机械制造工艺中的定位误差计算

合集下载

机械制造工艺学例题

机械制造工艺学例题
2
11
L x 2 x 2
式中 E——钢弹性模量为 2 10(Pa) J——圆截面的惯性矩为 0.05 D(mm)
4
3 工件轴向截面形状误差
将车床和工件的变形叠加,以 y车床工件表示车床、工件受切削 力产生变形引起工件半径的变化量,如下表。
切削力作用点位置变 化引起工件的形状误差
中心线
情况2 盘状零件加工工艺过程(成批生产) 工序号 1 工 步 定位基准(面) 小端外圆面
车端面C,粗、精镗φ60孔,内孔倒角 粗车、半精车这批工件的φ200外圆,并车φ96 外圆及端面B,粗、精车端面A,内孔倒角 拉键槽 钻、扩6-φ20孔 钳工去毛刺
2
φ60内孔及端面
3 4 5
φ60内孔及端面 φ60内孔及端面
四、尺寸链的计算
例题1解答:
根据增环及减环的定义,可得出尺寸链中的A1、A2、A3、A4为增环,A5、A6、 A7为减环,所以 (1)封闭环的基本尺寸
A 0 A1 A 2 A 3 A 4 ( A 5 A 6 A 7 ) 30 30 30 10 ( 40 15 40 ) 5mm
y车床 x Lx y 主轴箱 y 尾架 y刀架 L L
2 2 2 1 L x 2 1 x 1 Fy K tj L K wz L K dj 2 2000 x 2 1 1 1 x 337.6 2000 50000 2000 40000 30000
四、尺寸链的计算
(2)封闭环的上偏差
例题1解答:
ES0=ES1 +ES2 +ES3+ES4-(EI5 +EI6+EI7)

机械制造工艺学(第三版)王先逵_课后答案

机械制造工艺学(第三版)王先逵_课后答案


保证对称度——限制沿Y移动和Z 转动;
第一章 1-12题
a)
总体分析法:三爪卡盘+固定后顶尖——限制 X Y Z ;固定后顶尖—— 分件分析法:三爪卡盘—— YZ X 两者一起限制五个自由度 X Y Z Y Z Y ZY Z 总体分析法:前后圆锥销—— 分件分析法:前圆锥销——限制 X Y Z ; 浮动后圆锥销——限制 X Y 两者一起限制五个自由度 X Y Z Y Z
L2=0±0.025 L4=4+0.20和H组成尺寸链,直接 可以保证的尺寸有L1,L2 ,L3,H;L4为封
闭环(间接保证的尺寸)
增环:L2,H;减环L1;L3既可看成增环也 可是减环(因其基本尺寸=0) 解得:H=4.25+0.107+0.0175=4.2675
+0.0895 0
第四章习题4-18:尺寸链计算
3. 铣床工作台T形槽侧面对工作台燕尾槽导轨的平行度误差
第二章补充题:
• 在车床上加工心轴,粗、精车外圆及台肩面,经检测发现外圆面 有圆柱度误差,台肩面对外圆轴线有垂直度误差,试从机床几何 误差的影响,分析产生以上误差的主要原因
第二章补充题:
图示零件的A、B、C面, Φ10H7及Φ30H7孔均已加工。试分析加工Φ12H
解尺寸链得: L=130±0.04mm, 50±0.04mm
解: (2)直接测量的尺寸为:A1 ,及两孔直径,尺寸80 ±0.08 在测量工序中是间接得到的,因 此是封闭环是80 ±0.08
80 A1 7.5 7.5 0.08 0 0 EI A
0 05 A1 650..08 m m
无过定位,欠定位

机械制造工艺定位误差经典例题

机械制造工艺定位误差经典例题

二、 定位误差的计算 定位误差产生的原因:1、 一批工件,各工件相应表面尺寸和位置,在公差范围内的差异2、定位元件和各元件之间的尺寸和位置公差定位误差允许的大小:小于等于工件有关尺寸或位置公差的1/3 定位误差的组成:基准位移误差:(工件定位基准面的误差,定位元件制造误差,两者的配合间隙) 基准不重合误差:定位基准与工序基准不重合定位误差的计算方法:1、两种极端位置通过几何关系求2、按定位误差的组成(极限位置):c w dw ∆±∆=∆ (同向为正,反向为负)3、用微分方法求[被加工面工序尺寸的标注方向、工序基准、定位基准面、 定位基准、工件在公差范围内变动时定位基准移动方向、 定位基准面变化(工序基准变化方向、定位基准变化方向)、 定位元件的变化]1A )用平面定位(1) 加工面 c w dw ∆+∆=∆2) 加工面=∆dw4、外圆定位:V型块(定位基准——外圆中心线)工件外圆 最小2d T d-→ 最大2d T d+工序尺寸:0H0sin 2222sin222+=+--+=∆ααd T d d T T dwd d工序尺寸:1H2sin 22dd T T dw -=∆α(工件变大→定位基准上移,工序基准下移)工序尺寸:2H2sin 22dd T T dw +=∆α(工件变大→定位基准上移,工序基准上移)校的学生并没有专心听讲、认真思考,而是写其他科目的作业,与周围同学聊天,发短信聊天,等等。

