浙江高考解析几何大题
专题08 平面解析几何(解析版)2021年高考数学复习必备之2015-2020年浙江省高考试题分项解析
专题八平面解析几何一、选择题1.(2020·浙江高考真题)已知点O (0,0),A (–2,0),B (2,0).设点P 满足|PA |–|PB |=2,且P 为函数y =234x -图像上的点,则|OP |=()A .222B .4105C 7D .10【答案】D 【解析】因为||||24PA PB -=<,所以点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2,1c a ==可得,222413bc a=-=-=,即双曲线的右支方程为()22103y x x -=>,而点P 还在函数234y x =-由()22210334y x x y x ⎧⎪⎨->-==⎪⎩,解得132332x y ⎧=⎪⎪⎨⎪=⎪⎩,即13271044OP =+=故选:D.2.(2019年浙江卷)渐近线方程为0x y ±=的双曲线的离心率是()A.22B.1C.2D.2【答案】C 【解析】因为双曲线的渐近线为0x y ±=,所以==1a b ,则222c a b =+=,双曲线的离心率2ce a==3.(2018年浙江卷)双曲线的焦点坐标是()A .(−,0),(,0)B .(−2,0),(2,0)C .(0,−),(0,)D .(0,−2),(0,2)【解析】因为双曲线方程为,所以焦点坐标可设为,因为,所以焦点坐标为,选B.4.(2018年浙江卷)已知a,b,e是平面向量,e是单位向量.若非零向量a与e的夹角为,向量b满足b2−4e·b+3=0,则|a−b|的最小值是()A.B.C.2D.【答案】A【解析】设,则由得,由得因此的最小值为圆心到直线的距离减去半径1,为选A.5.(2017年浙江卷)椭圆的离心率为()A.B.C.D.【答案】B【解析】椭圆中.离心率,故选B.6.(2016年浙江理)已知椭圆C1:22xm+y2=1(m>1)与双曲线C2:22xn–y2=1(n>0)的焦点重合,e1,e2分别为C1,C2的离心率,则()A.m>n且e1e2>1B.m>n且e1e2<1C.m<n且e1e2>1D.m<n且e1e2<1【解析】由题意知2211m n -=+,即222m n =+,由于m >1,n >0,可得m >n ,又22212222222111111()(1)(1)(1)(1)2m n e e m n m n n n -+=⋅=-+=-++=42422112n n n n++>+,故121e e >.故选A .7.(2015年浙江文)如图,斜线段与平面所成的角为,为斜足,平面上的动点满足,则点的轨迹是A .直线B .抛物线C .椭圆D .双曲线的一支【答案】C【解析】由题可知,当点运动时,在空间中,满足条件的绕旋转形成一个圆锥,用一个与圆锥高成角的平面截圆锥,所得图形为椭圆.故选C.8.(2015年浙江理)如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则BCF ∆与ACF ∆的面积之比是()A.11BF AF -- B.2211BF AF -- C.11BF AF ++ D.2211BF AF ++【答案】A.【解析】11--===∆∆AF BF x x AC BC S S A B ACF BCF ,故选A.二、填空题9.(2020·浙江高考真题)设直线:(0)l y kx b k =+>,圆221:1C x y +=,222:(4)1C x y -+=,若直线l 与1C ,2C 都相切,则k =_______;b =______.【答案】333-【解析】由题意,12,C C 1=1=,所以||4b k b =+,所以0k =(舍)或者2b k =-,解得,33k b ==-.故答案为:32333-10.(2019年浙江卷)已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是_______.【解析】方法1:由题意可知||=|2OF OM |=c =,由中位线定理可得12||4PF OM ==,设(,)P x y 可得22(2)16x y -+=,联立方程22195x y +=可解得321,22x x =-=(舍),点P 在椭圆上且在x 轴的上方,求得315,22P ⎛⎫-⎪ ⎪⎝⎭,所以1521512PF k ==方法2:焦半径公式应用解析1:由题意可知|2OF |=|OM |=c =,由中位线定理可得12||4PF OM ==,即342p p a ex x -=⇒=-求得315,22P ⎛- ⎝⎭,所以1521512PF k ==.11.(2019年浙江卷)已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆相切于点(2,1)A --,则m =_____,r =______.【答案】(1).2m =-(2).5r =【解析】可知11:1(2)22AC k AC y x =-⇒+=-+,把(0,)m 代入得2m =-,此时||415r AC ==+=12.(2018年浙江卷)已知点P (0,1),椭圆+y 2=m (m >1)上两点A ,B 满足=2,则当m =___________时,点B 横坐标的绝对值最大.【答案】5【解析】设,由得因为A ,B 在椭圆上,所以,与对应相减得,当且仅当时取最大值.13.(2016年浙江文)已知a ∈R ,方程222(2)4850a x a y x y a +++++=表示圆,则圆心坐标是_____,半径是______.【答案】(2,4)--,5【解析】由题意,知22a a =+,12a =-或,当1a =-时,方程为224850x y x y +++-=,即22(2)(4)25x y +++=,圆心为(2,4)--,半径为5,当2a =时,方程为224448100x y x y ++++=,2215((1)24x y +++=-不表示圆.14.(2016年浙江理)若抛物线y 2=4x 上的点M 到焦点的距离为10,则M 到y 轴的距离是_______.【答案】9【解析】1109M M x x +=⇒=.15.(2016年浙江文)设双曲线x 2–23y =1的左、右焦点分别为F 1,F 2.若点P 在双曲线上,且 F 1PF 2为锐角三角形,则|PF 1|+|PF 2|的取值范围是_______.【答案】()【解析】由已知得1,2a b c ===,则2ce a==,设(),P x y 是双曲线上任一点,由对称性不妨设P 在双曲线的右支上,则12x <<,121PF x =+,221PF x =-,12F PF ∠为锐角,则2221212PF PF F F +>,即()()22221214x x ++->,解得72x >,所以722x <<,则()124PF PF x +=∈.16.(2015年浙江文)椭圆()的右焦点关于直线的对称点在椭圆上,则椭圆的离心率是.【答案】【解析】设关于直线的对称点为,则有,解得,所以在椭圆上,即有,解得,所以离心率.17.(2015年浙江理)双曲线2212x y -=的焦距是,渐近线方程是.【答案】32,x y 22±=.【解析】由题意得:2=a ,1=b ,31222=+=+=b ac ,∴焦距为322=c ,渐近线方程为x x a b y 22±=±=.三、解答题18.(2020·浙江高考真题)如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于M (B ,M 不同于A ).(Ⅰ)若116=p ,求抛物线2C 的焦点坐标;(Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.【答案】(Ⅰ)1(,0)32;(Ⅱ)1040【解析】(Ⅰ)当116=p 时,2C 的方程为218y x =,故抛物线2C 的焦点坐标为1(,0)32;(Ⅱ)设()()()112200,,,,,,:A x y B x y M x y I x y m λ=+,由()22222222220x y y my m x y mλλλ⎧+=⇒+++-=⎨=+⎩,1200022222,,222m m my y y x y m λλλλλλ--∴+===+=+++,由M 在抛物线上,所以()222222244222m pm mp λλλλλ=⇒=+++,又22222()220y pxy p y m y p y pm x y m λλλ⎧=⇒=+⇒--=⎨=+⎩,012y y p λ∴+=,2101022x x y m y m p m λλλ∴+=+++=+,2122222mx p m λλ∴=+-+.由2222142, 22x y x px y px ⎧+=⎪⇒+=⎨⎪=⎩即2420x px +-=12x p ⇒==-+222221822228162p p p m p p p λλλλλ+⇒-+=+⋅=++≥+,18p ≥,21160p ≤,1040p ≤,所以,p 的最大值为1040,此时2105(,55A .法2:设直线:(0,0)l x my t m t =+≠≠,()00,A x y .将直线l 的方程代入椭圆221:12x C y +=得:()2222220m y mty t +++-=,所以点M 的纵坐标为22M mty m =-+.将直线l 的方程代入抛物线22:2C y px =得:2220y pmy pt --=,所以02M y y pt =-,解得()2022p m y m+=,因此()220222p m x m+=,由220012x y +=解得22212242160m m p m m ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,所以当105m t ==时,p 取到最大值为1040.19.(2019年浙江卷)如图,已知点(10)F ,为抛物线22(0)y px p =>,点F 为焦点,过点F 的直线交抛物线于,A B 两点,点C 在抛物线上,使得V ABC 的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 右侧.记,AFG CQG △△的面积为12,S S.(1)求p 的值及抛物线的标准方程;(2)求12S S 的最小值及此时点G 的坐标.【答案】(1)1,1x =-;(2)312+,()2,0G .