此外,弹性体还有一个重要的性质,即背应力。

背应力是指在弹性体内部的不同位置上,由于力的传递产生的相对应力差。

弹性力学-应力和应变

弹性力学-应力和应变

σ x τ xy τ xz σ xx σ xy σ xz τ xy σ y τ yz 或σ xy σ yy σ yz τ z τ yz σ z σ xz σ yz σ zz
写法: 采用张量下标记号的应力写法 写法: 把坐标轴x、 、 分别 把坐标轴 、y、z分别 表示, 用x1、x2、x3表示, 或简记为x 或简记为 j (j=1,2,3),
s j = σ j −σm, ( j = 1,2,3)
应力偏张量也有三个不变量: 应力偏张量也有三个不变量:
(3 −13)
J1 = s1 + s2 + s3 = σ1 +σ2 +σ3 −3σM = 0 1 2 2 2 J2 = −(s1s2 + s2s3 + s3s1) = (s1 + s2 + s3 ) 2 J3 = s1s2s3
3
偏张量的第二不变量 J2 有关。 有关。
四、等效应力 1.定义: 定义: 定义 相等的两个应力状态的力学效应相同, 如果假定 J2相等的两个应力状态的力学效应相同,那么
对一般应力状态可以定义: 对一般应力状态可以定义:
σ ≡ 3J2 =
1 2
(σ1 −σ2 )2 + (σ2 −σ3 )2 + (σ3 −σ1)2
三、等斜面上的应力 等斜面:通过某点做平面 ,该平面的法线与三个应力主轴
夹角相等 坐标轴与三个应力主轴一致, 设在这一点取 x1, x2 , x3 坐标轴与三个应力主轴一致, σ 3 则等斜面法线的三个方向余弦为
l1 = l2 = l3 =1/ 3
(3 − 20)
八面体面: 八面体面:
满足(3-20)式的面共有八个,构成 满足( 20)式的面共有八个, 一个八面体,如图所示。 一个八面体,如图所示。 等斜面常也被叫做八面体面。 等斜面常也被叫做八面体面。 若八面体面上的应力向量用F 表示,则按( 若八面体面上的应力向量用F8表示,则按(3-3)式有 1 2 2 2 2 2 2 2 F = (σ1l1) + (σ2l2 ) + (σ3l3) = (σ1 +σ2 +σ3 ) (3− 21) 8 3

