定义域及值域类型总结(全,含答案)

合集下载

(高频考点)函数的定义域和值域(经典、可编辑)

(高频考点)函数的定义域和值域(经典、可编辑)

第二节函数的定义域和值域[知识能否忆起]1.常见基本初等函数的定义域 (1)分式函数中分母不等于零. (2)偶次根式函数被开方式大于或等于0. (3)一次函数、二次函数的定义域均为R. (4)y =a x ,y =sin x ,y =cos x ,定义域均为R. (5)y =tan x 的定义域为⎩⎨⎧⎭⎬⎫xx ≠k π+π2,k ∈Z .(6)函数f (x )=x 0的定义域为{x |x ≠0}.(7)实际问题中的函数定义域,除了使函数的解析式有意义外,还要考虑实际问题对函数自变量的制约.2.基本初等函数的值域 (1)y =kx +b (k ≠0)的值域是R.(2)y =ax 2+bx +c (a ≠0)的值域是:当a >0时,值域为⎩⎨⎧⎭⎬⎫yy ≥4ac -b24a ;当a <0时,值域为⎩⎨⎧⎭⎬⎫yy ≤4ac -b 24a . (3)y =kx (k ≠0)的值域是{y |y ≠0}.(4)y =a x (a >0且a ≠1)的值域是{y |y >0}. (5)y =log a x (a >0且a ≠1)的值域是R. (6)y =sin x ,y =cos x 的值域是[-1,1]. (7)y =tan x 的值域是R.[小题能否全取]1.(教材习题改编)若f (x )=x 2-2x ,x ∈[-2,4],则f (x )的值域为( ) A .[-1,8] B .[-1,16] C .[-2,8]D .[-2,4]答案:A2.函数y =1x 2+2的值域为( )A .R B.⎩⎨⎧⎭⎬⎫yy ≥12C.⎩⎨⎧⎭⎬⎫yy ≤12D.⎩⎨⎧⎭⎬⎫y 0<y ≤12解析:选D ∵x 2+2≥2,∴0<1x 2+2≤12.∴0<y ≤12.3.(2012·山东高考)函数f (x )=1ln (x +1)+4-x 2的定义域为( ) A .[-2,0)∪(0,2] B .(-1,0)∪(0,2] C .[-2,2]D .(-1,2]解析:选B x 满足⎩⎪⎨⎪⎧x +1>0,x +1≠1,4-x 2≥0,即⎩⎪⎨⎪⎧x >-1,x ≠0,-2≤x ≤2.解得-1<x <0或0<x ≤2. 4.(教材习题改编)函数f (x )=x -4|x |-5的定义域为________. 解析:由⎩⎪⎨⎪⎧x -4≥0,|x |-5≠0,得x ≥4且x ≠5.答案:{x |x ≥4,且x ≠5}5.(教材习题改编)若x 有意义,则函数y =x 2+3x -5的值域是________. 解析:∵x 有意义,∴x ≥0. 又y =x 2+3x -5=⎝⎛⎭⎫x +322-94-5, ∴当x =0时,y min =-5. 答案:[-5,+∞)函数的最值与值域的关系函数的最值与函数的值域是关联的,求出了函数的值域也就能确定函数的最值情况,但只确定了函数的最大(小)值,未必能求出函数的值域.[注意] 求函数的值域,不但要重视对应关系的作用,而且还要特别注意函数定义域.典题导入[例1] (1)(2012·大连模拟)求函数f (x )=lg (x 2-2x )9-x 2的定义域;(2)已知函数f (2x )的定义域是[-1,1],求f (x )的定义域.[自主解答] (1)要使该函数有意义,需要⎩⎪⎨⎪⎧ x 2-2x >0,9-x 2>0,则有⎩⎪⎨⎪⎧x <0或x >2,-3<x <3, 解得-3<x <0或2<x <3,所以所求函数的定义域为(-3,0)∪(2,3). (2)∵f (2x )的定义域为[-1,1], 即-1≤x ≤1,∴12≤2x ≤2,故f (x )的定义域为⎣⎡⎦⎤12,2.若本例(2)条件变为:函数f (x )的定义域是[-1,1],求f (log 2x )的定义域. 解:∵函数f (x )的定义域是[-1,1], ∴-1≤x ≤1,∴-1≤log 2x ≤1,∴12≤x ≤2.故f (log 2x )的定义域为⎣⎡⎦⎤12,2.由题悟法简单函数定义域的类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解. (2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解. (3)对抽象函数:①若已知函数f (x )的定义域为[a ,b ],则函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出; ②若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.以题试法1.(1)函数y =2x -x 2ln (2x -1)的定义域是________.(2)(2013·沈阳质检)若函数y =f (x )的定义域为[-3,5],则函数g (x )=f (x +1)+f (x -2)的定义域是( )A .[-2,3]B .[-1,3]C .[-1,4]D .[-3,5] 解析:(1)由⎩⎪⎨⎪⎧2x -x 2≥0,ln (2x -1)≠0,2x -1>0,得⎩⎪⎨⎪⎧0≤x ≤2,x ≠1,x >12.所以函数的定义域为⎝⎛⎭⎫12,1∪(1,2].(2)由题意可得⎩⎪⎨⎪⎧-3≤x +1≤5,-3≤x -2≤5,解不等式组可得-1≤x ≤4. 所以函数g (x )的定义域为[-1,4]. 答案:(1)⎝⎛⎭⎫12,1∪(1,2] (2)C典题导入[例2] 求下列函数的值域. (1)y =x 2+2x (x ∈[0,3]); (2)y =1-x 21+x 2;(3)y =x +4x (x <0);(4)f (x )=x -1-2x . [自主解答] (1)(配方法) y =x 2+2x =(x +1)2-1,∵y =(x +1)2-1在[0,3]上为增函数, ∴0≤y ≤15,即函数y =x 2+2x (x ∈[0,3])的值域为[0,15]. (2)y =1-x 21+x 2=21+x 2-1,∵1+x 2≥1, ∴0<21+x 2≤2. ∴-1<21+x 2-1≤1.即y ∈(-1,1].∴函数的值域为(-1,1].(3)∵x <0,∴x +4x=-⎝⎛⎭⎫-x -4x ≤-4,当且仅当x =-2时等号成立. ∴y ∈(-∞,-4].∴函数的值域为(-∞,-4].(4)法一:(换元法)令1-2x =t ,则t ≥0且x =1-t 22,于是y =1-t 22-t =-12(t +1)2+1,由于t ≥0,所以y ≤12,故函数的值域是⎝⎛⎦⎤-∞,12. 法二:(单调性法)f (x )的定义域为⎝⎛⎦⎤-∞,12容易判断f (x )为增函数,所以f (x )≤f ⎝⎛⎭⎫12=12, 即函数的值域是⎝⎛⎦⎤-∞,12.由题悟法求函数值域常用的方法(1)配方法,多适用于二次型或可转化为二次型的函数(例(1)). (2)换元法(例(4)). (3)基本不等式法(例(3)). (4)单调性法(例(4)). (5)分离常数法(例(2)).[注意] 求值域时一定要注意定义域的使用,同时求值域的方法多种多样,要适当选择.以题试法2.(1)函数y =x -3x +1的值域为________.(2)(2012·海口模拟)在实数的原有运算中,我们定义新运算“⊕”如下:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2.设函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2],则函数f (x )的值域为________.解析:(1)y =x -3x +1=x +1-4x +1=1-4x +1,因为4x +1≠0,所以1-4x +1≠1,即函数的值域是{y |y ∈R ,y ≠1}.(2)由题意知f (x )=⎩⎪⎨⎪⎧x -2,x ∈[-2,1],x 3-2,x ∈(1,2],当x ∈[-2,1]时,f (x )∈[-4,-1]; 当x ∈(1,2]时,f (x )∈(-1,6], 即当x ∈[-2,2]时,f (x )∈[-4,6].答案:(1){y |y ∈R ,y ≠1} (2)[-4,6]典题导入[例3] (2012·合肥模拟)若函数f (x )= 2x 2+2ax -a -1的定义域为R ,则a 的取值范围为________.[自主解答] 函数f (x )的定义域为R ,所以2x 2+2ax -a -1≥0对x ∈R 恒成立,即2x 2+2ax -a ≥1,x 2+2ax -a ≥0恒成立,因此有Δ=(2a )2+4a ≤0,解得-1≤a ≤0. [答案] [-1,0]由题悟法求解定义域为R 或值域为R 的函数问题时,都是依据题意,对问题进行转化,转化为不等式恒成立问题进行解决,而解决不等式恒成立问题,一是利用判别式法,二是利用分离参数法,有时还可利用数形结合法.以题试法3.(2012·烟台模拟)已知函数f (x )=4|x |+2-1的定义域是[a ,b ](a ,b ∈Z),值域是[0,1],则满足条件的整数数对(a ,b )共有________个.解析:由0≤4|x |+2-1≤1,即1≤4|x |+2≤2,得0≤|x |≤2,满足整数数对的有(-2,0),(-2,1),(-2,2),(0,2),(-1,2)共5个.答案:5函数的值域由函数的定义域和对应关系完全 确定,但因函数千变万化,形式各异,值域的求 法也各式各样,因此求函数的值域就存在一定的 困难,解题时,若方法适当,能起到事半功倍的 作用.求函数值域的常用方法有配方法、换元法、 分离常数法、基本不等式法、单调性法(以上例2 都已讲解)、判别式法、数形结合法等.1.数形结合法利用函数所表示的几何意义,借助于图象的直观性来求函数的值域,是一种常见的方法,如何将给定函数转化为我们熟悉的模型是解答此类问题的关键.[典例1] 对a ,b ∈R ,记max|a ,b |=⎩⎪⎨⎪⎧a ,a ≥b ,b ,a <b .函数f (x )=max||x +1|,|x -2||(x ∈R)的值域是________.[解析] f (x )=⎩⎨⎧|x +1|,x ≥12,|x -2|,x <12,由图象知函数的值域为⎣⎡⎭⎫32,+∞. [答案] ⎣⎡⎭⎫32,+∞ [题后悟道] 利用函数所表示的几何意义求值域(最值),通常转化为以下两种类型: (1)直线的斜率:yx 可看作点(x ,y )与(0,0)连线的斜率;y -b x -a 可看作点(x ,y )与点(a ,b )连线的斜率.(2)两点间的距离: (x -x 1)2+(y -y 1)2可看作点(x ,y )与点(x 1,y 1)之间的距离.针对训练1.函数y =(x +3)2+16+(x -5)2+4的值域为________. 解析:函数y =f (x )的几何意义为:平面内一点P (x,0)到两点A (-3,4)和B (5,2)距离之和.由平面几何知识,找出B 关于x 轴的对称点B ′(5,-2).连接AB ′交x 轴于一点P 即为所求的点,最小值y =|AB ′|=82+62=10.即函数的值域为[10,+∞). 答案:[10,+∞) 2.