【解析】(1)由题意可得12p=,则2,24p p ==,抛物线方程为24y x =,准线方程为1x =-.(2)设()()1122,,,A x y B x y ,设直线AB 的方程为()1,0y k x k =->,与抛物线方程24y x =联立可得:()2222240k x k x k -++=,故:2222242,1kx x x x +=+=,()12121242,4y y k x x y y k+=+-==-⨯=-,设点C 的坐标为()33,C x y ,由重心坐标公式可得:1233G x x x x ++=321423x k ⎛⎫++ ⎝=⎪⎭,1233G y y y y ++=3143y k =⎛⎫+ ⎪⎝⎭,令0G y =可得:34y k =-,则233244y x k==.即222144123382G k x k k ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝=⎭=,由斜率公式可得:131322311313444AC y y y y k y y x x y y --===-+-,直线AC 的方程为:()33134y y x x y y -=-+,令0y =可得:()()231331331334444Q y y y y y y y y y x x -+-+=+=+=-,故()11112218121323118223G F y S x x y y k k ⎡⎤⎛⎫⎛⎫+-⨯=⨯- ⎪=⨯-⨯ ⎪⎢⎥⎝⎭⎝=⨯⎭⎣⎦,且()()32213311822423Q G y y y S x x y k ⎛⎫+ ⎪⎝⎭⎡⎤=⨯-⨯-=---⎢⎥⎣⎦,由于34y k=-,代入上式可得:12222833y S k k k ⎛⎫=-- ⎪⎝⎭,由12124,4y y y y k +==-可得1144y y k -=,则12144y k y =-,则()()()2211122121112281233222284433y y S y S y y k k k y k -==⎛⎫-+--⎛⎫⨯- ⎭⎪⎝⎭⎪⎝()212142488168y y =--++-3212≥-+.当且仅当21214888y y -=-,即218y =+1y =.此时12144y k y ==-,281223G x k ⎛⎫+= ⎪⎝⎭=,则点G 的坐标为()2,0G .20.(2018年浙江卷)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C上.(Ⅰ)设AB 中点为M ,证明:PM 垂直于y 轴;(Ⅱ)若P 是半椭圆x 2+=1(x<0)上的动点,求△PAB 面积的取值范围.【答案】(Ⅰ)见解析.(Ⅱ).【解析】(Ⅰ)设,,.因为,的中点在抛物线上,所以,为方程即的两个不同的实数根.所以.因此,垂直于轴.(Ⅱ)由(Ⅰ)可知所以,.因此,的面积.因为,所以.因此,面积的取值范围是.21.(2017年浙江卷)如图,已知抛物线.点A,抛物线上的点P(x,y),过点B作直线AP的垂线,垂足为Q(I)求直线AP斜率的取值范围;(II)求的最大值【答案】(I)(-1,1);(II).【解析】(Ⅰ)设直线AP的斜率为k,,因为,所以直线AP斜率的取值范围是.(Ⅱ)联立直线AP与BQ的方程解得点Q的横坐标是.因为|PA|==,|PQ|=,所以.令,因为,所以f(k)在区间上单调递增,上单调递减,因此当k=时,取得最大值.22.(2016年浙江文)如图,设抛物线的焦点为F,抛物线上的点A到y轴的距离等于|AF|–1.(Ⅰ)求p的值;(Ⅱ)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M.求M的横坐标的取值范围.【答案】(Ⅰ)p=2;(Ⅱ).【解析】(Ⅰ)由题意可得,抛物线上点A到焦点F的距离等于点A到直线x=–1的距离,由抛物线的定义得,即p=2.(Ⅱ)由(Ⅰ)得,抛物线的方程为,可设.因为AF不垂直于y轴,可设直线AF:x=sy+1,,由消去x得,故,所以,.又直线AB的斜率为,故直线FN的斜率为.从而得直线FN:,直线BN:.所以.设M(m,0),由A,M,N三点共线得,于是.所以m<0或m>2.经检验,m<0或m>2满足题意.综上,点M的横坐标的取值范围是.23.(2016年浙江理)如图,设椭圆2221x ya+=(a>1).(Ⅰ)求直线y=kx+1被椭圆截得的线段长(用a 、k 表示);(Ⅱ)若任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.【答案】(Ⅰ)2222211a k k a k ++(Ⅱ)202e <≤.【解析】(Ⅰ)设直线1y kx =+被椭圆截得的线段为AP ,由22211y kx x y a =+⎧⎪⎨+=⎪⎩得()2222120a k x a kx ++=,故10x =,222221a kx a k=-+.因此22212222111a k AP k x k a k=+-=++.(Ⅱ)假设圆与椭圆的公共点有4个,由对称性可设y 轴左侧的椭圆上有两个不同的点P ,Q ,满足AP AQ =.记直线AP ,AQ 的斜率分别为1k ,2k ,且1k ,20k >,12k k ≠.由(Ⅰ)知,2211221211a k k AP +=2222222211a k k AQ +=,22221122222212212111a k k a k k a ka k++=所以()()22222222121212120k k k k a a k k ⎡⎤-+++-=⎣⎦.由于12k k ≠,1k ,20k >得()2222221212120k k a a k k+++-=,因此22221211(1)(1)1(2)a a k k ++=+-,①因为①式关于1k ,2k 的方程有解的充要条件是221(2)1a a +->,所以a >.因此,任意以点()0,1A 为圆心的圆与椭圆至多有3个公共点的充要条件为1a <≤,由c e a a==得,所求离心率的取值范围为202e <≤.24.(2015年浙江文)如图,已知抛物线211C 4y x =:,圆()222C 11x y +-=:,过点P(t,0)(t>0)作不过原点O 的直线PA ,PB 分别与抛物线1C 和圆2C 相切,A ,B 为切点.(1)求点A ,B 的坐标;(2)求PAB ∆的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则该直线与抛物线相切,称该公共点为切点.【答案】(1)()2222222,,,11t t A t t B t t ⎛⎫ ⎪++⎝⎭;(2)32t 【解析】(1)由题意可知,直线PA 的斜率存在,故可设直线PA 的方程为()y k x t =-.所以()2{14y k x t y x=-=消去y ,整理得:2440x kx kt -+=.因为直线PA 与抛物线相切,所以216160k kt ∆=-=,解得k t =.所以2x t =,即点()22,A t t.设圆2C 的圆心为()0,1D ,点B 的坐标为()00,x y ,由题意知,点B ,O 关于直线D P 对称,故有00001{ 220y x t x t y =-+-=,解得2002222,11t t x y t t ==++.即点22222,11t t B t t ⎛⎫ ⎪++⎝⎭.(2)由(1)知,,直线PA 的方程为20tx y t --=,所以点B 到直线PA的距离为2d =所以PAB ∆的面积为3122t S AP d =⋅=.25.(2015年浙江理)已知椭圆2212x y +=上两个不同的点A ,B 关于直线12y mx =+对称.(1)求实数m 的取值范围;(2)求AOB ∆面积的最大值(O 为坐标原点).【答案】(1)3m <-或3m >;(2)2.【解析】(1)由题意知0m ≠,可设直线AB 的方程为1y x b m =-+,由22121x y y x bm ⎧+=⎪⎪⎨⎪=-+⎪⎩,消去y ,得222112()102b x x b m m +-+-=,∵直线1y x b m =-+与椭圆2212x y +=有两个不同的交点,∴224220b m ∆=-++>,①,将AB 中点2222(,)22mb m bM m m ++代入直线方程12y mx =+解得2222m b m +=-,②。
浙江高考解析几何大题
浙江高考历年真题之解析几何大题1、(2005年)如图,已知椭圆的中心在坐标原点,焦点12,F F 在x 轴上,长轴12A A 的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程;(Ⅱ)若直线1l :x =m (|m |>1),P 为1l 上的动点,使12F PF ∠ 最大的点P 记为Q ,求点Q 的坐标(用m 表示).解析:(Ⅰ)设椭圆方程为()222210x y a b a b +=>>,半焦距为c ,则2111,a MA a A F a c c =-=- ,()2222224a a a c c a abc ⎧-=-⎪⎪⎪=⎨⎪=+⎪⎪⎩由题意,得 2,3,1a b c ∴=== ,221.43x y +=故椭圆方程为(Ⅱ) 设()0,,||1P m y m >,当00y >时,120F PF ∠=; 当00y ≠时,22102F PF PF M π<∠<∠<,∴只需求22tan F PF ∠的最大值即可设直线1PF 的斜率011y k m =+,直线2PF 的斜率021y k m =-, 002122222212002||tan 1121||1y k k F PF k k m y m y m -∴∠==≤=+-+-⋅- 201||m y -=时,12F PF ∠最大,(2,1,||1Q m m m ∴±->2、(2006年)如图,椭圆by a x 222+=1(a >b >0)与过点A (2,0)、B(0,1)的直线有且只有一个公共点T ,且椭圆的离心率e=23。
(Ⅰ)求椭圆方程;(Ⅱ)设F 1、F 2分别为椭圆的左、右焦点,M 为线段AF 2的中点,求证:∠ATM=∠AF 1T 。
