矿井涌水量计算的方法[1]
大井法矿井涌水量计算公式
大井法矿井涌水量计算公式一、大井的涌水概念及衡量标准1.涌水:指采矿过程中,由于施工、稳定设施地压或水压作用,煤层及其他岩层通过矿口涌出来的水流。
2.水压:指不考虑排水量因素影响,在煤层及其他岩层中所带来的涌水水压。
3.涌水量:指大井产生的涌水量。
二、大井法涌水量计算公式1. 低压涌水量计算公式涌水量(m3/h)= 矿膛面积(m2)*地压(MPa)*岩节理渗透系数(m3/MPa)/小时2. 高压涌水量计算公式涌水量(m3/h)= 矿膛面积(m2)*(地压-水压)(MPa)*岩节理渗透系数(m3/MPa)/小时三、大井法涌水量评价标准1.水力学特性:涌水量以小于0.5 m3/ h 为合理范围。
2.压力传递特性:建议将涌水量保持在1.5 ~ 2.5 m3/ h 之间,使得压力分布更均匀。
3.体积变化特性:涌水量的大小是可以调节的,可取得矿井等体积变化更为稳定的效果。
四、大井法涌水量计算实例在以下实例中,假设大井膛面积等于10 m2,地压为0.5 MPa,岩节理渗透系数等于20 m3/ MPa 就可以计算出低压下的涌水量:低压涌水量按照低压涌水量计算公式=(10 m2) × (0.5MPa) × (20m3/MPa)/小时=100 m3/h假设水压为0.2MPa,则高压涌水量按照高压涌水量公式=(10 m2)×(0.5MPa-0.2MPa)×(20m3/MPa)/小时=80 m3/h。
五、结论根据以上的公式和分析,可以得出大井法涌水量可以按照低压涌水量计算公式和高压涌水量计算公式,评价标准为涌水量以小于0.5 m3/h 为合理范围,建议大井法涌水量控制在1.5~2.5m3/h之间,可以达到稳定的效果。
煤矿出 涌水量的几种测量方法
煤矿出/涌水量的几种测量方法1 量桶容积法当流量小于1 L/s时,常用此法。
容器一般用量桶或水桶,为了减少测量误差,计量容器的充水时间不应小于20 s流量计算公式:式中V———容器的容积,L;t———充满容器的时间,s。
2巷道容积法在矿井发生突水时,利用水流淹没倾斜巷道的过程中,经常不断地测量巷道与自由水面相交断面面积(F=ab),用单位时间内水位上涨高度(H)来计算水量,公式如下:式中H———t时间内水位上涨高度,m;t———水位上涨高度为片时的时间,h;a———巷道内自由水面的平均宽度,m;b———巷道内自由水面长度,m。
3水泵排量法利用水泵实际排水量和水泵运转时间,来计算涌水量Q=水泵铭牌排水量×实际效率×开动时间×台数式中Q—涌水量,m3·d-1。
4浮标测流法采用水面浮标的流水沟道地段及实测断面应符合下列要求:(1)沟道顺直,沟床地段规则完整,长度为3-5倍的沟宽。
(2)水流均匀平稳,无旋涡及回流。
(3)沟道地段内无阻碍水流的杂草、杂物。
实测程序:(1)选定了实测地段后,按相等距离布设三个断面:上断面、基本断面(中断面)、下断面,测量每个断面的横断面积,单位为m2。
(2)在上断面上游附近投放浮标,以便使浮标在接近上断面时,已具有同行水流的流速,测出浮标从上断面至下断面的时间t,求出流速。
(3)浮标从上断面至下断面的漂流历时一般应不短于20 s,如流速较大,可酌情缩短,但不能短于10 s。
(4)投放浮标的数量,视沟道宽度而定,一般不少于2个,每个至少重复投放两次,若两次漂历时间相差不超过10%,则取其平均历时计算,公式如下:式中Q———断面流量,m3·s-1;Kf———断面浮标系数,据经验数值一般介于~;F t H H Q ⋅-=21 Vf ———虚流速,即Vf=L/t 计算时采用浮标平均流速,m ·s-1;L ———上、下两断面的间距,m;t ———所选有效浮标的平均历时,s;F ———过水断面面积,m 2。
矿井涌水量计算方法
矿井涌水量计算方法
1. 嘿,你知道吗?有一种方法叫解析法来计算矿井涌水量哦!就好像我们要数清楚一群调皮的小动物有多少只一样。
比如咱们把矿井的地质条件啥的都弄清楚,就像了解小动物们的习性一样,然后通过各种公式来慢慢推算涌水量呢!这个方法是不是很有趣呢?
2. 哇塞,还有类比法来算矿井涌水量呢!这就像是找相似的东西来做比较呀。
比如说找到一个跟这个矿井差不多情况的例子,然后参考它的涌水量数据,再根据实际情况调整,这不就大概知道咱这个矿井会有多少涌水量啦!这不是很妙吗?
3. 嘿呀,经验公式法也不能少呀!这就像是我们根据以往的经验来做事一样。
比如之前碰到过的那些矿井,它们的涌水量和一些因素之间有啥规律,咱们就总结出来,然后用这个经验公式来算现在的矿井涌水量,这多方便呀!你说是不是?
4. 天哪,水文地质比拟法也超重要的呢!就好像把两个差不多的东西放在一起比一比。
比如说找到一个地质条件很像的矿井,看看人家的涌水量情况,然后来估量咱们这个的,这多有意思呀!能明白不?
5. 还有水均衡法呢,亲!这就好像是保持一个天平的平衡一样。
把矿井里水的进和出都搞清楚,进的多少,出的多少,那剩下的涌水量不就知道啦,这多简单粗暴呀!你觉得咋样?
