实验2:线性代数实验答案
线性代数课后习题答案全)习题详解
线性代数课后习题答案全)习题详解第一章 行列式1.利用对角线法则计算下列三阶行列式:(1)381141102---; (2)b a c a c b c b a ; (3)222111c b a c b a ; (4)y x y x x y x yyx y x +++. 解 (1)=---381141102811)1()1(03)4(2⨯⨯+-⨯-⨯+⨯-⨯)1()4(18)1(2310-⨯-⨯-⨯-⨯-⨯⨯-=416824-++-=4-(2)=ba c a cb cb a ccc aaa bbb cba bac acb ---++3333c b a abc ---=(3)=222111c b a c b a 222222cb ba ac ab ca bc ---++))()((a c c b b a ---=(4)yx y x x y x y yx y x +++yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+= )(233y x +-=2.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (5)1 3 … )12(-n 2 4 … )2(n ; (6)1 3 … )12(-n )2(n )22(-n … 2. 解(1)逆序数为0(2)逆序数为4:4 1,4 3,4 2,3 2 (3)逆序数为5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为3:2 1,4 1,4 3 (5)逆序数为2)1(-n n : 3 2 1个 5 2,5 4 2个 7 2,7 4,7 6 3个 ……………… …)12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个(6)逆序数为)1(-n n3 2 1个 5 2,54 2个 ……………… …)12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个4 2 1个 6 2,6 4 2个 ……………… …)2(n 2,)2(n 4,)2(n 6,…,)2(n )22(-n )1(-n 个3.写出四阶行列式中含有因子2311a a 的项.解 由定义知,四阶行列式的一般项为43214321)1(p p p p t a a a a -,其中t 为4321p p p p 的逆序数.由于3,121==p p 已固定,4321p p p p 只能形如13□□,即1324或1342.对应的t 分别为10100=+++或22000=+++∴44322311a a a a -和42342311a a a a 为所求.4.计算下列各行列式:(1)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢7110025*********4; (2)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢-265232112131412; (3)⎥⎥⎦⎥⎢⎢⎣⎢---ef cf bf de cd bd ae ac ab ; (4)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢---d c b a100110011001解(1)7110025102021421434327c c c c --1002310021214---34)1(142101+-⨯--=143102211014-- 321132c c c c ++141717001099-(2)2605232112131412-24c c -2605032122130412-24r r -0412032122130412- 14r r -0000032122130412-=0(3)ef cf bf de cd bd ae ac ab ---=e c b e c b e c b adf ---=111111111---adfbce =abcdef 4(4)d c b a 100110011001---21ar r +dc b a ab 100110011010---+=12)1)(1(+--dc a ab 10111--+23dc c +010111-+-+cd c ada ab =23)1)(1(+--cdadab +-+111=1++++ad cd ab abcd5.证明: (1)1112222b b a a b ab a +=3)(b a -; (2)bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++=y x z x z y z y x b a )(33+;(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ;(4)444422221111d c b a d c b a d c b a ))()()()((d b c b d a c a b a -----=))((d c b a d c +++-⋅;(5)1221100000100001a x a a a a x x x n n n +-----n n n n a x a x a x ++++=--111 . 证明(1)00122222221312a b a b a a b a ab a c c c c ------=左边a b a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--= 右边=-=3)(b a(2)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开按第一列左边bzay by ax x by ax bx az z bxaz bz ay y b +++++++ ++++++002y by ax z x bx az y z bz ay x a 分别再分bz ay y x by ax x z bx az z y b +++zy x y x z xz y b y x z x z y z y x a 33+分别再分右边=-+=233)1(yx z x z y zy x b y x z x z y z y x a(3) 2222222222222222)3()2()12()3()2()12()3()2()12()3()2()12(++++++++++++++++=d d d d d c c c c c b b b b b a a a a a 左边9644129644129644129644122222141312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c 964496449644964422222++++++++d d d d c c c c b b b b a a a a 分成二项按第二列964419644196441964412222+++++++++d d d c c c b b b a a a949494949464222224232423d d c c b b a a c c c c c c c c ----第二项第一项06416416416412222=+ddd c c c bb b a a a (4)4444442222220001ad a c a b a ad a c a b a ad a c a b a ---------=左边)()()222222222222a d d a c c a a d a c ad a c ------ =)()()(111))()((222a d d a c c a b b a d a c ab a d ac a b ++++++--- =⨯---))()((ad a c a b )()()()()(00122222a b b a d d a b b a c c a b b bd b c a b +-++-++--+ =⨯-----))()()()((b d b c a d a c a b )()()()(112222b d a b bd d b c a b bc c ++++++++=))()()()((d b c b d a c a b a -----))((d c b a d c +++-(5) 用数学归纳法证明.,1,2212122命题成立时当a x a x a x a x D n ++=+-==假设对于)1(-n 阶行列式命题成立,即,122111-----++++=n n n n n a x a x a x D:1列展开按第则n D1110010001)1(11----+=+-x xa xD D n n n n 右边=+=-n n a xD 1 所以,对于n 阶行列式命题成立.6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转 90、或依副对角线翻转,依次得n nn n a a a a D 11111 =, 11112n nn n a a a a D = ,11113a a a a D n nnn =,证明D D D D D n n =-==-32)1(21,)1(.证明 )det(ij a D =nnnn nn n nn n a a a a a a a a a a D 2211111111111)1(--==∴ =--=--nnn n nnn n a a a a a a a a 331122111121)1()1( nnn n n n a a a a 111121)1()1()1(---=--D D n n n n 2)1()1()2(21)1()1(--+-+++-=-= 同理可证nnn n n n a a a a D 11112)1(2)1(--=D D n n Tn n 2)1(2)1()1()1(---=-= D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(7.计算下列各行列式(阶行列式为k D k ):(1)aaD n 11=,其中对角线上元素都是a ,未写出的元素都是0;(2)xa a ax aa a x D n =; (3) 1111)()1()()1(1111n a a a n a a a n a a a D n n n nn n n ------=---+; 提示:利用范德蒙德行列式的结果. (4) nnn nn d c d c b a b a D000011112=; (5)j i a a D ij ij n -==其中),det(;(6)nn a a a D +++=11111111121 ,021≠n a a a 其中.解(1) aa a a a D n 00010000000000001000 =按最后一行展开)1()1(1000000000010000)1(-⨯-+-n n n aa a)1)(1(2)1(--⋅-+n n na a a (再按第一行展开)n n n nn a a a+-⋅-=--+)2)(2(1)1()1(2--=n n a a )1(22-=-a a n(2)将第一行乘)1(-分别加到其余各行,得ax x a ax x a a x x a aa a x D n ------=0000000 再将各列都加到第一列上,得ax ax a x aaa a n x D n ----+=000000000)1( )(])1([1a x a n x n --+=- (3) 从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n 行经)1(-n 次对换换到第2行…,经2)1(1)1(+=++-+n n n n 次行交换,得 nnn n n n n n n n a a a n a a a n a a aD )()1()()1(1111)1(1112)1(1-------=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-•-•-=---=111)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i(4) nn nnn d c d c b a b a D 011112=n n n nd c d c b a b a a 0000111111--展开按第一行0000)11111111112c d c d c b a b a b nn n n n nn ----+2222 ---n n n n n n D c b D d a 都按最后一行展开由此得递推公式:222)(--=n n n n n n D c b d a D即 ∏=-=ni i i iin D c b da D 222)(而 111111112c b d a d c b a D -==得 ∏=-=ni i i i i n c b d a D 12)((5)j i a ij -=0432********0122210113210)det( --------==n n n n n n n n a D ij n ,3221r r r r --0432111111111111111111111 --------------n n n n,,141312c c c c c c +++152423210222102210002100001---------------n n n n n =212)1()1(----n n n(6)nn a a D a +++=11111111121n n n n a a a a a a a a +------10001001000100100010000114332展开(由下往上)按最后一列1(+n a nn n a a a a a a a ------00000000000000000000000224332 nn n a a a a a a a a ----+--000000000000000001133221 ++ nn n a a a a a a a a -------000000000000000001143322n n n n n n a a a a a a a a a a a a 322321121))(1(++++=---)11)((121∑=+=ni in a a a a8.用克莱姆法则解下列方程组:⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++;01123,2532,242,5)1(4321432143214321x x x x x x x x x x x x x x x x ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+.15,065,065,065,165)2(5454343232121x x x x x x x x x x x x x 解 (1)11213513241211111----=D 8120735032101111------=145008130032101111---=1421420005410032101111-=---= 112105132412211151------=D 11210513290501115----=1121023313090509151------=2331309050112109151------=1202300461000112109151-----=000100210151---= 112035122412111512-----=D 11503120270151------=313911230231115-2842840001910023101151-=----=426110135232422115113-=----=D ; 14202132132212151114=-----=D1,3,2,144332211-========∴DDx D D x D D x D D x (2) 510006510006510065100065=D 展开按最后一行61000510065100655-'D D D ''-'=65 D D D ''-'''-''=6)65(5D D '''-''=3019D D ''''-'''=1146566551141965=⨯-⨯=(,11的余子式中为行列式a D D ',11的余子式中为a D D ''''类推D D ''''''',) 5100165100065100650000611=D 展开按第一列6510065100650006+'D 46+'=D 460319+''''-'''=D 1507= 5101065100065000601000152=D 展开按第二列5100651006500061-6510065000610005-365510651065⨯-= 1145108065-=--= 51100650000601000051001653=D 展开按第三列0000105165610050066100510656510650061+= 703114619=⨯+= 51000601000051000651010654=D 展开按第四列61000510065100655000610005100651--51065106565--=395-= 11051000651000651100655=D 展开按最后一列D '+10005100651006512122111=+= 665212;665395;665703;6651145;665150744321=-==-==∴x x x x x . 9.齐次线性方程组取何值时问,,μλ⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 μλμμμλ-==12111113D , 齐次线性方程组有非零解,则03=D即 0=-μλμ 得 10==λμ或不难验证,当,10时或==λμ该齐次线性方程组确有非零解.10.齐次线性方程组取何值时问,λ⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ 有非零解?解λλλ----=111132421D λλλλ--+--=101112431)3)(1(2)1(4)3()1(3λλλλλ-------+-=3)1(2)1(23-+-+-=λλλ齐次线性方程组有非零解,则0=D 得 32,0===λλλ或不难验证,当32,0===λλλ或时,该齐次线性方程组确有非零解.第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换.解 由已知:⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ,故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y , ⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y ,求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A TB .解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503,⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T .4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫ ⎝⎛=49635.(2)⎪⎪⎭⎫ ⎝⎛123)321(;解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛;解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫⎝⎛---=632142. (4)⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ; 解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876.(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫ ⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问:(1)AB =BA 吗? 解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B)2=A 2+2AB +B 2吗? 解 (A +B)2≠A 2+2AB +B 2.因为⎪⎭⎫ ⎝⎛=+5222B A ,⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148,但⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610,所以(A +B)2≠A 2+2AB +B 2.(3)(A +B)(A -B)=A 2-B 2吗? 解 (A +B)(A -B)≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A ,而⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A ,故(A +B)(A -B)≠A 2-B 2.6. 举反列说明下列命题是错误的:(1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y . 解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y ,则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k.解⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k .8. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k.解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ,⎪⎪⎭⎫⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=545345450050105λλλλλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=kA kk kk k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫. 用数学归纳法证明: 当k =2时, 显然成立. 假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A⎪⎪⎪⎪⎭⎫⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121.9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵. 证明 因为A T =A , 所以(B T AB)T =B T (B T A)T =B T A T B =B T AB ,从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA . 证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以 (AB)T =(BA)T =A T B T =AB ,即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB)T =AB , 所以 AB =(AB)T =B T A T =BA . 11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解⎪⎭⎫ ⎝⎛=5221A . |A|=1, 故A -1存在. 因为⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A ,故*||11A A A =-⎪⎭⎫ ⎝⎛--=1225.(2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ; 解⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A . |A|=1≠0, 故A -1存在. 因为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A ,所以*||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos .(3)⎪⎪⎭⎫⎝⎛---145243121; 解 ⎪⎪⎭⎫ ⎝⎛---=145243121A . |A|=2≠0, 故A -1存在. 因为 ⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A , 所以 *||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012. (4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; 解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232.(2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311*********X ; 解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫ ⎝⎛---=32538122.(3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ; 解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X . 解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫⎝⎛---=201431012. 13. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x , 从而有 ⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有 ⎪⎩⎪⎨⎧===305321x x x .14. 设A k =O (k 为正整数), 证明(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 因为A k =O , 所以E -A k =E . 又因为E -A k =(E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1),所以 (E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E ,由定理2推论知(E -A)可逆, 且(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A)-1(E -A).另一方面, 由A k =O , 有E =(E -A)+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A),故 (E -A)-1(E -A)=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A),两端同时右乘(E -A)-1, 就有(E -A)-1(E -A)=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E)-1. 证明 由A 2-A -2E =O 得A 2-A =2E , 即A(A -E)=2E ,或 E E A A =-⋅)(21, 由定理2推论知A 可逆, 且)(211E A A -=-. 由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E)(A -3E)=-4E ,或 E A E E A =-⋅+)3(41)2( 由定理2推论知(A +2E)可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得|A 2-A|=2,即 |A||A -E|=2,故 |A|≠0,所以A 可逆, 而A +2E =A 2, |A +2E|=|A 2|=|A|2≠0, 故A +2E 也可逆.由 A 2-A -2E =O ⇒A(A -E)=2E⇒A -1A(A -E)=2A -1E ⇒)(211E A A -=-, 又由 A 2-A -2E =O ⇒(A +2E)A -3(A +2E)=-4E⇒ (A +2E)(A -3E)=-4 E ,所以 (A +2E)-1(A +2E)(A -3E)=-4(A +2 E)-1,)3(41)2(1A E E A -=+-. 16. 设A 为3阶矩阵,21||=A , 求|(2A)-1-5A*|. 解 因为*||11A A A =-, 所以|||521||*5)2(|111----=-A A A A A |1-A =|-2A -1|=(-2)3|A -1|=-8|A|-1=-8⨯2=-16.17. 设矩阵A 可逆, 证明其伴随阵A*也可逆, 且(A*)-1=(A -1)*.证明 由*||11A A A =-, 得A*=|A|A -1, 所以当A 可逆时, 有 |A*|=|A|n |A -1|=|A|n -1≠0,从而A*也可逆.因为A*=|A|A -1, 所以(A*)-1=|A|-1A . 又*)(||)*(||1111---==A A A A A , 所以 (A*)-1=|A|-1A =|A|-1|A|(A -1)*=(A -1)*.18. 设n 阶矩阵A 的伴随矩阵为A*, 证明:(1)若|A|=0, 则|A*|=0;(2)|A*|=|A|n -1.证明(1)用反证法证明. 假设|A*|≠0, 则有A*(A*)-1=E , 由此得A =A A*(A*)-1=|A|E(A*)-1=O ,所以A*=O , 这与|A*|≠0矛盾,故当|A|=0时, 有|A*|=0.(2)由于*||11A A A =-, 则AA*=|A|E , 取行列式得到 |A||A*|=|A|n .若|A|≠0, 则|A*|=|A|n -1;若|A|=0, 由(1)知|A*|=0, 此时命题也成立.因此|A*|=|A|n -1.19. 设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B , 求B . 解 由AB =A +2E 可得(A -2E)B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫ ⎝⎛-=011321330. 20. 设⎪⎪⎭⎫ ⎝⎛=101020101A , 且AB +E =A 2+B , 求B . 解 由AB +E =A 2+B 得(A -E)B =A 2-E ,即 (A -E)B =(A -E)(A +E).