弹性力学中的应力与应变理论

弹性力学中的应力与应变理论

弹性力学中的应力与应变理论弹性力学是研究物体在受力作用下的变形与恢复的力学分支。

应力与应变理论是弹性力学的重要组成部分,它描述了物体在受到外力作用时产生的应力和应变之间的关系。

在本文中,我们将深入探讨弹性力学中的应力与应变理论。

一、应力的概念与分类应力是物体在受力作用下产生的单位面积的内力。

根据受力方向的不同,应力可以分为三类:拉应力、压应力和剪应力。

1. 拉应力:拉应力是指物体在受到拉伸力作用下产生的应力。

拉应力可分为轴向拉应力和切向拉应力。

轴向拉应力是指沿物体轴线方向产生的应力,而切向拉应力则是指垂直于轴线方向产生的应力。

2. 压应力:压应力是指物体在受到压缩力作用下产生的应力。

与拉应力类似,压应力也可分为轴向压应力和切向压应力。

3. 剪应力:剪应力是指物体在受到剪切力作用下产生的应力。

剪应力沿着物体内部平面的切线方向产生。

二、应变的概念与分类应变是物体在受力作用下发生的长度、面积或体积的变化。

根据变形形式的不同,应变可分为三类:线性应变、平面应变和体积应变。

1. 线性应变:线性应变是指物体在受力作用下产生的长度变化与初始长度之比。

它是最基本的应变形式,常用符号ε表示。

线性应变假设变形产生的应力与应变之间呈线性关系。

2. 平面应变:平面应变是指物体在受到外力作用下产生的面积变化与初始面积之比。

平面应变常用符号γ表示。

3. 体积应变:体积应变是指物体在受到外力作用下产生的体积变化与初始体积之比。

体积应变常用符号η表示。

三、胡克定律与应力应变关系胡克定律是弹性力学中最基本的定律之一,它描述了由于外力作用下物体的弹性变形情况。

胡克定律可以简要表述为:应力与应变成正比。

根据胡克定律,可以得出应力与应变的数学关系,即应力等于弹性模量与应变之积。

根据具体的应力类型和应变类型,应力与应变的关系可以用不同的公式来表示。

四、应力与应变的计算方法在实际应用中,为了计算物体在受力作用下的应变情况,可以使用不同的方法来计算应力和应变。

弹性体与变形弹性体的应力与应变关系

弹性体与变形弹性体的应力与应变关系

弹性体与变形弹性体的应力与应变关系弹性体是指在外部施加力后能够发生形变,但在去除力后能够恢复原状的物质。

而变形弹性体则是指在外力作用下形变后不能完全恢复原状的物质。

弹性体与变形弹性体在受力时会出现应力与应变的关系,这种关系是研究材料力学性能的重要内容。

一、弹性体的应力与应变关系弹性体在外力作用下,发生形变。

应力是单位面积上的力,定义为单位面积上的力与面积的比值,通常用σ表示,单位为帕斯卡(Pa)。

应变是物体的相对形变,定义为单位长度的变化量与被测长度的比值,通常用ε表示,无单位。

根据弹性体的应力与应变关系,我们可以得到胡克定律,即应力与应变成正比关系。

弹性体的胡克定律可表示为:σ = E * ε其中,E表示弹性体的弹性模量,是反映弹性体变形能力大小的重要参数,单位为帕斯卡(Pa)。

弹性模量越大,代表弹性体越难形变,具有较好的弹性性能。

根据胡克定律,当外力施加于弹性体上时,应力与应变成正比,且两者之间的关系是线性的。

即在弹性极限之内,如果应力增大,应变也会相应增大;如果应力减小,应变也会相应减小。

而且,当外力去除后,弹性体会恢复到原来的形状和大小,应变会回到零。

二、变形弹性体的应力与应变关系变形弹性体与弹性体不同,其在外力作用下形变后不能完全恢复原状。

因此,其应力与应变关系也存在一定的差异。

变形弹性体的应力与应变关系可以用应力-应变曲线来描述。

在应力-应变曲线中,随着应变的逐渐增大,物体的应力并不是线性变化的,而是呈现出一定的非线性特性。

应力-应变曲线通常可以分为弹性阶段、屈服阶段、塑性阶段和断裂阶段。

在弹性阶段,应力与应变基本保持线性关系,符合胡克定律;而在屈服阶段,应力增加的同时,应变开始出现非比例增长。