判别式法对于形如y =a 1x 2+b 1x +c 1a 2x 2+b 2x +c 2(a 1,a 2不同时为零)的函数求值域,通常把其转化成关于x 的一元二次方程,由判别式Δ≥0,求得y 的取值范围,即为原函数的值域.[典例2] 函数y =x 2-xx 2-x +1的值域为________.[解析] 法一:(配方法) ∵y =1-1x 2-x +1,又x 2-x +1=⎝⎛⎭⎫x -122+34≥34, ∴0<1x 2-x +1≤43,∴-13≤y <1.∴函数的值域为⎣⎡⎭⎫-13,1. 法二:(判别式法) 由y =x 2-xx 2-x +1,x ∈R ,得(y -1)x 2+(1-y )x +y =0. ∵y =1时,x ∈∅,∴y ≠1.又∵x ∈R ,∴Δ=(1-y )2-4y (y -1)≥0, ∴-13≤y <1.∴函数的值域为⎣⎡⎭⎫-13,1. [答案] ⎣⎡⎭⎫-13,1 [题后悟道] 本题解法二利用了判别式法,利用判别式法首先把函数转化为一个系数含有y 的二次方程a (y )x 2+b (y )x +c (y )=0,则在a (y )≠0时,若x ∈R ,则Δ≥0,从而确定函数的最值;再检验a (y )=0时对应的x 的值是否在函数定义域内,以决定a (y )=0时y 的值的取舍.针对训练2.已知函数y =mx 2+43x +nx 2+1的最大值为7,最小值为-1,则m +n 的值为( )A .-1B .4C .6D .7解析:选C 函数式可变形为(y -m )x 2-43x +(y -n )=0,x ∈R ,由已知得y -m ≠0,所以Δ=(-43)2-4(y -m )·(y -n )≥0,即y 2-(m +n )y +(mn -12)≤0,①由题意,知不等式①的解集为[-1,7],则-1、7是方程y 2-(m +n )y +(mn -12)=0的两根,代入得⎩⎪⎨⎪⎧ 1+(m +n )+mn -12=0,49-7(m +n )+mn -12=0,解得⎩⎪⎨⎪⎧ m =5,n =1或⎩⎪⎨⎪⎧m =1,n =5.所以m +n =6.求解函数的值域要根据函数解析式的特点选择恰当的方法,准确记忆常见函数的值域,熟练掌握各种类型函数值域的求法,除前面介绍的几种方法外,还有单调性法、导数法(以后还要讲解).1.函数y =13x -2+lg(2x -1)的定义域是( ) A.⎣⎡⎭⎫23,+∞ B.⎝⎛⎭⎫12,+∞ C.⎝⎛⎭⎫23,+∞D.⎝⎛⎭⎫12,23解析:选C 由⎩⎪⎨⎪⎧3x -2>0,2x -1>0得x >23.2.(2012·汕头一测)已知集合A 是函数f (x )=1-x 2+x 2-1x 的定义域,集合B 是其值域,则A ∪B 的子集的个数为( )A .4B .6C .8D .16解析:选C 要使函数f (x )的解析式有意义,则需⎩⎪⎨⎪⎧1-x 2≥0,x 2-1≥0,x ≠0,解得x =1或x =-1,所以函数的定义域A ={-1,1}.而f (1)=f (-1)=0,故函数的值域B ={0},所以A ∪B ={1,-1,0},其子集的个数为23=8.3.下列图形中可以表示以M ={x |0≤x ≤1}为定义域,以N ={y |0≤y ≤1}为值域的函数的图象是( )解析:选C 由题意知,自变量的取值范围是[0,1],函数值的取值范围也是[0,1],故可排除A 、B ;再结合函数的定义,可知对于集合M 中的任意x ,N 中都有唯一的元素与之对应,故排除D.4.(2013·长沙模拟)下列函数中,值域是(0,+∞)的是( ) A .y =x 2-2x +1 B .y =x +2x +1(x ∈(0,+∞))C .y =1x 2+2x +1(x ∈N)D .y =1|x +1|解析:选D 选项A 中y 可等于零;选项B 中y 显然大于1;选项C 中x ∈N ,值域不是(0,+∞);选项D 中|x +1|>0,故y >0.5.已知等腰△ABC 周长为10,则底边长y 关于腰长x 的函数关系为y =10-2x ,则函数的定义域为( )A .RB .{x |x >0}C .{x |0<x <5}D.⎩⎨⎧⎭⎬⎫x |52<x <5 解析:选C 由题意知⎩⎪⎨⎪⎧x >0,10-2x >0,即0<x <5.6.函数y =2x -1的定义域是(-∞,1)∪[2,5),则其值域是( )A .(-∞,0)∪⎝⎛⎦⎤12,2 B .(-∞,2] C.⎝⎛⎭⎫-∞,12∪[2,+∞)D .(0,+∞)解析:选A ∵x ∈(-∞,1)∪[2,5), 故x -1∈(-∞,0)∪[1,4), ∴2x -1∈(-∞,0)∪⎝⎛⎦⎤12,2. 7.(2013·安阳4月模拟)函数y =x +1+(x -1)0lg (2-x )的定义域是________.解析:由⎩⎪⎨⎪⎧x +1≥0,x -1≠0,2-x >0,2-x ≠1得⎩⎪⎨⎪⎧x ≥-1,x ≠1,x <2,则⎩⎪⎨⎪⎧-1≤x <2,x ≠1,所以定义域是{x |-1≤x <1,或1<x <2}. 答案:{x |-1≤x <1,或1<x <2}8.函数y =x -x (x ≥0)的最大值为________. 解析:y =x -x =-(x )2+x =-⎝⎛⎭⎫x -122+14, 即y max =14.答案:149.(2012·太原模考)已知函数f (x )的定义域为[0,1],值域为[1,2],则函数f (x +2)的定义域为____________,值域为__________.解析:由已知可得x +2∈[0,1],故x ∈[-2,-1],所以函数f (x +2)的定义域为[-2,-1].函数f (x )的图象向左平移2个单位得到函数f (x +2)的图象,所以值域不发生变化,所以函数f (x +2)的值域仍为[1,2].答案:[-2,-1] [1,2]10.求下列函数的值域.(1)y =1-x 2x +5;(2)y =2x -1-13-4x . 解:(1)y =1-x 2x +5=-12(2x +5)+722x +5=-12+722x +5, 因为722x +5≠0,所以y ≠-12, 所以函数y =1-x 2x +5的值域为⎩⎨⎧⎭⎬⎫y |y ≠-12. (2)法一:(换元法)设13-4x =t ,则t ≥0,x =13-t 24, 于是y =g (t )=2·13-t 24-1-t =-12t 2-t +112=-12(t +1)2+6, 显然函数g (t )在[0,+∞)上是单调递减函数,所以g (t )≤g (0)=112, 因此函数的值域是⎝⎛⎦⎤-∞,112. 法二:(单调性法)函数定义域是⎩⎨⎧⎭⎬⎫x |x ≤134, 当自变量x 增大时,2x -1增大,13-4x 减小,所以2x -1-13-4x 增大,因此函数f (x )=2x -1-13-4x 在其定义域上是单调递增函数,所以当x =134时,函数取得最大值f ⎝⎛⎭⎫134=112, 故函数的值域是⎝⎛⎦⎤-∞,112. 11.若函数f (x )=12x 2-x +a 的定义域和值域均为[1,b ](b >1),求a 、b 的值. 解:∵f (x )=12(x -1)2+a -12,∴其对称轴为x =1.即[1,b ]为f (x )的单调递增区间.∴f (x )min =f (1)=a -12=1① f (x )max =f (b )=12b 2-b +a =b ② 由①②解得⎩⎪⎨⎪⎧a =32,b =3.12.(2013·宝鸡模拟)已知函数g (x )=x +1, h (x )=1x +3,x ∈(-3,a ],其中a 为常数且a >0,令函数f (x )=g (x )·h (x ).(1)求函数f (x )的表达式,并求其定义域;(2)当a =14时,求函数f (x )的值域. 解:(1)f (x )=x +1x +3,x ∈[0,a ](a >0). (2)函数f (x )的定义域为⎣⎡⎦⎤0,14, 令x +1=t ,则x =(t -1)2,t ∈⎣⎡⎦⎤1,32, f (x )=F (t )=t t 2-2t +4=1t +4t-2, 当t =4t 时,t =±2∉⎣⎡⎦⎤1,32,又t ∈⎣⎡⎦⎤1,32时,t +4t单调递减,F (t )单调递增,F (t )∈⎣⎡⎦⎤13,613. 即函数f (x )的值域为⎣⎡⎦⎤13,613.1.函数y =2--x 2+4x 的值域是( )A .[-2,2]B .[1,2]C .[0,2]D .[-2,2]解析:选C -x 2+4x =-(x -2)2+4≤4,0≤-x 2+4x ≤2,-2≤--x 2+4x ≤0,0≤2--x 2+4x ≤2,所以0≤y ≤2.2.定义区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1,已知函数f (x )=|log 12x |的定义域为[a ,b ],值域为[0,2],则区间[a ,b ]的长度的最大值与最小值的差为________.解析:由函数f (x )=|log 12x |的图象和值域为[0,2]知,当a =14时,b ∈[1,4];当b =4时,a ∈⎣⎡⎦⎤14,1,所以区间[a ,b ]的长度的最大值为4-14=154,最小值为1-14=34. 所以区间长度的最大值与最小值的差为154-34=3. 答案:33.运货卡车以每小时x 千米的速度匀速行驶130千米(50≤x ≤100)(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油⎝⎛⎭⎫2+x 2360升,司机的工资是每小时14元. (1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值.解:(1)行车所用时间为t =130x(h), y =130x ×2×⎝⎛⎭⎫2+x 2360+14×130x,x ∈[50,100]. 所以,这次行车总费用y 关于x 的表达式是y =2 340x +1318x ,x ∈[50,100]. (2)y =2 340x +1318x ≥2610,当且仅当2 340x =1318x , 即x =1810时,上述不等式中等号成立.当x =1810时,这次行车的总费用最低,最低费用为2610元.1.已知函数f (x )=2x +4-x ,则函数f (x )的值域为( )A .[2,4]B .[0,2 5 ]C .[4,2 5 ]D .[2,2 5 ] 解析:选D ∵x ∈[0,4],∴可令x =4cos 2θ,θ∈⎣⎡⎦⎤0,π2, 则y =2·2cos θ+2sin θ=25sin(θ+φ),tan φ=2.又0≤θ≤π2,φ≤θ+φ≤π2+φ, 故cos φ≤sin(θ+φ)≤1,而cos φ=15, ∴2≤y ≤2 5.2.若函数f (x )= (a 2-1)x 2+(a -1)x +2a +1的定义域为R ,求实数a 的取值范围. 解:由函数的定义域为R ,可知对x ∈R ,f (x )恒有意义,即对x ∈R ,(a 2-1)x 2+(a -1)x+2a+1≥0恒成立.①当a2-1=0,即a=1(a=-1舍去)时,有1≥0,对x∈R恒成立,故a=1符合题意;②当a2-1≠0,即a≠±1时,则有⎩⎪⎨⎪⎧a2-1>0,Δ=(a-1)2-4(a2-1)×2a+1≤0,解得1<a≤9.综上,可得实数a的取值范围是[1,9].。