这些现象说明了同学们的思想道德素质建设还需进一步加强。

这件事对我触动很大,让我深切地感到,加强自我修养,应该从我做起,“不以恶小而为之,不以善小而不为”。

作为一名入党积极分子,我感到一定要时刻以一(转载自中国教育文摘,请保留此标记。

)名党员的标准来衡量自己,以一名党员的条件严格要求自己,在周围同学当中时时处处体现出先锋模范作用,只有这样才能有资格加入这个光荣而先进的组织。

我意识到,有时距离成功只有一步之遥,但如果采用消极的态度,可能成功会将自己拒之门外;倘若是积极态度去对待,可能成功就会属于自己。

定位误差分析

定位误差分析

(3)定位误差的计算由于定位误差ΔD是由基准不重合误差和基准位移误差组合而成的,因此在计算定位误差时,先分别算出Δ B和ΔY ,然后将两者组合而得ΔD。

组合时可有如下情况。

1)Δ Y ≠ 0,Δ B=O时Δ D= Δ B (4.8)2)ΔY =O,Δ B ≠ O时Δ D= Δ Y (4.9)3)Δ Y ≠ 0, Δ B ≠ O时如果工序基准不在定位基面上Δ D=Δ y + Δ B (4.10)如果工序基准在定位基面上Δ D=Δ y ±Δ B (4.11)“ + ” ,“—” 的判别方法为:①设定位基准是理想状态,当定位基面上尺寸由最大实体尺寸变为最小实体尺寸 (或由小变大)时,判断工序基准相对于定位基准的变动方向。

②② 设工序基准是理想状态,当定位基面上尺寸由最大实体尺寸变为最小实体尺寸 (或由小变大)时,判断定位基准相对其规定位置的变动方向。

③③ 若两者变动方向相同即取“ + ” ,两者变动方向相反即取“—”。

-、定位误差及其组成图9-21a图9-21 工件在V 形块上的定位误差分析工序基准和定位基准不重合而引起的基准不重合误差,以表示由于定位基准和定位元件本身的制造不准确而引起的定位基准位移误差,以表示。

定位误差是这两部分的矢量和。

二、定位误差分析计算(一)工件以外圆在v形块上定位时定位误差计算如图9-16a所示的铣键槽工序,工件在v 形块上定位,定位基准为圆柱轴心线。

如果忽略v形块的制造误差,则定位基准在垂直方向上的基准位移误差(9-3)对于9-16中的三种尺寸标注,下面分别计算其定位误差。

当尺寸标注为B1时,工序基准和定位基准重合,故基准不重合误差ΔB=0。

所以B1尺寸的定位误差为(9-4)当尺寸标注为B2时,工序基准为上母线。

此时存在基准不重合误差所以△D应为△B与Δy的矢量和。

由于当工件轴径由最大变到最小时,和Δy都是向下变化的,所以,它们的矢量和应是相加。

故(9-5)当尺寸标注为B3时,工序基准为下母线。

机械制造基础7.3 定位误差的分析与计算

机械制造基础7.3 定位误差的分析与计算

O1A1 O1O2 O2 A2
d 2
Td
2sin
d
Td 2
2
Td 2
1
sin
1
2
例7-2 如图所示,工件以外圆柱面在V形块上定位加工
键槽,α=900,保证键槽深度 34.800.17 mm,试计算其
定位误差。
解:
1) Δjb≠ 0
2) Δjy≠ 0
d
Td 2
1
sin
2
1
=0.15+0 = 0.15(mm )
图7-35 平面上加工孔
2.工件以圆孔定位时的定位误差
(1)心轴(或定位销)水平放置 例:
a)工序图
b)误差分析
图7-36 心轴(定位销)水平放置的定位误差
(1)心轴(或定位销)水平放置
解:1) Δjb= 0
2)
jy
h
h
O
O1
1 2
(Dmax
d
m in)
1 2
第7章 机床夹具设计
重庆大学
7.3 定位误差的分析与计算
重庆大学
7.3.1 定位误差的概念及产生的原因 1.定位误差的概念
什么是定位误差? 为什么会产生定位误差?
7.3.1 定位误差的概念及产生的原因 2.定位误差产生的原因
一是由于基准不重合而产生的误差,称为基准不重 合误差Δjb;
7.3.1 定位误差的概念及产生的原因
(3)转角误差
4.工件以组合表面定位时的定位误差
(3)转角误差
4.工件以组合表面
定位时的定位误
(
2
)
tan
X1max X 2L
2max
A

机械制造工艺中的定位误差计算

机械制造工艺中的定位误差计算

机械加工定位误差分析(上)如前所述,为保证工件的加工精度,工件加工前必须正确的定位。

所谓正确的定位,除应限制必要的自由度、正确地选择定位基准和定位元件之外,还应使选择的定位方式所产生的误差在工件允许的误差范围以内。

本节即是定量地分析计算定位方式所产生的定位误差,以确定所选择的定位方式是否合理。

使用夹具时造成工件加工误差的因素包括如下四个方面:( 1)与工件在夹具上定位有关的误差,称为定位误差 D ;( 2)与夹具在机床上安装有关的误差,称为安装误差 A ;( 3)与刀具同夹具定位元件有关的误差,称为调整误差T ;( 4 )与加工过程有关的误差,称为过程误差 G 。

其中包括机床和刀具误差、变形误差和测量误差等。

为了保证工件的加工要求,上述误差合成后不应超出工件的加工公差δK,即D + A +T +G ≤δ K本节先分析与工件在夹具中定位有关的误差,即定位误差有关的内容。

由定位引起的同一批工件的设计基准在加工尺寸方向上的最大变动量,称为定位误差。

当定位误差 D ≤ 1/3δ K,一般认为选定的定位方式可行。

一、定位误差产生的原因及计算造成定位误差的原因有两个:一个是由于定位基准与设计基准不重合,称为基准不重合误差(基准不符误差);二是由于定位副制造误差而引起定位基准的位移,称为基准位移误差。

(一)基准不重合误差及计算由于定位基准与设计基准不重合而造成的定位误差称为基准不重合误差,以 B 来表示。

图 3 -61a 所示为零件简图,在工件上铣缺口,加工尺寸为 A 、B 。

图 3-61b 为加工示意图,工件以底面和E 面定位, C 为确定刀具与夹具相互位置的对刀尺寸,在一批工件的加工过程中C 的位置是不变的。

加工尺寸 A的设计基准是 F ,定位基准是 E ,两者不重合。

当一批工件逐个在夹具上定位时,受尺寸S±δ S /2的影响,工序基准 F 的位置是变动的, F 的变动影响 A 的大小,给 A 造成误差,这个误差就是基准不重合误差。