当应力达到一定程度后,材料会发生塑性变形,进入塑性阶段;在断裂阶段,材料发生破裂。

变形弹性体的应力与应变关系还可以通过一些指标进行描述,如屈服强度、断裂强度、延伸率等。

这些指标是衡量材料变形能力和抗破坏能力的重要参数。

弹性力学中的应力和应变

弹性力学中的应力和应变

弹性力学中的应力和应变弹性力学是物理学中的一个重要分支,研究物体在外力作用下的变形和应力分布规律。

在弹性力学中,应力和应变是两个关键的概念。

本文将详细介绍弹性力学中的应力和应变,并探讨它们之间的关系和物体在外力作用下的行为。

一、应力的概念与分类在弹性力学中,应力是描述物体内部受力状况的物理量。

它的定义是单位面积上的力,即单位面积上所受的力。

在材料力学中,通常将力的作用面积取无限小,这样就可以得到面积趋于无穷小的情况下的应力。

根据作用方向的不同,应力可以分为三种类型:正应力、剪应力和体应力。

1. 正应力:即垂直于物体截面的力在该截面上单位面积的作用力。

正应力可以分为正拉应力和正压应力,正拉应力是指物体上的拉力,正压应力是指物体上的压力。

2. 剪应力:即平行于物体截面的力在该截面上单位面积的作用力。

剪应力是指物体上的切力,它使得物体相对于截面沿切应变方向发生形变。

3. 体应力:即物体内部体积元素上的力在该体积元素上单位体积的作用力。

体应力是指物体中各个点处的压力或拉力。

二、应变的概念与分类应变是描述物体变形程度的物理量,它是物体的形状改变相对于初始形状的相对变化量。

应变也可以分为三种类型:线性应变、剪应变和体应变。

1. 线性应变:即物体在受力下沿作用力方向产生的长度变化与初始长度的比值。

线性应变通常用拉伸应变表示。

2. 剪应变:即物体在受剪力作用下发生的相对位移与物体初始尺寸的比值。

3. 体应变:即物体受力时体积的相对变化量与初始体积的比值。

三、应力和应变的关系应力和应变之间存在着一定的关系,它们之间通过杨氏模量来联系。

杨氏模量是描述物体在拉伸应力作用下的应变程度的物理量。

弹性体的材料有两个重要的杨氏模量:弹性模量(或称杨氏模量)和剪切模量。

1. 弹性模量(E):它描述的是物体在正应力作用下的正应变情况。

根据材料的不同,弹性模量也不同。

2. 剪切模量(G):它描述的是物体在剪应力作用下的剪应变情况。

弹性力学弹性体的应力与应变关系

弹性力学弹性体的应力与应变关系

弹性力学弹性体的应力与应变关系弹性力学是一门研究固体材料在外力作用下的变形和应力分布规律的学科。

其中,弹性体是一类能够在外力作用下发生形变,但恢复力可以将其恢复到原始状态的物质。

弹性体的应力与应变关系是弹性力学中的基本概念和重要理论。

一、什么是应力与应变在力学中,应力是物体受来自外界作用的力引起的单位面积内的力的大小。

它是描述物体受力情况的物理量。

应力可分为正应力和剪应力两种,正应力作用于物体的表面上的垂直方向,而剪应力则作用于物体的表面上的切向方向。

应变是描述材料形变程度的物理量,是物体在受力下发生变形时单位长度的变化。

应变也可分为正应变和剪应变两种,正应变是物体长度在受力作用下产生的相对变化量,而剪应变则是物体形状的变化量与原始尺寸之比。

二、背景知识弹性体的应力与应变关系可以通过背景知识来理解。

弹性体的主要特性是能够在外力的作用下发生形变,但当外力消失时,它能够恢复到原来的形状和尺寸。

这是因为弹性体的分子或原子之间存在着弹性力,当外力作用结束时,弹性力将趋于平衡,使得物体恢复到原来的状态。

三、胡克定律胡克定律是描述弹性体应力与应变关系的基本定律。

根据胡克定律,当外力作用于弹性体时,弹性体内部的应力与应变成正比。

具体数学描述如下:σ = Eε其中,σ代表应力,单位为帕斯卡(Pa),E代表弹性模量,单位为帕斯卡(Pa),ε代表应变,为无单位。

胡克定律适用于弹性体在线性弹性范围内,即应力与应变成正比,并且比例系数恒定。