解析:(Ⅰ)过 A 、B 的直线方程为12xy += 因为由题意得⎪⎪⎩⎪⎪⎨⎧+-==+12112222x y b y a x 有惟一解,即0)41(2222222=-+-+b a a x a x a b 有惟一解, 所以2222(44)0(0),a b a b ab ∆=+-=≠故4422-+b a =0; 又因为e 3c =即22234a b a -= , 所以224a b = ;从而得2212,,2a b == 故所求的椭圆方程为22212x y += (Ⅱ)由(Ⅰ)得6c =, 所以 1266((F F ,从而M (1+46,0)由 ⎪⎩⎪⎨⎧+-==+12112222x y y x ,解得 121,x x == 因此1(1,)2T =因为126tan 1-=∠T AF ,又21tan =∠TAM ,62tan =∠2TMF ,得 1266112162tan -=+-=∠ATM ,因此,T AF ATM 1∠=∠3、(2007年)如图,直线y kx b =+与椭圆2214x y +=交于A B ,两点,记AOB △的面积为S .(I )求在0k =,01b <<的条件下,S 的最大值; (II )当2AB =,1S =时,求直线AB 的方程.解析:(I )设点A 的坐标为1()x b ,,点B 的坐标为2()x b ,.由2214x y +=,解得21,221x b =±-所以222121||21112S b x x b b b b =-=-+-=,当且仅当22b =时,.S 取到最大值1. (Ⅱ)解:由2214y kx bx y =+⎧⎪⎨+=⎪⎩得222(41)8440k x kbx b +++-=2216(41)k b ∆=-+ ①|AB 222212216(41)1|1241k b k x x kk -++-=+=+ ②又因为O 到AB 的距离221||1Sd AB k ===+ 所以221b k =+ ③ ③代入②并整理,得424410k k -+=,解得,2213,22k b ==, 代入①式检验,△>0,故直线AB 的方程是2622y x =+或2622y x =-或2622y x =-+或2622y x =--.4、(2008年)已知曲线C 是到点P (83,21-)和到直线85-=y 距离相等的点的轨迹。
浙江解析几何高考真题答案
浙江解析几何高考真题答案在考生中一直备受关注,因为解析几何作为数学科目的一个重要分支,对于考试成绩的影响非常大。
在这篇文章中,我们将深入分析,帮助考生更好地理解和掌握该题型。
首先,回顾近几年浙江高考解析几何的出题特点,我们可以发现它注重考察学生对于几何图形性质的理解和运用。
题目通常涉及到直线、圆、平面等基本几何图形,考察学生对于图形性质的分析和运算技巧。
此外,解析几何还常常与其他数学知识领域相互结合,需要考生具备一定的综合运用能力。
接下来,我们将以一道典型的浙江高考解析几何题为例,进行详细的解答和分析。
假设题目如下:已知平面上一条直线L:2x + y - 3 = 0,点A(1, -1)和B(x, y)在直线L上,且直线AB与x轴和y轴所围成三角形的面积为4平方单位,求动点B的坐标。
首先,我们可以通过一些基本的几何图形性质进行分析。
由题目中给出的直线方程可以得到直线L的斜率为-2,因此可以推断出线段AB的斜率也为-2。
另外,题目中提到直线AB与x轴和y轴所围成的三角形的面积为4平方单位,这个信息可以告诉我们线段AB的长度和高。
根据三角形面积的计算公式S=1/2×底×高,我们可以得到线段AB的长度乘以它与x轴垂直的线段的长度等于8。
又因为直线L与x轴垂直,可以得知它与x轴的交点坐标为(3, 0)。
通过这两个点的坐标,我们可以求得线段AB的长度为4。
接下来,我们需要求得线段AB与x轴和y轴的交点坐标。
由于直线L的方程已知,我们可以将y轴坐标置为0,代入方程解得x=1。
同理,将x轴坐标置为0,代入方程解得y=3。
因此,线段AB与x轴和y轴的交点坐标分别为(1, 0)和(0, 3)。
由此,我们可以得到一个关键的信息,线段AB的长度为4,与x 轴交点为(1, 0),与y轴交点为(0, 3)。
接下来,我们需要根据这些信息来确定动点B的坐标。
根据几何图形的性质,线段AB的中点与直线L的交点一定是平行于x轴的。
(五)解析几何【百强校】浙江省宁波市效实中学2020届浙江高考数学专项复习练习
2020届浙江高考数学专项复习(五)之解析几何1. 若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =A .2B .3C .4D .82. 设F 为双曲线C :22221(0,0)x y a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率为ABC .2D 3. 已知双曲线2214y x -=的两条渐近线分别与抛物线22(0)y px p =>的准线交于A ,B两点.O 为坐标原点.若OAB ∆的面积为1,则p 的值为A .1BC .D .44. 过双曲线2222x y a b-=1(a >0,b >0)的一个焦点F 1作一条渐近线的垂线,垂足为A ,与另一条渐近线交于点B ,若A 恰好是F 1B 的中点,则双曲线的离心率是A BC .2D 5. 已知(0,3)A ,若点P 是抛物线28x y =上任意一点,点Q 是圆22(2)1x y +-=上任意一点,则2||PA PQ的最小值为( )A .4B .1C .2D .16.已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左、右焦点,A 是C 的左顶点,点P在过A的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为 A .23 B .12 C .13D .147.已知抛物线24x y =,斜率为12-的直线交抛物线于A ,B 两点.若以线段AB 为直径的圆与抛物线的准线切于点P ,则点P 到直线AB 的距离为A.2BC .12x x D.8.如图,点是抛物线的焦点,点,分别在抛物线和圆的实线部分上运动,且总是平行于轴,则周长的取值范围是A .B .C .D .9.已知椭圆、双曲线均是以直角三角形ABC 的斜边AC 的两端点为焦点的曲线,且都过B 点,它们的离心率分别为12e e 、,则221211e e +=( ) A .32B .2C .52D .310. 已知椭圆C :22220)1(x y a ba b +=>>的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A BC .3D .1311. 已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是___________.12.设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.13.已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C的两条渐近线分别交于A ,B 两点.若1F A AB=u u u r u u u r ,120F B F B ⋅=u u ur u u u u r ,则C 的离心率为____________.14.在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线x +y =0的距离的最小值是____________.15. 已知点P (0,1),椭圆24x +y 2=m (m >1)上两点A ,B 满足AP u u u u r =2PB u u u u r,则当m =___________时,点B 横坐标的绝对值最大.16.已知椭圆()2222:10x y C a b a b+=>>,O 为坐标原点,点,A B 分别为椭圆C 的左、右视点,P 为椭圆C 上异于,A B 的一点,直线,AP BP 的斜率分别是12,k k 。
历年浙江解析几何高考题
历年浙江解析几何高考题1、(042)直线y=2与直线x+y —2=0的夹角是 ( )(A)4π (B)3π(C)2π(D)43π 2、(046文理)曲线y 2=4x 关于直线x=2对称的曲线方程是( )(A)y 2=8--4x (B)y 2=4x —8 (C)y 2=16--4x (D)y 2=4x —16 3、(0411文理)椭圆)0(12222〉〉=+b a by a x 的左、右焦点分别为F 1、F 2,线段F 1F 2被点(2b,0)分成5:3两段,则此椭圆的离心率为( ) (A)1716(B)17174(C)54(D)5524、(0422文理)(本题满分14分)已知双曲线的中心在原点,右顶点为A (1,0).点P 、Q 在双曲线的右支上,点M (m,0)到直线AP 的距离为1.(Ⅰ)若直线AP 的斜率为k ,且]3,33[∈k ,求实数m 的取值范围;(Ⅱ)当12+=m 时,ΔAPQ 的内心恰好是点M ,求此双曲线的方程.5、(053文理).点(1,-1)到直线x -y +1=0的距离是( )(A) 21 (B) 32(C)2(D)326、(059).函数y =ax 2+1的图象与直线y =x 相切,则a =( )(A)1/8 (B)1/4 (C) 1/2 (D)1 7、(0513文理).过双曲线22221x y a b-=(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲线相交于M 、N 两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于_________.8、(0519).如图,已知椭圆的中心在坐标原点,焦点F 1,F 2在x 轴上,长轴A 1A 2的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程;(Ⅱ)若点P 为l 上的动点,求∠F 1PF 2最大值.(理)(Ⅱ)若直线l 1:x =m (|m |>1),P 为l 1上的动点,使∠F 1PF 2最大的点P 记为Q ,求点Q 的坐标(用m 表示).9、 (063)抛物线28y x =的准线方程是 ( )(A) 2x =- (B) 4x =- (C) 2y =- (D)4y =-10、(0613)双曲线221x y m -=上的离心率是3,则m 等于11、(0619)如图,椭圆by a x 222+=1(a >b >0)与过点A (2,0)B(0,1)的直线有且只有一个公共点T ,且椭圆的离心率e=23(Ⅰ)求椭圆方程;(Ⅱ)设F 1、F 2分别为椭圆的左、右焦点,求证:2121||||||2AT AF AF = 。
浙江省历年高考立体几何大题总汇(题目及答案)