求函数的定义域值域方法总结

求函数的定义域值域方法总结

函数的定义域、值域方法总结一.常见函数(基本初等函数):1.)(为常数C C y = 2.)0(≠+=k b kx y 3.)0(2≠++=a c bx ax y 4.xy 1= 5.幂函数:)(Q a x y a∈=(包括前四个函数) 6.指数函数:)10(≠>=a a a y x 且 7.对数函数:)10(log ≠>=a a x y a 且8.三角函数:x y sin =,x y cos =,x y tan =,x y cot =,x y sec =,x y csc =由以上函数进行四则运算、复合运算得到的函数都是初等函数。

如:d cx bx ax y +++=23,x x y 2log 1sin +=,xxy 513+=,试着分析以上函数的构成。

二.定义域:“定义域优先”的思想是研究函数的前提,在求值域、奇偶性、换元时易忽略定义域。

函数的三要素: 对应法则、定义域、值域只有当这三要素完全相同时,两个函数才能称为同一函数。

函数定义域的求法tan ...(,,)2y x x R x k k ππ=∈≠+∈Z 且cot y x = (),,x R x k k π∈≠∈Z 且例:判断下列各组中的两个函数是否是同一函数?为什么?1.3)5)(3(1+-+=x x x y52-=x y 解:不是同一函数,定义域不同2. 111-+=x x y )1)(1(2-+=x x y 解:不是同一函数,定义域不同3. x x f =)( 2)(x x g = 解:不是同一函数,值域不同 4.x x f =)( 33)(x x F = 解:是同一函数 5.21)52()(-=x x f 52)(2-=x x f 解:不是同一函数,定义域、值域都不同练习求下列函数的定义域 ①)2lg(2x x y -=②1112++-=x x y③02)45()34lg()(-++=x x x x f④)1(log 1|2|)(2---=x x x f⑤(x 1)(x)f x -=⑥1(x)tan f x =⑦(x)lgcos f x = ⑧(x)f =⑨2(x)lg(3x 1)f =++⑩ y =ln(x +1)-x2-3x +4关于复合函数例1、设 f (x )=2x -3 g (x )=x 2+2 则称 f [g (x )](或g [f (x )])为复合函数。

求函数定义域、值域、对应关系(知识点+例题)pdf版

求函数定义域、值域、对应关系(知识点+例题)pdf版

2
2
综上 1 y 1 .
2
2
答案:[ 1 , 1 ] 22
(6)单调性法:确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值 域.
例 17 求函数 y 4x 1 3x 的值域.
解析:由解析式知1 3x 0 ,即 x 1 3
4x 单调递增, 1 3x 也递增,则 y 4x 1 3x 在定义域内单调递增
x3
x3
答案:{y | y 2}
(5)判别式法:把函数转化为关于 x 的二次方程,通过方程有实根,判别式 0 ,从而 求得原函数的值域.
例 15
求函数
y
3x x2
4
的值域.
解析:将函数化为 yx2 3x 4y 0
原函数有意义,等价于此方程有解
y 0 时, x 0 有解符合题意
y 0 时,判别式 9 16y2 0 ,解得 3 y 0或0 y 3
{x | x 0}
R 决定 [1,1] [1,1]
R (, 2 k ) (2 k , )
2.函数的定义域的求法
函数的定义域就是使得整个函数关系式有意义的实数的全体构成的集合.
(1)求定义域注意事项:★
①分式分母不为 0;
②偶次根式的被开方数大于等于 0;
③零次幂底数不为 0;
④对数的真数大于 0;
例 21 已知 f ( 2 1) lg x ,求 f (x) 的解析式. x
解析:令 2 1 t ,则 x 2 且 t 1
x
t 1
带入原式得 f (t) lg 2 (t 1) t 1
f (x) lg 2 (x 1) . x 1
答案: f (x) lg 2 (x 1) x 1
例 22 已知 f ( x 1) x 2 x ,求 f (x) 的解析式.

函数定义域值域求法(全十一种)

函数定义域值域求法(全十一种)
解:由题意知,此框架围成的面积是由一个矩形和一个半圆组成的图形的面积,如图。
文档大全
实用标准
因为CD=AB=2x,所以CDx,所以
2
L2xxx
y2x

22
LABCDL2xx
AD,
22
(2
)
2
2
x
Lx
根据实际问题的意义知
2x
L
0
2x
2
x
0
0x
L
2
2
故函数的解析式为y(2)xLx
2
五、参数型
,定义域(0,
即为所求的定义域。
2
例3已知f(x)的定义域为[-2,2],求f(x1)
的定义域。
2
解:令2x12
2
,得1x3
2
,即0x3
,因此0|x|3,从而
3x3,故函数的定义域是{x|3x3}。
(2)已知f[g(x)]的定义域,求f(x)的定义域。
其解法是:已知f[g(x)]的定义域是[a,b],求f(x)定义域的方法是:由axb,求
恒成立,解得
3
0k;
4
②当k=0时,方程左边=3≠0恒成立。
综上k的取值范围是
四、实际问题型
3
0k。
4
这里函数的定义域除满足解析式外,还要注意问题的实际意义对自变量的限制,这点要
加倍注意,并形成意识。
例7将长为a的铁丝折成矩形,求矩形面积y关于一边长x的函数的解析式,并求函
数的定义域。
1
解:设矩形一边为x,则另一边长为(a2x)
含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之
一,在求函数的值域中同样发挥作用。

高中数学函数定义域值域求法总结

高中数学函数定义域值域求法总结

函数定义域、值域求法总结一。

求函数得定义域需要从这几个方面入手:(1)分母不为零(2)偶次根式得被开方数非负。

(3)对数中得真数部分大于0。

(4)指数、对数得底数大于0,且不等于1(5)y=tanx中x≠kπ+π/2;y=cotx中x≠kπ等等。

( 6 )中x二、值域就是函数y=f(x)中y得取值范围。

常用得求值域得方法: (1)直接法(2)图象法(数形结合)(3)函数单调性法 (4)配方法(5)换元法 (包括三角换元)(6)反函数法(逆求法)(7)分离常数法 (8)判别式法(9)复合函数法 (10)不等式法(11)平方法等等这些解题思想与方法贯穿了高中数学得始终。