因为01001010100||≠-==-E A , 所以(A -E)可逆, 从而⎪⎪⎭⎫ ⎝⎛=+=201030102E A B . 21. 设A =diag(1, -2, 1), A*BA =2BA -8E , 求B .解 由A*BA =2BA -8E 得(A*-2E)BA =-8E ,B =-8(A*-2E)-1A -1=-8[A(A*-2E)]-1=-8(AA*-2A)-1=-8(|A|E -2A)-1=-8(-2E -2A)-1=4(E +A)-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-= =2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫ ⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B .解 由|A*|=|A|3=8, 得|A|=2.由ABA -1=BA -1+3E 得AB =B +3A ,B =3(A -E)-1A =3[A(E -A -1)]-1A 11*)2(6*)21(3---=-=A E A E ⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--=-1030060600600006603001010010000161.23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11. 解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A=P Λ11P -1.|P|=3, ⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P , 而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=Λ11111120 012001, 故 ⎪⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731. 24. 设AP =P Λ, 其中⎪⎪⎭⎫ ⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511, 求ϕ(A)=A 8(5E -6A +A 2).解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)]=diag(1,1,58)diag(12,0,0)=12diag(1,0,0).ϕ(A)=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112 ⎪⎪⎭⎫⎝⎛=1111111114. 25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B)B -1=B -1+A -1=A -1+B -1,而A -1(A +B)B -1是三个可逆矩阵的乘积, 所以A -1(A +B)B -1可逆, 即A -1+B -1可逆. (A -1+B -1)-1=[A -1(A +B)B -1]-1=B(A +B)-1A .26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B , 则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A , 而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A , 所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521, 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521. 27. 取⎪⎭⎫ ⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠. 解 41001200210100101002000021010010110100101==--=--=D C B A , 而 01111|||||||| ==D C B A ,故 |||||||| D C B A D C B A ≠. 28. 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A , 求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A , 则 ⎪⎭⎫ ⎝⎛=21A O O A A , 故 8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A ,1682818281810||||||||||===A A A A A . ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A . 29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求(1)1-⎪⎭⎫ ⎝⎛O B A O ;解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则 ⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n E BC O BC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C O C O C A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A .解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321.由此得 ⎪⎩⎪⎨⎧=+=+==s nE BD CD O BD CD OAD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A . 30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025; 解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001.解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A BC O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2)⎪⎪⎪⎭⎫⎝⎛----174034301320; (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4)⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛--340313*********2)3()2(~r r r r -+-+⎪⎪⎪⎭⎫ ⎝⎛---020*********)2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--300031001201 33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫ ⎝⎛-1000010012013121)2(~r r r r +-+⎪⎪⎪⎭⎫ ⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----1740343013201312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫ ⎝⎛---31003100132021233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫⎝⎛000031005010 (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311141312323~r r r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311)5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311 2423213~r r r r r r ---⎪⎪⎪⎪⎭⎫⎝⎛---000000000022********(4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110141312782~rr r r r r --+⎪⎪⎪⎪⎭⎫⎝⎛--410004100020201111134221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎭⎫⎝⎛----0000041000111102020132~rr +⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.设⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A ,求A 。
线性代数课后习题答案
线性代数课后题详解第一章 行列式1.利用对角线法则计算下列三阶行列式:相信自己加油(1)381141102---; (2)ba c a cb cb a (3)222111c b a c b a ; (4)yx y x x y x y yx y x +++. 解 注意看过程解答(1)=---381141102811)1()1(03)4(2⨯⨯+-⨯-⨯+⨯-⨯ )1()4(18)1(2310-⨯-⨯-⨯-⨯-⨯⨯-=416824-++-=4-(2)=ba c a cb cb a ccc aaa bbb cba bac acb ---++ 3333c b a abc ---=(3)=222111c b a c b a 222222cb ba ac ab ca bc ---++ ))()((a c c b b a ---=(4)yx y x x y x y yx y x +++yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+= )(233y x +-=2.按自然数从小到大为标准次序,求下列各排列的逆序数:耐心成就大业(1)1 2 3 4; (2)4 1 3 2;(3)3 4 2 1; (4)2 4 1 3;(5)1 3 … )12(-n 2 4 … )2(n ;(6)1 3 … )12(-n )2(n )22(-n … 2.解(1)逆序数为0(2)逆序数为4:4 1,4 3,4 2,3 2(3)逆序数为5:3 2,3 1,4 2,4 1,2 1(4)逆序数为3:2 1,4 1,4 3(5)逆序数为2)1(-n n :3 2 1个5 2,5 4 2个7 2,7 4,7 6 3个……………… …)12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n)1(-n 个(6)逆序数为)1(-n n3 2 1个5 2,5 4 2个……………… …)12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n)1(-n 个4 2 1个6 2,6 4 2个……………… …)2(n 2,)2(n 4,)2(n 6,…,)2(n )22(-n )1(-n 个3.写出四阶行列式中含有因子2311a a 的项.解 由定义知,四阶行列式的一般项为43214321)1(p p p p t a a a a -,其中t 为4321p p p p 的逆序数.由于3,121==p p已固定,4321p p p p 只能形如13□□,即1324或1342.对应的t 分别为10100=+++或22000=+++∴44322311a a a a -和42342311a a a a 为所求.4.计算下列各行列式:多练习方能成大财(1)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢71100251020214214; (2)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢-2605232112131412;(3)⎥⎥⎥⎦⎥⎢⎢⎢⎣⎢---ef cf bf de cd bd ae ac ab ; (4)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢---d c b a 100110011001解 (1)7110025102021421434327c c c c--0100142310202110214--- =34)1(143102211014+-⨯---=143102211014--321132c c c c ++1417172001099-=0(2)2605232112131412-24c c -2605032122130412-24r r -0412032122130412- 14r r -0000032122130412-=0(3)ef cf bf de cd bd ae ac ab ---=ec b e c b ec b adf --- =111111111---adfbce =abcdef 4 (4)d c b a 100110011001---21ar r +dc b a ab 100110011010---+ =12)1)(1(+--d c a ab 101101--+ 23dc c +010111-+-+cdc ada ab=23)1)(1(+--cd adab +-+111=1++++ad cd ab abcd5.证明: (1)1112222b b a a b ab a +=3)(b a -; (2)bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++=y x z x z y zy x b a )(33+;(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ; (4)444422221111d c b a d c b a d c b a))()()()((d b c b d a c a b a -----=))((d c b a d c +++-⋅; (5)1221100000100001a x a a a a x x x n n n +----- n n n n a x a x a x ++++=--111 .证明 (1)00122222221312a b a b a a b a ab a c c c c ------=左边a b a b a b a ab 22)1(22213-----=+21))((ab a a b a b +--=右边=-=3)(b a (2)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开按第一列左边 bzay by ax x byax bx az z bxaz bz ay y b +++++++++++++002y by ax z x bx az y z bz ay x a 分别再分bzay y x by ax x z bxaz z y b +++ zy x y x z xz y b y x z x z y z y x a 33+分别再分右边=-+=233)1(yx z x z y zy x b y x z x z y z y x a(3) 2222222222222222)3()2()12()3()2()12()3()2()12()3()2()12(++++++++++++++++=d d d d d c c c c c b b b b b a a a a a 左边9644129644129644129644122222141312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c964496449644964422222++++++++d d d d c c c c b b b b a a a a 分成二项按第二列964419644196441964412222+++++++++d d d c c c b b b a a a949494949464222224232423d d c c b b a a c c c c c c c c ----第二项第一项06416416416412222=+dd d c c c bb b aa a (4) 444444422222220001a d a c a b a a d a c a b a ad a c a b a ---------=左边 =)()()(222222222222222a d d a c c a b b a d a c a b ad a c a b --------- =)()()(111))()((222a d d a c c a b b a d a c a b a d a c a b ++++++---=⨯---))()((a d a c a b)()()()()(00122222a b b a d d a b b a c c a b b b d b c a b +-++-++--+ =⨯-----))()()()((b d b c a d a c a b)()()()(112222b d a b bd d b c a b bc c ++++++++ =))()()()((d b c b d a c a b a -----))((d c b a d c +++-(5) 用数学归纳法证明.,1,2212122命题成立时当a x a x a x a x D n ++=+-==假设对于)1(-n阶行列式命题成立,即 ,122111-----++++=n n n n n a x a x a x D:1列展开按第则n D1110010001)1(11----+=+-x x a xD D n n n n 右边=+=-n n a xD 1所以,对于n 阶行列式命题成立.6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转 90、或依 副对角线翻转,依次得n nn n a a a a D 11111 =, 11112n nn n a a a a D = ,11113a a a a D n n nn =, 证明D D D D D n n =-==-32)1(21,)1(.证明 )det(ij a D =nnn n nn n nnn a a a a a a a a a a D 2211111111111)1(--==∴=--=--nnn n nnn n a a a a a aa a 331122111121)1()1(nnn nn n a a a a 111121)1()1()1(---=--D D n n n n 2)1()1()2(21)1()1(--+-+++-=-= 同理可证nnn n n n a a a a D 11112)1(2)1(--=D D n n T n n 2)1(2)1()1()1(---=-= D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(7.计算下列各行列式(阶行列式为k D k ):(1)aa D n 11=,其中对角线上元素都是a ,未写出的元素都是0; (2)xa a ax a aa x D n =; (3) 1111)()1()()1(1111 na a a n a a a n a a a D n n n nn n n ------=---+;提示:利用范德蒙德行列式的结果. (4) nn nn n d c d c ba b a D000011112=; (5)j i a a D ij ij n -==其中),det(; (6)nn a a a D +++=11111111121 ,021≠n a a a 其中.解 (1) aa a a a D n 00010000000000001000 =按最后一行展开)1()1(100000000000010000)1(-⨯-+-n n n a a a )1)(1(2)1(--⋅-+n n n a aa(再按第一行展开)n n n n n a a a+-⋅-=--+)2)(2(1)1()1( 2--=n n a a )1(22-=-a a n(2)将第一行乘)1(-分别加到其余各行,得ax x a a x x a a x x a aa a x D n ------=000000再将各列都加到第一列上,得ax a x a x aa a a n x D n ----+=0000000000)1()(])1([1a x a n x n --+=-(3)从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n 行经)1(-n 次对换换到第2行…,经2)1(1)1(+=++-+n n n n 次行交换,得nn n n n n n n n n a a a n a a a na a a D )()1()()1(1111)1(1112)1(1-------=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-∙-∙-=---=1121)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i (4) nn nn n d c d c b a b a D 00011112=nn n n n n d d c d c b a b a a 0000000011111111----展开按第一行0000)1(1111111112c d c d c b a b a b n n n n n n n ----+-+2222---n n n n n n D c b D d a 都按最后一行展开由此得递推公式:222)(--=n n n n n n D c b d a D即 ∏=-=ni i i i i n D c b d a D 222)(而 111111112c b d a d c b a D -==得 ∏=-=ni i i i i n c b d a D 12)( (5)j i a ij -=432140123310122210113210)det(--------==n n n n n n n n a D ij n,3221r r r r --0432111*********111111111--------------n n n n,,141312c c c c c c +++1524232102221002210002100001---------------n n n n n=212)1()1(----n n n (6)nn a a a D +++=11111111121,,433221c c c c c c---nn n n a a a a a a a a a a +-------10000100010000100010001000011433221 展开(由下往上)按最后一列 ))(1(121-+n n a a a a nn n a a a a a a a a a --------00000000000000000000000000022433221n n n a a a a a a a a ----+--000000000000000001133221 ++ nn n a a a a a a a a -------0000000000000001143322n n n n n n a a a a a a a a a a a a 322321121))(1(++++=---)11)((121∑+==n i in a a a a8.用克莱姆法则解下列方程组:⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++;01123,2532,242,5)1(4321432143214321x x x x x x x x x x x x x x x x⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+.15,065,065,065,165)2(5454343232121x x x x x x x x x x x x x解 (1)11213513241211111----=D812073503211111------=145008130032101111---=1421420005410032101111-=---=112105132412211151------=D 11210513290501115----= 1121023313090509151------=23313095112109151------=1202300461000112109151-----=14200038100112109151----=142-=11235122412111512-----=D 81150731203271151-------=31390011230023101151-=2842840001910023101151-=----=426110135232422115113-=----=D14202132132212151114=-----=D 1,3,2,144332211-========∴DD x D D x D D x D D x(2)510006510006510065100065=D 展开按最后一行61000510065100655-'D D D ''-'=65 D D D ''-'''-''=6)65(5D D '''-''=3019D D ''''-'''=1146566551141965=⨯-⨯=(,11的余子式中为行列式a D D ',11的余子式中为a D D ''''类推D D ''''''',)5100165100065100650000611=D 展开按第一列6510065100650006+'D 46+'=D 460319+''''-'''=D 1507=5101065100065000601000152=D 展开按第二列5100651006500061-6510065*********-365510651065⨯-=1145108065-=--=5110065000060100051001653=D 展开按第三列51006500061000516500061*********+6100510656510650061+=703114619=⨯+=5100060100005100651010654=D 展开按第四列61000510065100655000610005100651-- 51065106565--=395-=110005100065100651100655=D 展开按最后一列D '+10005100651006512122111=+= 665212;665395;665703;6651145;665150744321=-==-==∴x x x x x . 9.齐次线性方程组取何值时问,,μλ⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 μλμμμλ-==12111113D ,齐次线性方程组有非零解,则03=D即 0=-μλμ得 10==λμ或不难验证,当,10时或==λμ该齐次线性方程组确有非零解.10.齐次线性方程组取何值时问,λ⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ有非零解? 解λλλ----=111132421D λλλλ--+--=101112431)3)(1(2)1(4)3()1(3λλλλλ-------+-= 3)1(2)1(23-+-+-=λλλ齐次线性方程组有非零解,则0=D得 32,0===λλλ或不难验证,当32,0===λλλ或时,该齐次线性方程组确有非零解.第二章 矩阵及其运算1.已知线性变换:⎪⎩⎪⎨⎧++=++=++=,323,53,22321332123211y y y x y y y x y y y x 求从变量321,,x x x 到变量321,,y y y 的线性变换.解由已知:⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x故 ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫⎝⎛----=321423736947y y y ⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947xx x y x x x y x x x y2.已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=,54,232,232133212311y y y x y y y x y y x ⎪⎩⎪⎨⎧+-=+=+-=,3,2,3323312211z z y z z y z z y 求从321,,z z z 到321,,x x x 的线性变换.解 由已知⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫⎝⎛-=321310102013514232102z z z ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛----=321161109412316z z z所以有 ⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236zz z x z z z x z z z x3.设⎪⎪⎪⎭⎫ ⎝⎛--=111111111A , ,150421321⎪⎪⎪⎭⎫ ⎝⎛--=B 求.23B A A AB T及-解A AB 23-⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎭⎫⎝⎛--=1504213211111111113⎪⎪⎪⎭⎫ ⎝⎛---1111111112⎪⎪⎪⎭⎫⎝⎛-=0926508503⎪⎪⎪⎭⎫⎝⎛---1111111112⎪⎪⎪⎭⎫ ⎝⎛----=22942017222132⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=150421321111111111B A T⎪⎪⎪⎭⎫ ⎝⎛-=0926508504.计算下列乘积:(1)⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-127075321134; (2)()⎪⎪⎪⎭⎫ ⎝⎛1233,2,1; (3)()2,1312-⎪⎪⎪⎭⎫ ⎝⎛; (4)⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛-20413121013143110412; (5)⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321332313232212131211321),,(x x x a a a a a a a a a x x x ; (6)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121. 