作二面角的平面角的常用方法自编

合集下载

(完整版)二面角求解方法

(完整版)二面角求解方法

二面角的作与求求角是每年高考必考内容之一,可以做为选择题,也可作为填空题,时常作为解答题形式出现,重点把握好二面角,它一般出现在解答题中。

下面就对求二面角的方法总结如下:1、定义法:在棱上任取一点,过这点在两个面内分别引棱的垂线,这两条射线所成的角就是二面角的平面角。

2、三垂线定理及逆定理法:自二面角的一个面上的一点向另一个面引垂线,再由垂足向棱作垂线得到棱上的点。

斜足与面上一点连线,和斜足与垂足连线所夹的角即为二面角的平面角。

3、作棱的垂面法:自空间一点作与棱垂直的平面,截二面角的两条射线所成的角就是二面角的平面角。

4、投影法:利用s投影面=s被投影面θcos 这个公式对于斜面三角形,任意多边形都成立,是求二面角的好方法。

尤其对无棱问题5异面直线距离法: EF 2=m 2+n 2+d 2-2mn θcos例1:若p 是ABC ∆所在平面外一点,而PBC ∆和ABC ∆都是边长为2的正三角形,PA=6,求二面角P-BC-A 的大小。

分析:由于这两个三角形是全等的三角形, 故采用定义法解:取BC 的中点E ,连接AE 、PEAC=AB ,PB=PC ∴AE ⊥ BC ,PE ⊥BC∴PEA ∠为二面角P-BC-A 的平面角在PAE ∆中AE=PE=3,PA=6PCBAE∴PEA ∠=900∴二面角P-BC-A 的平面角为900。

例2:已知ABC ∆是正三角形,⊥PA 平面ABC 且PA=AB=a,求二面角A-PC-B 的大小。

[思维]二面角的大小是由二面角的平面角 来度量的,本题可利用三垂线定理(逆)来作 平面角,还可以用射影面积公式或异面直线上两点 间距离公式求二面角的平面角。

解1:(三垂线定理法)取AC 的中点E ,连接BE ,过E 做EF ⊥PC,连接BF ⊥PA 平面ABC ,PA ⊂平面PAC∴平面PAC ⊥平面ABC, 平面PAC 平面ABC=AC∴BE ⊥平面PAC由三垂线定理知BF ⊥PC∴BFE ∠为二面角A-PC-B 的平面角设PA=1,E 为AC 的中点,BE=23,EF=42∴tan BFE ∠=6=EFBE∴BFE ∠=arctan 6解2:(三垂线定理法)取BC 的中点E ,连接AE ,PE 过A 做AF ⊥PE, FM ⊥PC,连接FMAB=AC,PB=PC ∴AE ⊥BC,PE ⊥BC∴ BC ⊥平面PAE,BC ⊂平面PBC∴平面PAE ⊥平面PBC, 平面PAE 平面PBC=PE由三垂线定理知AM ⊥PCPC BAEF MEPCBAF图1图2∴FMA ∠为二面角A-PC-B 的平面角设PA=1,AM=22,AF=721.=PE AE AP∴sin FMA ∠=742=AM AF ∴FMA ∠=argsin742解3:(投影法)过B 作BE ⊥AC 于E,连结PE ⊥PA 平面ABC ,PA ⊂平面PAC∴平面PAC ⊥平面ABC, 平面PAC 平面ABC=AC∴BE ⊥平面PAC∴PEC ∆是PBC ∆在平面PAC 上的射影设PA=1,则PB=PC=2,AB=141=∆PEC S ,47=∆PBC S由射影面积公式得,77cosarg ,77=∴==∆∆θθPBC PEC S S COS , 解4:(异面直线距离法)过A 作AD ⊥PC,BE ⊥PC 交PC 分别于D 、E 设PA=1,则AD=22,PB=PC=2 ∴BE=PC S PBC 21∆=414,CE=42,DE=42由异面直线两点间距离公式得 AB 2=AD 2+BE 2+DE 2-2ADBE θCOS ,θCOS =77cos arg ,77=∴θ [点评]本题给出了求平面角的几种方法,应很好掌握。

解二面角问题三种方法(习题及答案)

解二面角问题三种方法(习题及答案)

C A BD AA 1BDC C 1B 1解二面角问题(一)寻找有棱二面角的平面角的方法和求解。

(1)定义法:利用二面角的平面角的定义,在二面角的棱上取一点,过该点在两个半平面内作垂直于棱的射线,两射线所成的角就是二面角的平面角,这是一种最基本的方法。

要注意用二面角的平面角定义的三个“主要特征”来找出平面角,当然这种找出的角要有利于解决问题。

下面举几个例子来说明。

例1:如图,立体图形V -ABC 的四个面是全等的正三角形,画出二面角V -AB -C 的平面角并求出它的度数。

:例2:在三棱锥P-ABC 中,∠APB=∠BPC=∠CPA=600,求二面角A-PB-C 的余弦值。

?[这样的类型是不少的,如下列几道就是利用定义法找出来的:1、在正方体ABCD -A 1B 1C 1D 1中,找出二面角B -AC -B 1的平面角并求出它的度数。

|2、.边长为a 的菱形ABCD ,∠ACB=600,现沿对角线BD 将其折成才600的二面角,则A 、C 之间的距离为 。

(菱形两条对角线互相垂直,对折后的一条对角线成两条线段仍都垂直于另一条对角线,则所成的角是二面角的平面角)3、正三棱柱ABC —A 1B 1C 1的底面边长是4,过BC 的一个平面与AA 1交于D ,若AD =3,求二面角D ―BC ―A 的正切值。

总之,能用定义法来找二面角的平面角的,一般是图形的性质较好,能够较快地找到满足二面角的平面角的三个主要特征。

并且能够很快地利用图形的一些条件来求出所要求的。

在常见的几何体有正四面体,正三棱柱,正方体,以及一些平面图形,正三角形,等腰三角形,正方形,菱形等等,这些有较好的一些性质,可以通过它们的性质来找到二面角的平面角。

至于求角,通常是把这角放在一个三角形中去求解。

由图形及题目的已知条件来求这个三角形的边长或者角,再用解三角形的知识去求解。

(2)三垂线法:是利用三垂线的定理及其逆定理来证明线线垂直,来找到二面角的平面角的方法。

微专题 求二面角的平面角常见的解法(原卷版)

微专题 求二面角的平面角常见的解法(原卷版)