定义域得求法1、直接定义域问题例1 求下列函数得定义域:①;②;③解:①∵x—2=0,即x=2时,分式无意义,而时,分式有意义,∴这个函数得定义域就是、②∵3x+2〈0,即x<-时,根式无意义,而,即时,根式才有意义,∴这个函数得定义域就是{|}.③∵当,即且时,根式与分式同时有意义,∴这个函数得定义域就是{|且}另解:要使函数有意义,必须:例2 求下列函数得定义域:①②③④⑤解:①要使函数有意义,必须: 即:∴函数得定义域为: []②要使函数有意义,必须:∴定义域为:{ x|}③要使函数有意义,必须: ⇒∴函数得定义域为:④要使函数有意义,必须:∴定义域为:⑤要使函数有意义,必须:即 x< 或 x〉∴定义域为:2定义域得逆向问题例3若函数得定义域就是R,求实数a得取值范围(定义域得逆向问题)解:∵定义域就是R,∴∴练习: 定义域就是一切实数,则m得取值范围;3复合函数定义域得求法例4 若函数得定义域为[-1,1],求函数得定义域解:要使函数有意义,必须:∴函数得定义域为:例5 已知f(x)得定义域为[—1,1],求f(2x—1)得定义域。

分析:法则f要求自变量在[-1,1]内取值,则法则作用在2x-1上必也要求2x-1在[-1,1]内取值,即-1≤2x-1≤1,解出x得取值范围就就是复合函数得定义域;或者从位置上思考f(2x-1)中2x-1与f(x)中得x位置相同,范围也应一样,∴—1≤2x-1≤1,解出x得取值范围就就是复合函数得定义域。

函数的定义域与值域知识点与题型归纳

函数的定义域与值域知识点与题型归纳

●高考明方向了解构成函数的要素,会求一些简单函数的定义域和值域.★备考知考情定义域是函数的灵魂,高考中考查的定义域多以选择、填空形式出现,难度不大;有时也在解答题的某一小问当中进行考查;值域是定义域与对应法则的必然产物,值域的考查往往与最值联系在一起,三种题型都有,难度中等.一、知识梳理《名师一号》P13知识点一常见基本初等函数的定义域注意:1、研究函数问题必须遵循“定义域优先”的原则!!!2、定义域必须写成集合或区间的形式!!!(1)分式函数中分母不等于零(2)偶次根式函数被开方式大于或等于0(3)一次函数、二次函数的定义域均为R(4)y=a x(a>0且a≠1),y=sin x,y=cos x的定义域均为R(5)y=log a x(a>0且a≠1)的定义域为(0,+∞)(6)函数f(x)=x0的定义域为{x|x≠0}12 (7)实际问题中的函数定义域,除了使函数的解析式有意 义外,还要考虑实际问题对函数自变量的制约. (补充)三角函数中的正切函数y =tan x 定义域为{|,,}2∈≠+∈x x R x k k Z ππ 如果函数是由几个部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的实数集合.知识点二 基本初等函数的值域注意:值域必须写成集合或区间的形式!!!(1)y =kx +b (k ≠0)的值域是R .(2)y =ax 2+bx +c (a ≠0)的值域是:当a >0时,值域为{y |y ≥4ac -b 24a}; 当a <0时,值域为{y |y ≤4ac -b 24a} (3)y =k x (k ≠0)的值域是{y |y ≠0}(4)y =a x (a >0且a ≠1)的值域是{y |y >0}(5)y =log a x (a >0且a ≠1)的值域是R .(补充)三角函数中正弦函数y =sin x ,余弦函数y =cos x 的值域均为[]1,1- 正切函数y =tan x 值域为R3 《名师一号》P15知识点二 函数的最值注意:《名师一号》P16 问题探究 问题3函数最值与函数值域有何关系?函数的最小值与最大值分别是函数值域中的最小元素与最大元素;任何一个函数,其值域必定存在,但其最值不一定存在.1、温故知新P11 知识辨析1(2)函数21=+x y x 的值域为11,,22⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭( )答案:正确2、温故知新P11 第4题4 函数(]()1122,,222,,2--⎧-∈-∞⎪=⎨-∈-∞⎪⎩x x x y x 的值域为( ) 3.,2⎛⎫-+∞ ⎪⎝⎭A ().,0-∞B 3.,2⎛⎫-∞- ⎪⎝⎭C (].2,0-D答案:D注意:牢记基本函数的值域3、温故知新P11 第6题函数()=y f x 的值域是[]1,3,则函数()()123=-+F x f x 的值域是( )[].5,1--A [].2,0-B [].6,2--C [].1,3D答案:A注意:图像左右平移没有改变函数的值域二、例题分析:(一)函数的定义域1.据解析式求定义域例1. (1)《名师一号》P13 对点自测15(2014·山东) 函数()=f x 为( )A.⎝ ⎛⎭⎪⎫0,12 B .(2,+∞) C.⎝ ⎛⎭⎪⎫0,12∪(2,+∞) D.⎝ ⎛⎦⎥⎤0,12∪[2,+∞)解析 要使函数有意义,应有(log 2x )2>1,且x >0, 即log 2x >1或log 2x <-1,解得x >2或0<x <12. 所以函数f (x )的定义域为⎝ ⎛⎭⎪⎫0,12∪(2,+∞). 例1. (2)《名师一号》P14 高频考点 例1(1)函数f (x )=1-2x +1x +3的定义域为( ) A .(-3,0] B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,-3)∪(-3,1]6 解析:由题意得⎩⎨⎧1-2x ≥0,x +3>0,解得-3<x ≤0.注意:《名师一号》P14 高频考点 例1 规律方法(1) 求函数的定义域,其实质就是以函数解析式所含运算有意义为准则,列出不等式或不等式组,然后求出它们的解集. 函数的定义域一定要用集合或区间表示例2. (补充)若函数2()lg(21)f x ax x =++的定义域为R 则实数a 的取值范围是 ;答案:()1,+∞变式:2()lg(21)=++f x ax ax练习:(补充) 若函数27()43kx f x kx kx +=++的定义域为R7则实数k 的取值范围是 ;答案:30,4⎡⎫⎪⎢⎣⎭2.求复合函数的定义域例3.(1)《名师一号》P14 高频考点 例1(2)(2015·北京模拟)已知函数y =f (x )的定义域为[0,4],则函数y =f (2x )-ln(x -1)的定义域为( )A .[1,2]B .(1,2]C .[1,8]D .(1,8]解析:由已知函数y =f (x )的定义域为[0,4].则使函数y =f (2x )-ln(x -1)有意义,需⎩⎨⎧ 0≤2x ≤4,x -1>0,解得1<x ≤2,所以定义域为(1,2].例3. (2)《名师一号》P13 对点自测2已知函数f (x )=1x +1,则函数f (f (x ))的定义域是( ) A .{x |x ≠-1} B .{x |x ≠-2}C .{x |x ≠-1且x ≠-2}D .{x |x ≠-1或x ≠-2}8解析 ⎩⎪⎨⎪⎧ x ≠-1,1x +1+1≠0,解得x ≠-1且x ≠-2.注意:《名师一号》P14 高频考点 例1 规律方法(2) (P13 问题探究 问题1 类型二)已知f (x )的定义域是[a ,b ],求f [g (x )]的定义域, 是指满足a ≤g (x )≤b 的x 的取值范围,而已知f [g (x )]的定义域是[a ,b ],指的是x ∈[a ,b ].例4.(补充)已知2(1)f x +的定义域是[]0,1,求()f x 的定义域。

函数的定义域与值域(含解析)

函数的定义域与值域(含解析)

函数的定义域和值域1.知函数解析式求定义域的基本依据: (1)分式的分母 ;(2)偶次根式的被开方数 ; (3)对数函数的真数必须 ;(4)指数函数和对数函数的底 ; (5)正切函数的角的终边 ; (6)零次幂的底数 。

2.求复合函数定义域方法:(1)已知()y f x =的定义域是A ,求[]()yf x ϕ=的定义域的方法:解不等式 ,求出x 的范围,再将所得范围写成集合或区间形式,即得所求[]()y f x ϕ=的定义域。

(2)已知[]()yf x ϕ=的定义域是A ,求()y f x =的定义域的方法:求出 时,()x ϕ的范围,再将所得范围写成集合或区间形式,即得所求()y f x =的定义域。

3.反函数的定义域是原函数的 。

4.函数的值域:(1)值域是函数值组成的集合,它是由 和 确定的,因此求值域时一定要看 。

(2)函数的最大值:一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足: (I )对任意的x I ∈,都有 ;(II )存在0x I ∈使得 ,那么,我们称M 是函数()y f x =的最大值。

5.函数的最小值:一般地,设函数()y f x =的定义域为I ,如果存在实数N 满足: (1)对任意的x I ∈,都有 ;(2)存在0x I ∈使得 ,那么,我们称N 是函数()y f x =的最小值。