解(1)⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎪⎭⎫ ⎝⎛=49635 (2)()⎪⎪⎪⎭⎫ ⎝⎛123321)10()132231(=⨯+⨯+⨯=(3)()21312-⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎪⎭⎫ ⎝⎛---=632142 (4)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎪⎭⎫⎝⎛---=6520876 (5)()⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321332313232212*********x x x a a a a a a a a a x x x ()333223113323222112313212111x a x a x a x a x a x a x a x a x a ++++++=⎪⎪⎪⎭⎫⎝⎛⨯321x x x 322331132112233322222111222x x a x x a x x a x a x a x a +++++= (6)⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛3000320012101313000120010100121⎪⎪⎪⎪⎪⎭⎫⎝⎛---=90003400421025215.设⎪⎪⎭⎫ ⎝⎛=3121A , ⎪⎪⎭⎫⎝⎛=2101B ,问:(1)BA AB =吗?(2)2222)(B AB A B A ++=+吗?(3)22))((B A B A B A -=-+吗?解(1)⎪⎪⎭⎫ ⎝⎛=3121A , ⎪⎪⎭⎫ ⎝⎛=2101B则⎪⎪⎭⎫ ⎝⎛=6443AB ⎪⎪⎭⎫⎝⎛=8321BA BA AB ≠∴(2) ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎪⎭⎫⎝⎛=2914148 但=++222B AB A ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛43011288611483⎪⎪⎭⎫⎝⎛=27151610 故2222)(B AB A B A ++≠+(3) =-+))((B A B A =⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛10205222⎪⎪⎭⎫⎝⎛9060而 =-22B A =⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛430111483⎪⎪⎭⎫⎝⎛7182故22))((B A B A B A -≠-+6.举反列说明下列命题是错误的:(1)若02=A ,则0=A ; (2)若A A =2,则0=A 或E A =;(3)若AY AX =,且0≠A ,则Y X =.解 (1) 取⎪⎪⎭⎫ ⎝⎛=0010A 02=A ,但0≠A(2) 取⎪⎪⎭⎫ ⎝⎛=0011A A A =2,但0≠A 且E A ≠(3) 取⎪⎪⎭⎫ ⎝⎛=0001A ⎪⎪⎭⎫ ⎝⎛-=1111X ⎪⎪⎭⎫⎝⎛=1011YAY AX =且0≠A 但Y X ≠7.设⎪⎪⎭⎫ ⎝⎛=101λA ,求kA A A ,,,32 . 解 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=12011011012λλλA⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==1301101120123λλλA A A 利用数学归纳法证明: ⎪⎪⎭⎫ ⎝⎛=101λk A k当1=k 时,显然成立,假设k 时成立,则1+k 时⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==1)1(01101101λλλk k A A A kk 由数学归纳法原理知:⎪⎪⎭⎫⎝⎛=101λk A k8.设⎪⎪⎪⎭⎫⎝⎛=λλλ001001A ,求k A . 解 首先观察⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=λλλλλλ001001010012A ⎪⎪⎪⎭⎫⎝⎛=222002012λλλλλ⎪⎪⎪⎭⎫⎝⎛=⋅=3232323003033λλλλλλA A A由此推测⎪⎪⎪⎪⎪⎭⎫⎝⎛-=---kk kk k k kk k k k A λλλλλλ0002)1(121)2(≥k用数学归纳法证明: 当2=k时,显然成立.假设k 时成立,则1+k 时,⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ由数学归纳法原理知: ⎪⎪⎪⎪⎪⎭⎫⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(1219.设B A ,为n 阶矩阵,且A 为对称矩阵,证明AB B T 也是对称矩阵.证明 已知:A A T=则 AB B B A B A B B AB B T T T T TT T T ===)()(从而 AB B T也是对称矩阵.10.设B A ,都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是BA AB =.证明 由已知:A A T = B B T=充分性:BA AB =⇒A B AB TT =⇒)(AB AB T = 即AB 是对称矩阵.必要性:AB AB T =)(⇒AB A B TT =⇒AB BA =.11.求下列矩阵的逆矩阵:(1)⎪⎪⎭⎫ ⎝⎛5221; (2)⎪⎪⎭⎫⎝⎛-θθθθcos sin sin cos ; (3)⎪⎪⎪⎭⎫⎝⎛---145243121;(4)⎪⎪⎪⎪⎪⎭⎫⎝⎛4121031200210001; (5)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛2500380000120025; (6)⎪⎪⎪⎪⎭⎫⎝⎛n a a a 0021)0(21≠a a a n解(1)⎪⎪⎭⎫ ⎝⎛=5221A 1=A1),1(2),1(2,522122111=-⨯=-⨯==A A A A⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛=*122522122111A A A A A *-=A A A 11故 ⎪⎪⎭⎫⎝⎛--=-12251A(2)01≠=A 故1-A 存在θθθθcos sin sin cos 22122111=-===A A A A从而 ⎪⎪⎭⎫ ⎝⎛-=-θθθθcos sin sin cos 1A (3) 2=A , 故1-A 存在024312111==-=A A A 而 1613322212-==-=A A A21432332313-==-=A A A故 *-=A A A 11⎪⎪⎪⎭⎫⎝⎛-----=1716213213012(4)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=4121031200210001A24=A 0434232413121======A A A A A A68122444332211====A A A A12411032001)1(312-=-=A 12421012021)1(413-=-=A3121312021)1(514=-=A 4421012001)1(523-=-=A5121312001)1(624-=-=A 2121021001)1(734-=-=A*-=A AA11故⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=-4112124581031612100212100011A(5)01≠=A 故1-A 存在而002141312111==-==A A A A005242322212===-=A A A A 320043332313-====A A A A 850044342414=-===A A A A从而⎪⎪⎪⎪⎪⎭⎫⎝⎛----=-85003200005200211A (6)⎪⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021由对角矩阵的性质知 ⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-n a a a A 1001121112.解下列矩阵方程:(1)⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛12643152X ; (2) ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--234311*********X ;(3)⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-101311022141X ; (4)⎪⎪⎪⎭⎫⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X .解 (1)⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-126431521X ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=12642153⎪⎪⎭⎫⎝⎛-=80232 (2)1111012112234311-⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛-=X ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫⎝⎛---=32538122 (3)11110210132141--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=X ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=210110131142121⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111(4)11010100001021102341100001010--⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛=X ⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎪⎭⎫⎝⎛---=20143101213.利用逆矩阵解下列线性方程组:(1) ⎪⎩⎪⎨⎧=++=++=++;353,2522,132321321321x x x x x x x x x (2) ⎪⎩⎪⎨⎧=-+=--=--.0523,132,2321321321x x x x x x x x x解 (1)方程组可表示为 ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321153522321321x x x故 ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x从而有 ⎪⎩⎪⎨⎧===001321x x x(2) 方程组可表示为 ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x故 ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛-----=⎪⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x 故有 ⎪⎩⎪⎨⎧===305321x x x 14.设O A k =(k 为正整数),证明121)(--++++=-k A A A E A E .证明 一方面, )()(1A E A E E --=-另一方面,由O A k=有)()()(1122k k k A A A A A A A E E -+--+-+-=-- ))((12A E A A A E k -++++=-故 )()(1A E A E ---))((12A E A A A E k -++++=-两端同时右乘1)(--A E就有121)(--++++=-k A A A E A E15.设方阵A 满足O E A A =--22,证明A 及E A 2+都可逆,并求1-A 及 1)2(-+E A .证明 由O E A A =--22得E A A 22=-两端同时取行列式: 22=-A A即 2=-E A A ,故 0≠A所以A 可逆,而22A E A =+0222≠==+A A E A 故E A 2+也可逆.由O E A A =--22E E A A 2)(=-⇒E A E A A A 112)(--=-⇒)(211E A A -=⇒-又由O E A A =--22E E A A E A 4)2(3)2(-=+-+⇒ E E A E A 4)3)(2(-=-+⇒11)2(4)3)(2()2(--+-=-++∴E A E A E A E A)3(41)2(1A E E A -=+∴-16.设⎪⎪⎪⎭⎫ ⎝⎛-=321011330A ,B A AB 2+=,求B . 解 由B A AB 2+=可得A B E A =-)2(故A E A B 1)2(--=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---=-3210113301210113321⎪⎪⎪⎭⎫⎝⎛-=01132133017.设Λ=-AP P 1,其中⎪⎪⎭⎫ ⎝⎛--=1141P ,⎪⎪⎭⎫ ⎝⎛-=Λ2001,求11A .解 Λ=-AP P 1故1-Λ=P P A 所以11111-Λ=P P A3=P ⎪⎪⎭⎫ ⎝⎛-=*1141P ⎪⎪⎭⎫ ⎝⎛--=-1141311P而 ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=Λ11111120012001故⎪⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎪⎭⎫ ⎝⎛--=6846832732273118.设m 次多项式m m x a x a x a a x f ++++= 2210)(,记m m A a A a A a E a A f ++++= 2210)()(A f 称为方阵A 的m 次多项式.(1)设⎪⎪⎭⎫ ⎝⎛=Λ2100λλ,证明: ⎪⎪⎭⎫ ⎝⎛=Λk k k2100λλ,⎪⎪⎭⎫⎝⎛=Λ)(00)()(21λλf f f ; (2)设1-Λ=P P A ,证明: 1-Λ=P P A k k ,1)()(-Λ=P Pf A f .证明(1) i)利用数学归纳法.当2=k时⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=Λ212120000λλλλ⎪⎪⎭⎫ ⎝⎛=222100λλ命题成立,假设k 时成立,则1+k 时⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=ΛΛ=Λ+212110000λλλλk kk k ⎪⎪⎭⎫⎝⎛=++121100k k λλ 故命题成立. ii)左边m m a a a E a f Λ++Λ+Λ+=Λ= 2210)(⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛=m m m a a a 21211000001001λλλλ⎪⎪⎭⎫⎝⎛++++++++=m m mm a a a a a a a a 2222210121211000λλλλλλ⎪⎪⎭⎫ ⎝⎛=)(00)(21λλf f =右边 (2) i) 利用数学归纳法.当2=k 时12112---Λ=ΛΛ=P P P P P P A 成立假设k 时成立,则1+k 时11111-+--+Λ=ΛΛ=⋅=P P P P P P A A A k k k k 成立,故命题成立,即 1-Λ=P P A k kii) 证明 右边1)(-Λ=P Pf12210)(-Λ++Λ+Λ+=P a a a E a P m m11221110----Λ++Λ+Λ+=P P a P P a P P a PEP a m m m m A a A a A a E a ++++= 2210)(A f ==左边19.设n 阶矩阵A 的伴随矩阵为*A ,证明:(1) 若0=A ,则0=*A ;(2) 1-*=n AA .证明(1) 用反证法证明.假设0≠*A 则有E A A =-**1)(由此得O A E A A AA A ===-*-**11)()(O A =∴*这与0≠*A 矛盾,故当0=A 时有0=*A(2) 由于*-=A A A11, 则E A AA =*取行列式得到: nAA A =* 若0≠A 则1-*=n A A若0=A 由(1)知0=*A 此时命题也成立故有1-*=n AA20.取⎪⎪⎭⎫ ⎝⎛==-==1001D C B A ,验证DCB A DC B A ≠检验: =D C BA =--101001011010010111001010020002--410012002== 而01111==D C B A故 DCB A DC B A ≠21.设⎪⎪⎪⎪⎭⎫⎝⎛-=22023443O O A ,求8A 及4A解 ⎪⎪⎪⎪⎭⎫⎝⎛-=22023443O O A ,令⎪⎪⎭⎫ ⎝⎛-=34431A ⎪⎪⎭⎫ ⎝⎛=22022A 则⎪⎪⎭⎫ ⎝⎛=21A O O A A故8218⎪⎪⎭⎫ ⎝⎛=A OO A A ⎪⎪⎭⎫⎝⎛=8281A O O A 1682818281810===A A A A A⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=464444241422025005O O A OO A A22.设n 阶矩阵A 及s 阶矩阵B 都可逆,求1-⎪⎪⎭⎫⎝⎛O B A O .解 将1-⎪⎪⎭⎫⎝⎛O B A O 分块为⎪⎪⎭⎫ ⎝⎛4321C C C C其中 1C 为n s ⨯矩阵, 2C 为s s ⨯矩阵3C 为n n ⨯矩阵, 4C 为s n ⨯矩阵则⎪⎪⎭⎫ ⎝⎛⨯⨯O B A O s s n n ⎪⎪⎭⎫ ⎝⎛4321C C C C ==E ⎪⎪⎭⎫⎝⎛s n E O O E 由此得到⎪⎪⎩⎪⎪⎨⎧=⇒==⇒==⇒==⇒=----122111144133)()(B C E BC B O C O BC A O C O AC A C E AC s n 存在存在故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛---O A B O O B A O 111.第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1)⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2) ⎪⎪⎪⎭⎫⎝⎛----174034301320; (3)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------12433023221453334311; (4) ⎪⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解(1) ⎪⎪⎪⎭⎫ ⎝⎛--3403130212011312)3()2(~r r r r -+-+⎪⎪⎪⎭⎫⎝⎛---020*******1)2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--30003100120133~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫⎝⎛-100001001201 3121)2(~r r r r +-+⎪⎪⎪⎭⎫⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----174034301320 1312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫⎝⎛---310031001320 21233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫⎝⎛000031005010 (3)⎪⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311141312323~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311)5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛-----221002210022*******12423213~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫⎝⎛---00000000002210032011(4)⎪⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132242321232~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110 141312782~r r r r r r --+⎪⎪⎪⎪⎪⎭⎫⎝⎛--4100041000202011111034221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎪⎭⎫⎝⎛----0000041000111102021 32~r r +⎪⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.在秩是r 的矩阵中,有没有等于0的1-r 阶子式?有没有等于0的r 阶子式?解 在秩是r 的矩阵中,可能存在等于0的1-r 阶子式,也可能存在等于0的r 阶子式.例如,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=00000000010000100001α 3)(=αR 同时存在等于0的3阶子式和2阶子式.3.从矩阵A 中划去一行得到矩阵B ,问B A ,的秩的关系怎样?解 )(A R ≥)(B R设r B R =)(,且B 的某个r 阶子式0≠D r .矩阵B 是由矩阵A 划去一行得 到的,所以在A 中能找到与D r 相同的r 阶子式D r ,由于0≠=D D r r , 故而)()(B R A R ≥.4.求作一个秩是4的方阵,它的两个行向量是)0,0,1,0,1(,)0,0,0,1,1(- 解 设54321,,,,ααααα为五维向量,且)0,0,1,0,1(1=α,)0,0,0,1,1(2-=α,则所求方阵可为,54321⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=αααααA 秩为4,不妨设⎪⎩⎪⎨⎧===)0,0,0,0,0(),0,0,0,0()0,,0,0,0(55443αααx x 取154==x x故满足条件的一个方阵为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-00000100000100000011001015.求下列矩阵的秩,并求一个最高阶非零子式:(1)⎪⎪⎪⎭⎫ ⎝⎛---443112112013; (2) ⎪⎪⎪⎭⎫⎝⎛-------815073131213123; (3)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---02301085235703273812.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛---443112112013r r 21~↔⎪⎪⎪⎭⎫ ⎝⎛---443120131211 ⎪⎪⎪⎭⎫⎝⎛------564056401211~12133r r r r 2000056401211~23秩为⎪⎪⎪⎭⎫ ⎝⎛----r r 二阶子式41113-=-.(2) ⎪⎪⎪⎭⎫ ⎝⎛-------815073*********⎪⎪⎪⎭⎫ ⎝⎛---------15273321059117014431~27122113r r r r r r 200000591170144313~23秩为⎪⎪⎪⎭⎫⎝⎛-----r r .二阶子式71223-=-.(3)⎪⎪⎪⎪⎪⎭⎫⎝⎛---02301085235703273812434241322~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------0230102420536307121131223~r r r r ++⎪⎪⎪⎪⎪⎭⎫⎝⎛-0230114000016000071210344314211614~r r r r r r r r -÷÷↔↔⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-00000100007121002301秩为3 三阶子式07023855023085570≠=-=-.6.求解下列齐次线性方程组:(1) ⎪⎩⎪⎨⎧=+++=-++=-++;0222,02,02432143214321x x x x x x x x x x x x (2) ⎪⎩⎪⎨⎧=-++=--+=-++;05105,0363,02432143214321x x x x x x x x x x x x(3) ⎪⎪⎩⎪⎪⎨⎧=-+-=+-+=-++=+-+;0742,0634,0723,05324321432143214321x x x x x x x x x x x x x x x x (4)⎪⎪⎩⎪⎪⎨⎧=++-=+-+=-+-=+-+.0327,01613114,02332,075434321432143214321x x x x x x x x x x x x x x x x解 (1) 对系数矩阵实施行变换:⎪⎪⎪⎭⎫ ⎝⎛--212211121211⎪⎪⎪⎪⎭⎫⎝⎛---3410013100101~即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-==4443424134334x x x x x x x x故方程组的解为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1343344321k x x x x(2) 对系数矩阵实施行变换:⎪⎪⎪⎭⎫ ⎝⎛----5110531631121⎪⎪⎪⎭⎫ ⎝⎛-000001001021~ 即得⎪⎪⎩⎪⎪⎨⎧===+-=4432242102x x x x x x x x故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛10010012214321k k x x x x(3) 对系数矩阵实施行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----7421631472135132⎪⎪⎪⎪⎪⎭⎫⎝⎛1000010000100001~即得⎪⎪⎩⎪⎪⎨⎧====00004321x x x x故方程组的解为⎪⎪⎩⎪⎪⎨⎧====00004321x x x x(4) 对系数矩阵实施行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----3127161311423327543⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--0000001720171910171317301~即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=-=4433432431172017191713173x x x x x x x x x x 故方程组的解为⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛1017201713011719173214321k k x x x x7.求解下列非齐次线性方程组:(1) ⎪⎩⎪⎨⎧=+=+-=-+;8311,10213,22421321321x x x x x x x x (2) ⎪⎪⎩⎪⎪⎨⎧-=+-=-+-=+-=++;694,13283,542,432z y x z y x z y x z y x(3) ⎪⎩⎪⎨⎧=--+=+-+=+-+;12,2224,12w z y x w z y x w z y x (4) ⎪⎩⎪⎨⎧-=+-+=-+-=+-+;2534,4323,12w z y x w z y x w z y x解 (1) 对系数的增广矩阵施行行变换,有⎪⎪⎭⎫ ⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛--60003411100833180311102132124~2)(=A R 而3)(=B R ,故方程组无解.(2) 对系数的增广矩阵施行行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----69141328354214132⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--0000000021101201~即得⎪⎩⎪⎨⎧=+=--=zz z y z x 212亦即⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛021112k z y x(3) 对系数的增广矩阵施行行变换:⎪⎪⎪⎭⎫ ⎝⎛----111122122411112⎪⎪⎪⎭⎫ ⎝⎛-000000100011112~ 即得⎪⎪⎪⎩⎪⎪⎪⎨⎧===++-=0212121w z z y y z y x 即⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00021010210012121k k w z y x(4) 对系数的增广矩阵施行行变换:⎪⎪⎪⎭⎫⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛-----000007579751025341253414312311112~ ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----000007579751076717101~ 即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==--=++=w w z z w z y w z x 757975767171即⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛00757610797101757121k k w z y x8.λ取何值时,非齐次线性方程组 ⎪⎩⎪⎨⎧=++=++=++2321321321,,1λλλλλx x x x x x x x x (1)有唯一解;(2)无解;(3)有无穷多个解?解 (1)0111111≠λλλ,即2,1-≠λ时方程组有唯一解.(2))()(B R A R <⎪⎪⎪⎭⎫ ⎝⎛=21111111λλλλλB ⎪⎪⎭⎫ ⎝⎛+-+----22)1)(1()2)(1(00)1(11011~λλλλλλλλλλ由0)1)(1(,0)2)(1(2≠+-=+-λλλλ 得2-=λ时,方程组无解.(3)3)()(<=B R A R ,由0)1)(1()2)(1(2=+-=+-λλλλ,得1=λ时,方程组有无穷多个解.9.非齐次线性方程组⎪⎩⎪⎨⎧=-+=+--=++-23213213212,2,22λλx x x x x x x x x 当λ取何值时有解?并求出它的解.解 ⎪⎪⎪⎪⎭⎫ ⎝⎛+-----⎪⎪⎪⎭⎫ ⎝⎛----=)2)(1(000)1(321101212111212112~2λλλλλλB 方程组有解,须0)2)(1(=+-λλ得2,1-==λλ当1=λ时,方程组解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛001111321k x x x当2-=λ时,方程组解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛022111321k x x x10.设⎪⎩⎪⎨⎧--=-+--=--+=-+-,1)5(42,24)5(2,122)2(321321321λλλλx x x x x x x x x问λ为何值时,此方程组有唯一解、无解或有无穷多解?并在有无穷多解时求解.解⎪⎪⎪⎭⎫ ⎝⎛---------154224521222λλλλ 初等行变换~⎪⎪⎪⎪⎪⎭⎫⎝⎛---------2)4)(1(2)10)(1(00111012251λλλλλλλλ当0≠A ,即02)10()1(2≠--λλ 1≠∴λ且10≠λ时,有唯一解.当02)10)(1(=--λλ且02)4)(1(≠--λλ,即10=λ时,无解.当02)10)(1(=--λλ且02)4)(1(=--λλ,即1=λ时,有无穷多解.此时,增广矩阵为⎪⎪⎪⎭⎫ ⎝⎛-000000001221 原方程组的解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛00110201221321k k x x x (R k k ∈21,)11.试利用矩阵的初等变换,求下列方阵的逆矩阵:(1)⎪⎪⎪⎭⎫⎝⎛323513123; (2) ⎪⎪⎪⎪⎪⎭⎫⎝⎛-----1210232112201023. 解(1)⎪⎪⎪⎭⎫ ⎝⎛100010001323513123⎪⎪⎪⎭⎫⎝⎛---101011001200410123~ ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----10121121023200010023~⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----2102121129227100010003~⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----21021211233267100010001~。