1.(本题满分15分)如图,平面⊥平面,是以为斜边的等腰直角PAC ABC ABC ∆AC 三角形。
分别为的中点,。
,,E F O ,,PA PB PC 16,10AC PA PC ===(I ) 设是的中点,证明:平面;C OC //PC BOE (II )证明:在内存在一点,使⊥平面,并求点到,的距ABO ∆M FM BOE M OA OB 离。
2.如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,P 是侧棱CC 1上的一点,CP=m ,(Ⅰ)试确定m ,使得直线AP 与平面BDB 1D 1所成角的正切值为(Ⅱ)在线段A 1C 1上是否存在一个定点Q ,使得对任意的m ,D 1Q 在平面APD 1上的射影垂直于AP ,并证明你的结论。
3. 如图甲,△ABC 是边长为6的等边三角形,E ,D 分别为AB 、AC 靠近B 、C 的三等分点,点G 为BC 边的中点.线段AG 交线段ED 于F 点,将△AED 沿ED 翻折,使平面AED ⊥平面BCDE ,连接AB 、AC 、AG 形成如图乙所示的几何体。
(I )求证BC ⊥平面AFG ;(II )求二面角B -AE -D的余弦值..4在如图所示的几何体中,平面ABC ,平面ABC ,,EA ⊥DB ⊥AC BC ⊥,M 是AB 的中点.2AC BC BD AE ===(1)求证:;CM EM ⊥(2)求CM 与平面CDE 所成的角5.如图,矩形和梯形所在平面互相垂直,,ABCD BEFC BE CF ∥,,.90BCF CEF ∠=∠=o AD =2EF =(Ⅰ)求证:平面;AE ∥DCF (Ⅱ)当的长为何值时,二面角的大小为?AB A EF C --60o6. 如图,在矩形ABCD 中,点E ,F 分别在线段AB ,AD 上,AE=EB=AF=沿.432=FD 直线EF 将翻折成使平面平面BEF.AEF ∆,'EF A ∆⊥EF A ' (I )求二面角的余弦值;C FD A --' (II )点M ,N 分别在线段FD ,BC 上,若沿直线MN 将四边形MNCD 向上翻折,使C与重合,求线段FM 的长.'A EMACBD DABEFC(第18题)7. 如图,在三棱锥P-ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上,已知BC=8,PO=4,AO=3,OD=2(Ⅰ)证明:AP⊥BC;(Ⅱ)在线段AP上是否存在点M,使得二面角A-MC-B为直二面角?若存在,求出AM的长;若不存在,请说明理由。
解析几何历年高考真题试卷--带详细答案
解析几何高考真题一、单选题(共11题;共22分)1.(2020·新课标Ⅲ·理)设双曲线C :x 2a 2−y 2b 2=1 (a>0,b>0)的左、右焦点分别为F 1 , F 2 , 离心率为 √5 .P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a=( ) A. 1 B. 2 C. 4 D. 82.(2020·新课标Ⅲ·理)设O 为坐标原点,直线x=2与抛物线C :y 2=2px(p>0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为( )A. ( 14 ,0)B. ( 12 ,0) C. (1,0) D. (2,0) 3.(2020·新课标Ⅱ·理)设O 为坐标原点,直线 x =a 与双曲线 C:x 2a2−y 2b 2=1(a >0,b >0) 的两条渐近线分别交于 D,E 两点,若 △ODE 的面积为8,则C 的焦距的最小值为( ) A. 4 B. 8 C. 16 D. 32 4.(2020·天津)设双曲线 C 的方程为x 2a 2−y 2b 2=1(a >0,b >0) ,过抛物线 y 2=4x 的焦点和点 (0,b) 的直线为l .若C 的一条渐近线与 l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为( ) A.x 24−y 24=1 B. x 2−y 24=1 C.x 24−y 2=1 D. x 2−y 2=15.(2019·天津)已知抛物线 的焦点为F ,准线为l.若与双曲线x 2a2−y 2b 2=1(a >0,b >0) 的两条渐近线分别交于点A 和点B , 且 |AB|=4|OF| (O 为原点),则双曲线的离心率为( ) A. √2 B. √3 C. 2 D. √56.(2020·北京)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作 PQ ⊥l 于Q ,则线段 FQ 的垂直平分线( ).A. 经过点OB. 经过点PC. 平行于直线 OPD. 垂直于直线 OP7.(2019·天津)已知抛物线 y 2=4x 的焦点为 F ,准线为 l ,若 l 与双曲线 x 2a 2−y 2b 2=1 (a >0,b >0) 的两条渐近线分别交于点 A 和点 B ,且 |AB|=4|OF| ( O 为原点),则双曲线的离心率为( )A. √2B. √3C. 2D. √5 8.(2019·全国Ⅲ卷理)双曲线 C:x 24−y 22=1 的右焦点为F,点P 在C 的一条渐近线上,O 为坐标原点,若|PO|=|PF|,则△PFO 的面积为( )A. 3√24B. 3√22C. 2√2D. 3√29.已知椭圆E:x 2a 2+y 2b 2=1(a >b >0)的右焦点为F .短轴的一个端点为M ,直线l:3x-4y=0交椭圆E 于A,B两点.若|AF+BF|=4,点M 到直线l 的距离不小于45 , 则椭圆E 的离心率的取值范围是( )A. (0,√32] B. (0,34] C. [√32.1) D. [34,1)10.将离心率为e 1的双曲线c 1的实半轴长a 和虚半轴长b (a ≠b )同时增加m (m >0)个单位长度,得到离心率为e 2的双曲线c 2 , 则( )A. 对任意的a,b , e 1>e 2B. 当a >b 时,e 1>e 2;当a <b 时,e 1<e 2C. 对任意的a,b , e 1<e 2D. 当a >b 时,e 1<e 2;当a <b 时,e 1>e 211.将离心率为e 1的双曲线c 1的实半轴长a 和虚半轴长b (a ≠b )同时增加(m >0)个单位长度,得到离心率为e 2的双曲线c 2 , 则( )A. 对任意的a,b,e 1>e 2B. 当a >b 时,e 1>e 2;当a <b 时,e 1<e 2C. 对任意的a,b,e 1<e 2D. 当a >b 时,e 1<e 2;当a <b 时,e 1>e 2二、填空题(共5题;共6分)12.(2020·新课标Ⅰ·理)已知F 为双曲线 C:x 2a2−y 2b 2=1(a >0,b >0) 的右焦点,A 为C 的右顶点,B 为C上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为________.13.(2019·江苏)在平面直角坐标系 xOy 中,P 是曲线 y =x +4x (x >0) 上的一个动点,则点P 到直线x +y =0的距离的最小值是________. 14.(2019·浙江)已知椭圆x 29+y 25=1 的左焦点为F ,点P 在椭圆且在x 轴上方,若线段PF 的中点在以原点O 为圆心,|OF|为半径的圆上,则直线PF 的斜率是________ 15.(2018·北京)已知椭圆 M:x 2a 2+y 2b 2=1(a >b >0) ,双曲线 N:x 2m 2−y 2n 2=1 . 若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为________;双曲线N 的离心率为________16.(2017·江苏)在平面直角坐标系xOy 中,双曲线x 23﹣y 2=1的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是F 1 , F 2 , 则四边形F 1PF 2Q 的面积是________.三、解答题(共9题;共85分)17.(2020·新课标Ⅲ·理)已知椭圆 C:x 225+y 2m 2=1(0<m <5) 的离心率为√154,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线 x =6 上,且 |BP|=|BQ| , BP ⊥BQ ,求 △APQ 的面积.18.(2020·新课标Ⅱ·文)已知椭圆C 1:x 2a 2+y 2b 2=1 (a>b>0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴重直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD|= 43 |AB|. (1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程.19.(2020·新课标Ⅰ·理)已知A 、B 分别为椭圆E :x 2a 2+y 2=1 (a>1)的左、右顶点,G 为E 的上顶点,AG ⃗⃗⃗⃗⃗ ⋅GB ⃗⃗⃗⃗⃗ =8 ,P 为直线x=6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程; (2)证明:直线CD 过定点.20.(2020·新高考Ⅱ)已知椭圆C : x 2a 2+y 2b 2=1(a >b >0) 过点M (2,3),点A 为其左顶点,且AM 的斜率为 12 , (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.21.(2019·天津)设椭圆x2a2+y2b2=1(a>b>0)的左焦点为F,左顶点为A,顶点为B.已知√3|OA|=2|OB|(O为原点).(Ⅰ)求椭圆的离心率;(Ⅱ)设经过点F且斜率为34的直线l与椭圆在x轴上方的交点为p,圆C同时与x轴和直线l 相切,圆心C在直线x=4上,且OC∥AP,求椭圆的方程.22.(2019·全国Ⅲ卷文)已知曲线C:y= x22,D为直线y= −12上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点:(2)若以E(0,52)为圆心的圆与直线AB相切,且切点为线段AB的中点,求该圆的方程.23.(2019·全国Ⅲ卷理)已知曲线C: y=x22,D为直线y=- 12的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点;(2)若以E(0,52)为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.24.(2019·全国Ⅱ卷文)已知F1,F2是椭圆C:x2a2+y2b2=1(a>b>0)的两个焦点,P为C上的点,O为坐标原点。