微专题 求二面角的平面角的常见解法确定二面角的平面角的方法:1、定义法(棱上一点双垂线法):提供了添辅助线的一种规律(1)方法:在二面角的棱上找一个特殊点,在两个半平面内分别过该点作垂直于棱的射线.(2)具体演示:如图所示,以二面角的棱a 上的任意一点O 为端点,在两个面内分别作垂直于a 的两条射线OA ,OB ,则∠AOB 为此二面角的平面角2、三垂线法(面上一点双垂线法)----最常用(1)方法:自二面角的一个面上一点向另外一个面作垂线,再由垂足向棱作垂线得到棱上的点(即斜足),斜足和面上一点的连线与斜足和垂足的连线所夹的角,即为二面角的平面角(2)具体演示:在平面α内选一点A 向另一个平面β作垂线AB ,垂足为B ,再过点B 向棱a 作垂线BO ,垂足为O ,连接AO ,则∠AOB 就是二面角的平面角。

3、垂面法(空间一点垂面法)(1)方法:过空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角。

(2)具体演示:过二面角内一点A 作于B ,作于C ,面ABC 交棱a 于点O ,则∠BOC 就是二面角的平面角。

αβaOA B【例1】如图,在三棱锥V -ABC 中,VA =AB =VB =AC =BC =2,VC =3,求二面角V -AB -C 的大小.【例2】、二面角α-l -β的大小为60°,A ,B 分别在两个面内且A 和B 到棱的距离为2和4,且AB =10,求AB 与棱l 所成角的正弦值.【跟踪训练1】(2023·全国·高一专题练习)假设P 是ABC 所在平面外一点,而PBC 和ABC 都是边长为2的正三角形,6PA P BC A --的大小为( ) A .30︒B .45︒C .60︒D .90︒【跟踪训练2】(2023·全国·高一专题练习)如图,在正方体1111ABCD A B C D -中,求二面角111B AC B --的正切值.【例3】 如图,在三棱锥S -ABC 中,∠SAB =∠SAC =∠ABC =90°,SA =AB ,SB =BC .①证明:平面SBC ⊥平面SAB ;②求二面角A -SC -B 的平面角的正弦值.【跟踪训练3】在四棱锥P -ABCD 中,ABCD 是平行四边形,P A ∠平面ABCD ,P A =AB =a ,∠ABC =30°,求二面角P -BC -A 的正切值。

求二面角的6种方法【自己总结全面】

求二面角的6种方法【自己总结全面】

a O课题3:二面角求法总结一、知识准备1、二面角的概念:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面.2、二面角的平面角的概念:平面角是指以二面角的棱上一点为端点,在两个半平面内分别做垂直于棱的两条射线,这两条射线所成的角就叫做该二面角的平面角。

3、二面角的大小范围:[0°,180°]4、 二面角的求解方法对二面角的求解通常是先定位二面角的平面角,从而将三维空间中的求角问题转化为二维空间并可以通过三角形的边角问题加以解决.定位出二面角为解题的关键环节,下面就二面角求解的步骤做初步介绍:一、“找”:找出图形中二面角,若不能直接找到可以通过作辅助线补全图形定位二面角的平面角二、“证”:证明所找出的二面角就是该二面角的平面角 三、“算”:计算出该平面角由于定位二面角的难度较大,对于求解二面角还有一种思路就是绕开定位二面角这一环节,通过一些等价的结论或公式或用空间向量等方法来直接求出二面角的大小.本文将根据这两种解题思路对二面角的解题方法做一一介绍. 5、二面角做法:做二面角的平面角主要的方法有: 6、 (1)、定义法:在棱上取一点,在两个半平面内作垂直于棱的2 条射线,这2条所夹 的角; 7、 (2)、三垂线法:过一个半平面内一点(记为A )做另一个半平面的一条垂线,过这个垂足(记为B )再做棱的垂线,记垂足为C ,连接AC ,则∠ACB 即为该二面角的平面角。

(3)射影法:凡二面角的图形中含有可求原图形面积和该图形在另一个半平面上的射影图形面积的都可利用射影面积公式(cos 斜射S S =θ)求出二面角的大小。

(4)、垂面法:做垂直于棱的一个平面,这个平面与2个半平面分别有一条交线,这2条交线所成的角;(5)无交线的二面角处理方法(6)向量法二、二面角的基本求法及练习1、定义法(从两面内引两条射线与棱垂直,这两条射线可以相交也可异面,从而面面角就转化为线线角来求)从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。

二面角大小的求法(自创)

二面角大小的求法(自创)
A1 B1
A
C
F
B E C
G
D A
A1
F
B
F S AFCG cos SA1FCE
例3:已知正三角形ABC,PA⊥面ABC,且 PA=AB=a, 求二面角A-PC-B的正切值。
解:过B作BE⊥AC于E, 过B作BD⊥PC于D, 连结ED, 则∠BDE就是此二面角的平面角。 P ∵△ABC为正△,∴ BE=
B1
A
解法三:
如图:由题意可知,这是一个直四棱柱 , △ BFD1在底面上的射影三角形就是 △ABD, 故由射影面积关系可得COSθ= SABD/ SBFD
1
D1
C1
B1
A1
(θ是所求二面角的平面角) 以下求面积略。
F
D
A B
C
点评:这种解法叫做“射影面积法” 在选择和填空题中有时候
用起来会很好 凡二面角的图形中含有可求原图形面积和该图 形在另一个半平面上的射影图形面积的都可利用射影面积公式 S (cos 射 )求出二面角的大小。
A
V
C
B
例1、已知正三 棱锥V-ABC(所有的 棱长均相等),求二 面角 A-VC-B余弦值 的大小。
A
V
C
B
例1、已知正三棱锥 V-ABC(所有的棱长 均相等),求二面角 A-VC-B余弦值的大小 。
解:过B点作BO⊥VC于O,连接AO.
V O
C A
1,作角
B
因为在正三棱锥中 VA=VB,VO=VO,∠BVO=∠AVO.所以 VOA VOB 所以AO⊥VC。所以∠BOA即为所求二面角的平面角。 在△AOB中,设AB=1,则AO=BO=
复 习: 二面角的定义:

二面角大小的几种求法(归类总结分析)

二面角大小的几种求法(归类总结分析)

DE AC αFB二面角大小的几种求法二面角大小的求法中知识的综合性较强,方法的灵活性较大,一般而言, 二面角的大小往往转化为其平面角的大小,从而又化归为三角形的内角大小, 在其求解过程中,主要是利用平面几何、立体几何、三角函数等重要知识。