对称度定位误差的计算

对称度定位误差的计算

对称度定位误差的计算
郭惠昕
【期刊名称】《机械制造》
【年(卷),期】2000(038)005
【摘要】@@ 机床夹具定位误差△D等于基准不重合误差△B和基准位移误差△y 之和,即△D=△B+△y.但对称度定位误差的计算比较复杂,它与对称度基准要素和被测要素的种类以及公差带的形状有关.上述为简单原理的误差叠加,如不作具体分析而直接用来求对称度定位误差,极易导致错误,常造成夹具制造公差制订偏严而增加了工装制造难度.本文根据对称度标准和定位误差的分析原理,探讨对称度定位误差的计算.
【总页数】2页(P55-56)
【作者】郭惠昕
【作者单位】常德高等专科学校,湖南·415003
【正文语种】中文
【中图分类】TG8
【相关文献】
1.孔键槽对称度误差计算与测量研究 [J], 程仲文;胡彦军;张军平
2.双键槽对称度误差的测量与计算 [J], 赵小明;张武坤
3.工艺尺寸链计算中对称度误差的处理方法 [J], 尹志;戴继东
4.尺寸链计算中对称度误差的处理方法 [J], 陈飞;徐学林
5.国家标准中的轴键槽对称度误差计算公式的推导 [J], 刘庆胜;赵文广
因版权原因,仅展示原文概要,查看原文内容请购买。

机械制造工艺中的定位误差计算

机械制造工艺中的定位误差计算

机械制造工艺中的定位误差计算
定位误差是机械加工过程中不可避免的一种现象,它是指工件加工过程中对定位精度的要求较高,但实际定位精度与理想定位精度之间相差的大小,又称为定位误差,它是制定技术条件时要考虑的关键一环。

定位误差是机械加工工艺性能的重要参数,是判定加工精度的一个重要指标,也是判断加工稳定性的重要指标。

定位误差的主要因素主要有四个:机床结构、机床磨损、工件材料和夹具精度。

(1)机床结构:机床的结构越精密,它的定位精度就越高,机床机械部件的材料、内部尺寸、变形等都是定位误差的重要因素,结构不正确的机床会造成较大的定位误差。

(2)机床磨损:机床的磨损也会影响机床定位精度,机床的齿轮、轴承、螺杆等部件受到磨损后,都会造成机床的位移变化,从而影响定位精度。

(3)工件材料:工件的材料一定程度上也会影响机床的定位精度,不同工件的材料有着不同的特性,因此在定位过程中,可能会在机床上造成不同的影响,从而影响定位精度。

(4)夹具精度:夹具精度与工件材料密切相关,若夹具加工的精度不够,将使工件移动时发生相对较大的偏差,从而影响定位精度。

此外,定位误差还受到加工工序、设备和操作方法等因素的影响。

机械制造工艺学4,6章习题答案

机械制造工艺学4,6章习题答案

关于同轴度误差引起的定位误差: 如下图,工艺基准为孔的下母线,而定位基准为轴的中心线,若外圆及孔的 尺寸无误差,则引起工序基准位置变化的原因为孔轴的同轴度误差,工序基 准位置最大的变动量=T(同轴度公差值),即Δdw =Δjb =T; 若考虑外圆
和孔的尺寸的公差Td和TD,则Δjw = Δdw =Δjb+ Δjw
+0.0895 0
习题4-18 某零件的轴向尺寸如图a),轴向尺寸加工工序如图b),c),d,试校核工序图
上标注的工序尺寸及公差是否正确(加工符号表示本道工序的加工面)
解:先校核 b)图上的工序 尺寸:计算由a),b),c)图有 关尺寸组成的尺寸链, L1=40.30-0.1 L2=10.40-0.2 L3=100-0.1 L4=40
L3 L2
20 = 60 + L 4 − 70 L 4 = 30 mm ES L 4 = + 0 . 1mm
L1
+ 0 . 15 = ES L 4 + 0 − (− 0 . 05 )
0 = EI L 4 − 0 . 025 − ( − 0 . 025 _ EI L 4 = 0 mm
+ ∴ L 3 = 30 0 0 .1 mm
解尺寸链得: L=130±0.04mm, 50±0.04mm
第六章习题 6-1:选择粗、精加工基准分析定位方案:1)指出限制的自由度
数;2)判断有无欠定位或过定位;3)对不合理的定位方案提出改进意见
在O处钻孔
形块共限制六个自由度;为 保证孔轴线过中心O应该限制六个 自由度,因此无过定位和欠定位
Td 2 sin
α
2
; Δjb =T+ Td/2;
第六章习题 6-4:定位误差计算