6. 哇哦,数值模拟法也很厉害哟!就像是给矿井建了一个小模型,在这个模型里模拟涌水的情况。
就比如给一个小玩具世界设定各种条件,然后看水会怎么流,这不就能算出涌水量啦!是不是很神奇?
7. 最后呢,就是现场观测法啦!这可是最直接的方法呢,就站在矿井里亲自去看水涌出来多少。
就像守在河边看水流量一样直接。
这多实在呀!我觉得呀,这些方法都各有各的妙处,都得根据实际情况去选择和运用,才能算出准确的矿井涌水量哦!。
矿井涌水量观测办法
矿井常用涌水量观测法
矿井涌水量观测方法很多,但由于一些客观原因,为了便于操作通常采
用以下几种观测方法:
1量桶容积法
:
b———巷道内自由水面长度,m。
3水泵排量法
利用水泵实际排水量和水泵运转时间,来计算涌水量
Q=水泵铭牌排水量×实际效率×开动时间×台数
式中Q—涌水量,m3·d-1。
4浮标测流法
采用水面浮标的流水沟道地段及实测断面应符合下列要求:
(1)沟道顺直,沟床地段规则完整,长度为3-5倍的沟宽。
(2)水流均匀平稳,无旋涡及回流。
(1)(中断
(2)
(3),可酌
(4)
次,
Kf———断面浮标系数,据经验数值一般介于0.6~0.8;
Vf———虚流速,即Vf=L/t计算时采用浮标平均流速,m·s-1;
L———上、下两断面的间距,m;
t———所选有效浮标的平均历时,s;
F———过水断面面积,m2。
F t H H Q ⋅-=21(5)水仓水位法
涌水量即可用下式计算:
式中Q —涌水量,m 3/min ;
H1—停泵时水仓水位,m ;
H2—停泵时间t 时水仓水位,m ;
F —水仓底面积,m 2。
t —水仓水位从H1上升到H2所需的时间,min 。
矿井涌水量解析计算及其适用性对比
矿井涌水量解析计算及其适用性对比【摘要】矿井涌水量计算是煤矿水文补勘工程中的一项重要任务,目前矿井涌水量预测主要以“大井法”、“集水廊道法”为主,计算过程往往简单、机械,不注重矿区水文地质条件及公式适用条件的分析。
本文在分析红一煤矿地质及水文地质条件的基础上,对研究区水文地质条件进行了概化,最终选用具有一个隔水边界的稳定流承压转无压的Dupuit公式的推导式进行基岩段涌水量计算。
【关键词】大井法;集水廊道法;涌水量;水文地质补充勘探1地质及水文地质概况1.1井田地质及构造井田内地层由老至新依次有:奥陶系克里摩里组(Ok);石炭系上统土坡组(Ct);石炭二叠系太原组(CPt);二叠系下统山西组(Ps)、石盒子组(Psh);古近系(E)和第四系(Q ) o红一井田总体构造为一走向北北东向、西翼陡东翼缓的不对称背斜,即红墩子三道沟背斜,其西部发育有红墩子向斜,再向西被黄河断裂所断。
红墩子三道沟背斜西翼受红墩子断层切割,红墩子断层落差30m〜180m。
井田内煤层大部赋存于红墩子三道沟背斜东翼。
1. 2井田水文地质1. 2. 1含水层划分及其特征井田含水层划分为:第四系孔隙潜水层、古近系及基岩风化带孔隙裂隙含水层组、二叠系孙家沟组、石盒子组裂隙含水层组、山西组裂隙含水层组、太原组砂岩裂隙含水层组、土坡组砂岩裂隙含水层组、奥陶系裂隙含水层组。
其中山西组裂隙含水层、太原组砂岩裂隙含水层组为直接充水含水层,石盒子组裂隙含水层组为间接充水含水层。
下面简述以上三个含水层特征。
二叠系孙家沟组、石盒子组裂隙含水层:属直接充水含水层,在全区较广泛分布,厚度约在40〜360m左右,含多个子含水层,为复合含水层。
由粗粒砂岩、中粒砂岩及细粒砂岩构成,分选磨圆中等,颗粒支撑,泥钙质胶结,裂隙欠发育。
根据抽水试验,本含水层天然静水位埋深43.96m,钻孔涌水量0. 185L/S,单位涌水量0. 0011L/m?s,渗透系数0. 0034m/d ,为弱富水含水层。
矿井涌水量计算
郑煤集团(宝丰)盛源煤业有限公司矿井涌水量计算2008年06月09日郑煤集团(宝丰)盛源煤业有限公司矿井涌水量计算一、矿井概况1、地理位置郑煤集团(宝丰)盛源煤业位于宝丰县大营镇宋坪村西南,东距宝丰县城约19Km,距韩庄至大营公路0.5Km。
由公路通往该矿,交通十分便利。
2、企业性质宝丰县盛源煤业公司是由宝丰县大营镇宋坪村办煤矿和大营镇双鱼山二矿于2005年资源整合而成,于2007年12月被郑煤集团整合,更名为郑煤集团(宝丰)盛源煤业有限责任公司。
3、可采煤层主要开采山西组下部的二1煤层。
其次为一4煤层。
4、煤层标高二1煤层埋深270m~337m,煤层开采深度底板标高为-140m~0m。
一4煤层埋深260m~400m,煤层开采深度底板标高为-160m~-30m。
5、技改简况全矿井采用四立井开拓,主井深297.67m, 井筒直径2.6m,装备JK2/30x提升绞车;副井深322m,井筒直径4.0m,装备JK-2.0×1.8提升绞车,风井井深300.1m,井筒直径2.6m,排水井井深332m,井筒直径2.6m。
通风方式为中央分列式,风井装备两台FBCDZ-N016/2×75型主扇抽出通风,其他三个井筒进风,已形成通风系统。
排水:井底安设6台水泵,其中:主井底2台,型号为D46-50×8,副井底D85-45×8水泵3台,D46-50×8水泵1台。
地面有三趟6KV供电电源,分别引自孙岭变电站14板、17板和22板,另外矿井配备发电机组4台,其中:主井400KW 两台,副井300KW一台,风井350KW一台。
井下6个掘进工作面,分别是:副井井下变电所、水仓、首采工作面风、机巷、下山水仓2个头。
年产15万吨技改工作正加紧进行。