求二面角大小的关键是,根据不同问题给出的几何背景,恰在此时当选择方法, 作出二面角的平面角,有时亦可直接运用射影面积公式求出二面角的大小。

I. 寻找有棱二面角的平面角的方法 ( 定义法、三垂线法、垂面法、射影面积法 )一、定义法:利用二面角的平面角的定义,在二面角的棱上取一点(特殊点),过该点在两个半平面内作垂直于棱的射线,两射线所成的角就是二面角的平面角,这是一种最基本的方法。

要注意用二面角的平面角定义的三个“主要特征”来找出平面角。

例 空间三条射线 CA 、CP 、CB ,∠PCA=∠PCB=60o ,∠ACB=90o ,求二面角B-PC-A 的大小。

P解:过PC 上的点D 分别作DE ⊥AC 于E ,DF ⊥BC 于F ,连EF.∴∠EDF 为二面角B-PC-A 的平面角,设CD=a ,∵∠PCA=∠PCB=600, ∴CE=CF=2a ,DE=DF= ∴∠EDF= 3a 2 + 3a 2 - 8a 2 2 ⋅ 3a 23a ,又∵∠ACB=900,∴EF= 2 2a ,= 13ADBHC(二、三垂线法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角。

例 在四棱锥 P-ABCD 中,ABCD 是平行四边形,PA ⊥平面 ABCD , PA=AB=a ,∠ABC=30°,求二面角 P-BC-A 的大小。

解:如图,PA ⊥平面 BD ,过A 作AH ⊥BC 于H ,连结PH ,则PH ⊥BC又AH ⊥BC ,故∠PHA 是二面角P-BC-A 的平面角。

Lp在Rt △ABH 中,AH=ABsin ∠ABC=aSin30°= a;2在 Rt △PHA 中 , tan ∠PHA=PA/AH=∠PHA=arctan2.a= 2 , 则a 2三、垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半平面的交线所成的角即为平面角,由此可知,二面角的平面角所在的平面与棱垂直。

二面角的平面角的求法

二面角的平面角的求法

二面角的平面角的求法二面角的平面角求法,这听起来像是高深莫测的数学课题,但其实没那么复杂哦。

想象一下,咱们在生活中遇到的各种角度,比如说开门的角度、房间里的家具摆放,这些都跟角度有关系。

咱们今天就来轻松聊聊二面角和它的平面角,绝对能让你脑袋里的小九九轻松转起来。

二面角的概念,简单来说就是两个平面交汇形成的角。

就好比你在角落遇到两堵墙,这时候它们交汇的地方就形成了一个二面角。

想象一下你站在这个角落,往左边看是一堵墙,往右边看是另一堵墙,哦,感觉好像被夹在中间了,真是有点“夹心”的感觉啊!咱们要怎么来求这个角度呢?首先要明白,平面角就是一个平面内的角度,它可以通过投影或者平面的截取来进行测量。

咱们可以使用一个叫做“投影法”的小技巧。

简单来说,就是把二面角的一个面投影到另一个平面上,然后再求出这个投影的角度。

就像在放映机前,屏幕上出现的图像,哦,那感觉就像是把三维的东西变成了二维,方便我们看清楚。

这种方法就特别好用,尤其是在复杂的空间中,有时候简单粗暴的办法最有效。

常用的还有“内角法”。

想象一下,如果你把一个角的内角拉出来,形成一个大平面,这个时候你就能清楚地看到角的大小。

这种方法有点像在煮水,水在锅里沸腾的时候,锅里的气泡就是这个角度的“外部表现”,我们只需要关注内部的那个“沸腾”的状态,啊,这比喻是不是很形象呢?说到这里,不得不提一下二面角的实际应用。

比如说,建筑设计中,墙体的连接角度,绝对是让设计师们头疼的事儿。

有时候一个不合适的角度,就可能导致整个结构的不稳定,哦,真是可怕!这就要求设计师在设计的时候得考虑得面面俱到,不能马虎大意,像做菜一样,要多加点料,才能调出最完美的味道。

求二面角的平面角,就像是在解谜一样,里面有很多小窍门和技巧。

你可以通过不同的方法来找到最适合自己的那一条路。

就好比你走在大街上,总有很多小巷子可以选择,有时候走错了也无妨,关键是从中学习经验。

数学就是这样,它教会我们不仅要会算,更要会思考,灵活应变,才能在生活中游刃有余。

立体几何二面角专题方法总结(定义法、向量法、三垂线法、补棱法)

立体几何二面角专题方法总结(定义法、向量法、三垂线法、补棱法)
2.三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的 射影垂直,那么它也和这条斜线垂直
3.三垂线定理的逆定理:如果平面内一条直线和穿过这个平面的一条 斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影。
如图 1,在二面角 —l 一 中,过平面 内一点 A 作 AO⊥平面 ,垂足为 O,过点 O 作 OB⊥l 于 B(过 A 点作 AB⊥于 B),连结 AB(或 OB),由三垂线定理(或逆定理)知 AB⊥ l(或 OB⊥l),则∠ABO 为二面角 —l— 的平面角.
4 . 三垂线法三部曲(两垂一连) ( 1 )作面的垂线(任一个半平面的垂线) ( 2 )作棱的垂线
( 3 )连线 例 1 已知斜三棱柱 ABC—A1B1C1 中,∠BCA=90°,AC=BC,A1 在底面 ABC 的射影恰为 AC 的中点 M,又知 AA1 与底面 ABC 所成的角为 60°. (1)求证:BC⊥平面 AA1CC1; (2)求二面角 B 一 AA1—C 的正切值.
3
五、 射影法
若多边形面积为 S, 它在一个平面上的射影的面积为 S0, 则多边形所在平面与这个平面所 成的二面角 θ, 满足 S0=Scosθ, 利用这个公式求二面角的方法称“射影法”, 射影法对于 解决棱不太明显的二面角问题有独特的作用.
例 1 过正方形 ABCD 的顶点 A 作线段 PA⊥平面 ABCD, 若 AB=PA, 则平
→→

b=
a b
.利用这一结论,我们可以较方便地处理立体几何中二面角的问题.


| a ||b|
例 1 在四棱锥 V-ABCD 中,底面 ABCD 是正方形,侧面 VAD 是正三 角形,平面 VAD⊥底面 ABCD.求面 VAD 与面 VDB 所成的二面角的余 弦值.