5.3 定位误差的分析与计算《机械制造技术基础(第3版)》教学课件

5.3 定位误差的分析与计算《机械制造技术基础(第3版)》教学课件

0.025 1
2
sin
900 2
1
0.0052mm
例4如图所示,工件以d1外圆定位,钻φ10H8孔。已知φd1为
30
0 0.1
mm,φd2 为Ф55±0.023mm,H=(40±0.15) mm, t=0.03mm 。求工
序尺寸(40±0.15)mm的定位误差。
解: 1)Δjb≠0
Δjb=Td2/2+t =0.046/2+0.03 =0.053mm
△Z≠ 0 △Y≠ 0
H7 g6( f 7)
Z
Y
圆柱心轴
X
y
xyz yz
5.3.1 定位误差的概念及产生的原因
1.定位误差的概念
什么是定位误差?
△Z≠ 0 △Y≠ 0
调整法
为什么会产生定位误差?
5.3.1 定位误差的概念及产生的原因
调整法
5.3.1 定位误差的概念及产生的原因 2.定位误差产生的原因
1.工件以平面定位时的定位误差
例:
基准重合,即Δjb=0
(1)毛坯平面
Δjy=ΔH
(2)已加工过的表面
Δjy=0
1.工件以平面定位时的定位误差
例2 如图所示,工件以A面定位加工
φ20H8孔,求工序尺寸 (20±0.1)mm的定
位误差。
解: Δjb=ΣT= (0.1十0.05)
=0.15(mm ) Δjy= 0 (定位基面为平面)
V型块 定位套 支承板 支承钉
3.工件以外圆定位时的定位误差
a)以外圆轴线为工序基准 b)以外圆下母线为工序基准 c)以外圆上母线为工序基准 图5-40 外圆在V形块上定位时的定位误差
3.工件以外圆定位时的定位误差

“机械制造工艺学”中定位误差计算方法探析

“机械制造工艺学”中定位误差计算方法探析

“机械制造工艺学”中定位误差计算方法探析作者:肖成龙来源:《求知导刊》2017年第25期摘要:定位误差计算是“机械制造工艺学”的重点和难点,学生普遍反映相关内容难理解。

为此,文章针对定位误差的计算阐述了相关的基本概念和要点,介绍如何运用微分方法进行定位误差计算,并以工件在V形块上定位铣键槽作为算例分析其应用。

“机械制造工艺学”是机械类专业必修专业课,具有很强的实用性。

该课程以机械零件制造工艺作为研究对象,涉及加工质量分析、工艺过程制订、装配工艺设计、机床夹具设计等内容[1]。

学生普遍反映“定位误差的分析与计算”这部分内容较抽象和难理解。

为此,笔者针对涉及与定位误差相关的概念和计算方法进行阐述,以期为学生们提供参考。

一、定位误差的基本概念与计算方法机械零件加工中通常有“试切”和“调整”两种加工方法。

机械加工中的定位误差是针对“调整法”加工一批工件而言的,这是理解定位误差相关概念必须首先明确的要点[2]。

定位误差(用△D表示)主要由基准不重合误差△B和基准位移误差△Y两部分组成。

前者是由于工件定位时用的定位基准与工件的工序基准不重合所引起的,其大小等于工序基准与定位基准间的尺寸及相对位置在加工尺寸方向上的变动量;而后者是指工件在夹具中定位时,由于工件定位基面与夹具上定位元件限位基面的制造公差和最小配合间隙的影响,导致定位基准与限位基准不能重合,从而给加工尺寸造成的误差。

实际加工中,定位误差是这两项误差共同作用的结果,即△D=|△B±△Y |。

这里“+”和“-”号的选取需遵循如下原则:①若△B和△Y 是由同一因素导致产生的,且因公共因素的变动使产生的△B和△Y分别引起工序尺寸同向变化时,取“+”号,否则取“-”号;②若△B和△Y不是由同一因素导致产生的,则直接取“+”号。

一般地,定位误差的计算方法包括几何方法和微分方法。

采用前者计算定位误差通常需要画出工件的定位简图,并在图中夸张地画出工件的变动极限位置,然后运用三角几何知识,求出工序基准在工序尺寸方向上的最大变动量,即为△D;因这个最大变动量相对于基本尺寸而言是个微量,因而可将其视为某个基本尺寸的微分,即找出以工序基准为端点的在加工尺寸方向上的某个基本尺寸,对其进行微分,就可以得到△D,此为微分方法。

定位误差的计算

定位误差的计算
工序二:加工平面1时,工序基准为顶面,而加工时定位基 准为底面 。因此,即使不考虑本工序的加工误差,这种定 位方法也将可能使加工尺寸A发生变化(在工序一留下的误
差 范围±ΔH内波动),因而也就产生了定位误差(εA )。
定位误差大小计算
(1) 画出被加工零件定位时的两个极限尺寸的位置 (2) 从图形中的几何关系,找出零件图上被加工尺寸方向上
• ① ∆jb≠0, ∆jw=0 时, ∆dw=∆jb; • ② ∆jb=0, ∆jw≠0时, ∆dw=∆jw; • ③ ∆jb≠0,∆jw≠0时: 如果工序基准不在定位基准面上(工序基准与定位基面
是两个独立的表面),即∆jb 与∆jw无关联时, ∆dw=∆jb+∆jw; 如果工序基准在定位基准面上,即∆jb 与∆jw有关联时, ∆dw=∆jb±∆jw。
总结
二、定位误差的计算
1、定位误差计算的方法
工件定位误差的实质是工件上被加工表面的工序基准相对 于定位元件工作表面在加工尺寸方向上的最大变动量,因此, 计算定位误差时, 首先要找出工序尺寸的工序基准; 然后求其在工序尺寸方向上的最大变动量。
极限法
定位误差计算的方法
合成法
微分法
1)极限法
2
2
O E
A
(a)
用微小增量代替微分,并将尺寸误差视为微小增量, 且考虑到尺寸误差可正可负,各项误差应取绝对值,故定 位误差为:
dh
1
d cosa
Td
2 Ta
2sina
4sin2(a )
2
2
若使用同一夹具进行加工,则Ta=0
所以
H1
Td a
2 si n
2
同理:
CA
OA OC

影响机械加工精度的因素

影响机械加工精度的因素

影响机械加工精度的因素机械加工系统(简称工艺系统)由机床、夹具、刀具和工件组成。

影响加工精度的原始误差主要包括以下几方面:1) 工艺系统的几何误差(包括机床、夹具和刀具等的制造误差及其磨损);2) 工件装夹误差;3) 工艺系统受力变形引起的加工误差;4) 工艺系统受热变形引起的加工误差;5) 工件内应力重新分布引起的变形;6) 其它误差(包括原理误差、测量误差、调整误差)。