6.常见基本初等函数的值域: (1)一次函数(0)ykx b k =+≠的值域是R 。

(2)二次函数2(0)y axbx c a =++≠,当0a >时,值域是 , 当0a <时,值域是 。

(3)反比例函数(0)ky k x=≠的值域是 。

(4)指数函数(0,1)xy a a a =>≠的值域是 。

(5)对数函数log (0,1)a yx a a =>≠的值域是 。

7.求函数值域及最值的基本类型及方法: (1)形如2(0)y ax bx c a =++≠的函数,用 求值域,要特别注意定义域。

函数的定义域、值域--高考数学【解析版】

函数的定义域、值域--高考数学【解析版】

专题06 函数的定义域、值域函数的定义域作为函数的要素之一,是研究函数的基础,函数的定义域问题也是高考的热点.函数的值域(最值)也是高考中的一个重要考点,并且值域(最值)问题通常会渗透在各类题目之中,成为解题过程的一部分.【重点知识回眸】1.函数的有关概念 (1)函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.显然,值域是集合B 的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据. (4)函数的表示法表示函数的常用方法有:解析法、图象法、列表法.提醒:两个函数的值域和对应关系相同,但两个函数不一定相同,例如,函数f (x )=|x |,x ∈[0,2]与函数f (x )=|x |,x ∈[-2,0]. 2.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.提醒:分段函数是一个函数,而不是几个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集. 3.常见函数定义域的求法类型x 满足的条件2()nf x (n ∈N *) f (x )≥0 21()n f x (n ∈N *)f (x )有意义 1()f x 与[f (x )]0 f (x )≠0 log a f (x )(a >0且a ≠1) f (x )>0 a f (x )(a >0且a ≠1)f (x )有意义 tan[f (x )]f (x )≠π2+k π,k ∈Z四则运算组成的函数 各个函数定义域的交集实际问题使实际问题有意义4.①若()y f x =的定义域为(),a b ,则不等式()a g x b <<的解集即为函数()()y f g x =的定义域;②若()()y f g x =的定义域为(),a b ,则函数()g x 在(),a b 上的的值域即为函数()y f x =的定义域.5.常见函数的值域:在处理常见函数的值域时,通常可以通过数形结合,利用函数图像将值域解出,熟练处理常见函数的值域也便于将复杂的解析式通过变形与换元向常见函数进行化归.(1)一次函数(y kx b =+):一次函数为单调函数,图像为一条直线,所以可利用边界点来确定值域.(2)二次函数(2y ax bx c =++),给定区间.二次函数的图像为抛物线,通常可进行配方确定函数的对称轴,然后利用图像进行求解.(关键点:①抛物线开口方向,②顶点是否在区间内).(3)反比例函数:1y x=(1)图像关于原点中心对称(2)当,0x y →+∞→ ,当,0x y →-∞→. (4)对勾函数:()0ay x a x=+> ① 解析式特点:x 的系数为1;0a >注:因为此类函数的值域与a 相关,求a 的值时要先保证x 的系数为1,再去确定a 的值 例:42y x x =+,并不能直接确定4a =,而是先要变形为22y x x ⎛⎫=+ ⎪⎝⎭,再求得2a =② 极值点:,x a x a ==③ 极值点坐标:(,2,,2a a a a --④ 定义域:()(),00,-∞+∞⑤ 自然定义域下的值域:(),22,a a ⎡-∞-+∞⎣(5)函数:()0ay x a x=-> 注意与对勾函数进行对比① 解析式特点:x 的系数为1;0a > ② 函数的零点:x a =③ 值域:R(5)指数函数(xy a =):其函数图像分为1a >与01a <<两种情况,可根据图像求得值域,在自然定义域下的值域为()0,+∞(6)对数函数(log a y x =)其函数图像分为1a >与01a <<两种情况,可根据图像求得值域,在自然定义域下的值域为()0,+∞(7)三角函数的有界性,如sin [1,1],x ∈-cos [1,1]x ∈-. 6.函数值域问题处理策略 (1)换元法:① ()()(),log ,sin f x a y ay f x y f x ===⎡⎤⎡⎤⎣⎦⎣⎦:此类问题在求值域时可先确定()f x 的范围,再求出函数的范围.② ()()(),log ,sin x a y f a y f x y f x ===:此类函数可利用换元将解析式转为()y f t =的形式,然后求值域即可.③形如y ax b cx d =++(2)均值不等式法:特别注意“一正、二定、三相等”.(3)判别式法:若原函数的定义域不是实数集时,应结合函数的定义域,将扩大的部分剔除.(4)分离常数法:一般地, ① ax by cx d+=+:换元→分离常数→反比例函数模型② 2ax bx c y dx e ++=+:换元→分离常数→ay x x=±模型③ 2dx ey ax bx c+=++:同时除以分子:21y ax bx c dx e=+++→②的模型④ 22ax bx cy dx ex f++=++:分离常数→③的模型(5)单调性性质法:利用函数的单调性(6)导数法:利用导数与函数的连续性求图复杂函数的极值和最值, 然后求出值域 (7)数形结合法【典型考题解析】热点一 已知函数解析式求定义域【典例1】(广东·高考真题(文))函数f (x )=11x-+lg(1+x )的定义域是( )A .(-∞,-1)B .(1,+∞)C .(-1,1)∪(1,+∞)D .(-∞,+∞)【答案】C 【解析】根据函数解析式建立不等关系即可求出函数定义域. 【详解】 因为f (x )=11x-+lg(1+x ), 所以需满足1010x x -≠⎧⎨+>⎩,解得1x >-且1x ≠,所以函数的定义域为(-1,1)∪(1,+∞), 故选:C【典例2】(山东·高考真题(文))函数21()4ln(1)f x x x =-+( )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2]【答案】B 【解析】 【详解】x 满足2101140x x x +>⎧⎪+≠⎨⎪-≥⎩,即1022x x x >-⎧⎪≠⎨⎪-≤≤⎩. 解得-1<x <0或0<x ≤,选B.【典例3】(2019·江苏·高考真题)函数276y x x =+-_____. 【答案】[1,7]-. 【解析】 【分析】由题意得到关于x 的不等式,解不等式可得函数的定义域. 【详解】由已知得2760x x +-≥, 即2670x x --≤ 解得17x -≤≤, 故函数的定义域为[1,7]-.【典例4】(2022·北京·高考真题)函数1()1f x x x=-_________. 【答案】()(],00,1-∞⋃【解析】 【分析】根据偶次方根的被开方数非负、分母不为零得到方程组,解得即可; 【详解】 解:因为()11f x x x =-100x x -≥⎧⎨≠⎩,解得1x ≤且0x ≠,故函数的定义域为()(],00,1-∞⋃; 故答案为:()(],00,1-∞⋃ 【总结提升】已知函数的具体解析式求定义域的方法(1)简单函数的定义域:若f(x)是由一些基本初等函数通过四则运算构成的,则它的定义域为各基本初等函数的定义域的交集.(2)复合函数的定义域:先由外层函数的定义域确定内层函数的值域,从而确定对应的内层函数自变量的取值范围,还需要确定内层函数的定义域,两者取交集即可. 热点二 求抽象函数的定义域【典例5】(全国·高考真题(理))已知()f x 的定义域为(1,0)-,则函数(21)f x +的定义域为 ( ) A .(1,1)- B .1(1,)2--C .(1,0)-D .1(,1)2【答案】B 【解析】 【详解】试题分析:因为函数()f x 的定义域为(1,0)-,故函数(21)f x +有意义只需-1210x <+<即可,解得1-1-2x <<,选B .【典例6】(2023·全国·高三专题练习)已知函数()31f x +的定义域为[]1,7,求函数()f x 的定义域. 【答案】[]4,22 【解析】 【分析】根据复合函数定义域的性质进行求解即可. 【详解】因为()31f x +的定义域为[]1,7,所以17x ≤≤,所以43122x ≤+≤.令31x t +=,则422t ≤≤.即()f t 中,[]4,22t ∈. 故()f x 的定义域为[]4,22.【典例7】(2022·全国·高三专题练习)已知函数(1)y f x +=的定义域为112⎡⎤-⎢⎥⎣⎦,,则函数2(log )y f x =的定义域为( )A .(0,)+∞B .(0,1)C .22⎡⎤⎢⎥⎣⎦D .2⎡⎤⎣⎦,【答案】D 【解析】 【分析】根据(1)y f x +=的定义域可知1122x ≤+≤,故21log 22x ≤≤,即可求出答案. 【详解】解:∵函数(1)y f x +=的定义域为112⎡⎤-⎢⎥⎣⎦, ∴112x -≤≤,1122x ≤+≤∴函数2(log )y f x =中,21log 22x ≤≤ 24x ≤≤所以函数2(log )y f x =的定义域为2,]. 故选:D 【总结提升】(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由a ≤g (x )≤b 求出. (2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域. 热点三 求函数的值域(最值)【典例8】(江西·高考真题(理))若函数()y f x =的值域是1[,3]2,则函数1()()()F x f x f x =+的值域是( ) A .1[,3]2B .10[2,]3 C .510[,]23D .10[3,]3【答案】B 【解析】 【详解】试题分析:设()f x =t,则1,32t ⎡⎤∈⎢⎥⎣⎦,从而()F x 的值域就是函数11,,32y t t t ⎡⎤=+∈⎢⎥⎣⎦的值域,由“勾函数”的图象可知,102()3F x ≤≤,故选B .【典例9】(2023·全国·高三专题练习)已知函数()y f x =的定义域是R ,值域为[]1,2,则下列四个函数①()21y f x =-;①()21y f x =-;①()12f x y -=;①()2log 11y f x =++,其中值域也为[]1,2的函数个数是( ) A .4 B .3 C .2 D .1【答案】B 【解析】 【分析】求出①②③④中各函数的值域,即可得出合适的选项. 【详解】对于①,因为()12f x ≤≤,则()[]211,3y f x =-∈,①不满足条件;对于②,对于函数()21y f x =-,21x -∈R ,则函数()21y f x =-的值域为[]1,2,②满足条件;对于③,因为()12f x ≤≤,则()[]1,221f x y -∈=,③满足条件; 对于④,因为()12f x ≤≤,()[]11,2f x +∈,则()[]2log 111,2y f x =++∈,④满足条件. 故选:B.【典例10】(2023·全国·高三专题练习)已知函数2()(2)sin(1)1xf x x x x x =--+-在[1,1)-(1,3]⋃上的最大值为M ,最小值为N ,则M N +=( )A .1B .2C .3D .4【答案】B 【解析】 【分析】令1x t -=,()f x 转化为()21sin sin 1g t t t t t =+-+,令()21sin sin h t t t t t=+-,根据奇偶性的定义,可判断()h t 的奇偶性,根据奇偶性,可得()h t 在(][2,0)0,2-⋃最大值与最小值之和为0,分析即可得答案. 