《线性代数》课后习题答案
《线性代数》课后习题答案第一章行列式习题1.11. 证明:(1)首先证明)3(Q 是数域。
因为)3(Q Q ?,所以)3(Q 中至少含有两个复数。
任给两个复数)3(3,32211Q b a b a ∈++,我们有3)()3()3)(3(3)()()3()3(3)()()3()3(21212121221121212211212122 11b a a b b b a a b a b a b b a a b a b a b b a a b a b a +++=++-+-=+-++++=+++。
因为Q 是数域,所以有理数的和、差、积仍然为有理数,所以)3(3)()3()3)(3()3(3)()()3()3()3(3)()()3()3(2121212122112121221 121212211Q b a a b b b a a b a b a Q b b a a b a b a Q b b a a b a b a ∈+++=++∈-+-=+-+∈+++=+++。
如果0322≠+b a ,则必有22,b a 不同时为零,从而0322≠-b a 。
又因为有理数的和、差、积、商仍为有理数,所以)3(33)(3)3()3)(3()3)(3(332222212122222121222222112211Q b a b a a b b a b b a a b a b a b a b a b a b a ∈--+--=-+-+=++。
综上所述,我们有)3(Q 是数域。
(2)类似可证明)(p Q 是数域,这儿p 是一个素数。
(3)下面证明:若q p ,为互异素数,则)()(q Q p Q ?。
(反证法)如果)()(q Qp Q ?,则q b a p Q b a +=?∈?,,从而有q ab qb a p p 2)()(222++==。
由于上式左端是有理数,而q 是无理数,所以必有02=q ab 。
所以有0=a 或0=b 。
线性代数课后答案解析__第二版__同济大学出版社
线性代数习题解答 同济大学出版社习题11.求下列各排列的逆序数:(1)1 2 3 4; (2)4 1 3 2;(3)4 1 5 3 2; (4)3 7 1 2 4 5 6; (5)1 3 … (21)n - 2 4 … (2)n ; (6)1 3 … (21)n - (2)n (22)n - … 2. 2.利用对角线法则计算下列二阶、三阶行列式:(1)3214---; (2)201141183---;(3)a b c b c a c a b ; (4)x y x y yx y x x yxy+++.3.在六阶行列式中,下列两项各应带什么符号: (1)233142561465a a a a a a ;(2)334214516625a a a a a a . 4.计算下列各行列式:(1)000100020010000000n n -; (2)1234214334124321------;(3)2100121001210012; (4)0451250201720343115023013-------;(5)abac aebdcd de bfcfef---; (6)1111111111111111x x y y+-+-.5.证明:(1)11121314152122232425313241425152000000000a a a a a a a a a a a a a a a a =; (2)2222111a abb aa b b +=3()a b -;(3)111111222222b cc a a bb c c a a b b c c a a b +++++++++=1112222ab ca b c a b c ; (4)222244441111a b c d a b c d a b c d ; ()()()()()a b a c a d b c b d =-----()()-+++c d a b c d ;(5)1221100001000001n n n x x xa a a a x a -----+111n n n n x a x a x a --=++++ .6.计算下列各n 阶行列式:(1)11aa,其中对角线上元素都是a ,未写出的元素都是0;(2)111x a a a x a a a x --- ;(3)123111100100100n a a a a,230≠其中n a a a ; (4)12111111111na a a +++,120n a a a ≠ 其中;(5)111222(1)(2)()(1)(2)()12111n n n n n n a a a n a a a n a a a n ---------------;(6)det(),n ij ij D a a i j ==-其中. 7.利用拉普拉斯定理计算下列各行列式:(1)320000430000002100003200000032000054;(2)3002034040030560; (3)112110000nnn nna b a b D c d c d =.解答习题11.(1)0;(2)4;(3)6;(4)7;(5)(1)2-n n ;(6)(1)-n n . 2.(1)-14;(2)-4;(3)3333---ab a b c ;(4)332()-+x y . 3.(1)正号;(2)负号. 4.(1)(1)(2)2(1)!---n n n ;(2)900;(3)5;(4)-799;(5)4abcdef ;(6)22x y . 5.提示:(1)用行列式定义证明;(2)、(3)、(4)用行列式性质证明;(5)用数学归纳法证明.6.(1)22(1)--n aa ;(2)1[1(1)](1)--+---n x n a x a ;(3)23121()()nn i ia a a a a =-∑ ;(4)1211()(1)=+∑nn i i a a a a ;(5)1()≥>≥-∏n i j i j ;(6)12(1)(1)2----n n n . 7.(1)2;(2)2;(3)1()=-∏niii i i a db c .习题21.有6名选手参加乒乓球比赛,成绩如下:选手1胜选手2,4,5,6负于选手3;选手2胜选手4,5,6负于选手1,3;选手3胜选手1,2,4负于选手5,6;选手4胜选手5,6负于选手1,2,3;选手5胜选手3,6负于选手1,2,4;若胜一场得1分,负一场得零分试用矩阵表示输赢状况,并排序.2.某种物资以3个产地运往4个销地,两次调运方案分别为矩阵A 与矩阵B .且357220430123A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,132021570648B ⎛⎫ ⎪= ⎪ ⎪⎝⎭试用矩阵表示各产地运往各销地两次的物资调运量.3.设111123111124111051A B ⎛⎫⎛⎫⎪ ⎪=-=-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,,求32AB A -与TA B .4.某厂研究三种生产方法,生产甲、乙、丙三种产品,每种生产方法的每种产品数量用如下矩阵表示:234123241A ⎛⎫ ⎪= ⎪ ⎪⎝⎭甲乙丙方法一方法二方法三 若甲、乙、丙各种产品每单位的利润分别为10元,8元,7元,试用矩阵的乘法求出以何种方法获利最多.5.设12101312A B ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,,问(1)AB BA =吗?(2)()2222A B A AB B +=++吗?(3)()()22A B A B A B +-=-吗?6.举反例说明下列命题是错误的: (1)若2A O =,则A O =;(2)若2A A =,则A O =或A E =;(3)若AX AY =,且A O ≠,则X Y =. 7.设101A λ⎛⎫=⎪⎝⎭,求23kA A A ,,,. 8.设AB 、都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB BA =. 9.用伴随矩阵法求下列矩阵的逆阵:(1)1225⎛⎫ ⎪⎝⎭; (2)cos sin sin cos θθθθ-⎛⎫⎪⎝⎭; (3)121342541-⎛⎫ ⎪- ⎪ ⎪-⎝⎭; (4)1234012300120001⎛⎫⎪⎪ ⎪ ⎪⎝⎭. 10.解下列矩阵方程: (1)25465321X -⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(2)211113210432111X -⎛⎫-⎛⎫⎪= ⎪ ⎪⎝⎭ ⎪-⎝⎭;(3)010100143100001201001010120X -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭.11.设方阵A 满足225A A E O +-=,证明3A E +可逆,并求其逆矩阵.12.已知对给定方阵A ,存在正整数k ,成立kA O =,试证E A -可逆,并指出()1E A --的表达式.13.设A 为3阶方阵,12A =,求()125A A -*-. 14.设方阵A 可逆,证明其伴随矩阵A *也可逆,且()()11AA -**-=.15.设131020101A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,2AB E A B +=+,求B .16.设三阶矩阵A B ,满足关系:16A BA A BA -=+,且100210041007A ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭, 求B .17.设033110123A ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,2AX A X =+,求X .18已知AP P =Λ,其中100100210000211001P ⎛⎫⎛⎫⎪ ⎪=-Λ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,=,求A 及5A .19.设A B ,和A B +均可逆,证明11A B --+也可逆,并求其逆矩阵.20.将矩阵2131425442622140A -⎛⎫⎪-⎪= ⎪--- ⎪-⎝⎭化为行阶梯形矩阵,并求矩阵A 的一个最高阶非零子式.21.用初等变换法求下列矩阵的逆:(1)111211120⎛⎫ ⎪- ⎪ ⎪⎝⎭; (2)321315323⎛⎫⎪ ⎪ ⎪⎝⎭;(3)3201022112320121--⎛⎫⎪ ⎪ ⎪--- ⎪⎝⎭; (4)1357012300120001-⎛⎫⎪⎪⎪⎪⎝⎭.22.下列矩阵的秩.:(1)1234124511012⎛⎫ ⎪- ⎪ ⎪⎝⎭; (2)321312131370518---⎛⎫ ⎪-- ⎪ ⎪--⎝⎭; (3)1001310312011457⎛⎫⎪-⎪ ⎪-⎪⎝⎭; (4)24131121023636a -⎛⎫ ⎪- ⎪ ⎪⎝⎭.23.设A 为n 阶矩阵,且2A A =,证明()()R A R A E n +-=.24.设34432022O A O ⎛⎫⎪- ⎪= ⎪ ⎪⎝⎭,求84A A ,. 25.设矩阵A 和B 均可逆,求分块矩阵O A B O ⎛⎫⎪⎝⎭的逆矩阵,并利用所得结果求矩阵005200218300520⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭的逆矩阵.解答习题21.123456110111200111311100400011500101600100⎛⎫⎪⎪⎪⎪⎪⎪⎪⎪⎝⎭,选手按胜多负少排序为1 2 3 4 5 6.2.357213202043215701230648 A B⎛⎫⎛⎫⎪ ⎪+=+⎪ ⎪⎪ ⎪⎝⎭⎝⎭48924191007611⎛⎫⎪= ⎪ ⎪⎝⎭.3.111123111 3331111242111111051111 AB A⎛⎫⎛⎫⎛⎫⎪⎪ ⎪-=-----⎪⎪ ⎪⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭21322217204292-⎛⎫⎪=--⎪⎪-⎝⎭058123056124290051TTA B⎛⎫⎛⎫⎪ ⎪=---⎪ ⎪⎪ ⎪⎝⎭⎝⎭002123058559124056860051290⎛⎫⎛⎫⎛⎫⎪⎪ ⎪=---=-⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.4.1072844759A⎛⎫⎛⎫⎪ ⎪=⎪ ⎪⎪ ⎪⎝⎭⎝⎭,方法一获利最多. (1)AB BA≠,因为34124638AB BA⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,,所以AB BA≠.(2)()2222A B A AB B +≠++因为 2225A B ⎛⎫+=⎪⎝⎭()2222281425251429A B ⎛⎫⎛⎫⎛⎫+== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭但 2238681010162411812341527A AB B ⎛⎫⎛⎫⎛⎫⎛⎫++=++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以()2222A B A AB B +≠++(3)()()22A B A B A B +-≠- 因为 22022501A B A B ⎛⎫⎛⎫+=-=⎪ ⎪⎝⎭⎝⎭,,()()220206250109A B A B ⎛⎫⎛⎫⎛⎫+-== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,而 223810284113417A B ⎛⎫⎛⎫⎛⎫-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故()()22A B A B A B +-≠-6.(1)取1111A O ⎛⎫=≠ ⎪--⎝⎭,而2A O =; (2)取1000A ⎛⎫=⎪⎝⎭,有A O A E ≠≠,,而2A A =; (3)取101010000001A X Y ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,有X Y ≠,而AX AY =.7. 21010101121A AA λλλ⎛⎫⎛⎫⎛⎫===⎪⎪ ⎪⎝⎭⎝⎭⎝⎭;3210101021131A A A λλλ⎛⎫⎛⎫⎛⎫=== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭;由此推出 ()10231kA k k λ⎛⎫==⎪⎝⎭,,下面利用数学归纳法证明这个结论. 当12k k ==,时,结论显然成立. 假设1k -时结论成立,即有 ()11011k Ak λ-⎛⎫=⎪-⎝⎭则对于k 时,有 ()11010101111kk A A A k k λλλ-⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭,故结论成立. 8. 证明 由已知:T A A = TB B =充分性:由AB BA =,得T TAB B A =,所以()TAB AB =即 AB 是对称矩阵. 必要性:由()TAB AB =得,T T B A AB =所以BA AB =.9. (1) 公式法:1225A ⎛⎫= ⎪⎝⎭1A =112112225,2(1),2(1),1A A A A ==⨯-=⨯-=112112225221AA A A A *-⎛⎫⎛⎫== ⎪ ⎪-⎝⎭⎝⎭ 11A A A -*= 故 15221A --⎛⎫= ⎪-⎝⎭初等行变换法:()12102501AE ⎛⎫=⎪⎝⎭21212100121r r -⎛⎫−−−→ ⎪-⎝⎭12210520121r r --⎛⎫−−−→ ⎪-⎝⎭所以 15221A--⎛⎫= ⎪-⎝⎭. (2) 10A =≠ 故1A -存在11211222cos sin sin cos A A A A θθθθ===-=从而 1c o s s i n s i n c o s A θθθθ-⎛⎫=⎪-⎝⎭(3) 公式法;2A =, 故1A -存在 112131420A A A =-== 而 1222321361A A A =-==- 13233332142A A A =-==-故 11A A A -*=2101313221671-⎛⎫⎪ ⎪=-- ⎪⎪--⎝⎭初等行变换法:()121100342010541001AE -⎛⎫⎪=- ⎪ ⎪-⎝⎭ 2131351211000213100146501r r r r ---⎛⎫ ⎪−−−→-- ⎪ ⎪--⎝⎭3271211000213100011671r r --⎛⎫ ⎪−−−→-- ⎪ ⎪--⎝⎭2313120157102013610011671r r r r +---⎛⎫ ⎪−−−→-- ⎪ ⎪--⎝⎭3210021002013610011671r r +-⎛⎫ ⎪−−−→-- ⎪ ⎪--⎝⎭2122101001310103220011671r --⎛⎫ ⎪ ⎪−−−→-- ⎪- ⎪-⎝⎭所以 12101313221671A --⎛⎫⎪ ⎪=-- ⎪ ⎪--⎝⎭.(4)由对角矩阵的性质知 12110101n a a A a -⎛⎫ ⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪⎝⎭. 10. (1) 125461321X --⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭35461221--⎛⎫⎛⎫= ⎪⎪-⎝⎭⎝⎭22308-⎛⎫= ⎪⎝⎭(2) 1211113210432111X --⎛⎫-⎛⎫ ⎪= ⎪ ⎪⎝⎭ ⎪-⎝⎭10111312324323330⎛⎫-⎛⎫ ⎪=-- ⎪ ⎪⎝⎭ ⎪-⎝⎭22182533-⎛⎫⎪= ⎪-- ⎪⎝⎭ (3) 11143120120111X --⎛⎫⎛⎫⎛⎫= ⎪ ⎪⎪---⎝⎭⎝⎭⎝⎭243110111011212-⎛⎫⎛⎫⎛⎫= ⎪⎪⎪-⎝⎭⎝⎭⎝⎭66101301212⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭11104⎛⎫⎪= ⎪⎝⎭11. 由22A A E O --=得22A A E -= 两端同时取行列式: 22A A -=即 2A A E -=,故 0A ≠ 所以A 可逆,而22A E A +=2220A E A A +==≠ 故2A E +也可逆.由22A A E O --=得()2A A E E -=所以 11()2A A A E A E ---=,则11()2AA E -=- 又由22A A E O --=(2)3(2)4A E A A E E +-+=-(2)(3)4A E A E E +-=-所以 11(2)(2)(3)4(2)A E A E A E A E --++-=-+则 11(2)(3)4A E E A -+=-. 12.()11k E A E A A ---=+++ .13. 因为11AA A-*=,所以 ()1111111255522A A A A A A A -*-----=-=- ()31112288216A A A ---=-=-=-=-⨯=-.14. 由11AA A-*=,得1A A A *-=, 所以 当A 可逆时,有110nn A A A A-*-==≠,从而A *也可逆.因为1A A A *-=,所以()11A AA --*=又()()1111A A A A A**---==,所以()()()11111A AA AA A A -**--*--===15. 由2AB E A B +=+得()2A E B A E -=-即()()()A E B A E A E -=-+因为 0011010100A E -==-≠,所以()A E -可逆,则 201030102B A E ⎛⎫ ⎪=+= ⎪ ⎪⎝⎭.16.600020001⎛⎫⎪ ⎪ ⎪⎝⎭.17.033123110⎛⎫ ⎪- ⎪ ⎪⎝⎭18. 因为AP P =Λ,所以1A P P -=Λ;又 1P =-, 1100210411P --⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,55115⎛⎫⎪Λ ⎪ ⎪⎝⎭= 所以 1100110021012102115411A P P ---⎛⎫⎛⎫⎛⎫⎪⎪⎪=Λ=-- ⎪⎪⎪ ⎪⎪⎪-⎝⎭⎝⎭⎝⎭100200611⎛⎫ ⎪= ⎪ ⎪--⎝⎭5100200611A ⎛⎫⎪= ⎪ ⎪--⎝⎭.19. 因为()1111A B A E CA B B B A ----+=+=+,由()()1A B A B E -++=得()()()()111111AB A A B B A B A B B ------++=++=则()()1111A B A A B B B B E ----++==所以11A B --+可逆,其逆为()1A B A B -+.20. 213241221312131425400124262001221400011r r r r r r A -+---⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪=−−−→ ⎪ ⎪---- ⎪ ⎪--⎝⎭⎝⎭ 32344221312131001200120000000100010000r r r r r r B -↔+--⎛⎫⎛⎫⎪⎪-- ⎪ ⎪−−−→−−−→= ⎪⎪⎪ ⎪⎝⎭⎝⎭B 的秩为3,其一个3阶非零子式为13112001--,对应于A 的3阶非零子式为131254262----. 故2131001200010000-⎛⎫⎪- ⎪⎪⎪⎝⎭即为矩阵A 的行阶梯形矩阵,矩阵A 的一个最高阶非零子式为131254262----. 21.(1)111222111444513444⎛⎫- ⎪ ⎪⎪- ⎪ ⎪ ⎪-- ⎪⎝⎭,(2)72363211211022⎛⎫- ⎪ ⎪-- ⎪ ⎪- ⎪⎝⎭,(3)11240101113621610--⎛⎫ ⎪-⎪ ⎪-- ⎪--⎝⎭,(4)131120012100120001--⎛⎫ ⎪- ⎪ ⎪- ⎪⎝⎭. 22.(1)2,(2)3,(3)4,(4)当4a =-时,秩为2;当4a ≠-时,秩为3.24.34432022O A O ⎛⎫⎪- ⎪= ⎪ ⎪⎝⎭,令13443A ⎛⎫= ⎪-⎝⎭ 22022A ⎛⎫= ⎪⎝⎭ 则12A O A OA ⎛⎫=⎪⎝⎭故8182A O A O A ⎛⎫=⎪⎝⎭8182A O OA ⎛⎫= ⎪⎝⎭8888816121210A A A A A ===444414426450052022O A O A OA O ⎛⎫⎪⎛⎫ ⎪==⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭25. nn s ns s A O E O C B OE ⨯⎛⎫⎪⎝⎭ 111n nA r ns ns s EO A O C B OE --⨯⎛⎫−−−→ ⎪⎝⎭()2111r Cr nns n ns EOA O OB C A E ---⨯⎛⎫−−−−−→ ⎪-⎝⎭左乘 ()121111s s B r nns n nsA O EO B C A B O E -----⨯⎛⎫−−−−→ ⎪ ⎪-⎝⎭左乘 11111s s n s n nA O A OBC A B C B -----⨯⎛⎫⎛⎫= ⎪ ⎪ ⎪-⎝⎭⎝⎭利用这个结果取103021121412A B C ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,则由11111ss n s n n A O A O B C A B C B -----⨯⎛⎫⎛⎫= ⎪ ⎪ ⎪-⎝⎭⎝⎭得 112040111113212A B --⎛⎫⎛⎫== ⎪ ⎪--⎝⎭⎝⎭,,114021201241111312113512224B CA ----⎛⎫⎛⎫⎛⎫⎛⎫=-⋅= ⎪⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎝⎭-,则 1124080111212262424A B --⎛⎫⎛⎫== ⎪ ⎪--⎝⎭⎝⎭,故 110002400012001212001213012482412143526-⎛⎫⎛⎫⎪ ⎪-⎪ ⎪=⎪ ⎪--⎪ ⎪--⎝⎭⎝⎭习题31.设α=(1,1,0,-1)T ,β=(-2,1,0,0)T ,γ=(-1,-2,0,1)T ,求35αβγ-+.2.设34αβ+=(2,1,1,2)T 23αβ+=(-1,2,3,1)T求,αβ.3.解向量方程325X αβ-=其中,α=(3,5,7,9)T ,β=(-1,5,2,0)T .4.判断向量β能否由其余向量线性表示?若能,写出表示式.(1)β=(0,10,8,7)T ,1α=(-1,2,3,9)T ,2α=(1,3,1,0)T ,3α=(1,8,5,-2)T .(2)β=(1,2,1,1)T ,1α=(1,1,1,1)T ,2α=(1,1,-1,-1)T ,3α=(1,-1,1,-1)T ,4α=(1,-1,-1,1)T .5.设1α=(1+k ,1,1,1)T ,2α=(1,1+k ,1,1)T ,3α=(1,1,1+k ,1)T ,β=(1,3,2,1)T ,试问k 取何值时,β可由123,,ααα线性表示?并写出表示式.6.设1α=(1,0,2,3)T ,2α=(1,1,3,5)T ,3α=(1,-1,a +2,1)T ,4α=(1,2,4,a +8)T ,β=(1,1,b +3,5)T ,试问当,a b 为何值时.(1)β不能由1234,,,αααα线性表示;(2)β能由1234,,,αααα线性表示,且表示法唯一,并写出该表示式; (3)β能由1234,,,αααα线性表示,且表示法不唯一,并写出两个表示式.7.设向量β可由向量组12,,,m ααα 线性表示,但不能由121,,,m ααα- 线性表示,则向量组12,,,m ααα 与向量组121,,,,m αααβ- 等价.8.判断下列向量组是否线性相关?(1)1α=(2,2,7,-1)T ,2α=(3,-1,2,4)T ,3α=(1,1,3,1)T .(2)1α=(1,4,2,7)T ,2α=(3,2,4,5)T ,3α=(1,-1,2,2)T ,4α=(1,4,2,7)T .9.问k 取何值时下列向量组线性相关?线性无关?1α=(k ,2,1)T ,2α=(2,k ,0)T ,3α=(1,-1,1)T10.设向量组123,,ααα线性无关,112323βααα=--,21232βααα=++,3123βααα=-+,讨论向量组123,,βββ的线性相关性.11.已知向量组12,,,m ααα 线性无关,设112βαα=+,223βαα=+,…,11m m m βαα--=+,1m m βαα=+,讨论向量组12,,,m βββ 的线性相关性.12.设向量组12,,,m ααα 不含零向量,且αk (k =2,3,…,m)不能由121,,,k ααα- 线性表示,则向量组12,,,m ααα 线性无关.13.求下列向量组的秩及一个极大线性无关组,并用极大线性无关组线性表示其余向量.(1)1α=(2,1,3,-1)T ,2α=(3,-1,2,0)T ,3α=(1,3,4,-2)T ,4α=(4,-3,1,1)T .(2)1α=(1,2,3,-1)T ,2α=(3,2,1,-1)T ,3α=(2,3,1,1)T ,4α=(2,2,2,-1)T ,5α=(5,5,2,0)T .(3)1α=(1,2,-1,1)T ,2α=(2,0,k ,0)T ,3α=(0,-4,5,-2)T ,4α=(2,2,2,-1).