二面角的平面角的技巧

二面角的平面角的技巧

三垂线法作二面角的平面角的技巧求二面角的大小是考试中经常出现的问题,而用三垂线法作二面角的平面角是求二面角大小的一个重要方法,许多同学在解题过程中由于没有有效地利用三垂线定理(或逆定理)作出二面角的平面角,使得解题受阻.我们把用三垂线定理(或逆定理)作二面角的平面角的方法称为三垂线法,其作图模型为:如图1,在二面角α—l 一β中,过平面α内一点A 作AO ⊥平面β,垂足为O ,过点O 作OB ⊥l 于B (过A 点作AB ⊥于B ),连结AB (或OB ),由三垂线定理(或逆定理)知AB ⊥l (或OB ⊥l ),则∠ABO 为二面角。

α—l —β的平面角.作图过程中,作出了两条垂线AO 与OB (或AB ),后连结AB 两点(或OB 两点),这一过程可简记为“两垂一连”,其中AO 为“第一垂线”.“第一垂线”能否顺利找到或恰当作出是用三垂线法作二面角的平面角的关键,在具体解题过程中要注意以下几点:1.善于利用图中已有的“第一垂线”例1 已知斜三棱柱ABC —A 1B 1C 1中,∠BCA =90°,AC =BC ,A 1在底面ABC 的射影恰为AC 的中点M ,又知AA 1与底面ABC 所成的角为60°.(1)求证:BC ⊥平面AA 1CC 1; (2)求二面角B 一AA 1—C 的大小.剖析:注意该题的第(1)问,事实上本题已经暗示了BC 就是我们要寻求的“第一垂线”.略解2 A 1A 与底面AB 成的角为60°,所以∠A 1AC =60°,又M 是AC 中点,所以△AA 1C 是正三角形,作CN ⊥AA 1于N ,点N 为A 1A 的中点,连结BN ,由BC ⊥平面AA 1CC 1,BN ⊥AA 1,则∠BNC 为二面角B 一AA 1一C 的平面角.设AC =BC =a ,正△AA 1C 的边长为a ,所以a CN 23=,在Rt △BNC 中,tan ∠BNC =33223==a a NC BC ,即∠BNC 332arctan =. 例2 如图3,在底面是直角梯形的四棱锥S —ABCD 中,∠ABC =90°,SA ⊥面ABCD ,SA =AB =BC =1,AD =21(1)求四棱锥S —ABCD 的体积;(2)求面SCD 与面SBA 所成的二面角的正切值.剖析:由SA ⊥面ABCD 及∠ABC =90°,不难发现,BC 即为“第一垂线”,但是,本题要作二面角的平面角,还需首先作出二面角的棱.略解2 延长BA 、CD 相交于点E ,连结SE ,则SE 是所求二面角的棱,因为AD ∥BC ,BC =2AD ,所以EA =AB =SA ,所以SE ⊥SB ,因为SA ⊥面ABCD ,得面SEB ⊥面EBC ,EB 是交线,又BC ⊥EB ,所以BC ⊥面SEB ,故SB 是CS 在面SEB 上的射影,所以CS ⊥SE ,所以∠BSC 是所求二面角的平面角,因为222=+=AB SA SB ,BC =1,BC ⊥SB ,因为tan ∠BSC =22==SB BC ,即所求二面角的正切值为22.2.借助第三个平面,作“第一垂线”例3 如图4,正三棱柱ABC —A 1B 1C 1的底边长为a ,侧棱长为a 22,若经过对角线AB 1且与对角线BC 1平行的平面交上底面一边A 1C 1于点D .(1)确定点D 的位置,并证明你的结论; (2)求二面角A 1—AB 1—D 的大小.剖析:由线面平行的性质定理及三角形中位线性质,易知D 是A 1C 1中点.二面角A 1—AB 1一D 的放置属于非常规位置的图形,但是,容易发现,平面A 1B 1C 1过点D 且与平面A 1AB 1垂直,这样的平面相对于二面角的两个平面而言,我们称为第三个平面.过D 作DF ⊥A 1B 1,由面面垂直的性质知,DF ⊥面A 1AB 1,即DF 为我们要作的“第一垂线”.略解2 在平面A 1B 1C 1内,作CF ⊥A 1B 1于F ,连DC ,由三垂线定理可证AB 1⊥DG ,∠DGF 就是二面角A 1—AB 1一D 的平面角,在正△A 1B 1C 1中,因为D 是A 1C 1中点,A 1B 1=a ,所以a F B 431=,a DF 43=,在Rt △DFG ,可求得∠DCF =45°.3.利用特殊图形的定义、性质作“第一垂线”例4 已知:Rt △ABC 的斜边BC 在平面α内,AB 、AC 分别与平面。