【详解】由21()[(1)1]sin(1)11f x x x x =---++- 令1x t -=,因为[1,1)(1,3]x ∈-⋃,所以(][2,0)0,2t ∈-⋃;那么()f x 转化为()21sin sin 1g t t t t t =+-+,(][2,0)0,2t ∈-⋃,令()21sin sin h t t t t t=+-,(][2,0)0,2t ∈-⋃,则()()()()()()2211sin sin sin sin h t t t t t t t h t t t ⎛⎫-=--+--=-+-=- ⎪-⎝⎭,所以()h t 是奇函数可得()h t 的最大值与最小值之和为0, 那么()g t 的最大值与最小值之和为2. 故选:B .【典例11】(2022·河南·郑州四中高三阶段练习(文))高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的美誉,用其名字命名的“高斯函数”:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,也称取整函数,例如:[]1.32-=-,[]3.43=,已知()11313x f x =-+,则函数()y f x ⎡⎤=⎣⎦的值域为______. 【答案】{}1,0- 【解析】 【分析】根据指数函数的性质分析()f x 的值域,进而得到()y f x ⎡⎤=⎣⎦的值域即可 【详解】 ∵()11313x f x =-+,()30,x∈+∞, ∴令30x t =>,则()()1112,1333f x g t t ⎛⎫==-∈- ⎪+⎝⎭故函数()()y f x g t ==⎡⎤⎡⎤⎣⎦⎣⎦的值域为{}1,0-, 故答案为:{}1,0-【典例12】(2023·全国·高三专题练习)函数()21f x x x =+-________;函数24y x x =-________.【答案】 2 22,2⎡⎤-⎣⎦【解析】 【分析】()f x 1x t -换元后化为二次函数可得最大值,函数24y x x =-2cos ([0,])x θθπ=∈,然后利用两角和的余弦公式化函数为一个角的一个三角函数形式,再由余弦函数的性质得取值范围. 【详解】(1)1x -t (t ≥0),所以x =1-t 2.所以y =f (x )=x 1x --t 2+2t =-t 2+2t +1=-(t -1)2+2.所以当t =1即x =0时,y max =f (x )max =2. (2)由4-x 2≥0,得-2≤x ≤2, 所以设x =2cos θ(θ∈[0,π]),则y =2cos θ244cos θ-θ-2sin θ2()4πθ+,因为5[,]444πππθ+∈, 所以cos ()4πθ+∈2⎡-⎢⎣⎦,所以y ∈[-22].故答案为:2;[2,2]-.【典例13】(2023·河南·洛宁县第一高级中学一模(文))已知函数()211122f x x x =++. (1)求()f x 的图像在点()()22f ,处的切线方程; (2)求()f x 在1,22⎡⎤⎢⎥⎣⎦上的值域.【答案】(1) 7420x y --=; (2)[]2,3. 【解析】 【分析】对于第一小问,把点()()22f ,代入函数解析式,得切点坐标,通过函数求导,得到过切点的切线的斜率,根据直线的点斜式方程,求切线方程.对于第二小问,解不等式()0f x '>,得函数增区间,解不等式()0f x '<,得函数减区间,结合1,22x ⎡∈⎤⎢⎥⎣⎦,确定函数单调性,求得最值,进而得值域.(1) 因为()211122f x x x =++,所以()21f x x x '=-,所以()23f =,()724f '=, 故所求切线方程为()7324y x -=-,即7420x y --=. (2)由(1)知()()()2322111x x x x f x x x -++-'==,1,22x ⎡∈⎤⎢⎥⎣⎦. 令()0f x '>,得12x <≤;令()0f x '<,得112x ≤<.所以()f x 在1,12⎡⎤⎢⎥⎣⎦上单调递减,在[]1,2上单调递增,所以()()min 12f x f ==. 又12128f ⎛⎫= ⎪⎝⎭,()23f =,所以()23f x ≤≤,即()f x 在1,22⎡⎤⎢⎥⎣⎦上的值域为[]2,3.热点四 求参数的值或取值范围【典例14】(2023·全国·高三专题练习)设a R ∈,函数()2229,1163,1x ax x f x x a x x ⎧-+≤⎪=⎨+->⎪⎩,若()f x 的最小值为()1f ,则实数a 的取值范围为( ) A .[]1,2 B .[]1,3 C .[]0,2 D .[]2,3【答案】A 【解析】 【分析】当1x >时,结合不等式求得其最小值为123a -,当1x ≤时,()()229f x x a a =-+-,根据函数()f x 的最小值为()1f ,列出不等式组,即可求解. 【详解】 当1x >时,22231688883333123x a x a x a a x x x x x+-=++-≥⨯⨯=-, 当且仅当28x x=时,等号成立; 即当1x >时,函数()f x 的最小值为123a -,当1x ≤时,()()222299f x x ax x a a =-+=-+-,要使得函数()f x 的最小值为()1f ,则满足()11102123a f a a ≥⎧⎨=-≤-⎩,解得12a ≤≤,即实数a 的取值范围是[]1,2. 故选:A.【典例15】(2022·全国·高三专题练习)已知函数()221f x ax x =++R ,则实数a 的取值范围是__. 【答案】[1,+∞) 【解析】 【分析】等价于ax 2+2x +1≥0恒成立,再对a 分类讨论得解. 【详解】解:函数()221f x ax x ++R , 即为ax 2+2x +1≥0恒成立, 若a =0,则2x +1≥0不恒成立; 当a >0,∆=4﹣4a ≤0, 解得a ≥1;当a <0,ax 2+2x +1≥0不恒成立. 综上可得,a 的取值范围是[1,+∞). 故答案为:[1,+∞).【典例16】(2016·北京·高考真题(理))设函数33,(){2,x x x af x x x a -≤=->. ①若0a =,则()f x 的最大值为____________________; ②若()f x 无最大值,则实数a 的取值范围是_________________. 【答案】2 (,1)-∞- 【解析】 【分析】试题分析:如图,作出函数3()3g x x x =-与直线 2y x =-的图象,它们的交点是(1,2),(0,0),(1,2)A O B --,由 2'()33g x x =-,知1x =是函数 ()g x 的极小值点,①当0a =时, 33,0(){2,0x x x f x x x -≤=->,由图象可知()f x 的最大值是 (1)2f -=;②由图象知当1a ≥-时, ()f x 有最大值(1)2f -=;只有当 1a <-时,332a a a -<-,()f x 无最大值,所以所求 a 的取值范围是(,1)-∞-.【精选精练】1.(2023·全国·高三专题练习)若集合-1|2M x y x ==⎧⎨⎩,{}2|N y y x -==,则( )A .M N ⋂=∅B .M N ⊆C .N M ⊆D .M =N【答案】B 【解析】 【分析】利用集合间的基本关系来进行运算即可. 【详解】集合M 表示函数21y x =-2x -1>0,解得12x >.集合N 表示函数2y x 的值域,值域为()0,∞+,故选:B.2.(2022·全国·高三专题练习)下列函数中,其定义域和值域分别与函数lg 10x y =的定义域和值域相同的是( ) A .y =x B .y =lg xC .y =2xD .y x【答案】D 【解析】 【分析】求出函数lg 10x y =的定义域和值域,对选项逐一判断即可. 【详解】因函数lg 10x y =的定义域和值域均为()0,∞+, 对于A ,y x =的定义域和值域均为R ,故A 错误;对于B ,lg y x =的定义域和值域分别为()0,,R +∞,故B 错误; 对于C ,2y x =的定义域和值域均为R ,故C 错误;对于D ,y x=定义域和值域均为()0,∞+,故D 正确; 故选:D .3.(2022·全国·高三专题练习)若函数()21f x ax ax =-+R ,则a 的范围是( ) A .()0,4 B .[)0,4 C .(]0,4 D .[]0,4【答案】D 【解析】 【分析】分0a =、0a >、0a <讨论即可求解. 【详解】若()f x 的定义域为R ,则当0a =时,()1f x =满足题意;当0a ≠时,20Δ40a a a >⎧⎨=-≤⎩,解得:04a <≤; 当0a <时,无法满足定义域为R . 综上所述:04a ≤≤,D 正确. 故选:D4.(2023·全国·高三专题练习)已知函数()f x 的定义域为[]0,1,值域为[]1,2,那么函数()2f x +的定义域和值域分别是( )A .[]0,1,[]1,2B .[]2,3,[]3,4C .[]2,1--,[]1,2D .[]1,2-,[]3,4【答案】C 【解析】 【分析】由[]20,1x +∈可求出函数的定义域,由于()2y f x =+的图象是由()y f x =的图象向左平移2个单位得到,所以其值域不变,从而可得答案 【详解】令[]20,1x +∈得[]2,1x ∈--,即为函数()2y f x =+的定义域, 而将函数()y f x =的图象向左平移2个单位即得()2y f x =+的图象, 故其值域不变. 故选:C .5.(2022·江西·高三阶段练习(文))函数()s 2π2inxf x x =+在[0,1]上的值域为( ) A .[1,2] B .[1,3] C .[2,3] D .[2,4]【答案】B 【解析】 【分析】根据指数函数与正弦函数的单调性可得函数()f x 在上单调递增,从而可求()f x 的值域. 【详解】解:易知函数()s 2π2inxf x x =+在[0,1]上单调递增,且(0)1f =,(1)3f =, 所以()f x 在[0,1]上的值域为[1,3]. 故选:B .6.(2022·全国·高三专题练习)已知(12)3,1()ln ,1a x a x f x x x -+<⎧=⎨≥⎩的值域为R ,那么a 的取值范围是( ) A .(﹣∞,﹣1] B .(﹣1,12)C .[﹣1,12)D .(0,1)【答案】C 【解析】 【分析】先求出ln ,1y x x =≥的值域,然后确定(12)3,1y a x a x =-+<的值域所包含的集合,利用一次函数性质可得. 【详解】当x ≥1时,f (x )=ln x ,其值域为[0,+∞),那么当x <1时,f (x )=(1﹣2a )x +3a 的值域包括(﹣∞,0), ∴1﹣2a >0,且f (1)=(1﹣2a )+3a ≥0, 解得:12a <,且a ≥﹣1. 故选:C.7.(2023·全国·高三专题练习)函数f (x 2sin 12x π- )A .54,433k k πππ⎡⎤++⎢⎥⎣⎦ (k ∈Z ) B .154,433k k ⎡⎤++⎢⎥⎣⎦ (k ∈Z )C .54,466k k πππ⎡⎤++⎢⎥⎣⎦(k ∈Z ) D .154,466k k ⎡⎤++⎢⎥⎣⎦(k ∈Z )【答案】B 【解析】 【分析】由题意可得2sin 102x π-≥,然后利用正弦函数的性质求解即可【详解】 由题意,得2sin 102x π-≥,1sin22x π≥, 所以522,Z 626k x k k πππππ≤+≤≤+∈, 解得1544,Z 33k x k k +≤≤+∈,所以函数的定义域为()154,4Z 33k k k ⎡⎤++∈⎢⎥⎣⎦,故选:B8.(2023·山西大同·高三阶段练习)函数6()e 1||1x mxf x x =+++的最大值为M ,最小值为N ,则M N +=( ) A .3 B .4C .6D .与m 值有关【答案】C 【解析】 【分析】利用分离常数法对函数的式子变形,结合函数奇函数的定义及奇函数最值的性质即可求解. 