此时的应力-应变关系为线性关系,称为胡克定律。

超出线性弹性范围后,材料会发生塑性变形。

四、弹性模量弹性模量是表征弹性体抵抗形变的能力大小的物理量。

它是胡克定律中比例系数的倒数,可以用来度量弹性体的刚度。

常见的弹性模量有:1. 杨氏模量(Young's Modulus):用E表示,描述的是物体在拉伸或压缩时的应变与应力之间的关系。

2. 剪切模量(Shear Modulus):用G表示,描述的是物体在受剪时的应变与应力之间的关系。

弹性力学系统中的应变与应力分布

弹性力学系统中的应变与应力分布

弹性力学系统中的应变与应力分布弹性力学是研究物体在受力作用下的形变和恢复过程的学科。

在弹性力学系统中,应变和应力分布是两个重要的概念。

应变描述了物体在受力作用下的形变程度,而应力则表示物体单位面积上承受的力的大小。

在弹性力学系统中,应变可以分为线性应变和剪切应变。

线性应变是指物体在受力作用下沿着受力方向发生的形变,剪切应变则是指物体在受力作用下发生的平行于受力方向的形变。

应变的大小可以通过应变率来衡量,即单位时间内的形变量。

应力分布是指物体在受力作用下承受的力在不同部位的分布情况。

根据受力方向的不同,应力可以分为正应力和剪切应力。

正应力是指力的方向与物体表面垂直的应力,剪切应力则是指力的方向与物体表面平行的应力。

应力的大小可以通过应力张量来描述,其中包括正应力和剪切应力的分量。

在弹性力学系统中,应变和应力之间存在着一定的关系。

根据胡克定律,当物体受到的力小于其弹性极限时,应变和应力之间呈线性关系。

这种线性关系可以通过应力-应变曲线来描述,曲线的斜率即为物体的弹性模量,反映了物体对外力的抵抗能力。

应变和应力的分布情况对物体的性能和稳定性具有重要影响。

例如,在工程领域中,对于承受外力的结构件,需要合理设计应力分布,以保证结构的强度和稳定性。

通过对应力分布的分析和优化,可以减少结构的应力集中和疲劳破坏的风险。

此外,应变和应力的分布也与物体的形状和材料性质密切相关。

不同形状和材料的物体在受力作用下会出现不同的应变和应力分布情况。

例如,对于长方形梁受弯的情况,弯曲应变和弯曲应力的分布呈现出特定的形态,可以通过数学模型和实验来研究和预测。

在实际应用中,弹性力学的概念和方法广泛应用于工程、材料科学、地质学等领域。

通过对应变和应力分布的研究,可以帮助我们理解物体在受力作用下的变形和破坏机制,从而指导工程设计和材料选择。

此外,弹性力学的研究还为新材料和新结构的设计提供了理论基础和技术支持。

总之,弹性力学系统中的应变和应力分布是研究物体形变和恢复过程的重要概念。

弹性力学中的应变与应力关系

弹性力学中的应变与应力关系

弹性力学中的应变与应力关系弹性力学是物理学中的一个重要分支,主要研究物质体积和形状在外力作用下所发生的变化及其原因。

具体来说,就是通过研究应力(反映外力作用效果的物理量)和应变(反映物质形状和体积改变的物理量)之间的关系,来理解和解释物质的弹性行为。

本文将详细阐述应力和应变在弹性力学中的相关内容。

首先,我们需要明确应力和应变的概念,以便更好地理解二者之间的关系。

应力是弹性力学研究的基本物理量,它可以反映物质内部的力的大小和方向。

根据力的分布特点和作用方式,可以将应力分为正应力和剪应力等类型。

与此同时,应变是描述物体位形变化的物理量,它可以反映物体形状和体积的变化情况。

在弹性力学中,应力和应变之间的基本关系通常用应力--应变法则或哈肋定律来描述。

具体来说,对于同一物体,存在一个比例系数(即弹性模量),当其应力不超过一定值(即弹性限度)时,应力和应变之间达到正比关系,即应力等于弹性模量乘以应变。

这就是典型的线性弹性行为。

当然,应力和应变的关系并不总是线性的。

当物体受到的应力超过一定值后,应变可能导致物体的永久性形变,这就涉及到弹性物质的塑性行为。