(4)1α=(1,0,1,2)T ,2α=(0,1,1,2)T ,3α=(-1,1,0,k )T ,4α=(1,2,k ,6)T ,5α=(1,1,2,4)T .14.设12{,,,}m R ααα =12{,,,}t R βββ ,且12,,,m ααα 可由12,,,t βββ 线性表示,则向量组12,,,m ααα 与向量组12,,,t βββ 等价.15.设有两个向量组1α=(1,2,-1,3)T ,2α=(2,5,a ,8)T ,3α=(-1,0,3,1)T ;1β=(1,a ,2a -5,7)T ,2β=(3,3+a ,3,11)T ,3β=(0,1,6,2)T ,若1β可由123,,ααα线性表示,试判断这两个向量组是否等价?16.已知向量组1β=(0,1,-1)T ,2β=(a ,3,1)T ,3β=(b ,1,0)T 与向量组1α=(1,2,-3)T ,2α=(2,1,-1)T ,3α=(3,0,1)T 具有相同的秩,且3β可由123,,ααα线性表示,求,a b .17.判断下列集合是否是向量空间?为什么?若是向量空间,求出其维数及一个基. (1)V 1={(x 1,x 2,…,x n )T ∈R n |a 1x 1+a 2x 2 + … +a n x n =0},其中a i (i = 1,2,…,n )为R 中固定的数.(2)V 2={(x 1,x 2,…,x n )T ∈R n |a 1x 1+a 2x 2 + … +a n x n =1},其中a i (i = 1,2,…,n )为R 中固定的数.18.设123,,n R ααα∈.证明,若1122330k k k ααα++=且k 1k 2 ≠ 0,则L(α1,α3)=L(α2,α3).19.求下列向量生成子空间的维数与一个基.(1)1α=(-1,3,4,7)T ,2α=(2,1,-1,0)T ,3α=(1,2,1,3)T ,4α=(-4,1,5,6)T .(2)1α=(2,1,3,-1)T ,2α=(1,-1,3,-1)T ,3α=(4,5,3,-1)T ,4α=(1,5,3,-1)T .20.设1α=(1,0,-1)T ,2α=(2,1,1)T ,3α=(1,1,1)T ;1β=(3,1,4)T ,2β=(5,2,1)T ,3β=(1,1,-6)T .(1)证明123,,ααα与123,,βββ都是R 3的基; (2)求由基123,,ααα到基123,,βββ的过渡矩阵;(3)求坐标变换公式;(4)求α=(8,3,0)分别在基123,,ααα与基123,,βββ下的坐标.21.设α=(1,0,-1,0,1)T ,β=(0,1,0,2,0)T . (1)求αβ与的内积 [αβ,]; (2)求αβ与的长度||α||,||β||; (3)求αβ与的夹角θ.22.用施密特正交化方法将下列向量组标准正交化.(1)1α=(1,1,1,1)T ,2α=(3,3,-1,-1)T ,3α=(-2,0,6,8)T ; (2)1α=(1,1,1,0)T ,2α=(1,0,1,0)T ,3α=(-1,2,3,0)T . 23.求与向量1α=(1,0,-1,2)T ,2α=(0,1,1,0)T 都正交的向量. 24.判别下列矩阵是否为正交矩阵?并说明理由.(1)1100221100221111222211112222⎛⎫ ⎪⎪⎪ ⎪⎪ ⎪-- ⎪ ⎪ ⎪-- ⎪⎝⎭,(2)11133311022211666⎛⎫⎪⎪ ⎪- ⎪ ⎪ ⎪- ⎪⎝⎭25.设,n R αβ∈,A 是n 阶正交矩阵,证明:(1)[,A A αβ]=[,αβ]; (2)||A α||=||α||;(3)A α与A β的夹角等于α与β的夹角. 26.证明,若12,,,n ααα 是R n 的一组标准正交基,A 是n 阶正交矩阵,则12,,,n A A A ααα 也是R n 的一组标准正交基.解答习题31.(0,-8,0,2)T2.α=(10,-6,-10,2)T ,β=(-7,4,7,-1)T 3.X =12(14,-10,11,27)T 4.(1)能,β=α1+α3.(2)能,β=14(5α1+α 2 - α3 - α4) 5.k =3,β=13(2α2+α3) 6.(1)1,0a b =-≠,(2)12311,(2(1))1a b a b b a βααα≠-=-+++++ (3)2131,0.2a b βαβαα=-===-或8.(1)线性无关.(2)线性相关.9.k =3或k =-2时线性相关;k ≠3且k ≠ -2时线性无关. 10.线性无关.11.m 是奇数时线性无关,m 是偶数时线性相关.13.(1)秩=2;α1,α2是极大线性无关组;α3=2α1-α2,α4=-α1+2α2. (2)秩=3;α1,α2,α3是极大线性无关组;α4=121122αα+,α5=α2+α3. (3)k ≠3时:秩=4.k =3时:秩=3;α1,α2,α4是极大线性无关组;α3=-2α1+α2.(4)k ≠ 0且k ≠ 3时:秩=4;α1,α2,α3,α4是极大线性无关组;α5=α1+α2. k =3时:秩=3;α1,α2,α3是极大线性无关组;α4=α1+2α2,α5=α1+α2. k =0时:秩=3;α1,α2,α4是极大线性无关组;α3=-α1+α2,α5=α1+α2. 15.a =4,β1,β2,β3可由α1,α2,α3线性表示,但β1,β2,β3与α1,α2,α3不等价. 16.a =20,b = 5.17.(1)V 1是向量空间.当a i = 0 (i = 1,2,…,n)时:V 1=R n ;dimV 1 = n ;坐标单位向量ε1,ε2,…,εn 是V 1的基.当a i = 0 (i = 1,2,…,n)不全零时:dimV 1 = n -1;不妨设a 1≠0,则e 1 = (-a 2,a 1,0,…,0)T ,e 2 = (-a 3,0,a 1,…,0),…,e n -1 = (-a n ,0,…,a 1)是V 1的基.(2)V 2不是向量空间.19.(1)dimL(α1,α2,α3,α4) = 2;基是α1,α2. (2)dimL(α1,α2,α3,α4) = 3;基是α1,α2,α4.20.(2)317527408-⎛⎫⎪- ⎪ ⎪-⎝⎭;(3)112233317527408x y x y x y -⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭;(4)3,2,1与11145,,444--. 21.(1)0;(2)3,5;(3)2π.22.(1)123111(1,1,1,1),(2,2,2,2),(11,1,1)242T TT e e e ==--=--,. (2)123111(1,1,1,0),(1,2,1,0),(1,0,1,0)362T T T e e e ==-=-. 23.(-4,-2,2,3).24.(1)是正交矩阵;(2)是正交矩阵.习题41. 用消元法解下列线性方程组:(1)123412341234 2 0,3 630,51050;x x x x x x x x x x x x ++-=⎧⎪+--=⎨⎪++-=⎩ (4)23y z 4,2y 4z 5,38y 2z 13,4 y 9z 6;x x x x ++=⎧⎪-+=-⎪⎨+-=⎪⎪-+=-⎩2.三个工厂分别有3吨、2吨和1吨的产品要送到两个仓库储藏,两个仓库各储藏产品4吨和2吨,用ij x 表示从第i 个工厂送到第j 个仓库的产品数(1,2,3;1,2i j ==),试列出ij x 所满足的关系式,并求解由此得到的线性方程组.3.写出一个以x 1222341001c c -⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(12,c c ∈ )为全部解的齐次线性方程组.4.确定,a b 的值使下列齐次线性方程组有非零解,并在有非零解时,求其全部解:(1)1231231232 30,3470, 20;x x x x x x x x ax -+=⎧⎪-+=⎨⎪-+=⎩ (2)123123123 0,0, 20.ax x x x bx x x bx x ++=⎧⎪++=⎨⎪++=⎩5.λ取何值时,下列非齐次线性方程组有唯一解、无解或有无限多个解?并在有无限多个解时求解:(1)1231232123 1, , ;x x x x x x x x x λλλλλ⎧++=⎪++=⎨⎪++=⎩ (2)123123123(2) 2 21, 2(5) 42, 2 4(5) 1.x x x x x x x x x λλλλ-+-=⎧⎪+--=⎨⎪--+-=--⎩6.设A 是实矩阵,证明()()T R A A R A =.7.求下列齐次线性方程组的基础解系:(1)123412341234 81020,24 5 0,38 620;x x x x x x x x x x x x -++=⎧⎪++-=⎨⎪++-=⎩ (2)123412341234232 0,35420,87630;x x x x x x x x x x x x --+=⎧⎪++-=⎨⎪++-=⎩8.设12,αα是某个齐次线性方程组的基础解系,证明:1212,2αααα+-也是该线性方程组的基础解系.9.设A 是n 阶方阵,0Ax =只有零解,求证:对任意的正整数k ,0kA x =也只有 零解.10.设A 22139528-⎛⎫=⎪-⎝⎭,求一个42⨯矩阵B ,使AB =0,且R (B )2=.11.求一个齐次线性方程组,使它的基础解系由下列向量组成:1ξ0123⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,2ξ3210⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭. 12.求下列非齐次线性方程组的通解:(1)1212341234 5,2 21,53220;x x x x x x x x x x +=⎧⎪+++=⎨⎪+++=⎩ (2)123412341234 52311,536 1,242 6.x x x x x x x x x x x x -+-=⎧⎪++-=-⎨⎪+++=-⎩13.证明:线性方程组121232343454515,,,,x x a x x a x x a x x a x x a -=-=-=-=-=.有解的充分必要条件是123450a a a a a ++++=.14.设四元非齐次线性方程组Ax b =的系数矩阵A 的秩为2,已知它的三个解向量为1η,2η,3η,其中1η4321⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,2η1351⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,3η2632-⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,求该方程组的通解.15.设矩阵A 121201101t t t ⎛⎫⎪= ⎪ ⎪⎝⎭,齐次线性方程组0Ax =的基础解系含有两个线性无关的解向量,试求方程组0Ax =的全部解.16.设A 21120131,11λμ⎛⎫ ⎪= ⎪ ⎪⎝⎭b 010⎛⎫ ⎪= ⎪ ⎪⎝⎭,η1111⎛⎫ ⎪- ⎪= ⎪ ⎪-⎝⎭,如果η是方程组Ax b =的一个解,试求方程组Ax b =的全部解.17.设η*是非齐次线性方程组Ax b =的一个解,1ξ,2ξ,…,n r ξ-是对应的齐次线性方程组的一个基础解系,证明:(1)η*,1ξ,2ξ,…,n r ξ-线性无关;(2) η*,η*+1ξ,…,η*+n r ξ-线性无关.18.若1η,2η,…,s η为非齐次线性方程组Ax b =的s 个解,12,,,s k k k 为常数,且121s k k k +++= ,证明:1k 1η+2k 2η+…+s k s η也是非齐次线性方程组Ax b =的解. 19.设非齐次线性方程组Ax b =的系数矩阵A 的秩为r ,1η,2η,…,1n r η-+是它的1n r -+个线性无关的解,试证:它的任一解可表示为x =1k 1η+2k 2η+…+1n r k -+1n r η-+,其中1211n r k k k -++++= .20.用克拉默(Cramer )法则解下列方程组:(1)1234123412341234 5, 2 42,23 52,3 2110;x x x x x x x x x x x x x x x x +++=⎧⎪+-+=-⎪⎨---=-⎪⎪+++=⎩ (2)12342345123234345 0,0,23 2, 23 2,23 2.x x x x x x x x x x x x x x x x x +++=⎧⎪+++=⎪⎪++=⎨⎪++=-⎪⎪++=⎩21.判断齐次线性方程组12312312322 0,240,5820;x x x x x x x x x +-=⎧⎪-+=⎨⎪+-=⎩ 是否仅有零解.22.问,λμ取何值时,齐次线性方程组123123123 0,0, 20;x x x x x x x x x λμμ++=⎧⎪++=⎨⎪++=⎩ 有非零解?23.问λ取何值时,齐次线性方程组123123123(1) 2 40,2(3) 0, (1)0;x x x x x x x x x λλλ--+=⎧⎪+-+=⎨⎪++-=⎩有非零解?24.证明:平面上三条不同的直线0,0,0ax by c bx cy a cx ay b ++=++=++=相交于一点的充分必要条件是 0a b c ++=.解答习题41.(1)11221121234222110,(,)00001x c c x c c c c c x x c -+-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪==+∈ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ . (2)212121210x c y c c z c ----⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=+=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,(c ∈ ).2.ij x (1,2,3;1,2i j ==)所满足的关系式为:111221223132112131122232 3,2,1,4, x x x x x x x x x x x x +=+=+=++=++=1112212231322,6;x x x x x x ⎧⎪⎪⎪⎪⎨⎪⎪⎪+++++=⎪⎩ 11121212211122213123221111221122100101101001x c c x c c x c c c x c x c x c ++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪---- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--==++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,(12,c c ∈ ). 3.134234220,340.x x x x x x -+=⎧⎨+-=⎩4.(1)123111x c x c c x c --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,(c ∈ ).(2)当0b =或10a -=时,即0b =或1a =时,齐次线性方程组有非零解.当1a =时,有1231001x c x c x c --⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,(c ∈ ).当0b =时,有1231(1)11x c x a c c a x c --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,(c ∈ ).5.(1)当1,2λ≠-时,非齐次线性方程组有唯一解;当2λ=-时,非齐次线性方程组无解;当1λ=时,非齐次线性方程组有无限多个解,有1122112321111010001x c c x c c c x c ----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪==++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,(12,c c ∈ ). (2)当1λ≠且10λ≠时,非齐次线性方程组有唯一解; 当10λ=时,非齐次线性方程组无解;当1λ=时,非齐次线性方程组有无数多个解,有112211232122122010001x c c x c c c x c -+-⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪==++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,(12,c c ∈ ).7.(1)1ξ43410-⎛⎫ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪⎝⎭,2ξ01401⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭, (2)1ξ11971901⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭,2ξ219141910⎛⎫- ⎪ ⎪ ⎪-= ⎪ ⎪⎪ ⎪⎝⎭.10.115118008B -⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭11.12312420,230.x x x x x x -+=⎧⎨-+=⎩12.(1)x 111161,01702c -⎛⎫-⎛⎫ ⎪ ⎪⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(c ∈ ).(2)x 1291172211,72001010c c ⎛⎫⎛⎫- ⎪ ⎪⎛⎫⎪ ⎪ ⎪- ⎪ ⎪ ⎪-=++ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎪ ⎪⎝⎭⎝⎭(12,c c ∈ ).14.x 1131221()(),c c ηηηηη=+-+-(12,c c ∈ ).15.x 121011,1001c c ⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(12,c c ∈ ).16.λμ=,当12λ=,非齐次线性方程组有无限多个解,x 1211122311,100001c c ⎛⎫⎛⎫--⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪- ⎪-=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(12,c c ∈ ). 当12λ≠,非齐次线性方程组有无限多个解,有x 011122,112201c -⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪=+ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(c ∈ ).20.(1)12341231x x x x ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭, (2)1234511111x x x x x ⎛⎫⎛⎫⎪ ⎪- ⎪ ⎪ ⎪ ⎪= ⎪ ⎪-⎪ ⎪ ⎪⎪⎝⎭⎝⎭.21.齐次线性方程组仅有零解.22.当0μ=或1λ=时,齐次线性方程组有非零解. 23.当0,23λ=或时,齐次线性方程组有非零解.习题51.求下列矩阵的特征值和特征向量.(1)3151⎛⎫ ⎪-⎝⎭;(2)200202311-⎛⎫ ⎪ ⎪ ⎪⎝⎭;(3)122212221⎛⎫ ⎪ ⎪ ⎪⎝⎭,(4)1111111111111111⎛⎫⎪-- ⎪ ⎪-- ⎪--⎝⎭. 2.证明下列各题:(1)设A 是幂等矩阵(即满足2A A =),则A 的特征值只能0是或1;. (2)设A 是正交矩阵,则A 的实特征值的绝对值为1.3.已知3阶矩阵A 的特征值为1,0,2-,计算行列式2A A E -+.4.已知3阶矩阵A 的特征值为1,2,3-,计算行列式*|32|A A E ++.5.设,A B 都是n 阶方阵,且A 可逆,证明AB 与BA 相似.6.判断矩阵⎪⎪⎪⎭⎫ ⎝⎛----=201335212A 可否对角化,若能的话,将它化为标准形.7.设矩阵20022311A a -⎛⎫ ⎪= ⎪ ⎪⎝⎭与10002000b -⎛⎫ ⎪Λ= ⎪ ⎪⎝⎭相似,求,a b ;并求一个可逆矩阵P ,使1P AP -=Λ.8.设20131405A a ⎛⎫ ⎪= ⎪ ⎪⎝⎭,问a 为何值时,矩阵A 可对角化?9.试求一个正交的相似变换矩阵,将下列实对称矩阵化为对角矩阵:(1)120222023-⎛⎫ ⎪-- ⎪ ⎪-⎝⎭;(2)400031013⎛⎫ ⎪ ⎪ ⎪⎝⎭;(3)222254245-⎛⎫ ⎪- ⎪ ⎪--⎝⎭;(4)0111101111011110-⎛⎫ ⎪- ⎪ ⎪- ⎪-⎝⎭. 10.将矩阵102012220A -⎛⎫⎪= ⎪ ⎪⎝⎭用两种方法对角化:(1)求一个可逆矩阵P ,使1P AP -为对角阵;(2)求一个正交矩阵T ,使1T AT -为对角矩阵.11.设3阶矩阵A 的特征值为1232,1,2λλλ=-==;对应的特征向量依次为1231101,1,1101ξξξ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,求矩阵A .12.设3阶实对称矩阵A 的特征值1231,0,1λλλ=-==;属于12,λλ的特征向量依次为12221,221ξξ⎛⎫⎛⎫⎪ ⎪==- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,求一个正交矩阵T ,使1T AT -为对角矩阵.13.设3阶实对称矩阵A 的特征值1231,1λλλ=-==;属于特征值11λ=-的特征向量为1011ξ⎛⎫⎪= ⎪ ⎪⎝⎭,求矩阵A .14.设120020211⎛⎫ ⎪= ⎪ ⎪---⎝⎭A ,求100A . 15.在某国,每年有比例为p 的农村居民移居城镇,有比例为q 的城镇居民移居农村.假设该国总人数不变,且上述人口迁移的规律也不变.把n 年后农村人口和城镇人口占总人数的比例依次记为n x 和n y (1)n n x y +=.(1)求11n n x y ++⎛⎫⎪⎝⎭与n n x y ⎛⎫⎪⎝⎭的关系式并写成矩阵形式:11++⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭n n n n x x A y y ; (2)设目前农村人口与城镇人口相等,即001212x y ⎛⎫ ⎪⎛⎫= ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭,求n n x y ⎛⎫⎪⎝⎭.解答习题51.(1)1212112,4;,15λλξξ⎛⎫⎛⎫=-=== ⎪ ⎪-⎝⎭⎝⎭;(2)1231230011,2,2;(,,)210111λλλξξξ-⎛⎫ ⎪=-==-=- ⎪ ⎪⎝⎭;(3)1231231011,5;(,,)011111λλλξξξ⎛⎫ ⎪==-== ⎪ ⎪--⎝⎭; (4)12341234111111002,2;(,,,)10101001λλλλξξξξ-⎛⎫ ⎪⎪=-==== ⎪ ⎪⎝⎭. 3.9. 4.-25.6.A 不可对角化.7.100110,2;210,21112---⎛⎫⎛⎫ ⎪ ⎪==-=-= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭a b P P AP .8.3=a .9.(1)12213332122,13335212333-⎛⎫ ⎪⎛⎫ ⎪ ⎪ ⎪=--=- ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪- ⎪⎝⎭T T AT ; (2)10102110,422411022-⎛⎫⎪ ⎪⎛⎫ ⎪ ⎪==⎪ ⎪ ⎪ ⎪⎝⎭ ⎪-⎪⎝⎭T T AT ;(3)12251153511452,115351052033-⎛⎫-- ⎪ ⎪⎛⎫ ⎪ ⎪⎪=-= ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭T T AT ;(4)111112261211111122612,1211026123310212-⎛⎫-⎪ ⎪⎛⎫ ⎪-- ⎪⎪ ⎪⎪== ⎪ ⎪- ⎪ ⎪-⎝⎭ ⎪ ⎪ ⎪⎝⎭T T AT . 10.(1)11223221,02123-⎛⎫⎛⎫⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭P P AP ;(2)11223333221,03333212333-⎛⎫ ⎪⎛⎫ ⎪ ⎪⎪=-= ⎪ ⎪ ⎪- ⎪⎝⎭ ⎪- ⎪⎝⎭T T AT . 11.233453442--⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭A .12.12213331122,03331212333-⎛⎫ ⎪-⎛⎫ ⎪ ⎪⎪=-= ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪- ⎪⎝⎭T T AT . 13.100001010⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A .14.101100100100122002050(12)13⎛⎫⎪- ⎪= ⎪ ⎪- ⎪⎝⎭A. 15.(1)1111++-⎛⎫⎛⎫⎛⎫=⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭n n n n x x p q y y p q ;(2)2()(1)12()2()(1)⎛⎫⎛⎫+---= ⎪⎪++---⎝⎭⎝⎭n n n n x q p q p q y p q p q p p q .习题61.证明:123000000a a a ⎛⎫⎪ ⎪ ⎪⎝⎭与23100000a a a ⎛⎫ ⎪⎪ ⎪⎝⎭合同. 2.写出下列二次型的矩阵表示: (1)121323422f x x x x x x =-++;(2)2224424f x xy y xz z yz =+++++;(3)22221234121314232424264f x x x x x x x x x x x x x x =+++-+-+-.3.设A 是一个n 阶对称矩阵.如果对任一个n 维列向量x ,都有0Tx Ax =,试证0A =. 4.用拉格朗日配方法化下列二次型为标准形. (1)123422x x x x -;(2)22121213222x x x x x x ++-.*5.用初等变换法化下列二次型为标准形.(1)12132346x x x x x x -+;(2)222123232334x x x x x +++.6.用正交变换法化下列二次型为标准形.(1)22212312132325228x x x x x x x x x +++++;(2)121314232434 222222x x x x x x x x x x x x +--++. 7.求一个正交变换把二次曲面的方程22234545101x xy y xz z yz ++-+-=化成标准方程.8.化下列二次型为规范形.(1)22212312133524x x x x x x x +++-;(2)22212312232422x x x x x x x +++-.9.证明:秩等于r 的对称矩阵可以表成r 个秩等于1的对称矩阵之和. 10.判别下列二次型是否正定:(1)2221231231223(,,)2342f x x x x x x x x x x =+-++;(2)2222123412341213142434(,,,)3919242612f x x x x x x x x x x x x x x x x x x =+++-++--.11.t 满足什么条件时,下列二次型是正定的:(1)222123123121323(,,)5224f x x x x x x tx x x x x x =+++-+; (2)2221231231223(,,)2322f x x x x x x tx x x x =++-+.12.试证:如果A 是正定矩阵,那么A 的主子式全大于零. 13.试证:如果A 是正定矩阵,那么 (1)(0)kA k >是正定矩阵; (2)1A -是正定矩阵.14.试证:如果,A B 是同阶正定矩阵,那么A B +也是正定矩阵.*15.试证:实二次型12(,,,)n f x x x 是半正定的充分必要条件是12(,,,)n f x x x 的正惯性指数等于它的秩.*16.试证:实二次型12(,,,)T n f x x x x Ax = 是半正定的充分必要条件是A 的特征值全大于或等于零.解答习题62.(1)112323021(,,)201110x f x x x x x -⎛⎫⎛⎫ ⎪⎪=- ⎪⎪ ⎪⎪⎝⎭⎝⎭;(2)121(,,)242121x f x y z y z ⎛⎫⎛⎫ ⎪⎪= ⎪⎪ ⎪⎪⎝⎭⎝⎭;(3)1212343411211132(,,,)23101201x x f x x x x x x --⎛⎫⎛⎫ ⎪⎪-- ⎪⎪= ⎪⎪ ⎪⎪--⎝⎭⎝⎭.4.(1)1132133244242222222222222222x y yx y yx y yx y y⎧=+⎪⎪⎪=-⎪⎪⎨⎪=+⎪⎪⎪=-+⎪⎩,22221234f y y y y=+--;(2)112322323x y y yx yx y y=+-⎧⎪=⎨⎪=-+⎩,222123f y y y=--.5.(1)112321233233626526x y y yx y y yx y y⎧=--⎪⎪⎪=--⎨⎪⎪=+⎪⎩,222123f y y y=+-;(2)1122332311221122x yx y yx y y⎧⎪=⎪⎪=+⎨⎪⎪=-⎪⎩,22212325f y y y=++.6.(1)11232233323x y y yx y yx y=-+⎧⎪=-⎨⎪=⎩,2221235f y y y=+-;(2)1124212431344134111222111222111222111222x y y yx y y yx y y yx y y y⎧=++⎪⎪⎪=-+-⎪⎪⎨⎪=-++⎪⎪⎪=+-⎪⎩,222212343f y y y y=-+++.7.4133212133221213322x u v y u v w z u v w ⎧=+⎪⎪⎪=-++⎨⎪⎪=-+⎪⎩,222111u v +=.8.(1)112322323522122x y y y x y x y y ⎧=-+⎪⎪⎪=⎨⎪⎪=-+⎪⎩,222123f y y y =-+; (2)112322333111222222212x y y y x y y x y ⎧=--⎪⎪⎪=+⎨⎪⎪=⎪⎩222123f y y y =++. 10.(1)负定;(2)正定. 11.(1)0.80t -<<;(2)151533t -<<.。