【详解】由题意可知,()3e 16()3e 1||1e 1||1x x x mx mxf x x x =+=--+++++, 设()()3e 1e 1||1x x mxg x x =--+++,则()g x 的定义域为(),-∞+∞, 所以()()()()()3e 13e 1e 1||1e 1||1x x xx m x mx g x g x x x --⎡⎤-⎢⎥-=-+=--+=-+-+++⎢⎥⎣⎦--, 所以()g x 为奇函数, 所以()()max min 0g x g x +=,所以()()()()max min max min 336f x f x M N g x g x +=+=+++=, 故选:C.9.(2022·江苏南京·高三开学考试)已知函数()()()()5sin sin ,99f x x x g x f f x ππ⎛⎫⎛⎫=++-= ⎪ ⎪⎝⎭⎝⎭,则()g x 的最大值为( )A 2B 3C .32D .2【答案】B 【解析】 【分析】 记9t x π=+,()()33sin 2f x h t t t ==+,由三角函数的性质即可求出()g x 的最大值. 【详解】 记9t x π=+,则()()33sin sin sin 32f x h t t t t t π⎛⎫==++= ⎪⎝⎭, 所以()3sin 3,36h t t π⎛⎫⎡=+∈- ⎪⎣⎝⎭, 33π>,所以()()f f x 3故选:B.10.(2022·广东·石门高级中学高二阶段练习)函数()12cos f x x x x =+-的最小值为( ) A .1ππ B .22ππC .-1D .0【答案】C 【解析】 【分析】根据题意得到()f x 为偶函数,由0x ≥时,()12cos f x x x x =+-,利用导数求得函数的的单调区间,进而求得函数的最小值. 【详解】由题意,函数()12cos f x x x x =+-的定义域为R ,关于原点对称,且满足()()()1122cos cos f x x x x x x x f x -=-+---=+-=,所以()f x 为偶函数,当0x ≥时,()12cos f x x x x =+-, 可得()1sin 11022f x x xx=≥'+>,()f x 在单调递增,又由()f x 为偶函数,所以()f x 在(),0∞-单调递减,[)0,∞+单调递增, 所以()()min 01f x f ==-. 故选:C. 二、多选题11.(2023·全国·高三专题练习)已知函数122()log (2)log (4)f x x x =--+,则下列结论中正确的是( )A .函数()f x 的定义域是[4,2]-B .函数(1)=-y f x 是偶函数C .函数()f x 在区间[1,2)-上是减函数D .函数()f x 的图象关于直线1x =-对称 【答案】BD 【解析】 【分析】求出函数定义域为(4,2)-,A 选项错误;利用定义证明函数(1)=-y f x 是偶函数,B 选项正确;函数()f x 在区间[)1,2-上是增函数,故C 选项错误;可以证明f (x )的图象关于直线1x =-对称,故D 选项正确. 【详解】解:函数()()()()()1222log 2log 4log 24f x x x x x ⎡⎤=--+=--+⎣⎦, 由20,40x x ->+>可得42x -<<,故函数定义域为(4,2)-,A 选项错误;()()()21log 33y f x x x ⎡⎤=-=--+⎣⎦的定义域为()3,3-,设()()()2log 33,g x x x ⎡⎤=--+⎣⎦所以()()()()2log 33,g x x x g x ⎡⎤-=-+-+=⎣⎦即()1y f x =-是偶函数,B 选项正确;()()()()222log 24log 28f x x x x x ⎡⎤=--+=---+⎣⎦()22log 19x ⎡⎤=--++⎣⎦()212log 19x ⎡⎤=-++⎣⎦,当[)1,2x ∈-时,()219t x =-++是减函数,外层12log y t =也是减函数,所以函数()f x 在区间[)1,2-上是增函数,故C 选项错误;由()()()()22log 42=f x x x f x ⎡⎤--=-+-⎣⎦,可得f (x )的图象关于直线1x =-对称,故D 选项正确. 故选:BD 三、双空题12.(2023·全国·高三专题练习)已知函数()ln ,1e 2,1xx b x f x x +>⎧=⎨-≤⎩,若(e)3(0)f f =-,则b =_____,函数()f x 的值域为____. 【答案】 2 (][)2,e 22,--+∞【解析】【分析】根据(e)3(0)f f =-可解得b 的值,代入分段函数,结合对数函数及指数函数的值域求解分段函数的值域即可. 【详解】由(e)3(0)f f =-得13(1)b +=-⨯-,即2b =,即函数()ln 2,1e 2,1xx x f x x +>⎧=⎨-≤⎩, 当1x >时,ln 22y x =+>;当1x ≤时,(]e 22,e 2xy =-∈--.故函数()f x 的值域为(][)2,e 22,--+∞.故答案为:2;(][)2,e 22,--+∞.13.(2023·全国·高三专题练习)已知函数()121x f x a =+-为奇函数,则实数a =__,函数f (x )在[1,3]上的值域为__. 【答案】 1293,142⎡⎤⎢⎥⎣⎦【解析】 【分析】由()f x 是定义在(﹣∞,0)∪(0,+∞)上的奇函数可得f (﹣x )=﹣f (x ),代入可求出实数a ;再判断数f (x )在[1,3]上单调性,即可求出答案. 【详解】解:∵f (x )是(﹣∞,0)∪(0,+∞)上是奇函数, ∴f (﹣x )=﹣f (x ), 即121x -+-a121x =---a , 即212xx+-a 121x=---a , 则2a 121221121212x x xx x x=--=-=----1, 则a 12=, 则f (x )11212x =+-在[1,3]为减函数, 则f (3)≤f (x )≤f (1), 即914≤f (x )32≤, 即函数的值域为[914,32],故答案为:12;[914,32] 四、填空题14.(2022·全国·高三专题练习)函数()02lg 2112x y x x x -=++-的定义域是________.【答案】(3,1)(1,2)--⋃- 【解析】 【分析】要使该函数表达式有意义,只需20x ->,2120x x +->,10x +≠同时成立,解不等式即可求出结果. 【详解】 函数()02lg 2112x y x x x -=++-的解析式有意义,由22012010x x x x ->⎧⎪+->⎨⎪+≠⎩,即2341x x x <⎧⎪-<<⎨⎪≠-⎩,所以31x -<<-或12x -<<, 故该函数的定义域为(3,1)(1,2)--⋃-. 故答案为:(3,1)(1,2)--⋃-15.(2022·上海闵行·二模)已知函数()()41log 42x f x m x =+-的定义域为R ,且对任意实数a ,都满足()()f a f a ≥-,则实数m =___________;【答案】1 【解析】 【分析】根据条件得到()()f a f a =-,即()()41log 42xf x m x =+-为偶函数,根据()()f x f x -=列出方程,求出实数m 的值. 【详解】因为()()41log 42xf x m x =+-的定义域为R ,所以40x m +>恒成立, 故0m ≥,又因为对任意实数a ,都满足()()f a f a ≥-, 则对于实数a -,都满足()()f a f a -≥, 所以()()f a f a =-,所以()()41log 42x f x m x =+-为偶函数, 从而()()4411log 4log 422x x m x m x -++=+-, 化简得:()()4110x m --=,要想对任意x ,上式均成立,则10m -=,解得:1m =故答案为:116.(2022·上海市嘉定区第二中学模拟预测)已知函数()y f x =是定义域为R 的奇函数,且当0x <时,()1a f x x x=++.若函数()y f x =在[)3,+∞上的最小值为3,则实数a 的值为________.【答案】3【解析】【分析】根据已知条件及奇函数的定义求出当0x <时函数的解析式,再利用函数的单调性对a 进行分类讨论,确定单调性即可求解.【详解】由题意可知,因为0x >,所以0x -<, 所以()1a f x x x -=--+, 因为函数()f x 是定义域为R 的奇函数,所以()()1a f x f x x x=--=+-. 因为函数()y f x =在[)3,+∞上的最小值为3当0a ≤时,由函数的性质知,函数()f x 在[)3,+∞上单调递增;当3x =时,()f x 取得最小值为(3)23a f =+, 因为函数()y f x =在[)3,+∞上的最小值为3,所以233a +=,解得3a =(舍), 当09a <≤时,由函数的性质知,函数()f x 在[)3,+∞上单调递增;当3x =时,()f x 取得最小值为(3)23a f =+, 因为函数()y f x =在[)3,+∞上的最小值为3,所以233a +=,解得3a =, 当9a >时,由对勾函数的性质知,函数()f x 在),a ⎡+∞⎣上单调递增;在(a 上单调递减; 当x a =()f x 取得最小值为(11f a a a a ==,因为函数()y f x =在[)3,+∞上的最小值为3,所以213a =,解得1a =(舍), 综上,实数a 的值为3.故答案为:3.17.(2022·北京·清华附中模拟预测)已知函数()()2ln ,1,1x a x f x x a x +≥⎧⎪=⎨+<⎪⎩,下列说法正确的是___________.①当0a ≥时,()f x 的值域为[0,)+∞;②a ∀∈R ,()f x 有最小值;③R a ∃∈,()f x 在(0,)+∞上单调递增:④若方程1f x有唯一解,则a 的取值范围是(,2)-∞-.【答案】①②【解析】【分析】由分段函数解析式,讨论参数a ,结合二次函数、对数函数的性质研究()f x 的单调性、最值及对应值域,利用函数()f x 与1y =的交点情况判断参数范围.【详解】由2()y x a =+的对称轴x a =-,当1a >-时,则1x a =-<,且(,)a -∞-上递减,(,1)a -上递增,值域为[0,)+∞, 当1a =-时,则(,1)-∞上递减,值域为[0,)+∞,当1a <-时,则1x a =->,(,1)-∞上递减,值域为2((1),)a ++∞,对于ln y x a =+在[1,)+∞上递增,且值域为[,)a +∞,综上,0a ≥时()f x 的值域为[0,)+∞,①正确;当0a ≥时()f x 最小值为0,当0a <时()f x 最小值为a ,②正确;由211|(1)|ln1x x y a y a a ===+>=+=恒成立,故在(0,)+∞上不可能递增,③错误; 要使1f x 有唯一解,当1a <-时,在[1,)+∞上必有一个解,此时只需2(1)1a +≥,即2a ≤-;当1a =-时,在R 上有两个解,不合题设;当1a >-时,在(,)a -∞-上必有一个解,此时()211{1a a +≤>,无解.所以④错误.故答案为:①② 18.(2022·全国·高三专题练习)已知函数f (x )()221mx m x m =--+-的值域是[0,+∞),则实数m 的取值范围是__. 【答案】230⎡⎢⎣⎦, 【解析】【分析】将m 分为000m m m =><,, 三种情况讨论:当0m =时,()210f x x - 满足条件;当0m <时,由二次函数知开口向下,不满足条件;当0m >时,只需二次函数的0∆≥即可,解出m 的取值范围,综上得m 的取值范围.【详解】解:当0m =时,()()22121f x mx m x m x =--+--[0,+∞),满足条件;令()()221g x mx m x m =--+- ,()()0g x ≥当m <0时,()g x 的图象开口向下,故f (x )的值域不会是[0,+∞),不满足条件;当m >0时,()g x 的图象开口向上,只需()2210mx m x m --+-=的0∆≥,即(m ﹣2)2﹣4m (m ﹣1)≥0, ∴2323m ≤≤,又0m > ,所以230m <≤ 综上,230m ≤≤∴实数m 的取值范围是:230⎡⎢⎣⎦,, 故答案为:230⎡⎢⎣⎦,.。