塑性行为是弹性力学的另一个重要研究方向,对于理解材料的力学行为有着特别重要的意义。

在实际应用中,不同的应力类型和物质性质可能会引起不同的应变特性。

因此,为了更具体、精确地描述和理解应力和应变之间的关系,出现了多种理论和模型,如弹塑性理论、粘弹性理论、破坏理论等。

这些理论和模型都在一定程度上解释了应力和应变之间的复杂关系,并为理解和控制各种物质的弹性行为提供了重要的理论工具。

总的来说,弹性力学中的应力与应变关系是一个复杂而重要的主题,只有深入理解和掌握应力与应变的特性,才能准确地分析和预测物质在受力情况下的弹性行为。

而对于这些知识的理解和应用,在工程技术、材料科学等领域有着广泛的应用前景。

弹性力学 第四章应力和应变的关系

弹性力学 第四章应力和应变的关系

vI t
x
x
t
y
y
t
z
z
t
yz
yz
t
xz
xz
t
xy
xy
t
若固定x,y,z的值,则得在dt时间内vI 的增量为,即在上式两边乘以dt
dvI xd x yd y zd z yzd yz xz d xz xyd xy
由于内能密度 vI 是状态的单值函数,dvI 必须是全微分,因此
所以
v
1 2
(
x
x
y y
zz
xy xy
xz xz
zy zy )
张量表示
v
1 2
ij
ij
弹性体应变能 V v dV V
§4-3 各向异性弹性体
(一)极端各向异性弹性体
理论具有36个弹性常数
x c11 x c12 y c13 z c14 xy c15 yz c16 zx y c21 x c22 y c23 z c24 xy c25 yz c26 zx
的值,根据无初始应力假设,( f1)0为0。均匀材料,函数 f1
对应变的一阶偏导数为常数。这是因为对物体内各点来说,
承受相同的应力,必产生相同的应变;反之,物体内各点
有相同的应变,必承受同样的应力。
经过上面的处理后,小变形情况就可简化为
广义胡克定律
x C11 x C12 y C13 z C14 xy C15 yz C16 xz y C21 x C22 y C23 z C24 xy C25 yz C26 xz z C31 x C32 y C33 z C34 xy C35 yz C36 xz xy C41 x C42 y C43 z C44 xy C45 yz C46 xz yz C51 x C52 y C53 z C54 xy C55 yz C56 xz xz C61 x C62 y C63 z C64 xy C65 yz C66 xz

弹性体的应力和应变

弹性体的应力和应变

第八章 弹性体的应力和应变迄今为止,我们总是把研究对象简化为“质点”或“刚体”这样的理想模型。

我们都知道刚体是在任何情况下形状大小都不发生变化的力学对象,用质点系的观点来说,就是内部质点之间没有相对运动。

但是,任何物体在力的作用下都或多或少的发生形变,而且,有些物理现象,从本质上来讲,就是形变引起的,如声音在弹性媒质中的传播和媒质内的形变有关。

因此,讨论物体在力作用下形变的规律,也是力学不可缺少的内容。

本章及后面两章将讨论连续媒质力学:连续媒质的共同特点是其内部质点间可以有相对运动。

宏观地看,连续媒质可以有形变或非均匀流动。

弹性体:若物体所受外力撤消后,在外力作用下所发生的形状和体积的变化能够消失的物体,相应的形变叫弹性形变。

显然,弹性体也是一种理想模型。

即不存在绝对弹性体,只有近似的弹性体,例如,房屋的地基,水库的堤坝等在形变极小时,均可视为弹性体。

若弹性体内各点弹性相同,则叫作均匀弹性体,若每点的弹性不仅相同,而且与方向无关,则叫均匀、各向同性弹性体。

处理连续媒质的办法不是把它们看成一个个离散的质点,而是取“质元”,即有质量的体积元。

在连续媒质力学中,力也不再看作是作用在一个个离散的质元上,而看成是作用在“质元”的表面上,因而需要引进作用在单位面积上的力,即“应力”的概念,为止,我们先来讨论弹性体的拉伸和压缩。