二、矿井水文地质矿区主要含水层分为:寒武系上统崮山组,石炭系上统本溪组和太原组,二又叠系下统山西组、下石盒子组,第四系。
1、寒武系上统崮山组灰岩含水层岩性为白云质灰岩,本组厚60~130m,野外观测结果裂隙、岩溶不甚发育,无泉水出露。
矿井涌水量计算方法评述
矿井涌水量计算方法评述
矿井涌水量计算是一项重要的矿山工程技术,在矿山安全生产、矿山开采设计和矿山水文研究中都有着重要的作用。
矿井涌水量计算方法主要有观测法、推算法和计算机模拟法等。
观测法是最常用的矿井涌水量计算方法,它是根据矿井涌水量的实际观测数据,经过统计分析,综合考虑矿井涌水量的变化规律,从而得出矿井涌水量的计算结果。
观测法的优点是结果可靠,但缺点是需要花费大量的时间和经费,而且结果受到观测精度的限制。
推算法是一种比较简单的矿井涌水量计算方法,它是根据矿井的结构特征、水文特性和涌水特性,从而推算出矿井涌水量的大小。
推算法的优点是速度快,计算结果可以及时得到,而且不受经费和观测精度的限制,但缺点是结果不够准确。
计算机模拟法是一种比较先进的矿井涌水量计算方法,它是根据矿井的结构特征、水文特性和涌水特性,建立矿井涌水量的数学模型,并利用计算机模拟技术求解出矿井涌水量的大小。
计算机模拟法的优点是计算结果准确,而且可以得到更多的细节信息,但缺点是计算速度较慢,需要花费大量的时间和经费。
总之,矿井涌水量计算方法有观测法、推算法和计算机模拟法等,它们各有优缺点,在实际应用中,应根据实际情况选择合适的方法。
涌水量计算
(1)解析法根据井田水文地质条件和矿井主要充水因素,利用解析法进行矿坑涌水量预测时,直接充水含水层太原组灰岩岩溶水。
1)太原组灰岩岩溶水预测20(2)5-1S M M h Q B K R--= ()105-2R S K = () 式中:Q ——预测矿坑涌水量,m 3/h ;B (m) K (m/d) M (m) S (m) R (m) Q (m 3/h) 32000.44279.51691124.45163.82S ——水位降低值,m ; KK——渗透系数,m/d ;M ——含水层厚度,m ; B ——进水廊道长度,m ; R ——影响半径,m ;K 取抽水实验资料0.44272、10+11号煤层矿井涌水量预算(大井法)开采10+11号煤层布置一个工作面,工作面宽180 m ,推进长度1200m ,因此,将矩形工作面(长a=1200m,宽b=180m )看做一个大井,使用大井法预算矿井涌水量:计算公式为:(2)1.366H M M Q K LgR Lgr-=-式中:Q%~矿井涌水量(m 3/d) K%~渗透系数(m/d) H%~水头高度(m) M%~含水层厚度(m)r%~大井半径(m),r=η4a b+R 0%~引用半径(m),R 0=10S K (S=H) R%~影响半径(m),R=R 0+ r 0根据ZK504号孔资料,太原组含水层水位标高1120.58m ,渗透系数(K )0.4427m/d,含水层厚度(M )约9.5m,先期开采地段10+11号煤层底板标高最低为884m,由此确定水头高度:(H=S )=1120.58-884=236.58(m)r=η4a b +=379.5mR 0=10S K =1574.1m R = R 0+ r 0=1953.6m将上述参数代入上述公式得开采10+11号煤层矿井正常涌水量Q=3743m 3/d (156m 3/h )最大涌水量Qmax=δQ 正,δ: 季节影响比值系数 开采2号煤层时,季节影响比值系数δ=1.2故最大涌水量Qmax=3743×1.2=4492 m 3/d (187.2m 3/h ) 2号煤层与10+11号煤层联合开采,矿井正常涌水量为上述涌水量之和,即矿井正常涌水量:Q 正=355+3743=4098 m 3/d(170.75 m 3/h)最大涌水量Qmax=425+4492 =4917 m 3/d(204.88m 3/h)3 狭长水平坑道法 采用承压——无压公式:(2-)5-5S M M Q BKL= ()式中:Q ——为预测的矿坑涌水量(m 3/d );K ——为渗透系数(m/d ); S ——为最大水位降深(m ); M ——为含水层厚度(m );L——为水平坑道影响宽度(m ),采用奚哈尔德公式10R =; B ——进水廊道长度,主采煤层工作面年推进度,即B =2500m 。
矿坑涌水量预测——涌水量Q—降深S曲线法
——矿坑涌水量 涌水量Q—降深S曲线法
矿坑(井)涌水量预测——涌水量Q—降深S曲线法 一、原理与适用条件 二、计算方法 步骤
一、原理与适用条件
涌水量Q—降深S曲线法:根据稳定井流抽(放)水试验资料建立涌水量与降深的关系 方程,根据勘探试验阶段与未来开采阶段水文地质条件的相似性,外推预测未来矿井的涌 水量。
课程小结:矿坑涌水量预测——涌水量Q—降深S曲线法 1、Q-S曲线法的原理与适用条件 2、Q-S曲线法计算方法步骤
3、确定方程参数a、b,有二种方法 图解法;最小二乘法
4、外推预测设计降深时的涌水量,然后进行井径换算,求出矿井涌水 量。进行换径后的矿井涌水量:
层流:Q井=Q孔[(lgR孔-lgr孔)/ (lgR井-lgr井) 紊流:Q井=Q孔(r井/r孔)^1/2 根据实际经验,一般认为,井径对涌水量的影响,比对立各种Q—S曲线方程:
Q—S曲线图分析:曲线形态
曲线Ⅰ:直线型,表示承压井流(或厚度很大,降深相对较小的潜水井流);方程式: Q=aS