浙江省杭州市余杭高级 2022届高三数学解析几何专题(八)
2022届余高高三数学解析几何专题(八)——其他班级_________,姓名__________直线与圆:1.已知P 是圆22:1C x y +=上一点,动点A ,B 的坐标为(,0)A t ,(4,3)+B t ,其中t ∈R .若恰好存在一个点P ,使得PA PB ⊥,则t =______.2.若圆22:2430C x y x y ++-+=关于直线260ax by ++=对称,则ab 的最小值为__________.由点(,)P a b 向圆所作两条切线,切点记为,A B ,当AB 取最小值时,ABP ∆外接圆的半径为__________.3.已知圆22: 1O x y +=上存在点P ,直线: 40l kx y -+=上存在点Q ,使得6PQO π∠=,则实数k的取值范围是() A .[3,3]-B .(,3][3,)-∞-⋃+∞ C .[2,2]- D .(,2][2,)-∞-+∞4.已知圆C :()()22124x y -+-=,若直线l :()()()2122410m x m y m m R -++--=∈与圆C 交于A ,B 两点,则弦AB 长的最小值为______,若圆心C 到直线l 的距离为32,则实数m =______. 5.已知实数,x y 满足2246120x y x y +-++=则22x y --的最小值是()A .55-B .45-C .51-D .55结论、背景类问题: ①第一定义:6.已知定点(,0)P m ,动点Q 在圆2216x y +=上,PQ 的垂直平分线交直线OQ 于点M ,若动点M 的轨迹是双曲线,则m 的值可以是() A .5B .4C .3D .27.已知双曲线224x y -=,1F 是左焦点,1P ,2P 是右支上两个动点,则111212F P F P PP 的最小值是A .4B .6C .8D .16②第三定义:8.如图,点A ,B ,C 在抛物线24y x =上,抛物线的焦点F 在AB 上,AC 与x 轴交于点D ,AF AD =,AB BC ⊥,则FD =()A .32B .4C .23D .39.过点()1,1M 的两条直线1l ,2l 分别与双曲线C :()222211,1x ya b a b-=>>相交于点A ,C 和点B ,D ,满足AM MC λ=,BM MD λ=(0λ>且1λ≠).若直线AB 的斜率2k =,则双曲线C 的离心率是()A B 1C .2D10.已知A ,B ,C 是椭圆2222Γ:1(0)x y a b a b+=>>上不同的三点,且原点O 是△ABC 的重心,若点C 的坐标为2b ⎫⎪⎪⎝⎭,直线AB 的斜率为Γ的离心率为()A .13B C D 11.椭圆()222210x y a b a b+=>>的左焦点为F ,过F 作斜率为1的直线l 交椭圆于A ,B 两点,且8AB =,若过A 的椭圆的切线斜率为1k ,直线OA 斜率为2k (其中O 为坐标原点),当1214k k =-时,椭圆的焦距为_________________. ③结论112m n ep+=: 12.已知抛物线24y x =,焦点记为F ,过点F 作直线l 交抛物线于A ,B 两点,则2||||AF BF -的最小值为________.13.已知椭圆2212x y +=的左右焦点分别为1F ,2F ,A ,B 是椭圆上位于x 轴上方的两点,且直线1AF与直线2BF 平行,若12AF BF -=,则直线AB 与x 轴交点坐标为______.④极点极线:14.过点(1,1)P 的直线l 与椭圆22143x y +=交于点A 和B ,且AP PB λ=.点Q 满足AQ QB λ=-,若O 为坐标原点,则||OQ 的最小值为______.15.已知抛物线24xy =,2)P ,过点G(0,4)的直线l 与抛物线交于A,B ,分别以A,B 为切点的两条切线交于Q 点,求三角形∆PQG 的周长的最小值 转化:16.设椭圆223x y m +=(m >0)的左焦点为F ,点P 在椭圆上且在第一象限,直线PF 与圆222x y r +=相交于A .B 两点,若A ,B 是线段PF 的两个三等分点,则直线PF 的斜率为()A .23+B .23-C .23D .1217.如图,已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为1F 、2F ,以2OF 为直径的圆与双曲线C 的渐近线在第一象限的交点为P ,线段1PF 与另一条渐近线交于点Q ,且2OPF 的面积是OPQ △面积的2倍,则该双曲线的离心率为() A .32B .322C .2D .3立体几何中的轨迹:18.已知点P 是正方体1111ABCD A B C D -表面上一动点,且满足||2||PA PB =,设1PD 与平面ABCD 所成的角为θ,则θ的最大值为() A .4πB .3πC .6π D .2π 19.在正方体1111ABCD A B C D -中,点M ,N 分别是直线AD ,BC 上的动点,点P 是11AB D 内的动点(不包括边界),记直线1A P 与MN 所成角为θ,若θ的最小值为3π,则点P 的轨迹是() A .圆的一部分 B .椭圆的一部分 C .抛物线的一部分 D .双曲线的一部分20.如图,已知正方体1111ABCD A B C D -中,P 为平面11AB D 内一动点,P 到底面ABCD 的距离与到直线1AD 的距离相等,则P 点的轨迹是() A .直线 B .圆C .抛物线D .椭圆向量结合:21.已知平面向量,a b →→,是单位向量,且22a b →→⋅=,平面向量c →满足222c a c b →→→→-+-=,则c c a →→→+-的最小值为______.22.已知平面向量a ,b ,c ,d ,若3==a b ,0a b ⋅=,4++-=a c a c ,1+=b d ,则c d+的最大值是___________.23.已知向量a ,b ,c 满足||1a =,||22b =,0a b ⋅=,||2||c a c b -=-,则|(2)|c b x b a +-+的最小值是______________. 纯运算:24.分别将椭圆1C 的长轴、短轴和双曲线3C 的实轴、虚轴都增加m 个单位长度(0m >),得到椭圆2C 和双曲线4C .记椭圆12,C C 和双曲线34,C C 的离心率分别是1234,,,e e e e ,则() A .12e e >,34e e < B .12e e >,3e 与4e 的大小关系不确定 C . 12e e <,34e e >D .12e e <,3e 与4e 的大小关系不确定25.已知椭圆()2222:10x y C a b a b +=>>和点22,0a b M a ⎛⎫- ⎪⎝⎭,若存在过点M 的直线交C 于P ,Q 两点,满足102PM MQ λλ⎛⎫=<<⎪⎝⎭,则椭圆C 的离心率取值范围是()A .⎛ ⎝⎭B .⎝⎭C .⎫⎪⎪⎝⎭D .⎫⎪⎪⎝⎭26.设椭圆2222:1(0)x y C a b a b +=>>的右焦点为F ,椭圆C 上的两点,A B 关于原点对称,且满足0,||||2||FA FB FB FA FB ⋅=≤≤,则椭圆C 的离心率的取值范围是()A .B .C .1]D .1,1)-。
浙江高考历年真题之解析几何大题(文科)
浙江高考历年真题之解析几何大题(教师版)1、(2005年)如图,已知椭圆的中心在坐标原点,焦点12,F F 在x 轴上,长轴A 1A 2的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程;求椭圆的方程;(Ⅱ)若点P 在直线l 上运动,求∠F 1PF 2的最大值.的最大值.解析:(Ⅰ)设椭圆方程为()222210x y a b a b +=>>,半焦距为c ,则2111,a MA a A F a c c =-=-,()2222224aa a c c a abc ì-=-ïïï=íï=+ïïî由题意由题意,,得 2,3,1a b c \=== ,22 1.43x y +=故椭圆方程为(Ⅱ)()004,,0P y y -¹设2、(2006年)如图,椭圆by a x 222+=1(a >b >0)与过点A (2,0)B(0,1)的直线有且只有一个公共点T 且椭圆的离心率e=23. (Ⅰ)求椭圆方程;求椭圆方程;(Ⅱ)设F 1、F 2分别为椭圆的左、右焦点,求证:2121||||||2AT AF AF = 。
解析:(Ⅰ)过(Ⅰ)过 A 、B 的直线方程为的直线方程为 12x y +=因为由题意得22221112x y a b y x ì+=ïï+íï=-+ïî有惟一解.即2222221()04b a x a x a b +-+=有惟一解, 所以2222(44)0(0),a b a b ab D =+-=¹, 故22(44)0a b +-=又因为又因为 32c =,即22234a b a -= , 所以224a b = ,从而得2212,,2a b == 故所求的椭圆方程为22212x y +=. (Ⅱ)由(Ⅰ)得62c =,所以所以 1266(,0),(,0)22F F - 由 22221112x y a b y x ì+=ïï+íï=-+ïî解得解得 121,x x ==, 因此1(1,)2T =.从而从而 254AT =, 因为1252AF AF ×=, 所以21212AT AF AF =× 3、(2007年)如图,直线y kx b =+与椭圆2214x y +=交于A B ,两点,记AOB △的面积为S .(I )求在0k =,01b <<的条件下,S 的最大值;的最大值; (II )当2AB =,1S =时,求直线AB 的方程.的方程.解析:(I )设点A 的坐标为1()x b ,,点B 的坐标为2()x b ,.由2214x y +=,解得21,221x b =±-所以222121||21112S b x x b b b b =-=-£+-=,当且仅当22b =时,.S 取到最大值1.(Ⅱ)解:由2214y kx bx y =+ìïí+=ïî得222(41)8440k x kbx b +++-=2216(41)k b D =-+ ①|AB |=222212216(41)1||1241k b k x x kk -++-=+=+ ②又因为O 到AB 的距离2||21||1b Sd AB k===+ 所以221b k =+ ③③代入②并整理,得424410k k -+=,解得,2213,22k b ==,代入①式检验,△>0,故直线AB 的方程是的方程是2622y x =+或2622y x =-或2622y x =-+或2622y x =--.4、(2008年)已知曲线C 是到点P (83,21-)和到直线85-=y 距离相等的点的轨迹。