一、工艺系统的几何误差(一)机床的几何误差加工中,刀具相对于工件的成形运动,通常都是通过机床完成的,工件的加工精度在很大程度上取决于机床的精度。

机床制造误差中对工件加工精度影响较大的误差有:主轴回转误差、导轨误差和传动误差。

1. 主轴回转误差主轴回转误差是指主轴实际回转轴线相对其平均回转轴线的变动量。

为便于分析,可将主轴回转误差分解为径向圆跳动、轴向圆跳动和角度摇摆三种不同形式的误差。

2.导轨误差导轨是确定机床各主要部件相对位置关系的基准。

(1)导轨在水平面内的直线度误差对加工精度的影响(2)导轨在垂直平面内的直线度误差对加工精度的影响(3)导轨间的平行度误差对加工精度的影响3.传动链误差传动链误差是指传动链始末两端传动元件间相对运动的误差,一般用传动链末端元件的转角误差来衡量。

(二)刀具的几何误差刀具误差对加工精度的影响随刀具种类的不同而不同。

采纳定尺寸刀具(例如钻头、铰刀、键槽铣刀、圆拉刀等)加工时,刀具的尺寸误差和磨损将直接影响工件尺寸精度。

采纳成形刀具(例如成形车刀、成形铣刀、成形砂轮等)加工时,刀具的外形误差和磨损将直接影响工件的外形精度。

对于一般刀具(例如车刀、镗刀、铣刀等),其制造误差对工件加工精度无直接影响。

(三)夹具的几何误差夹具的作用是使工件相对于刀具和机床占有正确的位置,夹具的几何误差对工件的加工精度(特殊是位置精度)有很大影响。

二、装夹误差装夹误差包括定位误差和夹紧误差两个部分。

(一)定位误差的概念因定位不精确而引起的误差称为定位误差。

机械制造装备定位误差计算

机械制造装备定位误差计算

机械制造装备定位误差计算
定位误差计算是一种特殊计算,是指机械装备定位的误差,即其实位
精度问题,部件在机械装备上安装时,实际定位与计划定位之间的偏离值。

定位误差主要受到机械制造装备的精度影响,定位误差的大小可以由单次
定位误差和小范围重复定位误差来确定。

单次定位误差可以用常用的激光
测量仪、数显指标表和其他测量装置来测量。

小范围重复定位误差可以用
专门的重复定位设备来测量。

a)激光测量仪
激光测量仪是一种特殊的测量仪器,主要用于测量定位误差。

用激光
测量仪测量定位误差的方法是,将激光指向机械制造装备上的目标部件,
然后用激光测量仪测量目标部件的实际位置,根据计划位置测量误差。

b)数显指标表
数显指标表也可以测量定位误差,它们可以通过测量定位元件的轴向
偏移量、斜向偏移量、角度偏移量和方向偏移量来精确测量定位误差。

c)其他测量装置
还可以用其他测量仪器,如数显测微仪、测微表、三坐标测量仪和台
尺测量仪,也可以用来测量定位误差。

重复定位误差是指机械制造装备的定位性能,通常是指定位部件在短
时间内也能保持定位精度。

机械设计制造定位误差计算

机械设计制造定位误差计算

② ΔY =0.707 δd cosα =0.707 × 0.04 × 0.866=0.024
③ ΔD = ΔY = 0.024mm
课堂练习
d1 30 00.01mm, 2 550..010 mm, 40 0.15mm ,t 0.03mm 。 d H 0 056
课堂练习பைடு நூலகம்
二、定位误差计算实例 例 1.如下图所示,以A 面定位加工φ20H8孔,求加工尺寸40±0.1mm 的定位误差。
课堂练习
二、定位误差计算实例 例 1.如下图所示,以A 面定位加工φ20H8孔,求加工尺寸40±0.1mm 的定位误差。
解: 设计基准B与定位基准A不重合,因此 将产生基准不重合误差 ΔY=0mm(定位基面为平面) ΔD=ΔB=0.15m
例2.如下图所示,工件以d1外圆定位,加工φ10H8孔。已知: 求加工尺寸40±0.15mm的定位误差。
3 工件的装夹及夹具设计
3.4.1 定位误差的分析和计算
例 7 如图所示,用角度铣刀铣削斜面,求加工尺寸为 39 ± 0.04mm 的定位误差。
3 工件的装夹及夹具设计
3.4.1 定位误差的分析和计算
例 7 如图所示,用角度铣刀铣削斜面,求加工尺寸为 39 ± 0.04mm 的定位误差。
解: ① ΔB = 0 (定位基准与工序基准合)