线性代数第二章答案解析
第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换. 解 由已知:⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ,故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y , ⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y ,求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换. 解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B .解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503,⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T .4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫ ⎝⎛=49635.(2)⎪⎪⎭⎫ ⎝⎛123)321(;解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛;解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫⎝⎛---=632142. (4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ; 解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876.(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ; 解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x =(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫⎝⎛321x x x 322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问:(1)AB =BA 吗? 解 AB ≠BA . 因为⎪⎭⎫⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B )2=A 2+2AB +B 2吗? 解 (A +B )2≠A 2+2AB +B 2. 因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148,但⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610,所以(A +B )2≠A 2+2AB +B 2. (3)(A +B )(A -B )=A 2-B 2吗? 解 (A +B )(A -B )≠A 2-B 2. 因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A ,而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A , 故(A +B )(A -B )≠A 2-B 2.6. 举反列说明下列命题是错误的:(也可参考书上的答案) (1)若A 2=0, 则A =0;解 取⎪⎭⎫⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ; 解 取⎪⎭⎫⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y . 解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y ,则AX =AY , 且A ≠0, 但X ≠Y . 7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k . 解⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k .8. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k .解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ,⎪⎪⎭⎫⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=545345450050105λλλλλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=kA kk kk k kk k k k λλλλλλ02)1(121----⎪⎪⎪⎭⎫ . 用数学归纳法证明: 当k =2时, 显然成立. 假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A⎪⎪⎪⎪⎭⎫⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121. (也可提取公因式,变成书上的答案)9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵. 证明 因为A T =A , 所以(B T AB )T =B T (B T A )T =B T A T B =B T AB , 从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA . 证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以 (AB )T =(BA )T =A T B T =AB , 即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB )T =AB , 所以 AB =(AB )T =B T A T =BA .11. 求下列矩阵的逆矩阵: (1)⎪⎭⎫ ⎝⎛5221; 解⎪⎭⎫ ⎝⎛=5221A . |A |=1, 故A -1存在. 因为⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A ,故*||11A A A =-⎪⎭⎫ ⎝⎛--=1225.(2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ; 解⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A . |A |=1≠0, 故A -1存在. 因为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A ,所以*||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos .(3)⎪⎪⎭⎫⎝⎛---145243121;解 ⎪⎪⎭⎫⎝⎛---=145243121A . |A |=2≠0, 故A -1存在. 因为⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A , 所以*||11A A A =-⎪⎪⎪⎭⎫⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n ≠0) .解⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 .12. 解下列矩阵方程: (1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛12643152X ;解⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232.(2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311111012112X ;解1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫⎝⎛---=32538122. (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ; 解11110210132141--⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X .解11010100001021102341100001010--⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012.13. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x ,故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x , 从而有 ⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x ,故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有 ⎪⎩⎪⎨⎧===305321x x x .14. 设A k =O (k 为正整数), 证明(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为 E -A k =(E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1), 所以 (E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E , 由定理2推论知(E -A )可逆, 且 (E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A )-1(E -A ). 另一方面, 由A k =O , 有E =(E -A )+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k ) =(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 故 (E -A )-1(E -A )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 两端同时右乘(E -A )-1, 就有(E -A )-1(E -A )=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E )-1.证明 由A 2-A -2E =O 得 A 2-A =2E , 即A (A -E )=2E , 或E E A A =-⋅)(21, 由定理2推论知A 可逆, 且)(211E A A -=-. 由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E )(A -3E )=-4E , 或E A E E A =-⋅+)3(41)2(由定理2推论知(A +2E )可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A |=2, 即 |A ||A -E |=2, 故 |A |≠0,所以A 可逆, 而A +2E =A 2, |A +2E |=|A 2|=|A |2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A (A -E )=2E ⇒A -1A (A -E )=2A -1E ⇒)(211E A A-=-, 又由 A 2-A -2E =O ⇒(A +2E )A -3(A +2E )=-4E ⇒ (A +2E )(A -3E )=-4 E ,所以 (A +2E )-1(A +2E )(A -3E )=-4(A +2 E )-1,)3(41)2(1A E E A -=+-.16. 设A 为3阶矩阵, 21||=A , 求|(2A )-1-5A *|. 解 因为*||11A A A =-, 所以 |||521||*5)2(|111----=-A A A A A |2521|11---=A A =|-2A -1|=(-2)3|A -1|=-8|A |-1=-8⨯2=-16.17. 设矩阵A 可逆, 证明其伴随阵A *也可逆, 且(A *)-1=(A -1)*. 证明 由*||11A A A =-, 得A *=|A |A -1, 所以当A 可逆时, 有|A *|=|A |n |A -1|=|A |n -1≠0, 从而A *也可逆.因为A *=|A |A -1, 所以 (A *)-1=|A |-1A . 又*)(||)*(||1111---==A A A A A , 所以 (A *)-1=|A |-1A =|A |-1|A |(A -1)*=(A -1)*.18. 设n 阶矩阵A 的伴随矩阵为A *, 证明: (1)若|A |=0, 则|A *|=0; (2)|A *|=|A |n -1. 证明(1)用反证法证明. 假设|A *|≠0, 则有A *(A *)-1=E , 由此得 A =A A *(A *)-1=|A |E (A *)-1=O ,所以A *=O , 这与|A *|≠0矛盾,故当|A |=0时, 有|A *|=0.(2)由于*||11A A A =-, 则AA *=|A |E , 取行列式得到 |A ||A *|=|A |n . 若|A |≠0, 则|A *|=|A |n -1;若|A |=0, 由(1)知|A *|=0, 此时命题也成立. 因此|A *|=|A |n -1.19. 设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B , 求B .解 由AB =A +2E 可得(A -2E )B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E AB ⎪⎪⎭⎫⎝⎛-=011321330.20. 设⎪⎪⎭⎫⎝⎛=101020101A , 且AB +E =A 2+B , 求B .解 由AB +E =A 2+B 得 (A -E )B =A 2-E , 即 (A -E )B =(A -E )(A +E ).因为01001010100||≠-==-E A , 所以(A -E )可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A *BA =2BA -8E , 求B . 解 由A *BA =2BA -8E 得(A *-2E )BA =-8E , B =-8(A *-2E )-1A -1 =-8[A (A *-2E )]-1 =-8(AA *-2A )-1 =-8(|A |E -2A )-1 =-8(-2E -2A )-1 =4(E +A )-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-==2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B . 解 由|A *|=|A |3=8, 得|A |=2. 由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E )-1A =3[A (E -A -1)]-1A11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-1030060600600006603001010010000161.23. 设P -1AP =Λ, 其中⎪⎭⎫⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11.解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A =P Λ11P -1. |P |=3,⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=Λ11111120 012001,故⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731.24. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511, 求ϕ(A )=A 8(5E -6A +A 2). 解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0).ϕ(A )=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B )B -1=B -1+A -1=A -1+B -1,而A -1(A +B )B -1是三个可逆矩阵的乘积, 所以A -1(A +B )B -1可逆, 即A -1+B -1可逆. (A -1+B -1)-1=[A -1(A +B )B -1]-1=B (A +B )-1A .26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B ,则⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ,而⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A ,⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A , 所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521, 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫⎝⎛---=9000340042102521. (最后一行的-9也可除以-1变成9,从而变成书上的答案) 27. 取⎪⎭⎫⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠.解4100120021010*********0021010010110100101==--=--=D C B A , 而01111|||||||| ==D C B A , 故 |||||||| D C B A D C B A ≠.28. 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A , 求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A , 则⎪⎭⎫ ⎝⎛=21A O O A A ,故8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A , 1682818281810||||||||||===A A A A A .⎪⎪⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A .29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求(1)1-⎪⎭⎫ ⎝⎛O B A O ;解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n E BC O BC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C O C O C A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A .解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321. 由此得 ⎪⎩⎪⎨⎧=+=+==s nE BD CD O BD CD OAD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A .30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025;解 设⎪⎭⎫⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001. 解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A BC O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.。
线性代数课后习题答案
习题答案习题1(参考答案)1.程序与算法的概念及二者的区别是什么?程序:为了实现特定目标或解决特定问题而用计算机语言偏写的指令序列,它由算法和数据结构组成。
算法:(Algorithm)是在有限步骤内求解某一问题所使用的一组定义明确的规则。
通俗地讲,就是计算机解题的步骤。
算法与程序的区别:计算机程序是算法的一个实例,同一个算法可以用不同的计算机语言来表达。
2.简述程序设计语言发展的过程程序设计语言经过最初的机器代码到今天接近自然语言的表达,经过了四代的演变。
一般认为机器语言是第一代,符号语言即汇编语言为第二代,面向过程的高级语言为第三代,面对象的编程语言为第四代。
3.简述高级程序设计语言中面向过程与面向对象的概念。
“面向过程”是一种以过程为中心的编程思想。
首先分析出解决问题所需要的步骤,然后用函数把这些步骤一步一步地实现,使用的时候依次调用函数即可。
一般的面向过程是从上往下步步求精,所以面向过程最重要的是模块化的思想方法。
“面向对象”是一种以事物为中心的编程思想。
面向对象的方法主要是将事物对象化,对象包括属性与行为。
面向过程与面向对象的区别:在面向过程的程序设计中,程序员把精力放在计算机具体执行操作的过程上,编程关注的是如何使用函数去实现既定的功能;而在面向对象的程序设计中,技术人员将注意力集中在对象上,把对象看做程序运行时的基本成分。
编程关注的是如何把相关的功能(包括函数和数据)有组织地捆绑到一个对象身上。
4.C语言程序的特点是什么?(1)C语言非常紧凑、简洁,使用方便、灵活,有32个关键字,有9种流程控制语句。
(2)C语言运算符丰富,共有45个标准运算符,具有很强的表达式功能,同一功能表达式往往可以采用多种形式来实现。
(3)数据类型丰富。
C语言的数据类型有整型、实型、字符型、数组类型、结构类型、共用类型和指针类型,而且还可以用它们来组成更复杂的数据结构,加之C语言提供了功能强大的控制结构,因而使用C语言能非常方便地进行结构化和模块化程序设计,适合于大型程序的编写、调试。
线性代数 习题二答案
1. 241110331032350382A B -⎛⎫⎛⎫⎛⎫+=+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,110020130350011361B C --⎛⎫⎛⎫⎛⎫-=-= ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭,2410204222323032011091A C ⎛⎫⎛⎫⎛⎫-=-= ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭.2.由32A X B -=可得()341231010283211153312111125211222234221171157115222X A B ⎡⎤-⎢⎥⎛⎫-⎡⎤⎡⎤⎡⎤⎢⎥⎪⎢⎥⎢⎥⎢⎥⎢⎥=-=---=-=- ⎪⎢⎥⎢⎥⎢⎥⎢⎥ ⎪⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎝⎭⎢⎥⎢⎥⎣⎦.3. 由22422243a b a b c d c d +--⎛⎫⎛⎫=⎪ ⎪+--⎝⎭⎝⎭可得,24222423a b a b c d c d +=⎧⎪-=-⎪⎨+=⎪⎪-=-⎩ 解方程组可得0,2,1,2a b c d ====. 4.设()ijm nA a ⨯=,当kA O =时,由零矩阵定义,有0ij ka =,则0k =或0ij a =,即0k =或A O =.5.(1)()()()323122382031237243181141142184011437813203515112581051137402++-+⎡⎤⎡⎤⎡⎤-⎛⎫⎢⎥⎢⎥⎢⎥-=-+-+--+=- ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎢⎥⎢⎥⎢⎥++-+-⎣⎦⎣⎦⎣⎦ .(2)()()()1311113213804220142232701371021310-+---⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-=+-+=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+-+⎣⎦⎣⎦⎣⎦⎣⎦. (3)()()()()()13121110132101312111013210321023222120264203332313039630-⎡⎤-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥--------⎢⎥⎢⎥⎢⎥-==⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦⎣⎦⎣⎦ .(4)()()()()1132211322151⎡⎤⎢⎥=++-=⎢⎥⎢⎥-⎣⎦. (5)()()()()210112113121121111120101321101-⎡⎤⎢⎥-=-+--+-+-⎢⎥⎢⎥-⎣⎦()325=--.(6)()()111211222211121122221212111a a b x x xy a a b y a x a y b a x a y b b x b y c y b b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=++++++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦()()()()111211222212a x a y b x a x a y b y b x b y c =++++++++()2212111222222c b x b y a x a xy a y =+++++.6.21010101121A λλλ⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,3210101021131A A A λλλ⎛⎫⎛⎫⎛⎫=== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,因此,我们猜测101nA n λ⎛⎫= ⎪⎝⎭,下面用归纳法证明:当1n =时成立;假设当1n -时成立,则()()110101010111111nn A A A n n n λλλλλ-⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪--+⎝⎭⎝⎭⎝⎭⎝⎭,因此101n A n λ⎛⎫=⎪⎝⎭.7.(1)设cos sin sin cos A θθθθ-⎛⎫=⎪⎝⎭, 则2cos 2sin 2sin 2cos 2A θθθθ-⎛⎫=⎪⎝⎭,3cos3sin3sin3cos3A θθθθ-⎛⎫= ⎪⎝⎭,因此,我们猜测cos sin sin cos nn n A n n θθθθ-⎛⎫=⎪⎝⎭,下面用归纳法证明:当1n =时成立;假设当1n -时成立,则()()()()1cos 1sin 1cos sin sin 1cos 1sin cos n n n n A A A n n θθθθθθθθ----⎛⎫-⎛⎫==⎪⎪--⎝⎭⎝⎭ ()()()()()()()()cos 1cos sin 1sin cos 1sin sin 1cos sin 1cos cos 1sin sin 1sin cos 1cos n n n n n n n n θθθθθθθθθθθθθθθ-------⎛⎫=⎪-+---+-⎝⎭cos sin sin cos n n n n θθθθ-⎛⎫=⎪⎝⎭,因此cos sin sin cos n n n A n n θθθθ-⎛⎫=⎪⎝⎭.(2)设142032043A ⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦,则2100010001A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,所以2100010001k A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,21142032043k A +⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦, 即()()()()()()122111012111022121n nn nnn n A ⎡⎤----⎢⎥⎢⎥=-+--+-⎢⎥----⎢⎥⎣⎦.(3)设1111111111111111A ---⎡⎤⎢⎥---⎢⎥=⎢⎥---⎢⎥---⎣⎦,则 241111111140001111111104004111111110040111111110004A E ------⎡⎤⎡⎤⎛⎫⎪⎢⎥⎢⎥------ ⎪⎢⎥⎢⎥=== ⎪⎢⎥⎢⎥------ ⎪⎢⎥⎢⎥------⎣⎦⎣⎦⎝⎭, 所以244k k A E ==,2111111111411111111k k A +---⎡⎤⎢⎥---⎢⎥=⎢⎥---⎢⎥---⎣⎦. (4)1112233111121311112233112233212223313233()()()()T T T T T T T T n Tnn n T n a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b αβαβαβαβαβαβαβαβαβαβ----===++⎡⎤⎢⎥=++=++⎢⎥⎢⎥⎣⎦8, (1)设矩阵11122122x x B x x ⎛⎫=⎪⎝⎭与矩阵A 可交换, 则112112222122x x x x AB x x ++⎛⎫=⎪⎝⎭,111112212122x x x BA x x x +⎛⎫= ⎪+⎝⎭,由AB BA =得210x =,1122x x =.(2)设矩阵111213212223313233x x x B x x x x x x ⎛⎫⎪= ⎪ ⎪⎝⎭与矩阵A 可交换, 则212223313233000x x x AB x x x ⎛⎫⎪= ⎪ ⎪⎝⎭,111221223132000x x BA x x x x ⎛⎫⎪= ⎪ ⎪⎝⎭, 由AB BA =得2131320x x x ===,112233x x x ==,1223x x =9. 