曲线Ⅱ:抛物线型:表示潜水或为承压转无压井流、或为三维流、紊流影响下的承压井 流);方程式:S = aQ + bQ2
曲线Ⅲ:幂曲线型,含水层规模有限,水资源有限,补给条件不好,当达到某一降深后 ,S值增大而Q值不变,多属降深过大造成;方程式:Q = aSb
曲线Ⅳ:对数曲线,表示水源不足(含水层补给条件差,或者补给量衰竭),或过水断 面在抽水过程中被阻塞;方程式:Q = a + blgS
曲线Ⅴ:表示试验有误,也可能时在抽水过程中,原来被堵塞的空隙突然被疏通等导致 出现异常。
2、鉴别Q—S曲线类型,有二种方法 伸直法: 曲度法:用曲度n值进行鉴别,n值按下计算: n=(lgS2-lgS1)/(lgQ2-lgQ1) 当n=1时为直线,1<n<2时为幂曲线,n=2时为抛物线,n>2时为对数曲线。 当n<1时,则抽水资料有误。
矿井涌水量评价常用方法及公式
附 录 A(资料性附录)矿井涌水量评价常用方法及公式A.1 比拟法A.1.1 富水系数法aP Q K P = ...................................... (A.1)11p Q K P = ...................................... (A.2) 式中:Q ——新矿井预计涌水量,单位为立方米(m 3);K p ——富(含)水系数,单位为立方米每吨(m 3/t );P ——新矿井设计产量,单位为吨(t );Q 1——生产矿井年涌水量,单位为立方米(m 3);P 1——生产矿井年产煤量,单位为吨(t )。
a 式中的涌水量和产煤量均是同一一定时间内的。
A.1.2 矿井单位涌水量比拟法当矿井涌水量增长幅度与开采面积、水位降深呈直线比例的情况下:1Q q FS = ...................................... (A.3)1111Q q F S = ...................................... (A.4) 当矿井涌水量增长幅度与开采面积、水位降深不呈直线比例时:Q Q =(A.3) 式中:Q ——新矿井预计涌水量,单位为立方米每秒(m 3/s );q 1——生产矿井单位涌水量,单位为每秒(s -1);F ——新矿井设计开采面积,单位为平方米(m 2);S ——新矿井设计水位降深,单位为米(m );Q 1——生产矿井总涌水量,单位为立方米每秒(m 3/s );F 1——生产矿井开采面积,单位为平方米(m 2);S 1——生产矿井水位降深,单位为米(m );m 、n ——地下水流态系数,根据两年以上生产矿井涌水量采用最小二乘法或图解法求得。
A.1.3 相关关系分析法a) 当生产矿井涌水量与两个影响因素存在直线关系时,采用下述三元直线相关数学表示式预算新井矿井涌水量(Q ):01122Q b b x b x =++ .................................. (A.4)式中:x 1 、x 2——影响矿井涌水量的二个因素变量;b 1 、b 2——称为Q 对x 1 、x 2的回归系数。
矿井涌水量预测方法
矿井涌水量预测方法引言:矿井涌水是指在矿井开采过程中,地下水源不受控制地进入矿井的现象。
涌水量的预测对矿井的安全开采至关重要。
本文将介绍一些常用的矿井涌水量预测方法,包括经验公式法、数学模型法和人工智能方法。
一、经验公式法经验公式法是根据历史数据和经验总结得出的一种预测方法。
根据矿井的地质条件、开采工艺和涌水历史数据等因素,通过经验公式计算出矿井涌水量的预测结果。
这种方法简单易行,但对于复杂的地质条件和变化的开采工艺可能存在一定的误差。
二、数学模型法数学模型法是通过建立数学模型,利用数学方法对矿井涌水量进行预测的方法。
常用的数学模型包括多元回归模型、神经网络模型和支持向量机模型等。
这些模型可以根据矿井的具体情况进行参数调整和优化,提高预测的准确性。
但建立数学模型需要大量的历史数据和专业知识,并且对于模型的选择和参数调整需要一定的经验。
三、人工智能方法人工智能方法是近年来发展起来的一种新型预测方法,其基本思想是模拟人类的智能思维过程,通过机器学习和数据挖掘等技术,自动学习和优化预测模型。
人工智能方法具有较强的适应性和灵活性,可以根据不同的矿井情况进行预测,并且可以自动调整模型参数以提高预测效果。
但人工智能方法需要大量的训练数据和计算资源,并且对于模型的解释性较弱。
四、综合方法在实际应用中,常常采用综合方法进行矿井涌水量的预测。
综合方法是将多种预测方法进行组合,通过权重调整和结果融合来得到最终的预测结果。
这样可以综合各种方法的优势,提高预测的准确性和稳定性。
综合方法的具体实施需要根据具体的矿井情况和数据特点进行调整,选择合适的权重和融合策略。
结论:矿井涌水量预测是矿井安全开采的重要环节,采用合适的预测方法可以提高矿井的安全性和经济效益。
经验公式法、数学模型法和人工智能方法是常用的预测方法,每种方法都有其适用的场景和优势。
在实际应用中,可以根据矿井的具体情况选择合适的方法,并进行综合预测。
这样可以提高预测的准确性,并为矿井的安全开采提供可靠的依据。
煤矿井下涌水量计算的几种观测方法