机械制造装备定位误差计算

机械制造装备定位误差计算

机械制造装备定位误差计算在机械制造领域中,定位误差是一个重要的指标,它反映了加工装备的定位精度和稳定性。

定位误差是指实际位置与目标位置之间的差异。

在机械加工中,定位误差直接影响产品的尺寸精度和质量。

因此,准确计算定位误差对于提高加工装备的精度和质量至关重要。

定位误差的计算方法主要有以下几种:1.基本误差计算方法:基本误差是指加工装备在一次定位中发生的实际偏移量与理论偏移量之间的差异。

基本误差可以通过测量实际位置与目标位置的差异来计算。

通常,采用光学测量仪器或激光干涉仪等精密测量设备进行实验测量,然后根据测量结果计算出基本误差。

2.累积误差计算方法:累积误差是指加工装备在多次定位中发生的实际偏移量与理论偏移量之间的差异的累积效果。

累积误差可以通过在多次定位中进行实际测量来获取每次定位的误差,并进行加总计算得到。

3.随机误差计算方法:随机误差是指由于各种因素引起的加工装备在定位过程中的不确定性。

随机误差通常采用统计学方法进行分析和计算,可以采用标准差、方差、正态分布等指标来描述。

4.系统误差计算方法:系统误差是指由于加工装备本身的结构特点、机械传动系统、控制系统等因素引起的定位误差。

系统误差通常需要通过理论分析和实验测试的方法进行计算和分析。

在实际应用中,定位误差计算通常是一个复杂的过程,需要综合考虑多种因素。

首先,需要对加工装备的结构特点、传动系统、控制系统等进行详细的分析和理解。

在分析的基础上,可以选择合适的测量仪器和方法进行实验测量。

最后,根据测量数据进行计算和分析,得出定位误差的具体数值和分布情况。

通过定位误差的计算和分析,可以得到加工装备的定位精度和稳定性情况,并为改进设计、加工工艺和控制系统提供依据。

定位误差的减小对于提高产品的尺寸精度和质量具有重要的意义,因此,定位误差的计算和分析是机械制造领域中的一个重要研究方向。

机械制造技术基础 定位误差计算

机械制造技术基础  定位误差计算
例1: 指出下列定位方案中各个定位元件所限制的自由度,
有无过定位或者欠定位现象。如果有,应该采取哪些 措施? 1)车削外圆柱表面 解:前顶尖限 x y z平移 卡盘限 x y x y
相对夹持长度较长
后顶尖限 x y 旋转 过定位 应该采取措施: 去掉卡盘用两顶尖定位 x y z
或卡盘短夹持加挡块
例1: 指出下列定位方案中各个定位元件所限制的自由度,
有无过定位或者欠定位现象。如果有,应该采取哪些 措施? 2)铣削沟槽 解: 底面 x y z 圆柱销1 x y x y 圆柱销2 x z y x 过定位 应该采取措施: 一面两短销,一销为圆柱销, 一销为削边销
y
长圆柱销
z
x
例1: 指出下列定位方案中各个定位元件所限制的自由度,
有无过定位或者欠定位现象。如果有,应该采取哪些 措施?
解:a) Δdw=0.1/2 ×(1/sin45°-1) =0.1/2 ×(1.414-1) =0.02 b) Δdw=Δjb+Δjw= 0.1/2+(0.03+0.02)/2=0.075
c) Δdw=0
Δ对称度=0.1/2=0.05>0.03
最佳方案为a)
例4:如图所示工件,采用钻模夹具钻削Φ5mm和Φ8mm 两 孔,除保证图纸尺寸要求外,还要保证两孔连心线通过Φ60 的轴线,其偏移量公差为0.08mm 。现采用如图三种定位方 案,若定位误差不得大于加工允差的1/2,试问这三种定位 方案是否都可行(α=90°)?
3)滚切齿轮
解:工作台 长花键轴 过定位 应该采取措施: 工作台上加装自位支承 x y z x y x yz
或长花键轴改为短花键轴
例2 工件定位如下图所示,若定位误差不得大于加工允差的 1/2,试分析计算能否达到图纸要求?若达不到要求,应 该如何改进?

机械制造工艺学第三版王先奎习题解答第三章

机械制造工艺学第三版王先奎习题解答第三章

DW
tan1
D1max
d1min D2max 2L
d2min
tan1 0.04 0.04 0.0286 2 80
由此引起的加工误差:JG 120 tan1 0.0286 0.06
此值已大于加工误差。
2)改进:在工件一边上施加作用力,使工件孔与定位销保持单边接 触(如图示) ,此时转角定位误差:
图3-96 b)
图3-96 b1)
17
MMT图3-96 c
解:1)存在过定位(x 轴移动被重复限 x 制)。
2)夹紧力W会引起工件变形,加工 后变形恢复,影响精度。
x
改进:右面V形块改为活动V形块, 并在 x 方向施加夹紧力。
图3-96 d 解:1)顶销A、B不能同时压紧工件。
2)压板C右端开口太长,需整个螺 母退出后,才能打开。
夹紧力作用在钻模板上会引起钻模板变形影响导向精度快换钻套不能直接装在夹具体上应加衬套工件悬空受力变形无法保证加工精度使用不加工面做主要定位基准不合理应先加工端面并以端面做主要定位基准加工孔夹具体连同钻模板v形块定位锥孔等做成一体不便加工也难保证加工精度快换钻套头部缺口位置不对钻套顺时针方向旋转退刀时摩擦力会将钻套带出该固定v形块与定位锥孔一起引起过定位解
3-7 指出如图3-96所示各定位、夹紧方案及结构设计中不正确的地方, 并提出改进意见。
图3-96 a
解:三后顶爪尖卡限盘制限制2 个4个自自由由度度xx, ,yy。, x, y ;
o x
z
x,
y
2个自由度被重复限制,存在过
定位,会引起工件或夹具变形,影响
y
图3-96 a)
加工精度。