立体几何中二面角的平面角的定位

立体几何中二面角的平面角的定位

立体几何中二面角的平面角的定位【摘要】立体几何中的二面角是一个重要的概念,而平面角的定位在二面角中有着特殊的作用。

本文首先介绍了二面角和平面角的基本概念,然后探讨了二面角的特性和分类。

接着重点讨论了二面角的平面角的定位问题,并探讨了平面角与二面角之间的关系。

我们详细阐述了平面角的测量方法。

通过深入理解平面角的定位,我们可以更好地解决立体几何中的问题,提高解题效率。

掌握平面角的定位对于学习立体几何具有重要意义,可以帮助我们更好地理解立体几何中的概念和定理,解决相关问题。

【关键词】二面角、平面角、定位、立体几何、特性、分类、关系、测量方法、重要意义、解决问题、提高效率。

1. 引言1.1 二面角的概念二面角是立体几何中一个重要的概念,指的是由两个相邻平面夹角所确定的角。

在几何中,我们通常将两个相邻平面的交线称为边线,而边线延伸至无穷远处,形成一个平面角。

这个平面角就是二面角。

二面角可以用来描述空间中两个平面的夹角大小和方向,是立体几何中的基本概念之一。

二面角的大小可以通过其所包含的两个平面的夹角来确定,通常用度数来表示。

二面角的方向则取决于两个相邻平面的相对位置。

在立体几何中,我们经常需要根据二面角的平面角来确定点、线、面等的位置关系,从而推导出更复杂的结论。

掌握二面角的概念和特性对于解决立体几何中的问题至关重要。

通过深入理解二面角的平面角的定位,我们可以更好地理解空间中的几何关系,提高解题效率,解决更为复杂的几何问题。

1.2 平面角的定义平面角是指在几何中由两条射线或直线段围成的角,这两条射线或直线段共同形成了一个平面。

平面角的大小可以通过角度来度量,常用的单位包括度、弧度等。

在平面几何中,平面角的概念是非常基础和重要的,它帮助我们描述和理解不同几何对象之间的位置关系和相互作用。

平面角的定义可以用于描述各种几何形状之间的相对位置关系,比如直线和直线、直线和平面、平面和平面等。

平面角的大小取决于形成该角的两条射线或直线段之间的夹角大小,这个夹角可以通过工具如量角器或通过数学方法进行测量和计算。

作二面角的平面角的常用方法

作二面角的平面角的常用方法

作二面角的平面角的常用方法
一、通过建模来表达平面角
1、找一个矩形,将它旋转一定的角度,形成等边三角形,可以使用数学建模的方法表达出一个平面角
2、利用构建一个正多边形的方法,将正多边形的边线外缩一定的距离,形成一个空心的正多边形,然后可以使用数学建模表达出一个平面角
二、通过计算来表达平面角
1、通过计算两个空间的斜率,然后计算出斜率的夹角,从而可以表达出一个平面角;
2、如果要表达出两个空间之间的外部夹角,可以使用它们的绝对夹角,以及它们在圆周上的关系;
3、如果是相邻空间的内部夹角,可以使用它们的角度,以及它们的面积之间的关系来表达;
4、如果要表达平面角的位置,可以使用它们的绝对位置和相对位置的计算,以及它们之间的距离来表达。

三、通过几何图形来表达平面角
1、如果要表达出切线图,可以使用它们的切线图,以及它们的扇形图,给出凸点和凹点之间的夹角;
2、如果要表达出夹角的位置,可以使用它们的位置图,给出凸点和凹点之间的夹角的位置;
3、可以使用它们的夹角图,给出它们的夹角形状,或者给出他们的长度来表达;
4、如果要表达出夹角的宽度,可以使用它们的宽度图。

二面角的平面角及求法

二面角的平面角及求法

二面角的平面角及求法1、二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,这两个半平面叫做二面角的面.棱为AB、面分别为α、β的二面角记作二面角α﹣AB﹣β.有时为了方便,也可在α、β内(棱以外的半平面部分)分别取点P、Q,将这个二面角记作P ﹣AB﹣Q.如果棱记作l,那么这个二面角记作二面角α﹣l﹣β或P﹣l﹣Q.2、二面角的平面角在二面角α﹣l﹣β的棱l上任取一点O,以点O为垂足,在半平面α和β内分别作垂直于棱l的射线OA和OB,则射线OA和OB构成的∠AOB叫做二面角的平面角.二面角的大小可以用它的平面角来度量,二面角的平面角是多少度,就说这个二面角是多少度.平面角是直角的二面角叫做直二面角.二面角的平面角∠AOB的大小与点O的位置无关,也就是说,我们可以根据需要来选择棱l上的点O.3、二面角的平面角求法:(1)定义;(2)三垂线定理及其逆定理;①定理内容:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么,它就和这条斜线垂直.②三垂线定理(逆定理)法:由二面角的一个面上的斜线(或它的射影)与二面角的棱垂直,推得它位于二面角的另一的面上的射影(或斜线)也与二面角的棱垂直,从而确定二面角的平面角.(3)找(作)公垂面法:由二面角的平面角的定义可知两个面的公垂面与棱垂直,因此公垂面与两个面的交线所成的角,就是二面角的平面角.;(4)平移或延长(展)线(面)法;(5)射影公式;(6)化归为分别垂直于二面角的两个面的两条直线所成的角;(7)向量法:用空间向量求平面间夹角的方法:设平面α和β的法向量分别为和,若两个平面的夹角为θ,则(1)当0≤<,>≤,θ=<,>,此时cosθ=cos<,>=.(2)当<<,>≤π时,θ=cos(π﹣<,>)=﹣cos<,>=﹣=.。

求二面角平面角的常用六法

求二面角平面角的常用六法

姨 2 a袁又 疫AB彝BC袁亦AC= 姨 3 a袁在 Rt吟SAC 中袁tan蚁ACS=
SA AC
=
1 姨3
=
姨3 3
,
亦蚁ACS=30莓遥 又 疫DE彝SC袁亦蚁EDC=60莓袁 即所求二面角
的平面角的大小为 60莓遥
四尧延伸法院针对无棱问题遥 若所求二面角的两个面只有一
个公共点是已知的袁则可把两个面延伸而得到二面角的棱袁然后
教学信息
求二面角平面角的常用六法
吴焕群 渊河北省唐山市第十二高级中学 河北 唐山 063000冤
揖摘要铱二面角是每年高考必考内容袁求解过程中要做到野一作尧二证尧三算冶的统一遥 现介绍几种常见求法院一尧定义法;二尧垂线法;
三尧垂面法;四尧延伸法;五尧射影面积法;六尧公式法遥
揖关键词铱二面角平面角 曰 常见几法
CD2=CE2+DE2= AC2+AE2-2AC窑AEcos 蚁CAE +DE2, 即 CD2=
AC2+BD2-2AC窑BDcos蚁CAE+AB2,亦cos蚁CAE=
62 +242 +82-渊2姨133 2伊6伊24
冤2
=
1 2
袁亦蚁CAE=60莓遥
2015 年第 2 期
245
ABC遥 亦 平 面 PAB 彝 平 面 ABC袁
CD 彝 平 面 PAB袁 连 接 PD袁 则 吟PBD 为吟PBC 在平面 PAB 内
的射影遥
易知
S = 吟PBD
1 2
S = 吟PBD
1 2
窑a窑
姨2 2
a
=
姨2 4
2
a
袁S = 吟PCB
1 2

作二面角的平面角的常用方法自编

作二面角的平面角的常用方法自编

作二面角的平面角的常用方法①、点P 在棱上②、点P 在一个半平面上③、点P 在二面角内④、无公共棱定义法例 1.。

已知正三棱锥V-ABC 所有的棱长均相等,求二面角 A-VC-B 的余弦值二面角B--B ’C--A二面角A--BC--D A’AB C’C D’DB二、三垂线法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角。

例1、已知锐二面角α- l - β ,A 为面α内一点,A 到β 的距离为 2 ,到 l 的距离为 4;求二面角 α- l - β 的大小例2三棱锥D-ABC 中,DC=2a ,DC⊥平面ABC ,∠ACB=90o ,AC=a ,BC=2a ,求二面角D-AB-C 的大小。