煤矿井下涌水量计算的几种观测方法1、水桶法水桶法指的是,将涌出的水导入一定容积的量水桶(圆形或方形),用秒表测流满该量水桶所需的时间,然后按下式计算涌水量:Q= V/t式中Q——涌水量,m3/h(m3/min)V——量水桶的体积,m3t——水流满量水桶的时间,h(min)2、水位标定法水位标定法指的是利用水泵将水窝(或水仓)中的水位降低,然后停泵,测量回升到原来位置所需要的时间,然后按下式计算涌水量:Q=FH/t式中Q——涌水量,m3/h(m3/min)F——水窝(或水仓)的断面积,m2H——水位回升的高度,mt——水流满凉水桶的时间,h(min)3、水泵能力法水位能力法指的是维持水位不变时增加水泵的排水能力,按下式计算涌水量:Q=KNW+SH/t式中Q——涌水量,m3/h(m3/min)K——水泵的排水系数,%(当新水泵排清水时K=1,旧水泵排清水时K=0.8,排混水时K=0.9,旧水泵排混水时K=0.7,双台旧水泵排水时K=0.6)N——增加的水泵台数,台W——水泵的铭牌排水量,m3/h(m3/min)S——水仓(或水窝)水平截面积,m2H——水位上升的高度,mT——水位上升所需的时间,h(min)当H=0时,即水位不上升,则Q=KNW4、浮标法浮标法指的是利用木屑或纸屑作为浮标,测量水沟中水的流速,根据水沟断面计算涌水量。
按下式计算涌水量:Q=KVF式中Q——涌水量,m3/h(m3/min)F——断面面积,m2V=L/tt——从断面1到断面2的水流时间,h(min)L——从断面1到断面2的水距离,mK——断面系数,与水沟粗糙度、风流方向和大小有关:在一般情况下,水沟水深大于1.0吗,当水沟粗糙时,K=0.75—0.85;在水沟水沟平滑时,K=0.80—0.90。
此计算方法可用于巷道排水沟中水的测量;当涌水较大,淹没巷道水沟时,也可用来测量巷道流水中水量。
5、堰测法堰测法指的是在井下排水沟中设置测水堰板,使水流通过一定形状的堰口水流高度,然后计算涌水量。
矿井涌水量计算的方法
矿井涌水量的计算与评述钱学溥(国土资源部,北京 100812)摘要:文章讨论了矿井涌水量的勘查、计算、精度级别、允许误差和有效数字。
文章推荐了反求影响半径、作图法求解矿井涌水量的方法。
关键词:矿井涌水量;勘查;计算;精度级别;允许误差;有效数字根据1998年国务院“三定方案”的规定,地下水由水利部门统一管理。
水利部2005年发布了技术文件SL/Z 322-2005《建设项目水资源论证导则(试行)》。
该技术文件6.7款规定,地下水资源包括地下水、地热水、天然矿泉水和矿坑排水。
6.1.2款规定,计算的地下水资源量要认定它的精度级别。
我们认为,认定计算的矿井涌水量的级别和允许误差,不仅是水利部门要求编写《建设项目水资源论证》的需要,而且有利于设计部门的使用。
在发生经济纠纷的情况下,也有利于报告提交单位和报告评审机构为自己进行客观的申辩。
下面,围绕这一问题,对矿井涌水量的勘查、计算、精度级别、允许误差和有效数字等方面,作一些论述和讨论。
1 矿井涌水量与水文地质勘查矿井涌水量比较大,要求计算的矿井涌水量精度就比较高,也就需要投入比较多的水文地质勘查研究工作。
表1,可以作为部署水文地质工作的参考。
表 1 矿井涌水量与水文地质勘查Table 1 Mine inflow and hydrogeological exploration注:○1多年生产的矿山是指:开采水平不变、开采面积基本不变的多年生产的矿山,如即将闭坑或是即将破产的矿山,即是这种多年生产的矿山。
○2多孔抽水试验,是指带观测孔的一个抽水主孔的抽水试验,持续抽水几天。
○3群孔抽水试验是指带观测孔的多个抽水主孔的抽水试验,其抽水总量,一般要达到计算矿井涌水量的1/3~3/4,持续抽水几十天。
○4利用地下水动力学计算公式,计算矿井涌水量,就属于解析法的范畴。
大井法、集水廊道法就是常用的解析法。
○5数理统计包括一元线性回归、多元线性回归、逐步回归、系统理论分析、频率计算等(参考钱学溥,娘子关泉水流量几种回归分析的比较,《工程勘察》1983第4期,中国建筑工业出版社)。
煤矿出、涌水量的几种测量办法
煤矿出/涌水量的几种测量方法
1量桶容积法
当流量小于1L/s时,常用此法。
容器一般用量桶或水桶,为了减少测量误差,计量容器的充水时间不应小于20s流量计算公
利用水泵实际排水量和水泵运转时间,来计算涌水量
Q=水泵铭牌排水量×实际效率×开动时间×台数
式中Q—涌水量,m3·d-1。
4浮标测流法
F t
H H Q ⋅-=21采用水面浮标的流水沟道地段及实测断面应符合下列要求:
(1)沟道顺直,沟床地段规则完整,长度为3-5倍的沟宽。
(2)水流均匀平稳,无旋涡及回流。
(3)沟道地段内无阻碍水流的杂草、杂物。
实测程序:
(1)选定了实测地段后,按相等距离布设三个断面:上断面、基本断面(中断
(2)
(3),可酌
(4)次,
L ———上、下两断面的间距,m;
t ———所选有效浮标的平均历时,s;
F ———过水断面面积,m 2。
(5)水仓水位法
涌水量即可用下式计算:
式中Q—涌水量,m3/min;
H1—停泵时水仓水位,m;
H2—停泵时间t时水仓水位,m;
F—水仓底面积,m2。
t—水仓水位从H1上升到H2所需的时间,min。
``。
矿坑涌水量计算
矿坑涌水量计算矿坑涌水量计算矿坑涌水是煤矿地下深采过程中经常遇到的问题,对于矿井的安全生产以及煤矿的经济效益都有着重要的影响。
因此,对矿坑涌水量的计算是煤矿工人不可或缺的技能之一。
在这篇文章中,我们将会介绍如何计算矿坑涌水量以及计算过程需要注意的问题。
1、涌水量计算的方法为了计算矿坑涌水量,我们需要了解几个参数:矿井的水文地质情况、涌水管道的特性和涌水流量曲线。