§8.1 弹性体的拉伸和压缩在上一章中采用的是刚体模型,要把固体的一切形变都忽略了,在本章中我们将讨论固体的弹性,即讨论固体在外力作用的形变规律。

(一) 外力、内力和应力我们先来研究横截面线度远小于其长度的直杆的拉伸和压缩形变。

如图所示,直杆的典型受力情况为两端受到沿轴线的力且处于平衡。

称一对拉力或压力F和连续媒质F '' 为外力,一般情况下 |F ' |>>mg(忽略不计)|F '' |>> mg内力:假想截面AB 两侧相互施以向上(下)的拉(压)力:F 和–F 于忽略重力,且处于平衡,故而 |F | = |F ' | = |F ''| (正)应力:s nF =σ其中: s — 横截面积n F — 内力在横截面处法线(即nˆ方向)上的投影 拉伸应力 > 0 F 与nˆ同向 σ压缩应力 < 0 F 与nˆ反向σσ的单位: 2m N 称为 “帕斯卡” (国际单位制)σ的量纲:21--MT L(L — 长度 M — 质量 T — 时间)〔例题1〕P333求壁内沿圆周切向的应力(忽略容器自重和大气压力)解:过圆心沿纵向取假想截面,其长度取为一个单位,将一半圆柱形容器和气体作为研究对象,受力情况如下图:按平衡条件:022=+⋅-d R p σ(R p 2⋅-下方气体对上方气体的力 d σ2下方器壁对上方气壁的力)则有: ⇒=d Pp σ器壁内沿圆周的拉伸压力,由此可见: 圆柱形容器外部受压而内部压强较小时,刚沿圆周切向有压缩压力。

弹性体应力应变关系

弹性体应力应变关系

σx=f1 εx,εy,εz,γyz,γxz,γxyσy=f2 εx,εy,εz,γyz,γxz,γxyσz=f3 εx,εy,εz,γyz,γxz,γxyτyz=f4 εx,εy,εz,γyz,γxz,γxyτxz=f5 εx,εy,εz,γyz,γxz,γxyτxy=f6 εx,εy,εz,γyz,γxz,γxy或者简写为:σi=f i εj,i,j=1,6满足小变形假设的弹性体,应力可以表示为应变的线性函数:σi=C ijεj,C ij为常数弹性体的应变能可以表示为:Vε=vεdVVvε为应变能密度,可以表示为:vε=1σiεi≥0,i=1,6且满足:σi=ðvεi该式称为格林公式,通过热力学第一定律和第二定律导出。

σ1=ðvεðε1=C11ε1+C12ε2+C13ε3+C14ε4+C15ε5+C16ε6σ5=ðvε5=C51ε1+C52ε2+C53ε3+C54ε4+C55ε5+C56ε6ð2vεðε1ðε5=C15ð2vεðε5ðε1=C51由于偏导的次序可以交换,因此必满足:C15=C51说明C ij是对称的,则对于各向异性体,具有6+30/2=21个独立的弹性常数。

下面考虑材料性能对称问题。

若材料存在对称面,则材料在与该对称面对称的两个方向上具有相同的弹性,称该对称面为弹性对称面,而垂直于弹性对称面的方向称为弹性主方向。

例如:设X轴为材料弹性主方向,则OYZ面为弹性对称面,X轴转动180度后,应力与应变σi′j′=σij n i′i n j′jεi′j′=εij n i′i n j′jσx =C 11εx +C 12εy +C 13εz +C 14γyz +C 15γxz +C 16γxy σy =C 21εx +C 22εy +C 23εz +C 24γyz +C 25γxz +C 26γxy σz =C 31εx +C 32εy +C 33εz +C 34γy′z′+C 35γxz +C 36γxy τyz =C 41εx +C 42εy +C 43εz +C 44γyz +C 45γxz +C 46γxy τxz =C 51εx +C 52εy +C 53εz +C 54γyz +C 55γxz +C 56γxy τxy =C 61εx +C 62εy +C 63εz +C 64γyz +C 65γxz +C 66γxy 坐标变换后应力分量满足以下关系:σx′=σx ,σy′=σy ,σz′=σzτx′y′=−τxy ,τx′z′=−τxz ,τy′z′=τyz 应变分量满足以下关系:εx′=εx ,εy′=εy ,εz′=εzγx′y′=−γxy ,γx′z′=−γxz ,γy′z′=γyz那么,应力——应变关系成为:σx′=C 11εx′+C 12εy′+C 13εz′+C 14γy′z′−C 15γx ′z ′−C 16γx′y′ σy′=C 21εx′+C 22εy′+C 23εz′+C 24γy′z′−C 25γx ′z ′−C 26γx′y′ σz′=C 31εx′+C 32εy′+C 33εz′+C 34γy′z′−C 35γx ′z ′−C 36γx′y′ τy′z′=C 41εx′+C 42εy′+C 43εz′+C 44γy′z′−C 45γx ′z ′−C 46γx′y′ −τx′z′=C 51εx′+C 52εy′+C 53εz′+C 54γy′z′−C 55γx ′z ′−C 56γx′y′ −τx′y′=C 61εx′+C 62εy′+C 63εz′+C 64γy′z′−C 65γx ′z ′−C 66γx′y′ 为了满足坐标变换后应力——应变关系不变,必须满足:C 15=C 16=C 25=C 26=C 35=C 36=C 45=C 46=0则应力——应变关系为:σx =C 11εx +C 12εy +C 13εz +C 14γyz σy =C 21εx +C 22εy +C 23εz +C 24γyz σz =C 31εx +C 32εy +C 33εz +C 34γy′z′ τyz =C 41εx +C 42εy +C 43εz +C 44γyzτxz =C 55γxz +C 56γxy τxy =C 65γxz +C 66γxy 根据对称性,独立的弹性常数为:6+(30-16)/2=13个(21-8=13)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