机械制造工程学定位误差作业及答案

机械制造工程学定位误差作业及答案

尺寸得定位误差 定位基准与设计基准重合,则基准不重合误差为 0,即 基准位移误差: 所以该尺寸定位误差:
(2)槽底位置尺寸得定位误差: 此工件定位孔与心轴(销)为固定单边接触。 槽底得设计基准就是外圆得下母线,定位基准就是内孔得轴线,两者不重合, 基准不重合误差:
工件定位孔与心轴(销)为固定单边接触,所以基准位移误差为:
2)基准位移误差: 3)设计基准不在与 V 型块接触得外圆定位面上,为“+” 所以该定位方案定位误差为: 得:△D (H)=0。1,因为定位误差≤1/2 尺寸公差(0.2),所以定位方案合理 3、试计算下图中某阶梯轴在 V 型块定位加工小孔¢d时影响加工尺寸得定位 误差。已知阶梯轴得大园直径为;小园直径为;大园与小园得同轴度误差为、V 型块两定位面得夹角为 90°。求工序尺寸得定位误差。并判断定位合理性(定位 误差<1/2 尺寸公差为合理)。
所以槽底尺寸 h 得定位误差为: = + 2TA
2、如下图所示某套类零件以外圆在V型块上定位,在内孔上加工键槽保证
尺寸,已知:;;外圆与内孔得同轴度误差为¢0、02;V 型块得夹角为 90°、
试求 H 尺
寸得定位误差△D
(H) 。并判
断定位合理性(定位
误差<1/
2 尺寸公差为合
理)。 解: 1)基准不重合误差:
孔得同轴度误差在范围内。今按图示得定位方案,用 立式铣床上用心轴定位铣得键槽。保证下列要求:
心轴定位,在
(1)键槽得轴向位置尺寸;
(2)键槽底面位置尺寸
试分析计算定位误差,判断定位方案得合理性(定位误差〈1/2 尺寸公差为合 理)。
解 :(1) 槽 得 轴 向 位 置
图 心轴定位内孔铣键槽定位误差得计算

机械制造基础定位误差计算

机械制造基础定位误差计算

机械制造基础定位误差计算
定位误差是机床加工时常常会遇到的一个问题,它表示机床实际加工
的位置与设定位置之间的距离,主要影响加工效果,因此,定位误差的计
算势在必行。

定位误差的计算主要采用测试误差法,其主要步骤如下:(1)准备测量特征件:根据加工件的设计图,选择测试特征件里的
若干特征点,如沿着直径或者矩形棱边分布的几个特征点,每个特征点在
加工图纸上用点标记出来;
(2)制备测量坐标系:在加工件表面安装实际测试时使用的坐标系,比如 Bloger 坐标系;
(3)准备测量仪器:比如测头和数显仪,以及其他测量仪器,比如
尺子等;
(4)程序设定:设定机床的控制程序,使其可以定位到单个特征点;
(5)实际测量:在加工件表面安装实际测试时使用的坐标系下,测
量步骤按照设定程序进行,一次测量完成单个特征点的定位;
(6)计算平均定位误差:计算获得的单个特征点定位误差的平均值,就是机床加工的定位误差。

在定位误差的计算中,要注意坐标测量仪的准确性,也要注意机床的
控制和定位精度,它们都会对定位误差有一定影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机械加工定位误差分析(上)
如前所述,为保证工件的加工精度,工件加工前必须正确的定位。

所谓正确的定位,除应限制必要的自由度、正确地选择定位基准和定位元件之外,还应使选择的定位方式所产生的误差在工件允许的误差范围以内。

本节即是定量地分析计算定位方式所产生的定位误差,以确定所选择的定位方式是否合理。

使用夹具时造成工件加工误差的因素包括如下四个方面:
( 1 )与工件在夹具上定位有关的误差,称为定位误差Δ D ;
( 2 )与夹具在机床上安装有关的误差,称为安装误差Δ A ;
( 3 )与刀具同夹具定位元件有关的误差,称为调整误差Δ T ;
( 4 )与加工过程有关的误差,称为过程误差ΔG 。

其中包括机床和刀具误差、变形误差和测量误差等。

为了保证工件的加工要求,上述误差合成后不应超出工件的加工公差δ
K ,即
Δ D + Δ A + Δ T + Δ G ≤δ K
本节先分析与工件在夹具中定位有关的误差,即定位误差有关的内容。

由定位引起的同一批工件的设计基准在加工尺寸方向上的最大变动量,称为定位误差。

当定位误差Δ D ≤ 1/3 δ K ,一般认为选定的定位方式可行。

一、定位误差产生的原因及计算
造成定位误差的原因有两个:一个是由于定位基准与设计基准不重合,称为基准不重合误差(基准不符误差);二是由于定位副制造误差而引起定位基准的位移,称为基准位移误差。

(一)基准不
重合误差及计算
由于定位基准
与设计基准不重合
而造成的定位误差
称为基准不重合误
差,以Δ B 来表示。

图 3 -61a 所
示为零件简图,在
工件上铣缺口,加
工尺寸为 A 、 B 。

图 3-61b 为加工
示意图,工件以底
面和 E 面定位, C
为确定刀具与夹具
相互位置的对刀尺
寸,在一批工件的
加工过程中 C 的
位置是不变的。

加工尺寸 A
的设计基准是 F ,
定位基准是 E ,两
者不重合。

当一批
工件逐个在夹具上
定位时,受尺寸 S
±δ S /2 的影响,
工序基准 F 的位
置是变动的, F 的
变动影响 A 的大
小,给 A 造成误
差,这个误差就是
基准不重合误差。

显然基准不重
合误差的大小应等
于定位基准与设计
基准不重合而造成
的加工尺寸的变动
范围,由图 3-61b
可知:
Δ B =A max-A min =S max-S min= δ S
S 是定位基准 E 与设计基准 F 间的距离尺寸。

当设计基准的变动方向与加工尺寸的方向相同时,基准不重合误差就等于定位基准与设计基准间尺寸的公差,如图 3-61 ,当 S 的公差为δ S ,即
Δ B = δ S ( 3-2 )
当设计基准的变动方向与加工尺寸方向有一夹角(其夹角为β)时,基准不重合误差等于定位基准与设计基准间距离尺寸公差在加工尺寸方向上的投影,即
Δ B = δ S × cos β (3-3)
当定位基准与设计基准之间有几个相关尺寸的组合,应将各相关连的尺寸公差在加工尺寸方向上投影取和,即
式中δ i ——定位基准与工序基准之间各相关连尺寸的公差( mm );
β i ——δ i 的方向与加工尺寸方向之间的夹角( 0 )。