具体来说,我们需要测定以下参数:1.涌出水口地下水位 (H)2.涌出水口流量 (Q)3.涌出水口的空气容积 (V)涌水量 = 涌出水口流量 Q(m/s)× 涌出水口空气容积V(m³) × 涌出水口地下水位 H(m)因此,计算涌水量的方法就是通过测量这三个参数,再将其带入上式计算。
通常我们会采用标准流量计、液位计以及液位高低差计算仪器等设备来测量这些数据。
2、其中的数值要点在上面,我们提到需要怎样计算涌水量。
实际测量过程中,应注意以下数值要点。
1.涌出水口地下水位(H)涌出水口地下水位是指矿坑里涌水的水位高度,通常它会随着时间而变化。
在实际操作中,我们需要在多个时间点测量该水位,然后取平均数作为涌出水口地下水位。
2.涌出水口流量(Q)涌出水口流量可以利用标准流量计进行测量。
为了比较精准地测量涌出水口流量,我们需要注意以下两点。
(1) 测量范围流量计的参数范围需要考虑到涌出水口的流量范围以及实际流量与流速差别(如小流量,应选取全开阀范围测量,确保数据精度)。
(2) 测量误差在实际测量中,我们需要注意流速、温度和压力等参数对流量计实际测量结果的影响。
并且,我们还需要对流量计进行定期校正,以确保其准确度和稳定性。
3.涌出水口的空气容积(V)涌出水口的空气容积是指涌出水口上,不被水淹没的管道内的气体容积。
测量方法是在下水井内利用液位计测量涌出水口到下井站的距离,并将其乘以涌出水口直径的平方除2再乘以3.14即为涌出水口的空气容积。
矿井涌水量评价常用方法及公式
附录 A (资料性附录)矿井涌水量评价常用方法及公式式中:Q ――新矿井预计涌水量,单位为立方米(卅);K >—富(含)水系数,单位为立方米每吨( m/t ); p ――新矿井设计产量,单位为吨(t ); Q ——生产矿井年涌水量,单位为立方米(m 5);P i ――生产矿井年产煤量,单位为吨(t )。
式中的涌水量和产煤量均是同一一定时间内的。
A.1.2矿井单位涌水量比拟法当矿井涌水量增长幅度与开采面积、水位降深呈直线比例的情况下:Q iq i =F i S i当矿井涌水量增长幅度与开采面积、水位降深不呈直线比例时式中:Q 新矿井预计涌水量,单位为立方米每秒( m/s );q i ——生产矿井单位涌水量,单位为每秒( S -1); F ――新矿井设计开采面积,单位为平方米(卅);S ——新矿井设计水位降深,单位为米(m );Q ——生产矿井总涌水量,单位为立方米每秒( m/s );F i ――生产矿井开采面积,单位为平方米(卅);S ——生产矿井水位降深,单位为米(m );m 、n ――地下水流态系数,根据两年以上生产矿井涌水量采用最小二乘法或图解法求得。
A.1 比拟法 A.1.1 富水系数法 Q = K p P ................................(A.1)K pQ i(A.2)Q = q^S ................................ (A.3)(A.4)(A.3)A.1.3 相关关系分析法a)当生产矿井涌水量与两个影响因素存在直线关系时,采用下述三元直线相关数学表示式预算新井矿井涌水量(Q :Q 二b o b i x b2x2................................式中:X i、X2――影响矿井涌水量的二个因素变量;b i、b2――称为Q对x i、X2的回归系数。
在多元回归中,Q对某一自变量的回归系数表示当其它自变量都固定时,该自变量变化一个单位时Q平均改变的数值;b o、b i、b2 ------------- 用最小二乘法确定。
【免费下载】矿井涌水量观测方法
矿井涌水量观测方法主要有以下几种:1、容积法:水桶法指的是,将涌出的水导入一定容积的量水桶(圆形或方形),用秒表测流满该量水桶所需的时间,然后按下式计算涌水量:Q= V/t式中Q——涌水量,m3/h(m3/min)V——量水桶的体积,m3t——水流满量水桶的时间,h(min)2、水位标定法水位标定法指的是利用水泵将水窝(或水仓)中的水位降低,然后停泵,测量回升到原来位置所需要的时间,然后按下式计算涌水量:Q=FH/t 式中Q——涌水量,m3/h(m3/min)F——水窝(或水仓)的断面积,m2H——水位回升的高度,mt——水流满凉水桶的时间,h(min)3、水泵能力法水位能力法指的是维持水位不变时增加水泵的排水能力,按下式计算涌水量:Q=KNW+SH/t式中Q——涌水量,m3/h(m3/min)K——水泵的排水系数,%(当新水泵排清水时K=1,旧水泵排清水时K=0.8,排混水时K=0.9,旧水泵排混水时K=0.7,双台旧水泵排水时K=0.6)N——增加的水泵台数,台W——水泵的铭牌排水量,m3/h(m3/min)S——水仓(或水窝)水平截面积,m2H——水位上升的高度,mT——水位上升所需的时间,h(min)当H=0时,即水位不上升,则Q=KNW4、浮标法浮标法指的是利用木屑或纸屑作为浮标,测量水沟中水的流速,根据水沟断面计算涌水量。
按下式计算涌水量:Q=K(F1+F2)/t*L 式中Q——涌水量,m3/h(m3/min)F1——断面1的面积,m2F2——断面2的面积,m2t——从断面1到断面2的水流时间,h(min)L——从断面1到断面2的水流距离,mK——断面系数,与水沟粗糙度、风流方向和大小有关:在一般情况下,水沟水深大于1.0吗,当水沟粗糙时,K=0.75—0.85;在水沟水沟平滑时,K=0.80—0.90。