例3 在四棱锥P-ABCD 中,ABCD 是平行四边形,PA ⊥平面ABCD ,PA=AB=a ,∠ABC=30°,求二面角P-BC-A 的大小。

αβ l4. 如图,已知△ABC 中,AB ⊥BC ,S 为平面ABC 外的一点,SA ⊥平面ABC ,AM ⊥SB 于M ,AN ⊥SC 于N,(1)求证平面SAB ⊥平面SBC (2)求证∠ANM 是二面角A -SC -B 的平面角.5.变式:如上图,已知△ABC 中,AB ⊥BC ,S 为平面ABC 外的一点,SA ⊥平面ABC ,∠ACB =600,SA =AC =a ,(1)求证平面SAB ⊥平面SBC (2)求二面角A -SC -BC 的正弦值.6. 如图,ABCD-A 1B 1C 1D 1是长方体,侧棱AA 1长为1,底面为正方体且边长为2,E 是棱BC 的中点,求面C 1DE 与面CDE 所成二面角的正切值。

A BC M N S垂面法例1.如图P 为二面角α–ι–β内一点,PA ⊥α,PB ⊥β,且PA=5,PB=8,AB=7,求这二面角的度数。

II. 寻找无棱二面角的平面角的方法 ( 射影面积法、平移或延长(展)线(面)法 )平移或延长(展)线(面)法:对于一类没有给出棱的二面角,应先延伸两个半平面,使之相交出现棱例 在四棱锥P-ABCD 中,ABCD 为正方形,PA ⊥平面ABCD ,PA =AB =a ,求平面PBA 与平面PDC 所成二面角的大小。

解答二面角问题的三种措施

解答二面角问题的三种措施

备考指南理能力.结合实例进行探讨.一、利用定义法一般地,在二面角的棱上选取一点,垂直于棱的射线,的平面角.面角的平面角;角形,根据正余弦定理、例1.如图1,四棱锥S -底面ABCD ,AD =2,DC =SD 点,∠ABM =60°,求二面角S -图1解:过B 点作BF ⊥AM ,过AC ,如图2所示,因为SD ⊥底面ABCD ,所以∠ADS =∠ADC =90°,因为DC =SD =2,所以Δ所以AC =AS ,因为AM ⊥SC ,GF ⊥AM ,中点,的中位线,点G 为AS 的中点,S -AM -B 的平面角,SA =AC =6,BM =2,3,=BF =3,GF 2+BF 2-GB 22GF ∙BF =,-B 的余弦值为最重要的一步便是找到二面角首先要根据二面角的平面角、AMB 及其棱AM ;然后在两BF ,GF ,则∠GFB 即为所求二将问题转.首先需根据题目中给出的来建立空间直角坐标系;然后求m 、n ;再根<m ,n >=m ∙n |m |∙|n |;最后还需根据.P -ABCD 中,PA ⊥平面ABCD ,∠BAD =120°,PA =AD =1,AB苏其亮54备考指南=2,M 、N(1)(2)解:(线为x 、y 则A N 12则 CM 设m则{令x 1设n则{n n 令x 2cos <直线为x 要先根据题意寻找垂其与二面然后根据平面几何知识,三角形的性质、平行四边形即可解题.棱锥S -ABC 中,SA ⊥平面垂直平分AC 、SC ,且交AC 、SC =BC ,求二面角E -BD -C 的、DB ,E 是SC 中点,SBC 的中线,则BE ⊥SC ,⋂DE =E ,BE 、DE ⊂平面BDE ,,所以SC ⊥BD .,BD ⊂平面ABC ,、SA ⊂平面SAC ,,平面BDE =DE ,平面SAC ⋂平⊥DC ,E -BD -C 的平面角,,所以SA ⊥AB ,SA ⊥AC ,2,SB =BC =22,AC =23,∠ACS =30°,所以∠EDC =60°,-C 的大小为60°..,DE 垂直平分AC 、SC ,即可.再在直角三角形SAB 、SAC 、即可解题.向量法、垂面法都是解答二面向却比较便捷,能有效.甘肃省白银市靖远县第一中学)55。