式( 3-4 )是基准不重合误差Δ B 的一般计算式 .
(二)基准位移误差及计算
由于定位副的制造误差而造成定位基准位置的变动,对工件加工尺寸造成的误差 , 称为基准位移误差,用ΔY 来表示。

显然不同的定位方式和不同的定位副结构,其定位基准的移动量的计算方法是不同的。

下面,分析几种常见的定位方式产生的基准位移误差的计算方法:
1 .工件以平面定位
工件以平面定位时的基准位移误差计算较方便。

如图 3-61 所示的工件以平面定位时,定位基面的位置可以看成是不变动的,因此基准位移误差为零,即工件以平面定位时
Δ Y =0
2 .工件以圆孔在圆柱销、圆柱心轴上定位
工件以圆孔在圆柱销、圆柱心轴上定位、其定位基准为孔的中心线,定位基面为内孔表面。

如图 3-62 所示,由于定位副配合间隙的影响,会使工件上圆孔中心线(定位基准)的位置发生偏移,其中心偏移量在加工尺寸方向上的投影即为基准位移误差ΔY 。

定位基准偏移的方向有两种可能:一是可以在任意方向上偏移;二是只能在某一方向上偏移。

当定位基准在任意方向偏移时,其最大偏移量即为定位副直径方向的最大间隙,即
Δ Y =X max=D max—d 0min= δ D + δ d0 +X min( 3-5 )
式中X max——定位副最大配合间隙( mm );
D max——工件定位孔最大直径( mm );
d 0min——圆柱销或圆柱心轴的最小直径( mm );
δ D——工件定位孔的直径公差( mm );
δ d0——圆柱销或圆柱心轴的直径公差( mm );
X min——定位所需最小间隙,由设计时确定( mm )。

当基准偏移为单方向时,在其移动方向最大偏移量为半径方向的最大间隙,即
Δ Y = ( 1/2 ) X max= ( 1/2 )( D max-d 0min) = ( 1/2 )(δ D + δ d +X min)( 3-6 )
如果基准偏移的方向与工件加工尺寸的方向不一致时,应将基准的偏移量向加工尺寸方向上投影,投影后的值才是此加工尺寸的基准位移误差。

当工件用圆柱心轴定位时,定位副的配合间隙还会使工件孔的轴线发生歪斜,并影响工件的位置精度,如图 3-63 所示。

工件除了孔距公差还有平行度
误差,即
式中 L 1 ——加工面长度( mm );
L 2 ——定位孔长度( mm )
( 3 )工件以外柱圆在 V 形块上定位
工件以外圆柱面在 V 形块上定位时,其定位基准为工件外圆柱面的轴心线,定位基面为外圆柱面。

若不计 V 形块的误差,而仅有工件基准面的形状和尺寸误差时,工件的定位基准会产生偏移,如图 3 -64a 、 b 所示。

由图 3-64b 可知,仅由于工件的尺寸公差δ d 的影响,使工件中心沿 Z 向从 O 1 移至 O 2 ,即在 Z 向
的基准位移量可由下式计算
式中δ d ——工件定位基面的直径公差( mm );
α /2 —— V 形块的半角( 0 )。

位移量的大小与外圆柱面直径公差有关,因此对于较精密的定位,需适当提高外圆的精度。

V 形块的对中性好,所以沿其 X 方向的位移为零。

当用α =90 0 的 V 形块,定位基准在 Z 向的位移量可由下式计算
如工件的加工尺寸方向与 Z 方向相同,则在加工尺寸方向上的基准位移误差为
Δ Y =O 1O 2=0.707δ d( 3-10 )
如在加工尺寸方向上与 Z 有一夹角β,则在加工尺寸方向上的基准位移
误差为
(三)定位误差的计算
由于定位误差Δ D 是由基准不重合误差和基准位移误差组合而成的。

因此在计算定位误差时,先分别算出Δ B 和ΔY ,然后将两者组合而得Δ D 。

组合时可有如下情况:
1 .Δ Y ≠ 0 ,Δ B =0 时,Δ D = Δ B ( 3-1
2 )
2 .Δ Y =0 ,Δ B ≠ 0 时,Δ D = Δ Y ( 3-1
3 )
3 .Δ Y ≠ 0 ,Δ B ≠ 0 时,
如果工序基准不在定位基面上:Δ D = Δ B + Δ Y ( 3-14 )
如果工序基准在定位基面上,Δ D = Δ B ±Δ Y ( 3-15 )
“ + ”、“—”的判别方法为:
①分析定位基面尺寸由大变小(或由小变大)时,定位基准的变动方向;
②当定位基面尺寸作同样变化时,设定位基准不动,分析工序基准变动方向;
③若两者变动方向相同即“ + ”,两者变动方向相反即“—”。

二、定位误差计算实例
例 3-1钻铰图 3-65 所示的零件上φ 10H7 的孔,工件以孔定位,定位销直径求:工序尺寸50 ± 0.07mm 及平行度的定位误差。

解:(1)工序尺寸50 ± 0.07mm 的定位误差
Δ B = 0mm( 定位基准与工序基准重合 )
按式( 3-5 )得:
Δ Y =δ D +δ d 0+X min =0.021+0.009+0.007= 0.037mm
则由式(3-12)得
ΔD=Δ Y = 0.037mm
(2) 平行度 0.04mm 的定位误差
同理 , Δ B = 0mm
按式( 3-7 )得:
则平行度的定位误差为
Δ D =Δ Y = 0.018mm
例 3-2 如图 3-66 所示,用角度铣刀铣削斜面,求加工尺寸为39 ± 0.04mm 的定位误差。

解:Δ B = 0mm (定位基准与工序基准重合)
按式( 3-11 )得
Δ Y =0.707 δ d cos β =0.707 × 0.04 × 0.866= 0.024mm
按式( 3-12 )得
Δ D = Δ Y = 0.024mm。

相关文档
最新文档