设矩阵111213212223313233x x x B x x x x x x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦与矩阵A 可交换,则111213212223313233ax ax ax AB bx bx bx cx cx cx ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,111213212223313233ax bx cx BA ax bx cx ax bx cx ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, 由AB BA =得2131321213230x x x x x x ======,即与A 可交换的矩阵必为对角距阵. 10. 因为A T=A , 所以(P TAP)T=P T(P TA)T=P T A TP =P TAP ,从而P TAP 是对称矩阵. 11. 证明充分性: 因为A T=A , B T=B , 且AB =BA , 所以 (AB)T=(BA)T=A T B T=AB , 即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB)T=AB , 所以AB =(AB)T=B T A T=BA.12.(1)因为AB BA =,所以()222222A B A AB BA B A AB B +=+++=++,得证.(2)因为AB BA =,所以右边2222A AB BA B A B =-+-=-=左边,得证. (3)因为AB BA =, 所以()()()()()()()()()()()()()1p p pAB AB AB AB AB AB AB A BA BA BA BA BA BA B -==()()()()()()()()()()1222p p A AB AB AB AB AB AB B A BA BA BA BA B --==()()()()()()()()()23223311p p p p p pA AB AB AB AB B A AB AB AB AB B A AB B A B ----===== ;如果AB BA ≠,则上述等式不成立. 13, 1001A -⎛⎫=⎪-⎝⎭14, 充分性:因为2B E =, 所以()()()22111222442A B E B E B E B A =++=+=+=; 必要性:因为2A A =, 所以()()()22111222442A B E B E B B E =++=+=+, 整理得2B E =.15, 因为A 是反对称矩阵,B 是对称矩阵, 所以TA A =-,TB B =, (1)()()()22TT T AA A A A A ==--=,即2A 是对称矩阵.(2)()()()()()TTTT T T TAB BA AB BA B A A B B A A B AB BA -=-=-=---=-,即AB BA -是对称矩阵.(3)充分性:因为AB BA =,所以()()TT TAB B A B A BA AB ==-=-=-,即A 是反对称矩阵;必要性:因为A 是反对称矩阵,所以()()TT TAB B A B A BA AB ==-=-=-,即AB BA =. 16,设111211112222121121111121n n n n n n n n n n nnn nnn a a a a a a a a A a a a a a a a a --------⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭, 则2A 主对角线上的元素分别为22221112111n n a a a a -++++ ,22221222212n n a a a a -++++ ,…,2222121n n n n nn a a a a -++++ ,又因为2A O =,所以222211121110n n a a a a -++++= ,222212222120n n a a a a -++++= ,…,22221210n n n n nn a a a a -++++= ,解得11121222320n n nn a a a a a a a ========== , 即A O =.17.设111212122212n n m m mn a a a a a a A a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ ,则112111222212m m T nn mn a a a a a a A a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦, 222111212222122222212n Tn m m mn a a a a a a AA a a a ⎡⎤+++⎢⎥+++⎢⎥=⎢⎥⎢⎥+++⎢⎥⎣⎦因为TAA O =,则222111210n a a a +++= ,222212220n a a a +++= ,…,222120m m mn a a a +++= , 所以1112121222120n n m m mn a a a a a a a a a ======+==+++= ,即A O =. 18,(1)2111111141132222232323872341A A --------⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=-=-=⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.(2)321411141110325432548723872301A A A E ------⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-=-+-⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭91128554024303221316141015046036-------⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. 19,因为()21fλλλ=-+,所以()21551222310014391331100100531371331200110612f A A A E ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=-+=--+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.20,11A d =,12A c =-,21A b =-,22A a =,所以d b A c a *-⎛⎫= ⎪-⎝⎭.若0ad bc -≠,则0A ad bc =-≠,所以矩阵A 可逆,11d b ad bc ad bc A A ca A ad bcad bc -*⎛⎫-⎪--==⎪ ⎪-⎪--⎝⎭. 21,11A d =,12A c =-,21A b =-,22A a =, 所以d b A c a *-⎛⎫=⎪-⎝⎭.若0ad bc -≠,则0A ad bc =-≠,所以矩阵A 可逆,11d b ad bc ad bc A A ca A ad bcad bc -*⎛⎫-⎪--==⎪ ⎪-⎪--⎝⎭. 22.(1)200A =-≠,所以矩阵A 可逆,又112A =-,123A =-,216A =-,221A =,所以113261110103131202020A A A -*⎛⎫ ⎪--⎛⎫=== ⎪ ⎪-- ⎪⎝⎭- ⎪⎝⎭. (2)10A =≠,所以矩阵A 可逆,又11cos A θ=,12sin A θ=-,21sin A θ=,22cos A θ=,所以1cos sin 1sin cos A A A θθθθ-*⎛⎫== ⎪-⎝⎭. (3)10A =≠,所以矩阵A 可逆,又111A =,120A =,130A =,212A =-,221A =,230A =,317A =,322A =-,331A =,所以11271012001A A A -*-⎛⎫⎪==- ⎪ ⎪⎝⎭. (4)()()()()2123134141000100010001000112000100020011002213000100130201011214000102141001r r r A E r r r r r r ⎛⎫⎛⎫+-→ ⎪ ⎪- ⎪⎪=+-→ ⎪⎪- ⎪⎪+-→-⎝⎭⎝⎭ ()()32323424100010001000100020130201001302010020011000060312020214100100543021r r r r r r r r ⎛⎫⎛⎫ ⎪ ⎪+-→-- ⎪ ⎪↔ ⎪ ⎪---+-→ ⎪ ⎪---⎝⎭⎝⎭()343100010000130201010014010100543021r r r ⎛⎫⎪- ⎪+-→ ⎪--- ⎪--⎝⎭()()232434100010001110001000010000223010122313111001401010010052630024352615110001824124r r r r r r ⎛⎫⎪⎛⎫ ⎪-⎪⎪+→--- ⎪ ⎪→ ⎪----- ⎪+-→ ⎪⎪--⎝⎭⎪-- ⎪⎝⎭所以,距阵A 可逆,且1100011002211102631511824124A -⎛⎫ ⎪ ⎪- ⎪ ⎪=-- ⎪ ⎪ ⎪-- ⎪⎝⎭. (5)因为0A =, 所以1A -不存在.(6)50A =≠,所以矩阵A 可逆,又113A =,122A =,131A =-,213A =-,223A =,231A =,311A =-,324A =-,332A =,所以13315551234555112555A A A-*⎛⎫-- ⎪⎪ ⎪==- ⎪ ⎪ ⎪- ⎪⎝⎭. (7)2312223341000100110000100010010100(,)001000100100100001001010001a a a a r ar a a a A E r ar a a r ar -⎡⎤⎡⎤-⎢⎥⎢⎥-⎢⎥⎢⎥=-⎢⎥⎢⎥--⎢⎥⎢⎥⎣⎦⎣⎦ 所以,距阵A 可逆,且11110110010001a a A a --⎡⎤⎢⎥-⎢⎥=⎢⎥-⎢⎥⎣⎦22,(1)1100500510121012271003403453753712333023023X -⎛⎫⎪⎛⎫⎪---⎛⎫⎛⎫⎛⎫ ⎪==-= ⎪ ⎪ ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭⎪⎪-⎝⎭⎪⎝⎭;(2)1100001100001001100a a a a Xb b b bc c c c -⎛⎫ ⎪⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ⎪⎪⎝⎭; (3)111111211000111112100001110120000011000210000100012X -⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦11000211000110012100001000120000011000210000100012-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦⎣⎦1110011100011000001100012--⎡⎤⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦(4)由XP PB =得:111001001002100002102110012111001010010021000021020021101411611X PBP --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=--=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦⎣⎦⎣⎦511111111111111151()()()()()()()()()X PBP PBP PBP PBP PBP PBP PBP PBP PBP PBP PB P P B P P B P P B P P BP PB P----------------====5B B =,故55100200611X XB X XBX ⎡⎤⎢⎥===⎢⎥⎢⎥--⎣⎦23,100110111A -⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦故:11210010(2)(2)110120111112100100200110120120011112112A E A A E ---⎡⎤⎡⎤⎢⎥⎢⎥++-=--⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=---=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦24,1311110,211A --⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ 由1111*111,,3A A A A A A A ----====-,得*1113A A A A --==,*1**1211211()111,()1119154154A A ---⎡⎤⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦25,1*11210121001210121,0012001200010001A A A A ----⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥===⎢⎥⎢⎥--⎢⎥⎢⎥⎣⎦⎣⎦而*A 中的所有元素即为A 中所有元素的代数余子式,即A 所有元素的代数余子式为0. 26,由题意得:*1()*E A A kA AA kE A E kE -=-+=--=--,即 13k A =--=- 27,(1).因为2AX B X =+, 所以()2A E X B -=,又因为()111013112111110112211A E ----⎛⎫⎛⎫⎪ ⎪-=-=- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭则()13112135242110012201211103311X A E B ---⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=-=-= ⎪⎪ ⎪ ⎪⎪ ⎪----⎝⎭⎝⎭⎝⎭(2)由题意得:11()()()()AXA BXB AXB BXA EA B X A B E X A B A B --+--=⇒--=⇒=-- 故:11111111125011011012001001001X ------⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=--=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦(3)由12*0,2n A A AA A ->==⇒=1*1002211002210022A A A A-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==-⇒=-⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦由111111133()31263()332231122ABA BA E ABA BA E A E BA E B A E A -------=+⇒-=⇒-=⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⇒=-=--=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦--⎢⎥⎢⎥⎣⎦⎣⎦28,因为A ,B ,C 都是非奇异矩阵,所以1A -,1B -,1C -存在,又111111ABC C B A C B A ABC E ------==, 则由推论知ABC 可逆,且()1111ABC C B A ----=29,111111AB BA B ABBB BAB B A AB ------=⇔=⇔=,111111AB BA A ABA A BAA BA A B ------=⇔=⇔=, ()()111111AB BA AB BA B A A B ------=⇔=⇔=,综上可得11111111AB BA ABB A A B BA A B B A --------=⇔=⇔=⇔=.30,(1)不成立,A B =-时不成立.(2)成立,A ,B 可逆,0A ≠,0B ≠,0AB A B =≠,则AB 可逆. (3)成立,AB 可逆,0AB A B =≠,0A ≠,0B ≠,则A ,B 可逆. 31,()2200A A E A A E A E A E A -+=⇒-=⇒-=⇒≠, 即A 为非奇异矩阵. 32,因为B 可逆,所以0B ≠,20B B B =≠,又22A AB B O ++=,则22A AB B +=-,()()22210nA AB A A B A A B B B +=+=+=-=-≠,即0A ≠,0A B +≠, 由推论知A 和A B +都可逆. 33,证明:假设*A 可逆,则1*00n A AA -=≠⇒≠,即A 可逆,1A -存在,再由2211A A A A AA A E --=⇒=⇒=与题设A E ≠矛盾,故假设不成立即*A 不可逆,证毕。
线性代数课后习题答案全)习题详解
线性代数课后习题答案全)习题详解前言因能力有限,资源有限,现粗略整理了《工程数学线性代数》课后习题,希望对您的了解和学习线性代数有参考价值。
第一章行列式1.利用对角线法则计算下列三阶行列式:(1)381141102---;(2)b a c a c b c b a ; (3)222111c b a c b a ;(4)y x y x x y x yyx y x +++. 解(1)=---381141102811)1()1(03)4(2??+-?-?+?-?)1()4(18)1(2310-?-?-?-?-??-=416824-++-=4-(2)=ba c a cb cb a ccc aaa bbb cba bac acb ---++3333c b a abc ---=(3)=222111c b a c b a 222222cb ba ac ab ca bc ---++))()((a c c b b a ---=(4)yx y x x y x y yx y x +++yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+= )(233y x +-=2.按自然数从小到大为标准次序,求下列各排列的逆序数:(1)1 2 3 4;(2)4 1 3 2;(3)3 4 2 1;(4)2 4 1 3;(5)1 3 … )12(-n 2 4 … )2(n ;(6)1 3 … )12(-n )2(n )22(-n … 2.解(1)逆序数为0(2)逆序数为4:4 1,4 3,4 2,3 2 (3)逆序数为5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为3:2 1,4 1,4 3 (5)逆序数为2)1(-n n : 3 2 1个 5 2,5 4 2个 7 2,7 4,7 6 3个……………… …)12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个(6)逆序数为)1(-n n3 2 1个 5 2,54 2个……………… …)12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个4 2 1个 6 2,6 4 2个……………… …)2(n 2,)2(n 4,)2(n 6,…,)2(n )22(-n )1(-n 个3.写出四阶行列式中含有因子2311a a 的项.解由定义知,四阶行列式的一般项为43214321)1(p p p p t a a a a -,其中t 为4321p p p p 的逆序数.由于3,121==p p 已固定,4321p p p p 只能形如13□□,即1324或1342.对应的t 分别为10100=+++或22000=+++∴44322311a a a a -和42342311a a a a 为所求.4.计算下列各行列式:(1)7110025*********4;(2)-265232112131412;(3)---ef cf bf de cd bd ae ac ab ;(4)---d c b a100110011001解(1)7110025102021421434327c c c c --0100142310202110214---=34)1(143102211014+-?---=143102211014-- 321132c c c c ++1417172001099-=0(2)2605232112131412-24c c -2605032122130412-24r r -0412032122130412- 14r r -0000032122130412-=0(3)ef cf bf de cd bd ae ac ab ---=e c b e c b e c b adf ---=1 11111111---adfbce =abcdef 4(4)d c b a 100110011001---21ar r +dc b a ab 100110011010---+=12)1)(1(+--dc a ab 10111--+23dc c +010111-+-+cd c ada ab =23)1)(1(+--cdadab +-+111=1++++ad cd ab abcd5.证明: (1)1112222b b a a b ab a +=3)(b a -; (2)bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++=y x z x z y z y x b a )(3 3+;(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ;(4)444422221111d c b a d c b a d c b a ))()()()((d b c b d a c a b a -----=))((d c b a d c +++-?;(5)1221100000100001a x a a a a x x x n n n +-----n n n n a x a x a x ++++=--111 . 证明(1)00122222221312a b a b a a b a ab a c c c c ------=左边a b a b a b a ab 22) 1(22213-----=+21))((a b a a b a b +--= 右边=-=3)(b a(2)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开按第一列左边bzay by ax x by ax bx az z bxaz bz ay y b +++++++ ++++++002y by ax z x bx az y z bz ay x a 分别再分bz ay y x by ax x z bx az z y b +++zy x y x z xz y b y x z x z y z y x a 33+分别再分右边=-+=233)1(yx z x z y zy x b y x z x z y z y x a(3) 2222222222222222)3()2()12()3()2()12()3()2()12()3()2()12(+++++++++++++++ +=d d d d d c c c c c b b b b b a a a a a 左边964412964412964412964412241312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c 964496449644964422222++++++++d d d d c c c c b b b b a a a a 分成二项按第二列964419644196441964412222+++++++++d d d c c c b b b a a a949494949464222224232423d d c c b b a a c c c c c c c c ----第二项第一项06416416416412222=+dd d c c c bb b a a a (4) 444444422222220001ad a c a b a ad a c a b a a d a c a b a ---------=左边=)()()(222222222222222a d d a c c a b b a d a c a b ad a c a b --------- =)11))()((222a d d a c c a b b a d a c ab a d ac a b ++++++--- =?---))()((ad a c a b )()()()()(00122222a b b a d d a b b a c c a b b bd b c a b +-++-++--+ =?-----))()()()((b d b c a d a c a b )()()()(112222b d a b bd d b c a b bc c ++++++++=))()()()((d b c b d a c a b a -----))((d c b a d c +++-(5) 用数学归纳法证明.,1,2212122命题成立时当a x a x a x a x D n ++=+-==假设对于)1(-n 阶行列式命题成立,即,122111-----++++=n n n n n a x a x a x D:1列展开按第则n D1110010001)1(11----+=+-x xa xD D n n n n 右边=+=-n n a xD 1 所以,对于n 阶行列式命题成立.6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转 90、或依副对角线翻转,依次得n nn n a a a a D 11111 =, 11112n nn n a a a a D = ,11113a a a a D n nnn =,证明D D D D D n n =-==-32)1(21,)1(.证明 )det(ij a D =nnnn nn n nn n a a a a a a a a a a D 2211111111111)1(--==∴ =--=--nnn n nnn n a a a a a a a a 331122111121)1()1( nnn n n n a a a a 111121)1()1()1(---=--D D n n n n 2)1()1()2(21)1()1(--+-+++-=-= 同理可证nnn n n n a a a a D 11112)1(2)1(--=D D n n Tn n 2)1(2)1()1()1(---=-= D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(7.计算下列各行列式(阶行列式为k D k ):(1)aaD n 11=,其中对角线上元素都是a ,未写出的元素都是0;(2)xa a ax aa a x D n =; (3) 1111)()1()()1(1111n a a a n a a a n a a a D n n n nn n n ------=---+; 提示:利用范德蒙德行列式的结果. (4) n nn nn d c d c b a b a D000011112=; (5)j i a a D ij ij n -==其中),det(;(6)nn a a a D +++=11111111121 ,021≠n a a a 其中.解(1) aa a a a D n 000100000000 00001000 =按最后一行展开)1()1(1000000000010000)1(-?-+-n n n aa a)1)(1(2)1(--?-+n n n a a a(再按第一行展开)n n n nn a a a+-?-=--+)2)(2(1)1()1(2--=n n a a )1(22-=-a a n(2)将第一行乘)1(-分别加到其余各行,得ax x a ax x a a x x a aa a x D n ------=0000000 再将各列都加到第一列上,得ax ax a x aaa a n x D n ----+=000000000)1( )(])1([1a x a n x n --+=- (3) 从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n 行经)1(-n 次对换换到第2行…,经2)1(1)1(+=++-+n n n n 次行交换,得 nnn n n n n n n n a a a n a a a n a a aD )()1()()1(1111)1(1112)1(1-------=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-?-?-=---=111)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i(4) nnn d c d c b a b a D 011112=nn n n n nd d c d c b a b a a 0000000011111111----展开按第一行0000)1(1111111112c d c d c b a b a b nn n n n nn ----+-+2222 ---n n n n n n D c b D d a 都按最后一行展开由此得递推公式:222)(--=n n n n n n D c b d a D即∏=-=ni i i iin D c b d22)(而 111111112c b d a d c b a D -==得∏=-=ni i i i i n c b d a D 12)((5)j i a ij -=432140123310122210113210)det( --------==n n n n n n n n a D ij n ,3221r r r r --0 432111111111111111111111 --------------n n n n ,,141312c c c c c c +++152423210222102210002100001---------------n n n n n =212)1()1(----n n n (6)nn a a D a +++=11111111121 ,,433221c c c c c c ---n n n n a a a a a a a a a a +-------100 00100010000100010001000011433221展开(由下往上)按最后一列))(1(121-+n n a a a a nn n a a a a a a a a a --------000 00000000000000000000000022433221 nn n a a a a a a a a ----+--000000000000000001133221 ++ nn n a a a a a a a a -------000000000000000001143322n n n n n n a a a a a a a a a a a a 322321121))(1(++++=--- )11)((121∑=+=ni in a a a a8.用克莱姆法则解下列方程组:=+++-=----=+-+=+++;01123,2532,242,5)1(4321432143214321x x x x x x x x x x x x x x x x=+=++=++=++=+.15,065,065,065,165)2(545434323212 1x x x x x x x x x x x x x上一页下一页。