(完整版)找二面角的平面角的方法汇总

(完整版)找二面角的平面角的方法汇总

找二面角的平面角的方法汇总二面角是高中立体几何中的一个重要内容,也是一个难点.对于二面角方面的问题,学生往往无从下手,他们并不是不会构造三角形或解三角形,而是没有掌握寻找二面角的平面角的方法.我们试将寻找二面角的平面角的方法归纳为以下六种类型. 一、根据平面角的定义找出二面角的平面角 例1 在60的二面角βα--a 的两个面内,分别有A 和B 两点.已知A 和B 到棱的距离分别为2和4,且线段10=AB ,试求:(1)直线AB 与棱a 所构成的角的正弦值;(2)直线AB 与平面α所构成的角的正弦值. 分析:求解这道题,首先得找出二面角的平面角,也就是找出 60角在哪儿.如果解决了这个问题,这道题也就解决了一半.根据题意,在平面β内作a AD ⊥;在平面α内作α⊥BE ,EB CD //,连结BC 、AC .可以证明a CD ⊥,则由二面角的平面角的定义,可知ADC ∠为二面角βα--a 的平面角.以下求解略.二、根据三垂线定理找出二面角的平面角例2 如图,在平面β内有一条直线AC 与平面α成 30,AC 与棱BD 成 45,求平面α与平面β的二面角的大小.分析:找二面角的平面角,可过A 作BD AF ⊥;⊥AE 平面α,连结FE .由三垂线定理可证EF BD ⊥,则AFE ∠为二面角的平面角.总结:(1)如果两个平面相交,有过一个平面内的一点与另一个平面垂直的垂线,可过这一点向棱作垂线,连结两个垂足.应用三垂线定理可证明两个垂足的连线与棱垂直,那么就可以找到二面角的平面角.(2)在应用三垂线定理寻找二面角的平面角时,注意“作”、“连”、“证”,即“作BD AF ⊥”、“连结EF ”、“证明BD EF ⊥”. 三、作二面角棱的垂面,垂面与二面角的两个面的两条交线所构成的角,即为二面角的平面角例3 如图1,已知P 为βα--CD 内的一点,α⊥PA 于A 点,β⊥PB 于B 点,如果n APB =∠,试求二面角βα--CD 的平面角.图1 图2分析:⊥⇒⊥⇒⊥⊥⇒⊥CD CDPB PB CDPA PA βα平面PAB . 因此只要把平面PAB 与平面α、β的交线画出来即可.证明AEB ∠为βα--CD 的平面角, n AEB -=∠180(如图2).注意:这种类型的题,如果过A 作CD AE ⊥,垂足为E ,连结EB ,我们还必须证明CD EB ⊥,及AEBP 为平面图形,这样做起来比较麻烦.例4 已知斜三棱柱111-C B A ABC 中,平面1AB 与平面1AC 构成的二面角的平面角为 30,平面1AB 与平面1BC 构成的二面角为 70.试求平面1AC 与平面1BC 构成的二面角的大小.分析:作三棱柱的直截面,可得△DEF ,其三个内角分别为斜三棱柱的三个侧面两两构成的二面角的平面角.总结:对棱柱而言,其直截面与各个侧棱的交点所形成的多边形的各个内角,分别为棱柱相邻侧面构成的二面角的平面角.四、平移平面法例5 如图,正方体1111-D C B A ABCD 中,E 为1AA 的中点,H 为1CC 上的点,且211::=H C CH .设正方体的棱长为a ,求平面EH D 1与底面1111D C B A 构成的锐角的正切.分析:本题中,仅仅知道二面角棱上的一点1D ,在这种情况下,寻找二面角的平面角较困难.根据平面平移不改变它与另一个平面构成的角的大小的原理,如果能把二面角中的一个平面平移,找出辅助平面与另一个平面的交线,就可以作出二面角的平面角.有了平面角之后,只需要进行常规构造三角形和解三角形的计算,就可以解决问题了.如图,过点E 作11//D A EM 与D D 1相交于M 点,过M 点作11D C MN ⊥,与H D 1相交于N 点.可证平面//EMN 平面1111D C B A .这样,求平面EH D 1与平面1111D C B A 的二面角的平面角就转化为求平面EH D 1与平面EMN 的二面角的平面角.显然EN 为这两个平面的交线,过点M 作EN MF ⊥,F 为垂足,连结F D 1,可证EN F D ⊥1.则FM D 1∠为本题要寻找的二面角.五、找垂面,作垂线例6 如图,正方体1111-D C B A ABCD 中,M 为棱AD 的中点,求平面CB C B 11和平面M BC 1所构成的锐二面角的正切.分析:平面AC 与二面角C BC M --1的一个面C B 1垂直,与另一个平面1C MB 相交,过M 点作BC MP ⊥,垂足为P ,过P 作BC PN ⊥,交1C B于N 点,连结MN ,由三垂线定理可证1BC MN ⊥,则MNP ∠为二面角C BC M --1的平面角.总结:当一个平面与二面角的一个平面垂直,与另一个平面相交时,往往过这个面上的一点作这两个垂直平面交线的垂线,再过垂足作二面角棱的垂线.根据三垂线定理即可证明,并找出二面角的平面角.再如图,要找βα--a 所构成的二面角的平面角,可找平面βγ⊥,且b =αγ ,l =βγ ,过b 上任何一点A 作l AB ⊥,垂足为B ,过B 作α⊥BC ,垂足为C ,连结AC ,可证ACB ∠为βα--a 的平面角. 六、根据特殊图形的性质找二面角的平面角 1.三线合一 例7 如图,空间四边形ABCD 中,3==AD AB ,4==CD BC ,2=BD ,5=AC .试求C BD A --二面角的余弦值.分析:如图1,AD AB =,CD BC =,则△ABD 和△BDC 为等腰三角形.过A 作BD AE ⊥,垂足为E ,连结CE .根据三线合一,且E 为BD中点,可证BD CE ⊥,则AEC ∠为二面角C BD A --的平面角.2.全等三角形例8 如图,已知空间四边形ABCD ,6==BC AB ,4==DC AD ,8=BD ,6=AC .试求C BD A --的余弦值.分析:过A 作BD AE ⊥,垂足为E ,连结CE .根据已知条件,△AED 和△CED 全等,可证BD CE ⊥,则AEC ∠为二面角C BD A --的平面角.3.二面角的棱蜕化成一点例9 如图,四棱锥BCED A -中,DB 和EC 与面ABC 垂直,△ABC 为正三角形.(1)若BD EC BC ==时,求面ADE 与面ABC 的夹角;(2)若BD EC BC 2==时,求面ADE 与面ABC 的夹角.分析:如图,面ADE 与面ABC 的交线蜕化成一点,但面ADE 与面ABC 与面DC 相交.如果三个平面两两相交,它们可能有三种情况:(1)交线为一点;(2)一条交线;(3)三条交线互相平行.在图1中,两条交线BC 与DE 互相平行,所以肯定有过A 且平行于DE 的一条交线.可过A 作DE AM //,平面ADE 与平面ABC 的交线即为AM .过A 作DE AN ⊥于N ,过A 作BC AF ⊥于F .可证AM AN ⊥,AM AF ⊥,则NAF ∠为面ADE 与面ABC 的夹角.如图,DE 与C B 不平行且相交.根据三个平面两两相交可能出现的三种情况,这三个面的交线为一点.延长ED 、CB 相交于G 点,连结AG .AG 即为平面ADE 与平面ABC 的交线,通过一些关系可证CAE ∠为平面ADE 与平面ABC 的夹角.通过以上分析和举例说明,寻找二面角的平面角的方法就比较容易了.只要我们勤动脑,善观察,多总结,抓住问题的特征,找出适当的方法,关于二面角的平面角的问题就会迎刃而解.。

求二面角的平面角的一种新方法

求二面角的平面角的一种新方法

求二面角的平面角的一种新方法作者:曾玉婷来源:《读与写·教育教学版》2017年第09期摘要:传统法求二面角是作出二面角的平面角,构造的辅助线有时很难找;而坐标法求二面角写起来比较繁琐。

本文用“等体积法”求二面角的平面角,扩大“等体积法”适用范围,至此,等体积法可用于求点到面的距离、线面角、面面角。

关键词:等体积法二面角中图分类号:O123.2 文献标识码:A 文章编号:1672-1578(2017)09-0024-02在文[1]中给出求二面角的常用的九种方法,作为传统法求二面角的平面角,笔者认为可以多加一种,等体积法求二面角的平面角。

1 等体积法求二面角的平面角原理如图所示,求二面角P-AB-CD的平面角。

记所求的二面角的平面角为α,则α∈[0,π].过点P作于PH1⊥ABCD于H1,过点P作PH2⊥AB于H2,则有sinα= 或sin(π-α)=综上可知sinα= ,具体的二面角,需通过观察确定其取锐角或钝角。

而关键的地方正是两次“作高”,其中用等体积法求PH1是关键中的关键。

2 实际解析(2009年全国I.文19)如图,四棱锥S-ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD= ,DC=SD=2,点M在侧棱SC上,∠ABM=60°。