E是弹性模量(杨氏模量),是描写材料本身弹性的物理量.

A
B
F
B
D 断裂点 弹性极限
l
C
O
P P 是塑性应变.
上页
O
下页
返回
结束
第八章 弹性的应力和应变
表8.3 密质骨的弹性模量/GPa
骨 股骨 胫骨 肱骨 桡骨 股骨 胫骨 马 25.5 23.8 17.8 22.8 牛 猪 人 17.6 18.4 17.5 18.9
(一)剪切形变· 切应力与切应变 (二)剪切形变的胡克定律
上页
下页
返回
结束
第八章 弹性的应力和应变
§8.2 弹性体的剪切形变
(一)剪切形变· 切应力与切应变
1.切应力 剪切形变——物体受到力偶作用使物体两个平行 截面间发生相对平行移动. 物体受到力偶 F F 发生剪切变形 切应力
上页
下页
返回
结束
第八章 弹性的应力和应变
§8.1 弹性体的拉伸和压缩
(一)外力· 内力与应力
外力 F F F F
F' F' F
B
F'
A
F
F
B
en
F
内力 F
A
F F F
F
F
F F
第八章 弹性的应力和应变
第八章 弹性体的应力和应变
§8.1 弹性体的拉伸和压缩
(一)外力· 内力与应力 (二)直杆的线应变
(三)胡克定律
(四)拉伸和压缩的形变势能
上页
下页
返回
结束
第八章 弹性的应力和应变
第八章 弹性体的应力和应变
弹性形变——当物体所受外力撤除后,在外力作 用下所发生的形状和体积的变化完全消失,而恢 复原状的形变. 弹性体——弹性形变的物体,是一种理想模型. 弹性的形变有拉伸压缩、剪切、扭转和弯曲. 拉伸压缩和剪切形变是最基本的形变.
F S
F
A
D C
S是截面ABCD的面积, 切应力具有与正应力相同的量纲和单位.
上页 下页 返回
F
B
结束
第八章 弹性的应力和应变
2.剪切应力互等
力偶矩 M ( F , F ) M ( F , F ) F (&1)
F
b
F
和剪切形变两种基本形变的组合.
(一)梁的弯曲
矩形横截面梁 ,不计自重 ,如图 Fp1 Fp 2
FN1
FN1和Fp1 Fp1
A C B
FN1 FN2 Fp1 Fp2 FN2和Fp2形成二力偶使梁在Fp1和Fp2之间弯曲 Fp 2 M2 M F 1 N2 A A´ A
一定时,E与G成正比.
E一定时, 大G小, 小G大
单位体积剪切形变的弹性势能为 :
0 Ep
1 G 2 2
F
上页
下页
返回
结束
第八章 弹性的应力和应变
§8.3弯曲和扭转
(一)梁的弯曲 (二)杆的扭转
上页
下页
返回
结束
第八章 弹性的应力和应变
§8.3弯曲和扭转
梁的弯曲和杆的扭转都可以看成是由拉伸压缩
Δl
Fn SE
ES Fnd l0