浙江省历年高考立体几何大题总汇(题目与答案)
1.(本题满分15 分)如图,平面PAC ⊥平面ABC ,ABC 是以AC 为斜边的等腰直角三角形。
E,F ,O分别为PA, PB, PC 的中点,AC 16, PA PC 10 。
(I )设 C 是OC 的中点,证明:PC // 平面BOE ;(II )证明:在ABO 内存在一点M ,使FM ⊥平面BOE ,并求点M 到OA , OB 的距离。
zyx2.如图,在棱长为 1 的正方体ABCD -A1B1C1D1 中,P 是侧棱CC1 上的一点,CP=m ,(Ⅰ)试确定m,使得直线AP 与平面BDB 1D1 所成角的正切值为 3 2 ;(Ⅱ)在线段A1C1 上是否存在一个定点Q,使得对任意的m,D1Q 在平面APD 1 上的射影垂直于AP,并证明你的结论。
3. 如图甲,△ABC 是边长为 6 的等边三角形,E,D 分别为AB 、AC 靠近B、C 的三等分点,点G 为BC 边的中点.线段AG 交线段ED 于F 点,将△AED 沿ED 翻折,使平面AED ⊥平面BCDE ,连接AB 、AC 、AG 形成如图乙所示的几何体。
(I)求证BC⊥平面AFG ;(II)求二面角B-AE -D 的余弦值..4 在如图所示的几何体中,EA 平面ABC,DB 平面ABC,AC BC ,AC BC BD 2AE ,M是AB的中点.(1)求证:CM EM ;D(2)求CM与平面CDE所成的角ECAMB4.如图,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE ∥CF ,BCF CEF ,AD 3,E F 2.90D(Ⅰ)求证:AE ∥平面DCF ;AC (Ⅱ)当AB 的长为何值时,二面角 A EF C 的大小为60 ?BF E(第18 题)25.如图,在矩形ABCD 中,点E,F 分别在线段AB ,AD 上,AE=EB=AF= FD 4.沿直3线EF 将AEF 翻折成A' EF , 使平面A' EF 平面BEF.(I)求二面角A' FD C 的余弦值;(II )点M ,N 分别在线段FD,BC 上,若沿直线MN 将四边形MNCD 向上翻折,使 C与A' 重合,求线段FM 的长.6.如图,在三棱锥P-ABC 中,AB =AC,D 为BC 的中点,PO⊥平面ABC ,垂足O 落在线段AD 上,已知BC=8,PO=4,AO=3,OD=2(Ⅰ)证明:AP⊥BC;(Ⅱ)在线段AP 上是否存在点M ,使得二面角A-MC-B 为直二面角?若存在,求出AM 的长;若不存在,请说明理由。
j浙江省高考中的解析几何大题
高二理科数学寒假网络课程(五)--浙江省高考中的解析几何大题浙江省近几年高考中,解析几何大题难度较大,作为压轴题能较好的区分学生的程度,题目新颖,变化多端,掌握起来没有固定套路。
2013年:椭圆,圆,直线综合.(1)求椭圆方程 (2)最值条件下求直线方程2012年:椭圆,直线综合. (1)求椭圆方程 (2)最值条件下求直线方程2011年:抛物线,圆,直线综合. (1)求点到准线距离 (2)求直线方程2010年:椭圆,圆,直线综合. (1)求直线方程 (2)求参数取值范围2009年:椭圆,抛物线,直线综合.(1)求椭圆方程 (2)求参数的最值(2013年浙江)如图,点P(0,-1)是椭圆C1:22221x ya b+=(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径,l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A,B两点,l2交椭圆C1于另一点D.(1)求椭圆C1的方程;(2)求△ABD面积取最大值时直线l1的方程.如图,点P (0,-1)是椭圆C 1:22221x y a b+=(a >b >0)的一个顶点,C 1的长轴是圆C 2:x 2+y 2=4的直径,l 1,l 2是过点P 且互相垂直的两条直线,其中l 1交圆C 2于A ,B 两点,l 2交椭圆C 1于另一点D . (1)求椭圆C 1的方程;(2)求△ABD 面积取最大值时直线l 1的方程.解:(1)由题意得1,2.b a =⎧⎨=⎩ 所以椭圆C 的方程为24x +y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),D (x 0,y 0).由题意知直线l 1的斜率存在,不妨设其为k , 则直线l 1的方程为y =kx -1.又圆C 2:x 2+y 2=4,故点O 到直线l 1的距离211d k =+,所以22243||2421k AB d k +=-=+. 又l 2⊥l 1,故直线l 2的方程为x +ky +k =0. 由220,44,x ky k x y ++=⎧⎨+=⎩ 得(4+k 2)x 2+8kx =0, 故0284kx k=-+. 所以|PD |=22814k k ++. 设△ABD 的面积为S ,则S =12|AB |·|PD |=228434k k ++, 所以S =2232134343k k +++≤22321613131324343k k =+⋅+,当且仅当102k =±时取等号. 所以所求直线l 1的方程为y =102x ±-1.(2012年浙江) 如图,椭圆C :2222+1x y a b =(a >b >0)的离心率为12,其左焦点到点P (2,1)的距离为10.不过原点O 的直线l 与C 相交于A ,B 两点,且线段AB被直线OP 平分. (1)求椭圆C 的方程;(2) 求∆ABP 的面积取最大时直线l 的方程.如图,椭圆C :2222+1x y a b =(a >b >0)的离心率为12,其左焦点到点P (2,1)的距离为10.不过原点O 的直线l 与C 相交于A ,B 两点,且线段AB 被直线OP 平分.(1)求椭圆C 的方程;(2) 求∆ABP 的面积取最大时直线l 的方程. (1)由题:12c e a ==; (1)左焦点(﹣c ,0)到点P (2,1)的距离为:22(2)1d c =++=10. (2)由(1) (2)可解得:222431a b c ===,,.∴所求椭圆C 的方程为:22+143x y =.(2)易得直线OP 的方程:y =12x ,设A (x A ,y A ),B (x B ,y B ),R (x 0,y 0).其中y 0=12x 0. ∵A ,B 在椭圆上,∴220220+12333434422+143A A A B A B AB A B A B B B x y x y y x x k x x y y y x y ⎧=⎪-+⎪⇒==-=-=-⎨-+⎪=⎪⎩. 设直线AB 的方程为l :y =﹣32x m +(m ≠0),代入椭圆:2222+143333032x y x mx m y x m ⎧=⎪⎪⇒-+-=⎨⎪+⎪⎩=-.显然222(3)43(3)3(12)0m m m ∆=-⨯-=->. ∴﹣12<m <12且m ≠0.由上又有:A B x x +=m ,A B y y +=233m -.∴|AB |=1AB k +|A B x x -|=1AB k +2()4A B A B x x x x +-=1ABk +243m -.∵点P (2,1)到直线l 的距离为:31211ABABm m d k k -+-+==++.∴S ∆ABP =12d |AB |=12|m +2|243m -,当|m +2|=243m -,即m =﹣3 or m =0(舍去)时,(S ∆ABP )max =12.此时直线l 的方程y =﹣3122x +.(2011年浙江)已知抛物线1:C2x=y,圆2:C22(4)1x y+-=的圆心为点M。
专题15:立体几何高考真题浙江卷赏析(原卷版)
专题15:立体几何高考真题浙江卷赏析(原卷版)题型一:三视图1.2019年浙江省高考数学试卷祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容易”称为祖暅原理,利用该原理可以得到柱体体积公式V Sh =柱体,其中S 是柱体的底面积,h 是柱体的高,若某柱体的三视图如图所示,则该柱体的体积是( )A .158B .162C .182D .322.2017年全国普通高等学校招生统一考试数学(浙江卷)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是A .+12πB .+32πC .3+12πD .3+32π 3.2014年全国普通高等学校招生统一考试文科数学(浙江卷) 某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )A .83cmB .123cmC .3233cm D .4033cm4.2014年全国普通高等学校招生统一考试文科数学(浙江卷) 某几何体的三视图(单位:cm )如图所示,则该几何体的体积是( )A .B .C .D .5.2014年全国普通高等学校招生统一考试理科数学(浙江卷) 某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是A .90B .129C .132D .138题型二:点线面的基本关系6.2011年浙江省普通高等学校招生统一考试文科数学若直线l 不平行于平面a ,且l a ⊄,则 A .a 内的所有直线与l 异面 B .a 内不存在与l 平行的直线 C .a 内存在唯一的直线与l 平行 D .a 内的直线与l 都相交7.(2013•浙江)设m 、n 是两条不同的直线,α、β是两个不同的平面,( ) A .若m ∥α,n ∥α,则m ∥n B .