(1)证明:M是侧棱SC的中点。

(2)求二面角S-AM-B的大小。

解:(1)略(2)设二面角S-AM-B的平面角为α,过点S作于SH1⊥面 ABM于H1,作SH2⊥AM 于H2,则有sinα= 。

等体积法求SH1:由(1)知M是侧棱SC的中点,∴ dM-SAB= dC-SAB易知S△SAB= ,S△ABC= ,S△AMB=代入VC-SAB=VS-ABC,即有 S△SAB·dC-SAB= S△ABC·CD,求得dC-SAB=由等体积法知VS-AMB=VM-SAB,即 S△AMB·SH1= S△SAB·dM-SAB,可得SH1= 。

求二面角的五种方法之欧阳法创编

求二面角的五种方法之欧阳法创编

求二面角的五种方法时间:2021.03.09创作:欧阳法一、定义法:由图形的特殊条件按定义直接作出.如在空间四边形ABCD 中, AB =AC , DB =DC , 求二面角A -BC -D 的大小.例1如图, 过正方形ABCD 的顶点A 作PA ⊥平面ABCD , 设PA =A B=a ,求二面角B -PC -D 的大小.例2二面角α-BC -β大小为120°, A ∈α,B ∈β, 且AB ⊥BC , BC ⊥CD , AB =BC =CD =1, 求二面角A -BD -C 的正切值.例3如图, 已知四面体SABC中, ∠ASB =2π,∠ASC =α(0<α<2π),∠CSB =β(0<β<2π), 二面角A -SC -B 的大小为θ, 求证:θ=π-arccos(cos α·cot β).二、垂面法:通过作二面角棱的垂面, 此垂面与二面角的两个面所交的两条射线构成的角就是这个二面角的平面角.例4⑴空间三条射线PA ,PB ,PC 不共面, 若∠APC =∠APB =60°,∠BPC =90°, 则二面角B -PA -C 的大小是______;⑵已知∠AOB =90°, 过O 点引∠AOB 所在平面的斜线OC ,使它与OA ,OB 分别成45°,60°的角, 则二面角A -OC -B 的余弦值为______.例5如图, 在△ABC 中, AB ⊥BC , SA ⊥平面ABC , DE垂直平分SC , 且分别交AC ,SC 于D ,E , 又SA =AB ,SB =BC , 求二面角E -BD -C 的大小.三、延伸法:若所求的两个面只有一个公共点是已知的, 因此要把两个面延伸面得到二面角的棱, 然后再求出它的平面角.例6直角梯形ABCD 中, AB ⊥AD , AD ⊥CD , AB =2,CD=4, 平面PAD⊥平面ABCD, △PBC是边长为10的正三角形, 求平面PAD和平面PBC所成二面角的大小.例7设正方体ABCD-A1B1C1D1中, E为AA1中点, 求平面B1DE和底面ABCD所成二面角的大小.四、垂线法:利用三垂线定理或其逆定理作出平面角.例8已知由O点出发的三条射线OA,OB,OC不共面,且∠AOB=∠AOC, 求证:二面角A-OB-C与二面角A-OC-B相等.例9二面角M-CD-N中, A为平面M上一定点, △ADC 的面积为定值S, DC=a, B为平面N内一点, AB⊥CD, 若AB 与平面N成30°角, 求面积△BCD的最大值, 并求此时二面角M-CD-N的大小.五、射影法:若多边形面积为S, 它在一个平面上的射影的面积为S0, 则多边形所在平面与这个平面所成的二面角θ, 满足S0=S cosθ, 利用这个公式求二面角的方法称“射影法”, 射影法对于解决棱不太明显的二面角问题有独特的作用.例10过正方形ABCD的顶点A作线段PA⊥平面ABCD, 若AB=PA, 则平面ABP与平面CDP所成的二面角为( )A. 30°B. 45°C. 60°D. 90°例11 P是正方形ABCD所在平面外一点, △PAB是正三角形, 且平面PAB⊥平面ABCD,求二面角P-AC-B的大小.时间:2021.03.09 创作:欧阳法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作二面角的平面角的常用方法 ①、点P 在棱上
②、点P 在一个半平面上 ③、点P 在二面角内 ④、无公共棱 定义法
例 1.。

已知正三棱锥V-ABC 所有的棱长均相等,求二面角 A-VC-B 的余弦值
二面角B--B ’C--A
二面角A--BC--D
A’
A
B C’
C D’ D
B
二、三垂线法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角。

例1、已知锐二面角α- l - β ,A 为面α内一点,A 到β 的距离为 2 ,到 l 的距离为 4;求二面角 α- l - β 的大小
例2三棱锥D-ABC 中,DC=2a ,DC
⊥平面ABC ,∠ACB=90o ,AC=a ,BC=2a ,求二面角D-AB-C 的大小。

例3 在四棱锥P-ABCD 中,ABCD 是平行四边形,PA ⊥平面ABCD ,PA=AB=a ,∠ABC=30°,求二面角P-BC-A 的大小。

α
β
l
4. 如图,已知△ABC 中,AB ⊥BC ,S 为平面ABC 外的一点,SA ⊥平面ABC ,AM ⊥SB 于M ,AN ⊥SC 于N,(1)求证平面SAB ⊥平面SBC (2)求证∠ANM 是二面角A -SC -B 的平面角.
5.变式:如上图,已知△ABC 中,AB ⊥BC ,S 为平面ABC 外的一点,SA ⊥平面ABC ,∠ACB =600,SA =AC =a ,(1)求证平面SAB ⊥平面SBC (2)求二面角A -SC -BC 的正弦值.
6. 如图,ABCD-A 1B 1C 1D 1是长方体,侧棱AA 1长为1,底面为正方体且边长为2,E 是棱BC 的中点,求面C 1DE 与面CDE 所成二面角的正切值。

A
B
C
M
N
S
垂面法
例1.如图P 为二面角α–ι–β内一点,PA ⊥α,PB ⊥β,且PA=5,PB=8,AB=7,求这二面角的度数。

II. 寻找无棱二面角的平面角的方法 ( 射影面积法、平移或延长(展)线(面)法
)
平移或延长(展)线(面)法:对于一类没有给出棱的二面角,应先延伸两个半平面,使之相交出现棱
例 在四棱锥P-ABCD 中,ABCD 为正方形,PA ⊥平面ABCD ,PA =AB =a ,求平面PBA 与平面PDC 所成二面角的大小。

16. 在四棱锥P-ABCD 中,ABCD 为正方形,PA ⊥平面ABCD ,PA =AB =a ,求平面PBA 与平面PDC 所成二面角的大小。

β α
A B
P
ι。

相关文档
最新文档