此计算方法可用于巷道排水沟中水的测量;当涌水较大,淹没巷道水沟时,也可用来测量巷道流水中水量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矿井涌水量的计算与评述钱学溥(国土资源部,北京 100812)摘要:文章讨论了矿井涌水量的勘查、计算、精度级别、允许误差和有效数字。
文章推荐了反求影响半径、作图法求解矿井涌水量的方法。
关键词:矿井涌水量;勘查;计算;精度级别;允许误差;有效数字根据1998年国务院“三定方案”的规定,地下水由水利部门统一管理。
水利部2005年发布了技术文件SL/Z 322-2005《建设项目水资源论证导则(试行)》。
该技术文件6.7款规定,地下水资源包括地下水、地热水、天然矿泉水和矿坑排水。
6.1.2款规定,计算的地下水资源量要认定它的精度级别。
我们认为,认定计算的矿井涌水量的级别和允许误差,不仅是水利部门要求编写《建设项目水资源论证》的需要,而且有利于设计部门的使用。
在发生经济纠纷的情况下,也有利于报告提交单位和报告评审机构为自己进行客观的申辩。
下面,围绕这一问题,对矿井涌水量的勘查、计算、精度级别、允许误差和有效数字等方面,作一些论述和讨论。
1 矿井涌水量与水文地质勘查矿井涌水量比较大,要求计算的矿井涌水量精度就比较高,也就需要投入比较多的水文地质勘查研究工作。
表1,可以作为部署水文地质工作的参考。
表 1 矿井涌水量与水文地质勘查Table 1 Mine inflow and hydrogeological exploration注:○1多年生产的矿山是指:开采水平不变、开采面积基本不变的多年生产的矿山,如即将闭坑或是即将破产的矿山,即是这种多年生产的矿山。
○2多孔抽水试验,是指带观测孔的一个抽水主孔的抽水试验,持续抽水几天。
○3群孔抽水试验是指带观测孔的多个抽水主孔的抽水试验,其抽水总量,一般要达到计算矿井涌水量的1/3~3/4,持续抽水几十天。
○4利用地下水动力学计算公式,计算矿井涌水量,就属于解析法的范畴。
大井法、集水廊道法就是常用的解析法。
○5数理统计包括一元线性回归、多元线性回归、逐步回归、系统理论分析、频率计算等(参考钱学溥,娘子关泉水流量几种回归分析的比较,《工程勘察》1983第4期,中国建筑工业出版社)。
可以把水位抽降、巷道开拓面积、矿产产量、降水量等作为自变量,把矿井涌水量作为因变量。
○6数值法也就是计算机模拟,是通过利用计算机模拟地下水流场的变化,计算矿井涌水量的一种方法。
○7常用的大井法、集水廊道法等解析法计算矿井涌水量,只考虑了含水层的导水性,没有考虑地下水的补给量。
因此,只有进行了解析法和水均衡的计算,用地下水的补给量验证解析法计算的结果,计算的矿井涌水量的精度才能达到C 级。
2 稳定流、非稳定流公式应用的主要条件2.1一般报告采用的解析解大井法、集水廊道法,是基于稳定流理论推导的地下水动力学计算公式。
它要求地下水有比较充分的补给条件,要求在该水平开采的几年到几十年内,矿井排水计算的地下水影响半径边界上的水头高度,永远稳定在计算采用的高度上。
2.2基于非稳定流理论推导的地下水动力学计算公式,恰恰相反,它的使用条件是地下水没有补给,含水层分布无限,地下水影响半径不断向外扩大。
2.3由于采用大井法、集水廊道法,一般都没有考虑地下水补给量的问题,因此,计算的结果可能有较大的误差,它的精度一般只有D级。
3 影响半径的计算3.1计算影响半径的经验公式有很多,它们计算的结果有相当大的误差。
如常用的库萨金经验公式HKS R 2=对R 值一般偏小2~5倍。
吉哈尔经验公式K S R 10=对承压水含水层,可以作近似的计算,但计算的结果一般偏小(参考《供水水文地质手册》第二册,地质出版社1977,第268页)。
3.2影响半径R ,处在矿井涌水量计算公式分母的位置,因此,计算的影响半径R 偏小,就会导致计算的矿井涌水量偏大。
这是一般地质报告计算矿井涌水量偏大的主要原因。
3.3利用经验公式计算的承压水影响半径一般偏小,从而计算的矿井涌水量偏大。
为此,最好是利用实测的影响半径,或是利用大井法、集水廊道法公式反求的影响半径,预算矿井涌水量。
3.4据甘肃省安新煤田大柳井田勘探报告,该井田开采侏罗系煤层。
经实测,相距4000m 的新周煤矿建井,水位已影响到大柳煤矿的井筒。
估计影响半径可能有5000m 。
3.5内蒙古自治区东胜煤田王家坡煤矿距宏景塔一矿2km 。
王家坡煤矿利用实测的资料,采用大井法公式,可以反求影响半径:王家坡煤矿实测矿井涌水量Q =50m 3/d ,承压水头高度H =64.82m ,巷道系统面积0F =1800000m 2, 承压含水层厚度M =9.09m , 砂岩承压含水层渗透系数K =0.0276m/d 。
巷道系统引用半径==π0F r 757m ,大井引用半径00r R R +=,地下水承压转无压裘布衣公式00lg lg )2(366.1r R MM H K Q --=。
将上述数据代入公式,757lg lg 09.9)09.982.642(0276.0366.1500-⨯-⨯⨯=R , 88.2lg 31.41500-=R ,0lg R =3.7062,0R =5084m ,=-=7575084R 4327m 。
利用反求的影响半径4327m ,采用大井法公式,可以预算宏景塔一矿的矿井涌水量为154m 3/d 。
3.6内蒙古贺兰山煤田天荣五号煤矿,煤层较陡,采用水平巷道开采。