若m ∥α,m ∥β,则α∥β C .若m ∥n ,m ⊥α,则n ⊥α D .若m ∥α,α⊥β,则m ⊥β8.2014年全国普通高等学校招生统一考试文科数学(浙江卷) 设、是两条不同的直线,、是两个不同的平面,则( )A .若,,则B .若,,则C .若,,,则D .若,,,则9.2015年全国普通高等学校招生统一考试文科数学(浙江卷)设α,β是两个不同的平面,l ,m 是两条不同的直线,且l α⊂,m β⊂( ) A .若l β⊥,则αβ⊥ B .若αβ⊥,则l m ⊥ C .若//l β,则//αβD .若//αβ,则//l m10.2016年全国普通高等学校招生统一考试文科数学(浙江卷)已知互相垂直的平面αβ,交于直线l.若直线m ,n 满足m ∥α,n ⊥β,则 A .m ∥lB .m ∥nC .n ⊥lD .m ⊥n题型三:夹角问题11.浙江省2019年普通高等学校招生全国统一考试数学试题已知三棱锥P ABC -中,ABC ∆为正三角形,PA PB PC >>,且P 在底面ABC 内的射影在ABC ∆的内部(不包括边界),二面角PAB C ,二面角P BC A --,二面角P AC B --的大小分别为α,β,γ,则( ) A .αβγ>>B .γαβ>>C .αγβ<<D .αβγ<<12.2015年全国普通高等学校招生统一考试理科数学(浙江卷)如图,已知ABC ∆,D 是AB 的中点,沿直线CD 将ACD ∆折成A CD ∆',所成二面角A CD B '--的平面角为α,则( )A .A DB α∠'≤ B .A DB α∠'≥C .A CB α∠'≤D .A CB α∠'≤13.2017年全国普通高等学校招生统一考试数学(浙江卷)如图,已知正四面体D –ABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP=PB ,2BQ CRQC RA==,分别记二面角D –PR –Q ,D –PQ –R ,D –QR –P 的平面角为α,β,γ,则A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α【答案】B14.2018年全国普通高等学校招生统一考试数学(浙江卷)已知四棱锥S ABCD -的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为1θ,SE 与平面ABCD 所成的角为2θ,二面角S AB C --的平面角为3θ,则( ) A .123θθθ≤≤ B .321θθθ≤≤ C .132θθθ≤≤ D .231θθθ≤≤15.2020年浙江省高考数学试卷如图,三棱台ABC—DEF中,平面ACFD⊥平面ABC,∠ACB=∠ACD=45°,DC =2BC.(I)证明:EF⊥DB;(II)求DF与面DBC所成角的正弦值.。
历年浙江解析几何高考题
历年浙江解析几何高考题1、( 042)直线y=2与直线x+y — 2=0的夹角是分成5: 3两段,则此椭圆的离心率为2 2x ya b相交于 MN 两点,以 MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于& ( 0519).如图,已知椭圆的中心在坐标原点,焦点F 1, F 2在x 轴上,长轴AA 的长为4,左准线I 与x 轴的交点为 M |MA | : lAEI = 2:1 . ( I )求椭圆的方程;(n )若点P 为I 上的动点,求/ RPR 最大值.(理)(n )若直线11: x = m(|m|> 1), P 为I 匕上的动点,使/ F 空2最大的点P 记为Q ,求点 Q 的坐标(用m 表示).(A) X = -2 (B) X = -4(C) y = -2(D) y 一4(A)- 4 2、( 046文理)曲线2(A)y =8--4x 3、(0411文理)椭圆(B) I (C)-3 2y 2=4x 关于直线x=2对称的曲线方程是2 2 (B)y =4x — 8 (C)y =16--4x 2 2笃 爲1(a b 0)的左、右焦点分别为 a bF i 、(D)竺 4()2(D)y =4x —16F 2,线段F 1F 2被点 / b c 、 ,0)2(A) 16 4 17(C) 4171754、( 0422文理)(本题满分14分)已知双曲线的中心在原点,右顶点为 在双曲线的右支上,点M(m,0)到直线AP 的距离为1.仝.3],求实数m 的取值范围;3…(B) 4 17 (D) 2 55A (1, 0) •点 P 、Q(I)若直线AP 的斜率为k ,且k .[ (n)当 m ~2 • 1 时,△ APQ 的内心恰好是点 M 求此双曲线的方程•5、( 053 文理).点(1 ,-1)到直线x — y + 1 = 0的 (A)(C)26、(059). 函数 y = ax 2+ 1 的图象与直线 y = x 相切,则a =((A)1/8 (B)1/4(C) 1/2 (D)17、( 0513文理).过双曲线 =1( a > 0, b > 0)的左焦点且垂直于 x 轴的直线与双曲线(D)3 2是()10、(0613)2 x 双曲线m2-y=1上的离心率是3,则m等于11、(0619)如图,椭圆=1 (a> b> 0)与过点 A (2, 0) B(0,1)的直线有且只有一个公共点T,且椭圆的离心率e=——2(I)求椭圆方程;(n)设F1、F2分别为椭圆的左、右焦点, 求证: | AT |2= AF1||AF2|。
浙江高考历年真题之解析几何大题(理科)
浙江高考历年真题之解析几何大题(教师版)1、(2005年)如图,已知椭圆的中心在坐标原点,焦点12,F F 在x 轴上,长轴12A A 的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程;(Ⅱ)若直线1l :x =m (|m |>1),P 为1l 上的动点,使12F PF ∠ 最大的点P 记为Q ,求点Q 的坐标(用m 表示).解析:(Ⅰ)设椭圆方程为()222210x y a b a b +=>>,半焦距为c ,则2111,a MA a A F a c c =-=- ,()2222224a a a c c a abc ⎧-=-⎪⎪⎪=⎨⎪=+⎪⎪⎩由题意,得2,1a b c ∴=== ,221.43x y +=故椭圆方程为(Ⅱ) 设()0,,||1P m y m >,当00y >时,120F PF ∠=; 当00y ≠时,22102F PF PF M π<∠<∠<,∴只需求22tan F PF ∠的最大值即可设直线1PF 的斜率011y k m =+,直线2PF 的斜率021y k m =-,021********||tan 11y k k F PF k k m y -∴∠==≤=+-+0||y =时,12F PF ∠最大,(,,||1Q m m ∴>2、(2006年)如图,椭圆by a x 222+=1(a >b >0)与过点A (2,0)、B(0,1)的直线有且只有一个公共点T ,且椭圆的离心率e=23。
(Ⅰ)求椭圆方程;(Ⅱ)设F 1、F 2分别为椭圆的左、右焦点,M 为线段AF 2的中点,求证:∠ATM=∠AF 1T 。
解析:(Ⅰ)过 A 、B 的直线方程为12xy += 因为由题意得⎪⎪⎩⎪⎪⎨⎧+-==+12112222x y b y a x 有惟一解,即0)41(2222222=-+-+b a a x a x a b 有惟一解, 所以2222(44)0(0),a b a b ab ∆=+-=≠故4422-+b a =0又因为e 2c =即22234a b a -= , 所以224a b = 从而得2212,,2a b == 故所求的椭圆方程为22212x y +=(Ⅱ)由(Ⅰ)得2c =, 所以12(,0),(22F F -,从而M (1+46,0) 由 ⎪⎩⎪⎨⎧+-==+12112222x y y x ,解得 121,x x == 因此1(1,)2T =因为126tan 1-=∠T AF ,又21tan =∠TAM ,62tan =∠2TMF ,得 1266112162tan -=+-=∠ATM ,因此,T AF ATM 1∠=∠ 3、(2007年)如图,直线y kx b =+与椭圆2214x y +=交于A B ,两点,记AOB △的面积为S . (I )求在0k =,01b <<的条件下,S 的最大值; (II )当2AB =,1S =时,求直线AB 的方程.解析:(I )设点A 的坐标为1()x b ,,点B 的坐标为2()x b ,.由2214x y +=,解得1,2x =±所以22121||2112S b x x b b =-=≤+-=,当且仅当2b =时,.S 取到最大值1. (Ⅱ)解:由2214y kx b x y =+⎧⎪⎨+=⎪⎩得222(41)8440k x kbx b +++-= 2216(41)k b ∆=-+ ①|AB12|2x x -== ②又因为O 到AB的距离21||Sd AB === 所以221b k =+ ③ ③代入②并整理,得424410k k -+=,解得,2213,22k b ==, 代入①式检验,△>0,故直线AB 的方程是22y x =+或22y x =-或22y x =-+或22y x =--. 4、(2008年)已知曲线C 是到点P (83,21-)和到直线85-=y 距离相等的点的轨迹。
2005-2017年浙江高考理科数学历年真题之解析几何大题 教师版
1 1
,解得
x1 x2 1,
因此 T (1, 1) 2
2
因为 tan AF1T
6 2
1,又 tan TAM
1 2
,
tan
TMF2
2 ,得 6
2 1
tan ATM 6 1
2 1
6 2
1,因此, ATM
AF1T
6
3、(2007 年)如图,直线 y kx b 与椭圆 x2 y2 1交于 A,B 两点,记 △AOB 的面积为 S . 4
x 2 2
y .
所以 |
QA |2 | QM
|2
|
MA |2
(x 1)2 4(1 k 2)
(kx
2)2
.
| QA | | x 1|| kx 2 | , | QB |2
2 1 k2
| QA |
2(1 k 2 ) 1 k 2 x 1
|k|
x 2
.
k
当 k 2 时, | QB |2 5 5 , | QA |
(Ⅱ)若直线 l1 :x=m(|m|>1),P 为 l1 上的动点,使 F1PF2
最大的点 P 记为 Q,求点 Q 的坐标(用 m 表示).