l0
(即, E )ห้องสมุดไป่ตู้
1 l 2 1 d E ( ) Sl0 E 2V 2 l0 2
1 E 2 2
结束
0
Δl
设未形变时势能为零, 则
弹性势能
1 Ep E 2V 2
弹性势能密度
0 Ep
上页
下页
返回
第八章 弹性的应力和应变
§8.2 弹性体的剪切形变
πGR4 c 2l
上页 下页 返回 结束
拉伸弹性模量 25.0 14.9 24.5 17.2 18.3 14.6 25.9 15.8
压缩弹性模量 8.7 4.9 9.4±0.4 7 8.5 5.1
肱骨 桡骨
9.0 8.4
上页
5.0 5.3
下页 返回 结束
第八章 弹性的应力和应变
(四)拉伸和压缩的形变势能
弹性力是保守力. 弹性力所做的功等于弹性体弹性势能的减少. 设形变量 ,直杆形变前=0;发生形变l , = l 胡克定律 外力做功 A 0
宽度,h为梁的高度.
上页 下页 返回 结束
第八章 弹性的应力和应变 自学
(二)杆的扭转
圆柱体受到作用在与其轴线垂直的两个平面上 大小相等方向相反的两个力偶矩,发生扭转形变.
M

A
r

M
A

l

扭转形变
体元剪切形变
l 、 r、 和 物理意义
是扭转角, r 表示体元所在半径,l 表示柱长.
Δl l0
b b0
l0 l

b b0 Δb 1 b0 b0
1 横向应变 泊松系数 线应变
反映物质形变程度, 反映物质弹性特征.
备注
上页 下页 返回 结束
第八章 弹性的应力和应变
(三)胡克定律
胡克定律 即
E (仅形变较小时成立)
Fn Δl E S l0
C´ B´
上页
C B
下页
C´ B´
备注
返回 结束
第八章 弹性的应力和应变
弯曲形变特点: 弯曲后,靠近上缘各层发生压缩形变;靠近下
缘各层,发生拉伸形变. 处于中间的的CC´ 层(中性 层)既不伸长也不压缩.
M
A
h

b
可以证明,(材料选读)
12M 中性层曲率 K Ebh3
M是加于梁的力偶矩,E为材料的杨氏模量,b为梁
F F
en
F
不计杆自身重量 应力
Fn S
单位:帕, N/m2 S是横截面积
备注
下页 返回 结束
Fn是内力在外法线方向的投影,
上页
第八章 弹性的应力和应变
(二)直杆的线应变
直杆原长与形变后长度之差
Δl l l0
绝对伸长 Δl 0 线应变 横向应变 绝对压缩 Δl 0
上页 下页 返回 结束
第八章 弹性的应力和应变 自学 扭转形变实质上是由剪切形变组成的. 微小形变时,狭长体元的切应变为

r l
内外层切应变不同,根据胡克定律,内外层 切应力也不同,靠外层切应力较大.
可以证明,扭转力偶矩M和扭转角 的关系为
πGR4 M c 2l
R和 l 分别表示圆柱体的半径与长度,G为切变模量, 圆柱体扭转系数
G 即 G称切变模量,由材料弹性决定. G反映材料抵抗剪
切形变的能力, 单位与弹性模量相同.
弹性模量E、切变模量G和泊松系数 之间的关系为
G E (8.2.5) 2(1 )
上页
下页
返回
结束
第八章 弹性的应力和应变 2. E、G和 之间关系的定性说明 设杆所受外界拉力一定.
F
bb cc
剪切形变特征:
b

b
c d
c
切应变 : 平行截面间相对滑 移与截面垂直距离之比. 即
tan bb ab
a
形变小时,
tan
bb ab
又称切变角.
上页
下页
返回
结束
第八章 弹性的应力和应变
(二)剪切形变的胡克定律
1. 剪切形变的胡克定律 剪切形变的胡克定律——若形变在一定限度内,切 应力与切应变成正比.
c
F a

和’分别表示上下底面和左右侧面的切应力
( a c ) b ( b c ) a
剪切应力互等定律:作用于互相垂直的假想截面上并 垂直于该两平面交线的切应力相等.
即,上下底面和左右侧面的切应力相等 备注
上页 下页 返回 结束
第八章 弹性的应力和应变 3.剪切应变描述
相关文档
最新文档