井巷涌水量Q =400m 3/d ,水头高度H =199.55m ,巷道长度B =2100m ,砂岩厚度M =56.5m,渗透系数K =0.1275m/d ,坑道内水层高度0h =0m 。
将上述数据,代入集水廊道单边进水承压转无压的公式Rh M M H BKQ 2)2(20--=,R =6479m 。
3.7长期开采条件下,承压水影响半径一般有3000m ~5000m ~7000m 。
4 直接降落在露天采坑中的降水量(1Q )的计算4.1直接降落在露天采坑中的降水量(1Q ),应有频率的概念,必须进行频率的计算。
4.2根据一日最大降水量,通过理论频率的计算,计算直接降落在露天采坑 中、不同概率的降水量,见表2、3、4及图1。
表2 一日最大降水量的计算Table 2 Calculated the maximum precipitation of one day注:根据满洲里市气象局1983~2005年,连续23年观测的每年一日最大降水量。
95.40239.941==∑=n H H P 23=n 45.022439.41)1(2==--∑=n K C V 设35.13==V S C C ,查皮尔逊III 型频率曲线φ值表(参考《供水水文地质手册》第二册,地质出版社1977,第666~671页),计算不同频率的一日最大降水量如表3。
表3 不同频率的一日最大降水量计算Table 3 Calculated the maximum precipitation for one dayin different frequency注:频率为50%的一日最大降水量,相当2年一遇的一日最大降水量,也就是多年平均的一日最大降水量。
频率为80%的一日最大降水量,相当5年一遇的枯水年的一日最大降水量。
频率为90%的一日最大降水量,相当10年一遇的枯水年的一日最大降水量。
频率为95%的一日最大降水量,相当20年一遇的枯水年的一日最大降水量。
频率为99%的一日最大降水量,相当100年一遇的枯水年的一日最大降水量。
(mm)一日最大降水量频率图1 一日最大降水量频率曲线Figure 1 Frequency curve of the maximum precipitation for one dayin different frequency根据不同频率的一日最大降水量,计算直接降落在露天采坑中的降水量如表4。
表4 直接降落在露天采坑中的降水量(1Q )Table 4 Quantity of the rain falling down in to the pit注:○1南区采坑面积120×104m 2,北区采坑面积150×104m 2,合计采坑面积F =270×104m 2。
○2参考地质出版社《水文地质手册》,暴雨地表径流系数α值选用0.7。
○3一日最大降水形成的采坑涌水量 α⨯⨯=H F Q 1。
根据上述计算的结果,一日最大降水直接降落在采坑中的水量:100年一遇的是19.0万m 3/d ;20年一遇的是14.5万m 3/d ;10年一遇的是12.4万m 3/d ;5年一遇的是10.2万m3/d;多年平均值是7.0万m3/d。
考虑一日最大降水量的观测序列(n)长达23年;但暴雨地表径流系数α值选用0.7有较大的误差。
参照GB 15218-94《地下水资源分类分级标准》,报告计算的一日最大降水直接降落在采坑中的水量(Q),其精度相当C级,最大误1差大体在50%以内。
4.3露天开采,应计算地下水涌入采坑的水量和一日最大降水直接降落在采坑中的水量。
二者相比,前者水量很小,一般只有后者的1/10~1/100。
4.4露天开采,涌入采坑的地下水量和一日最大降水直接降落在采坑中的水量,都是可能被利用的地下水资源。
因此,对上述计算的水量,都应认定它们的精度级别和误差。
4.5选用的暴雨地表径流系数α值,具有较大的误差。
最好是根据实测的一日最大降水量和实测的采坑或邻近采坑的积水量,反求暴雨地表径流系数α值。
5 作图法求解矿井的涌水量5.1可以利用作图法求解矿井涌水量。
金属矿床一般具有较大的倾角,开采时,往往有几个甚至几十个不同深度的开采中段。
当煤层的倾角较大时,如新疆的准南煤田、内蒙古的贺兰山煤田,也具有较多的开采水平。
在这种情况下,可以利用多层实测的开采中段或开采水平的矿井涌水量,采用作图的方法,预测下一个开采中段或开采水平的矿井涌水量。
以湖南省沃溪矿区金锑钨矿为例,该矿1~7中段年矿井涌水量41.7万m3/a, 8~16中段年矿井涌水量38.9万m3/a,17~20中段年矿井涌水量36.4万m3/a,21~36中段年矿井涌水量30.2万m3/a,全矿1~36中段年矿井总涌水量为147.2万m3/a。
通过作图法,可以预测37~42中段的年矿井涌水量为25.2万m3/a,它的精度大体相当B级(参阅图2)。
m a图2 作图法求B 级矿井涌水量Figure 2 Calculated mine inflow of B degree using graph method5.2作图法计算过程简单、直观。
由于设计部门对预算的矿井涌水量的精度,要求不是很高,因此,作图法求解的矿井涌水量,一般可以满足设计的要求。
6 含水层突水量的计算6.1对岩溶含水层的突水量,可以进行粗略的计算。
以安徽省涡阳县耿皇煤矿为例,计算石炭系太原统石灰岩的突水量——根据淮北各煤矿的实践,工作面突水面积一般采用工作面的长度a =30m ,宽b =15m ,坑道系统的大井引用半径97.1115300=⨯==ππabr m 。