解析:(Ⅰ)设椭圆方程为
x2 a2
y2 b2
1a
b
0 ,半焦距为 c ,
则
MA1
a2 c
a, A1F1
ac
,由题意,得
a2 2ca
a 4
2
a
c
a2 b2 c2
2
1b2
所以
S
1 2
b
|
x1
x2
|
2b
1 b 2 b 2 1 b 2 1 ,当且仅当 b
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江高考历年真题之解析几何大题1、(2005年)如图,已知椭圆的中心在坐标原点,焦点12,F F 在x 轴上,长轴12A A 的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程;(Ⅱ)若直线1l :x =m (|m |>1),P 为1l 上的动点,使12F PF ∠ 最大的点P 记为Q ,求点Q 的坐标(用m 表示).解析:(Ⅰ)设椭圆方程为()222210x y a b a b +=>>,半焦距为c ,则2111,a MA a A F a c c =-=- ,()2222224a a a c c a abc ⎧-=-⎪⎪⎪=⎨⎪=+⎪⎪⎩由题意,得 2,3,1a b c ∴=== ,221.43x y +=故椭圆方程为(Ⅱ) 设()0,,||1P m y m >,当00y >时,120F PF ∠=; 当00y ≠时,22102F PF PF M π<∠<∠<,∴只需求22tan F PF ∠的最大值即可设直线1PF 的斜率011y k m =+,直线2PF 的斜率021y k m =-, 002122222212002||tan 1121||1y k k F PF k k m y m y m -∴∠==≤=+-+-⋅- 201||m y -=时,12F PF ∠最大,(2,1,||1Q m m m ∴±->2、(2006年)如图,椭圆by a x 222+=1(a >b >0)与过点A (2,0)、B(0,1)的直线有且只有一个公共点T ,且椭圆的离心率e=23。
(Ⅰ)求椭圆方程;(Ⅱ)设F 1、F 2分别为椭圆的左、右焦点,M 为线段AF 2的中点,求证:∠ATM=∠AF 1T 。
解析:(Ⅰ)过 A 、B 的直线方程为12xy += 因为由题意得⎪⎪⎩⎪⎪⎨⎧+-==+12112222x y b y a x 有惟一解,即0)41(2222222=-+-+b a a x a x a b 有惟一解, 所以2222(44)0(0),a b a b ab ∆=+-=≠故4422-+b a =0; 又因为e 3c =即22234a b a -= , 所以224a b = ;从而得2212,,2a b == 故所求的椭圆方程为22212x y += (Ⅱ)由(Ⅰ)得6c =, 所以 1266((F F ,从而M (1+46,0)由 ⎪⎩⎪⎨⎧+-==+12112222x y y x ,解得 121,x x == 因此1(1,)2T =因为126tan 1-=∠T AF ,又21tan =∠TAM ,62tan =∠2TMF ,得 1266112162tan -=+-=∠ATM ,因此,T AF ATM 1∠=∠3、(2007年)如图,直线y kx b =+与椭圆2214x y +=交于A B ,两点,记AOB △的面积为S .(I )求在0k =,01b <<的条件下,S 的最大值; (II )当2AB =,1S =时,求直线AB 的方程.解析:(I )设点A 的坐标为1()x b ,,点B 的坐标为2()x b ,.由2214x y +=,解得21,221x b =±-所以222121||21112S b x x b b b b =-=-+-=,当且仅当22b =时,.S 取到最大值1. (Ⅱ)解:由2214y kx bx y =+⎧⎪⎨+=⎪⎩得222(41)8440k x kbx b +++-=2216(41)k b ∆=-+ ①|AB 222212216(41)1|1241k b k x x kk -++-=+=+ ②又因为O 到AB 的距离221||1Sd AB k ===+ 所以221b k =+ ③ ③代入②并整理,得424410k k -+=,解得,2213,22k b ==, 代入①式检验,△>0,故直线AB 的方程是2622y x =+或2622y x =-或2622y x =-+或2622y x =--.4、(2008年)已知曲线C 是到点P (83,21-)和到直线85-=y 距离相等的点的轨迹。
是过点Q (-1,0)的直线,M 是C 上(不在l 上)的动点;A 、B 在l 上,,MA l MB x ⊥⊥ 轴(如图)。
(Ⅰ)求曲线C 的方程; (Ⅱ)求出直线l 的方程,使得QAQB2为常数。
解析:(Ⅰ)设()N x y ,为C上的点,则||NP =N 到直线58y =-的距离为58y +.58y =+.化简,得曲线C 的方程为21()2y x x =+.(Ⅱ)解法一:设22x x M x ⎛⎫+ ⎪⎝⎭,,直线:l y kx k =+,则()B x kx k +,,从而||1|QB x =+.在Rt QMA △中,因为222||(1)14x QM x ⎛⎫=++ ⎪⎝⎭,2||MA=所以222222(1)||||||(2)4(1)x QA QM MA kx k +=-=++ . ||QA =22||2(112||||QB k x QA k x k++=+g .当2k =时,2||||QB QA =l 方程为220x y -+=.解法二:设22x x M x ⎛⎫+ ⎪⎝⎭,,直线:l y kx k =+,则()B x kx k +,,从而 ||1|QB x =+.过(10)-,垂直于l 的直线11:(1)l y x k =-+.因为||||QA MH =,所以||QA = 22||2(112||||QB k x QA k x k++=+g .当2k =时,2||||QB QA =l 方程为220x y -+=.5、(2009年)已知椭圆1C :22221(0)y x a b a b+=>>的右顶点为(1,0)A ,过1C 的焦点且垂直长轴的弦长为1. (I )求椭圆1C 的方程;(II )设点P 在抛物线2C :2()y x h h =+∈R 上,2C 在点P 处的切线与1C 交于 点,M N .当线段AP 的中点与MN 的中点的横坐标相等时,求h 的最小值.xll解析:(Ⅰ)解:由题意,得2121b b a=⎧⎪⎨=⎪⎩,·.从而21a b =⎧⎨=⎩,.因此,所求的椭圆方程为2214y x +=. (Ⅱ)解:如图,设21122()()()M x y N x y P t t h +,,,,,,则抛物线2C 在点P 处的切线斜率为|2x t y t ='=. 直线MN 的方程为:22y tx t h =-+.将上式代入椭圆1C 的方程中,得2224(2)40x tx t h +-+-=. 即222224(1)4()()40t x t t h x t h +--+--=. ① 因为直线MN 与椭圆1C 有两个不同的交点,所以①式中的422116[2(2)4]0t h t h ∆=-++-+>. ②设线段MN 的中点的横坐标是3x ,则21232()22(1)x x t t h x t +-==+. 设线段PA 的中点的横坐标是4x ,则412t x +=. 由题意,得34x x =,即2(1)10t h t +++=. ③由③式中的22(1)40h ∆=+-≥,得1h ≥,或3h -≤.当3h -≤时,22040h h +<-<,. 则不等式②不成立,所以1h ≥.当1h =时,代入方程③得1t =-,将11h t ==-,代入不等式②,检验成立.所以,h 的最小值为1.6、(2010年)已知1>m ,直线,02:2=--m my x l 椭圆 21222,,1:F F y mx C =+ 分别为椭圆C 的左、右焦点.(I )当直线l 过右焦点F 2时,求直线l 的方程;(II )设直线l 与椭圆C 交于A ,B 两点,21F AF ∆,21F BF ∆的重心分 别为G ,H.若原点O 在以线段GH 为直径的圆内,求实数m 的取值范围.OxyAP MN解析:(Ⅰ)解:因为直线2:02m l x my --=经过22(1,0)F m -2221,22m m m -==得又因为 1.m >所以 2.m =故直线l 的方程为210.x -=(Ⅱ)解:设1122(,),(,)A x y B x y ,由2222,21m x my x y m ⎧=+⎪⎪⎨⎪+=⎪⎩消去x 得:222104m y my +++=则由2228(1)804m m m ∆=--=-+>,知28m <且有212121,.282m m y y y y +=-=-由于12(,0),(,0)F c F c -故O 为F 1F 2的中点,由2,2AG GO BH HO ==u u u r u u u r u u u r u u u r ,可知2112(,),(,)3333x y y x G H ;2221212()()||.99x x y y GH --=+设M 是GH 的中点,则1212(,)66x x y y M ++; 由题意可知,2||||MO GH <好222212121212()()4[()()]6699x x y y x x y y ++--+<+; 即12120.x x y y +< 而2212121212()()22m m x x y y my my y y +=+++221(1)(),82m m =+-所以210.82m -<即2 4.m < 又因为10.m >∆>且所以1 2.m <<所以m 的取值范围是(1,2)。
7、(2011年)已知抛物线1:C 2x =y ,圆2:C 22(4)1x y +-=的圆心为点M 。
(Ⅰ)求点M 到抛物线1C 的准线的距离;(Ⅱ)已知点P 是抛物线1C 上一点(异于原点),过点P 作圆2C 的两条切线,交抛物线1C 于A ,B 两点,若过M ,P 两点的直线l 垂足于AB ,求直线l 的方程.解析:8、(2012年)如图,椭圆2222:1(0)x yC a ba b+=>>的离心率为12,其左焦点到点P(2,1)的距离为10,不过原...点.O的直线l与C相交于A,B两点,且线段AB被直线OP平分。
(Ⅰ)求椭圆C的方程;(Ⅱ)求△ABP面积取最大值时直线l的方程。
解析:。