线性代数课后习题答案 (4)
线性代数课后习题答案习题 1问题描述已知线性方程组:2x + y - 3z = 73x - 2y + 6z = -55x + 3y + 4z = 12求解该线性方程组。
解答利用矩阵运算,将线性方程组表示成矩阵形式:[A] [X] = [B]其中, - [A] 是系数矩阵,表示为:2 1 -33 -2 65 3 4•[X] 是未知数矩阵,表示为:xyz•[B] 是常数矩阵,表示为:7-512根据线性方程组的求解公式,我们可以使用矩阵的逆来求解未知数矩阵 [X]:[X] = [A]^{-1} [B]首先,计算系数矩阵 [A] 的逆矩阵 [A]^{-1}。
我们可以使用伴随矩阵的方法来求解逆矩阵。
计算伴随矩阵的步骤如下: 1. 计算矩阵的代数余子式 2. 将代数余子式按矩阵位置组成矩阵 3. 对矩阵进行转置根据以上方法,我们可以计算系数矩阵 [A] 的伴随矩阵 [AdjA]:2 1 -33 -2 65 3 4计算伴随矩阵的逆矩阵 [AdjA]^{-1},我们可以使用伴随矩阵的行列式的倒数来计算:[AdjA]^{-1} = \\frac{1}{det([A])} [AdjA]其中,det([A]) 表示矩阵 [A] 的行列式。
根据矩阵的行列式公式,我们可以计算 det([A]) 的值:det([A]) = 2(-2*4 - 6*3) - 1(3*4 - 6*5) - 3(3*3 - 5*(-2))= -56 + 3 + 39= -14因此,[AdjA]^{-1} = -\\frac{1}{14} [AdjA]= -\\frac{1}{14} \\begin{bmatrix}-40 & -3 & 15 \\\\-29 & 6 & 2 \\\\14 & 3 & -2 \\\\\\end{bmatrix}= \\begin{bmatrix}\\frac{20}{7} & \\frac{3}{14} & -\\frac{15}{14} \\\\\\frac{29}{7} & -\\frac{3}{7} & -\\frac{1}{7} \\\\-\\frac{7}{14} & -\\frac{3}{14} & \\frac{1}{7} \\\\\\end{bmatrix}接下来,我们可以根据逆矩阵[AdjA]^{-1} 和常数矩阵[B] 计算未知数矩阵[X]:[X] = [AdjA]^{-1} [B]= \\begin{bmatrix}\\frac{20}{7} & \\frac{3}{14} & -\\frac{15}{14} \\\\\\frac{29}{7} & -\\frac{3}{7} & -\\frac{1}{7} \\\\-\\frac{7}{14} & -\\frac{3}{14} & \\frac{1}{7} \\\\\\end{bmatrix} \\begin{bmatrix}7 \\\\-5 \\\\12 \\\\\\end{bmatrix}= \\begin{bmatrix}18 \\\\-3 \\\\5 \\\\\\end{bmatrix}因此,线性方程组的解为:x = 18,y = -3,z = 5。
线性代数第二章习题部分答案(
第二章向量组的线性相关性§2-1 §2-2 维向量,线性相关与线性无关(一)一、填空题1. 设3 α1−α +2 α2+α =5 α3+α , 其中α1=(2,5,1,3)T,α2=(10,1,5,10)T, α3=(4,1,−1,1)T, 则α= (1,2,3,4)T .2. 设α1=(1,1,1)T, α2=(2,1,1)T,α3=(0,2,4)T,则线性组合α1−3α2+α3= (−5,0,2)T .3. 设矩阵A= ,设βi为矩阵A的第i个列向量,则2β1+β2−β3= (−2,8,−2)T .二、试确定下列向量组的线性相关性1. α1=(2,1,0)T, α2=(1,2,1)T, α3=(1,1,1)T解:设k1α1+k2α2+k3α3=0,则k1 210 +k2 121 +k3 111 = 000即2k1+k2+k3=0k1+2k2+k3=0k2+k3=0k1+2k2+k3=0−3k2−k3=0k2+k3=0 k1+2k2+k3=0k2+k3=0k3=0 k1=k2=k3=0,线性无关。
2. α1=(1,−1,2)T, α2=(0,0,0)T, α3=(1,4,3)T线性相关三、设有向量组α1=(1,1,0)T, α2=(1,3,−1)T, α3=(5,−3,t)T,问t取何值时该向量组线性相关。
解:设k1α1+k2α2+k3α3=0,则k1 110 +k2 13−1 +k3 5−3t =0即k1+k2+5k3=0k1+3k2−3k3=0−k2+tk3=0k1+k2+5k3=0k2−4k3=0−k2+tk3=0k1+k2+5k3=0k1+3k2−3k3=0(t−4)k3=0所以,t=4, 线性相关; t≠4, 线性无关四、设a1,a2线性无关,a1+b,a2+b线性相关,求向量b用a1,a2线性表示的表示式。
解:因为a1+b,a2+b线性相关,所以存在不全为零的k1,k2,使得k1(a1+b)+k2(a2+b)=0, 即(k1+k2)b=−k1a1−k2a2.又因为a1,a2线性无关,所以k1+k2≠0,于是,b=−k1k1+k2a1−k2k1+k2a2.五、已知向量组α1,α2,⋯,α2n,令β1=α1+α2,β2=α2+α3,⋯,β2n=α2n+α1,求证向量组β1,β2,⋯,β2n线性相关。
线性代数 习题答案2
−a1n − a2 n − ann = (−1) n D 。
a21 an1 a11 a 21 a n1
a21 a31
,则
a22 a32 an 2 a12
3a32 2a22 3a33
a2 n a3n = (−1) n −1 D 。 ann a1n
2a23 = 6d 。
2.设 D =
an1 a11
3a31
⎡0 ⎢0 1)设 A = ⎢ ⎢0 ⎢ ⎣0 ⎛0 ⎜ ⎜0 2 解: A = ⎜ 0 ⎜ ⎜0 ⎝
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0⎤ 0⎥ ⎥ ,求 A 3 , A 4 。 1⎥ ⎥ 0⎦ 0⎞ ⎛0 ⎟⎜ 0⎟ ⎜0 1⎟ ⎜0 ⎟⎜ ⎜ 0⎟ ⎠ ⎝0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0⎞ ⎛0 0 ⎟ ⎜ 0⎟ ⎜0 0 = 1⎟ ⎜0 0 ⎟ ⎜ ⎜ 0⎟ ⎠ ⎝0 0 0 1 0 0 0 1 0 0 1 0 0 0 0⎞ ⎟ 1⎟ ; 0⎟ ⎟ 0⎟ ⎠ 0 0 0 0 0 0 0 0 1⎞ ⎟ 0⎟ ; 0⎟ ⎟ 0⎟ ⎠ 0⎞ ⎟ 0⎟ 。 0⎟ ⎟ 0⎟ ⎠
⎡λ 1 0 ⎤ ⎡λ 0 0 ⎤ ⎡0 1 0⎤ ⎢ 0 λ 1 ⎥ = ⎢ 0 λ 0 ⎥ + ⎢ 0 0 1 ⎥ = λ E + B. ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ 0 0 0 0 0 0 0 λ λ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
五、设 P = ⎢
⎡ 4 6⎤ ⎡ 2 − 3⎤ ⎡1 0⎤ m ,Q = ⎢ ,S = ⎢ 。 ⎥ ⎥ ⎥ ,试求 ( PSQ) ( m 为正整数) 2 4 − 1 2 0 2 ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
线性代数课后习题答案(共10篇)(共6页)
线性代数课后习题答案(共10篇)[模版仅供参考,切勿通篇使用]感恩作文线性代数课后习题答案(一):高等数学线性代数,概率统计第二版课后答案姚孟臣版最佳答案: 您好,我看到您的问题很久没有人来回答,但是问题过期无人回答会被扣分的并且你的悬赏分也会被没收!所以我给你提几条建议: 线性代数课后习题答案(二): 谁知道《线性代数与解析几何教程》(上册)的课后习题答案在哪下?但一定要真实,这本书是大一要学的,樊恽,刘宏伟编科学出版社出版.急不知道线性代数课后习题答案(三):线性代数第五章的课后习题:设a=(a1,a2,...,an)T,a1≠0,A=aaT,证明λ=0是A的n-1重特征值设a=(a1,a2,...,an)T,a1≠0,A=aaT,证明λ=0是A的n-1重特征值答案书上突然冒出一句“显然R(A)=1”,让我非常困惑, R(A) = R(aaT) 线性代数课后习题答案(四):求线性代数(第三版),高等教育出版社的习题参考答案华中科技大学数学系的线性代数课后习题答案书店都有卖的,尤其是华科附近的小书店,盗版一大堆~ 线性代数课后习题答案(五):线性代数:假如一道题目要求某矩阵,如果我求出的矩阵与答案所给的矩阵是等价的,能算是正确答案么?如果只是某两行或某两列位置调换了一下,也不能算是正确答案吗?线性代数课后习题答案应该不正确吧.以我理解矩阵的等价是说 QAP=B A等价到B 是通过了一系列的初等变化,那你求出的矩阵只有一个,要想变成其他还要再变换,就不是原题目的条件了还是不正确啊.行调换或列调换等于在原矩阵左边或右边乘上个初等矩阵线性代数课后习题答案(六):线性代数第五章的课后习题:设a=(a1,a2,...,an)T,a1≠0,A=aaT,证明λ=0是A的n-1重特征值;求出来对角阵只有一个非零特征值,为什么0就是A的N-1重特征值了?再问一下当0是特征值时对应的特征向量有什么特点么?所求得的对角阵与A 相似,所以A 与对角阵有相同的特征值,看对角阵,有一个非零特征值和0(N –1)重.所以A 也是这样应该懂了吧线性代数课后习题答案(七):线性代数问题.设A=E-a^Ta,a=[a1,a2,……,an],aa^T=1,则A不能满足的结论是().^T=A ^T=A^-1 ^T=E ^2=A只会证A对,不要用排除法.A²=E由A,知A^T=AAA^T=A²=(E-a^Ta)(E-a^Ta)=E-a^Ta-a^Ta+a^Taa^Ta=E-2a^Ta+a^T(aa^T)a=E-2a^Ta+a^Ta==E-a^Ta=A所以C错. 线性代数课后习题答案(八):线性代数,对称矩阵的证明题如果n阶实对称矩阵A满足A^3=En,证明:A一定是单位矩阵答案是这样的,有点不懂的地方:因为A^3=En所以A的特征值一定是x^3=1的实根(1.是不是因为对应的多项式为f(x)=x^3-1,所以,f(λ)=λ^3-1=0?)所以λ1=λ2=λ3=1A相似于单位矩阵必有A=En(2.我觉得因为A是对称矩阵所以必有正交阵P,使得P^-1*A*P=P"*A*P=∧,∧的对角元为1,1,1,所以相似于E,可是方阵是n阶,λ只是一个特征值,那么就能相似于En吗?相似的对角阵不是应该也是n阶吗,应该有n个特征值啊!)第一问:因为A是实对称矩阵,所以存在正交矩阵PP"AP=∧∧是A的特征值构成的对角阵A=P∧P"A^3=P∧^3P"=E所以∧^3=E所以λ1^3.λn^3都等于1所以λ1=λ2=..=λn=1第二问:因为有n个特征值,且实对称阵必能相似于对角阵(书上的定理)所以A相似于这n个特征值构成的对角阵P"*A*P=E所以 A=PEP"=PP"=E刚才看错题目了,如果还有什么不明白可以发信给我,给你详细讲解线性代数课后习题答案(九):线性代数线性方程组问题公共解和同解方程组大题,遇到过不少次了答案的作法让人晕作法1:分别求出基础解析方程组1的 k1()+k2()方程组2的:k3()+k4()然后对比,综合得出一个k()方法2:先求出方程组1的解,然后代入方程组2..方法3:做一个联合的系数矩阵,很大的,然后说求出来的解就是它们的. 我的问题在于:上面的方法我自己能想到1 2,但是不清楚所谓的公共解和同解的区别在哪里?另外,为什么很错题,这几个方法不论求公共解还是同解都能通用?什么时候用哪个方法啊?两个方程组的公共解,可用方法3.若是两个方程组同解,方法3就不灵了公共解是两个方程组解的交集,包含在两个方程组的解集中同解方程组,两个方程组的解集一样,即基础解系等价(可互相线性表示)这类题目一般综合性强,需根据具体情况来分析使用哪个方法比如:一个方程组可得出明显的基础解系,那么代入另一方程组就方便一些.你可以看看此类的题目,先自己做做看,用什么方法,再与解答比较,最后总结一下,大有好处若有看不透的题目,就拿来问一下,我帮你分析线性代数课后习题答案(十):一道线性代数的题目题目是判断正误若α1,α2,……αs线性相关,则其中每一个向量都是其余向量的线性组合.我知道答案是错误但是请问反例怎么举拿0和一个非零的放到一起,线性相关,0可以写成非零的那个的线性组合,非零的那个不能写成0的线性组合。
实验2:线性代数实验答案
实验2:线性代数实验答案撰写人姓名:撰写时间:审查人姓名:实验全过程记录实验名称线性代数实验时间2学时地点数学实验室姓名学号同实验者学号一、实验目的1、熟练掌握矩阵的基本运算;2、熟练掌握一般线性方程组的求解;3、掌握最小二乘法的MATLAB实现,矩阵特征值、特征向量的求解以及化二次型为标准型。
二、实验内容:1、利用MATLAB实现矩阵的基本运算;2、利用MATLAB求解一般线性方程组,利用最小二乘法求解超定方程组;3、利用MATLAB化二次型为标准型。
三、实验用仪器设备及材料软件需求:操作系统:Windows XP或更新的版本;实用数学软件:MATLAB 7.0或更新的版本。
硬件需求:Pentium IV 450以上的CPU处理器、512MB以上的内存、5000MB的自由硬盘空间、 CD-ROM驱动器、打印机、打印纸等。
四、实验原理:线性代数理论五、实验步骤:1、计算下列行列式:41241202105200117;>> A=[4 1 2 4;1 2 0 2;10 5 2 0;0 1 1 7];>> det(A) ans =⑵100 110 011 001abcd---。
>> syms a b c d;>> A=[a 1 0 0;-1 b 1 0;0 -1 c 1;0 0 -1 d]; >> det(A) ans =a*b*c*d+a*b+a*d+c*d+12、设212122221A=??,求1098()65A A A A=-+。
>> A=[2 1 2;1 2 2;2 2 1]; >> A^10-6*A^9+5*A^8 ans =2 2 -42 2 -4-4 -4 83、求下列矩阵的逆矩阵:⑴121342541---;>> A=[2 1 2;1 2 2;2 2 1];>> A^10-6*A^9+5*A^8ans =2 2 -42 2 -4-4 -4 8>> A=[1 2 -1;3 4 -2;5 -4 1]; >> inv(A)ans =-2.0000 1.0000 -0.0000 -6.5000 3.0000 -0.5000 -16.0000 7.0000 -1.0000⑵100100λλλ。
清华大学线性代数 讨论课2答案
C B
然后做相应的初
等行变换或列变换即可。
(3) 代入点到平面距离公式直接计算得:d = ±3。
(4) 代入点到平面距离公式直接计算得:d = −4 或 d = 2。
2.设有两条直线
L1
:
x
−1 2
=
y+1 −2
=
nz ,
x = −2 − 4t
L2
:
y z
= 2 + mt = 3 + 2t
(1) 求 m, n,使 L1 L2;
(2) 当 m = n = 1 时,求 L1, L2 之间的最短距离;
,
16 9
)。
附加题
4
1. 讨论利用矩阵的初等变换判断矩阵是否可逆;求 A−1,求 A−1B, BC−1 等的方法;
答:可以将 A 扩展为 n × 2n 的矩阵 (A, I),然后对该矩阵做初等行变换,如前 n 列变成了 I,则
后 n 列必为 A−1。求 A−1B, BC−1 的方法类似,只需将矩阵拓展成 (A, B) 或
。
x = 1 + t
在z
x 坐标面的投影为 L :
y=0 z = −2 − nt
。
(6) 由 (4) 知 L1 与 π 之间的交点坐标也为 (−8, 18, −20).
z
+ t
20
。显然
L1,
L2
的方向向量与
π
的法向量共面。故
可设
L1
的方程为
L1
:
x +r 8
=
y − 18 s
=
ef g 1 −2 −2 = 0 −1 2 −2
y
=
线性代数第二章习题部分答案
线性代数第二章习题部分答案第二章向量组的线性相关性§2-1 §2-2 n维向量,线性相关与线性无关(一)一、填空题1. 设3 α1?α +2 α2+α =5 α3+α , 其中α1=(2,5,1,3)T,α2=(10,1,5,10)T, α3=(4,1,?1,1)T, 则α= (1,2,3,4)T . 2. 设α1=(1,1,1)T, α2=(2,1,1)T,α3=(0,2,4)T,则线性组合α1?3α2+α3= (?5,0,2)T .3. 设矩阵A= 5 ,设βi为矩阵A的第i个列向量,则2β1+β2?β3= (?2,8,?2)T .二、试确定下列向量组的线性相关性1. α1=(2,1,0)T, α2=(1,2,1)T, α3=(1,1,1)T解:设k1α1+k2α2+k3α3=0,则k1 210 +k2 121 +k3 111 = 000即2k1+k2+k3=0k1+2k2+k3=0k2+k3=0 k1+2k2+k3=0?3k2?k3=0k2+k3=0 k1+2k2+k3=0k2+k3=0k3=0 k1=k2=k3=0,线性无关。
2. α1=(1,?1,2)T, α2=(0,0,0)T, α3=(1,4,3)T线性相关三、设有向量组α1=(1,1,0)T, α2=(1,3,?1)T, α3=(5,?3,t)T,问t 取何值时该向量组线性相关。
解:设k1α1+k2α2+k3α3=0,则k1 110 +k2 13?1 +k3 5?3t =0即 k1+k2+5k3=0k1+3k2?3k3=0?k2+tk3=0k1+k2+5k3=0k2?4k3=0?k2+tk3=0k1+k2+5k3=0k1+3k2?3k3=0(t?4)k3=0所以,t=4, 线性相关; t≠4, 线性无关四、设a1,a2线性无关,a1+b,a2+b线性相关,求向量b用a1,a2线性表示的表示式。
解:因为a1+b,a2+b线性相关,所以存在不全为零的k1,k2,使得k1(a1+b)+k2(a2+b)=0, 即(k1+k2)b=?k1a1?k2a2.又因为a1,a2线性无关,所以k1+k2≠0,于是,b=?k1k1+k2a1?k2k1+k2a2.五、已知向量组α1,α2,?,α2n,令β1=α1+α2,β2=α2+α3,?,β2n=α2n+α1,求证向量组β1,β2,?,β2n线性相关。
线性代数课后答案
b2 c2
(b 1)2 (c 1)2
(b 2)2 (c 2)2
(b 3)2 (c 3)2
(c4c3
c3c2
c2c1 得)
d 2 (d 1)2 (d 2)2 (d 3)2
a2 2a 1 2a 3 2a 5
b2 c2
2b 1 2c 1
2b 3 2c 3
2b 5 2c 5
(c4c3
c3c2
得)
d 2 2d 1 2d 3 2d 5
7 计算下列各行列式(Dk 为 k 阶行列式) a1
(1) Dn , 其中对角线上元素都是 a 未写出的元素都 1a
是 0 解
a 0 0 0 1
0 a 0 0 0
Dn
0
0
a
0
0
(按第
n
行展开)
0 0 0 a 0
1 0 0 0 a
0 0 0 0 1
a (1)n1 0
0
an an1 an2 a2 x a1
证明 用数学归纳法证明
当 n2 时
D2
x a2
1 x a1
x2
a1x
a2
命题成立
假设对于(n1)阶行列式命题成立 即
Dn1xn1a1 xn2 an2xan1
则 Dn 按第一列展开 有
1 0 0 0
Dn
xDn1 an(1)n1
x Biblioteka 1 0 0
Dn
ax
0
xa
0
ax 0 0 0 xa
再将各列都加到第一列上 得
x (n1)a a a a
0
Dn
0
xa 0 0 xa
0 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
撰写人姓名:撰写时间:审查人姓名:实验全过程记录实验名称线性代数实验时间2学时地点数学实验室姓名学号同实验者学号一、实验目的1、熟练掌握矩阵的基本运算;2、熟练掌握一般线性方程组的求解;3、掌握最小二乘法的MATLAB实现,矩阵特征值、特征向量的求解以及化二次型为标准型。
二、实验内容:1、利用MATLAB实现矩阵的基本运算;2、利用MATLAB求解一般线性方程组,利用最小二乘法求解超定方程组;3、利用MATLAB化二次型为标准型。
三、实验用仪器设备及材料软件需求:操作系统:Windows XP或更新的版本;实用数学软件:MATLAB 7.0或更新的版本。
硬件需求:Pentium IV 450以上的CPU处理器、512MB以上的内存、5000MB的自由硬盘空间、 CD-ROM驱动器、打印机、打印纸等。
四、实验原理:线性代数理论五、实验步骤:1、计算下列行列式:⑴41241202105200117;>> A=[4 1 2 4;1 2 0 2;10 5 2 0;0 1 1 7];>> det(A) ans =⑵100 110 011 001abcd---。
>> syms a b c d;>> A=[a 1 0 0;-1 b 1 0;0 -1 c 1;0 0 -1 d]; >> det(A)ans =a*b*c*d+a*b+a*d+c*d+12、设212122221A⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,求1098()65A A A Aϕ=-+。
>> A=[2 1 2;1 2 2;2 2 1]; >> A^10-6*A^9+5*A^8ans =2 2 -42 2 -4-4 -4 83、求下列矩阵的逆矩阵:⑴121342541-⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦;>> A=[2 1 2;1 2 2;2 2 1];>> A^10-6*A^9+5*A^8ans =2 2 -42 2 -4-4 -4 8>> A=[1 2 -1;3 4 -2;5 -4 1]; >> inv(A)ans =-2.0000 1.0000 -0.0000 -6.5000 3.0000 -0.5000 -16.0000 7.0000 -1.0000⑵100100λλλ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦。
>> syms a>> A=[a 1 0;0 a 1;0 0 a]; >> inv(A)ans =[ 1/a, -1/a^2, 1/a^3] [ 0, 1/a, -1/a^2] [ 0, 0, 1/a]4、给定线性方程组:Ax b=,0,1,23,5,70,1,8A-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,123b⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,利用\A b或inv(A)*b求出其解。
>> A=[0 -1 2;3 5 7;0 1 8]; b=[1 2 3];x=A\b'x =0.0667-0.20000.4000>> x=inv(A)*b'x =0.0667-0.20000.40005、设4,2,31,1,01,2,3A⎡⎤⎢⎥=⎢⎥-⎢⎥⎣⎦,2AB A B=+,求B。
>> A=[4 2 3;1 1 0;-1 2 3]; B=A/(A-2*eye(3))3.0000 -8.0000 -6.0000 2.0000 -9.0000 -6.0000 -2.0000 12.0000 9.0000 6、把下列矩阵化为行最简形:⑴ 102120313043-⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦; >> A=[1 0 2 -1;2 0 3 1;3 0 4 -3]; >> rref(A)ans =1 0 0 0 0 0 1 0 0 0 0 1⑵ 23137120243283423743--⎡⎤⎢⎥--⎢⎥⎢⎥--⎢⎥-⎣⎦。
>> A=[2 3 1 -3 -7;1 2 0 -2 -4;3 -2 8 3 -4;2 -3 7 4 3]; >> rref(A)ans =1 02 0 0 0 1 -1 0 0 0 0 0 1 0 0 0 0 0 17、利用MATLAB 求向量组[]12135α=-,[]24313α=-,[]33234α=-,[]4411517α=-,[]57670α=-的极大线性无关组,并将其余向量用该极大线性无关组线性表示。
>> a1=[2 -1 3 5]; >> a2=[-4 3 1 3]; >> a3=[3 -2 3 4]; >> a4=[4 -1 15 17]; >> a5=[7 6 -7 0];>> A=[a1' a2' a3' a4' a5']2 -434 7 -1 3 -2 -1 6 3 1 3 15 -7 5 3 4 17 0 >> [R,j]=rref(A) R =1.0000 0 0 0 37.6667 0 1.0000 0 0 -14.0000 0 0 1.0000 0 -43.6667 0 0 0 1.0000 1.6667 j =1 2 3 437.6667*a1+(-14.0000)*a2+(43.6667)*a3+1.6667*a4=a58、a 、b 取何值时,方程组()12342342341234022112321x x x x x x x x a x x b x x x ax +++=⎧⎪++=⎪⎨-+--=⎪⎪+++=-⎩有唯一解,无解,无穷多组解,并求有无穷多组时的一般解。
>> syms a b;A=[1 1 1 1;0 1 2 2;0 -1 a-1 -2;3 2 1 a]; det(A) ans = a^2-1>> a=solve('a^2-1','a') a = 1 -1当a 不等于正负1时,有唯一解;当a=1或-1时有无穷多解.9、某一种甲虫最多可活两年,且其年龄群体分配数的矩阵如下:061/20001/30A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ 如果有600只在第一年龄群体,300只在第二年龄群体,100只在第三年龄群体,则年复一年各年龄群体的甲虫数目是否会改变,从数学上给以解释。
>> x0=[600;300;100];>> A=[0 0 6;1/2 0 0;0 1/3 0]; >> x1=A*x0 x1 = 600 300 100>> x2=A*x1 x2 = 600 300 100 x3 = 600 300 100>> x4=A*x3x4 =600300100>> eig(A)ans =-0.5000 + 0.8660i-0.5000 - 0.8660i1.0000>> x=[600;300;100];d1=1.0000;>> A=[0 0 6;1/2 0 0;0 1/3 0];>> y=A*x;>> y1=d1*x;>> k=1;>> while max(abs(y-y1))>0.1x=y;y=A*x;y1=d1*x;k=k+1;end可知,当k为正整数时,x^(k+1)=x^k .所以,年复一年各年龄群体的甲虫数目不改变10、设定两个一般的4阶上三角矩阵,用MATLAB验证其乘积还是上三角矩阵,其逆矩阵还是上三角矩阵。
>> a=[1 5 7 6;0 5 6 7;0 0 4 6;0 0 0 9];b=[1 8 1 7;0 7 7 4;0 0 1 9;0 0 0 8];a*bans =1 43 43 1380 35 41 1300 0 4 840 0 0 72>> inv(a)ans =1.0000 -1.0000 -0.2500 0.27780 0.2000 -0.3000 0.04440 0 0.2500 -0.16670 0 0 0.111111、求下列矩阵的特征值和特征向量,并判断能否对角化,若能,则将其对角化。
⑴120230302A-⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦;>> a=[-1 2 0;-2 3 0;3 0 2]; >> [v d]=eig(a)v =0 0.3015 0.30150 0.3015 0.30151.0000 -0.9045 -0.9045d =2 0 00 1 00 0 1>> rank(v)ans =2V不满秩,不可相似对角化。
⑵211020413A-⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦;>> a=[-2 1 1;0 2 0;-4 1 3]; >> [v d]=eig(a)v =-0.7071 -0.2425 0.3015 0 0 0.9045 -0.7071 -0.9701 0.3015d =-1 0 00 2 00 0 2>> rank(v)ans =3V满秩,可相似对角化。
⑶542452228A-⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦。
>> a=[5 4 -2;4 5 2;-2 2 8];>> [v d]=eig(a)v =-0.6667 -0.6464 0.37120.6667 -0.7398 -0.0909-0.3333 -0.1868 -0.9241d =-0.0000 0 00 9.0000 00 0 9.0000>> rank(v)ans =3V满秩,可相似对角化。
12、将下列二次型化为标准型:⑴ 2221231231223(,,)2344f x x x x x x x x x x =++--;>> a=[1 -2 0;-2 2 -2;0 -2 3]; >> [v d]=eig(a) v =-0.6667 -0.6667 0.3333 -0.6667 0.3333 -0.6667 -0.3333 0.6667 0.6667 d =-1.0000 0 0 0 2.0000 0 0 0 5.0000⑵ 1231223(,,)22f x x x x x x x =-。
>> a=[0 1 0;1 0 -1;0 -1 0]; >> [v d]=eig(a) v =-0.5000 0.7071 -0.5000 0.7071 -0.0000 -0.7071 0.5000 0.7071 0.5000 d =-1.4142 0 0 0 -0.0000 0 0 0 1.4142成绩评定: 指导教师:年 月 日。