函数定义域值域求法总结精彩

函数定义域值域求法总结精彩

函数定义域值域求法总结精彩GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-函数定义域、值域求法总结一、定义域是函数y=f(x)中的自变量x 的范围。

求函数的定义域需要从这几个方面入手: (1)分母不为零(2)偶次根式的被开方数非负。

(3)对数中的真数部分大于0。

(4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。

( 6 )0x 中x 0≠二、值域是函数y=f(x)中y 的取值范围。

这些解题思想与方法贯穿了高中数学的始终。

常用的求值域的方法:(1)直接法 (2)图象法(数形结合) (3)函数单调性法(4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等三、典例解析 1、定义域问题例1 求下列函数的定义域:① 21)(-=x x f ;② 23)(+=x x f ;③ xx x f -++=211)( 解:①∵x-2=0,即x=2时,分式21-x 无意义,而2≠x 时,分式21-x 有意义,∴这个函数的定义域是{}2|≠x x .②∵3x+2<0,即x<-32时,根式23+x 无意义,而023≥+x ,即32-≥x 时,根式23+x 才有意义,∴这个函数的定义域是{x |32-≥x }.③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x-21同时有意义,∴这个函数的定义域是{x |1-≥x 且2≠x }另解:要使函数有意义,必须: ⎩⎨⎧≠-≥+0201x x ⇒ ⎩⎨⎧≠-≥21x x例2 求下列函数的定义域:①14)(2--=x x f ②2143)(2-+--=x x x x f ③=)(x f x11111++④xx x x f -+=0)1()( ⑤373132+++-=x x y解:①要使函数有意义,必须:142≥-x 即: 33≤≤-x ∴函数14)(2--=x x f 的定义域为: [3,3-]②要使函数有意义,必须:⎩⎨⎧≠-≠-≤≥⇒⎩⎨⎧≠-+≥--13140210432x x x x x x x 且或 4133≥-≤<--<⇒x x x 或或∴定义域为:{ x|4133≥-≤<--<x x x 或或}③要使函数有意义,必须: 011110110≠++≠+≠⎪⎪⎪⎩⎪⎪⎪⎨⎧x x x ⇒ 2110-≠-≠≠⎪⎩⎪⎨⎧x x x∴函数的定义域为:}21,1,0|{--≠∈x R x x 且④要使函数有意义,必须: ⎩⎨⎧≠-≠+001x x x ⎩⎨⎧<-≠⇒01x x∴定义域为:{}011|<<--<x x x 或⑤要使函数有意义,必须: ⎩⎨⎧≠+≥+-073032x x ⎪⎩⎪⎨⎧-≠∈⇒37x R x 即 x<37- 或 x>37- ∴定义域为:}37|{-≠x x例3 若函数aax ax y 12+-=的定义域是R ,求实数a 的取值范围 解:∵定义域是R,∴恒成立,012≥+-aax ax 第一页∴⎪⎩⎪⎨⎧≤<⇒≤⋅-=∆>2001402a a a a a 等价于 例4 若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )41(-⋅x f 的定义域解:要使函数有意义,必须:43434543434514111411≤≤-⇒⎪⎩⎪⎨⎧≤≤-≤≤-⇒⎪⎩⎪⎨⎧≤-≤-≤+≤-x x x x x ∴函数)41(+=x f y )41(-⋅x f 的定义域为:⎭⎬⎫⎩⎨⎧≤≤-4343|x x 例5 已知f(x)的定义域为[-1,1],求f(2x -1)的定义域。

函数的定义域与值域知识点及题型总结

函数的定义域与值域知识点及题型总结

函数的定义域与值域知识点及题型总结知识点精讲一、函数的定义域求解函数的定义域应注意: (1)分式的分母不为零;(2)偶次方根的被开方数大于或等于零:(3)对数的真数大于零,底数大于零且不等于1; (4)零次幂或负指数次幂的底数不为零;(5)三角函数中的正切tan y x =的定义域是{,x x R ∈且,2x kx k Z π⎫≠+∈⎬⎭; (6)已知()f x 的定义域求解()f g x ⎡⎤⎣⎦的定义域,或已知()f g x ⎡⎤⎣⎦的定义域求()f x 的定义域,遵循两点:①定义域是指自变量的取值范围;②在同一对应法则∫下,括号内式子的范围相同;(7)对于实际问题中函数的定义域,还需根据实际意义再限制,从而得到实际问题函数的定义域. 二、函数的值域求解函数值域主要有以下十种方法: (1)观察法;(2)配方法;(3)图像法;(4)基本不等式法,(5)换元法;(6)分离常数法;(7)判别式法;(8)单调性法,(9)有界性法;(10)导数法.需要指出的是,定义域或值域的结果必须写成区间或集合的形式.题型归纳及思路提示题型1 函数定义域的求解 思路提示对求函数定义域问题的思路是:(1)先列出使式子()f x 有意义的不等式或不等式组; (2)解不等式组;(3)将解集写成集合或区间的形式. 二、给出函数解析式求解定义域 例2.10 函数ln 1x y +=的定义域为( ).A.(-4,-1)B.(-4,1)C.(-1,1)D.(-1,1]分析 本题考查对数、分式根式有关的函数定义域的求解解析 210,340x x x +>⎧⎨--+>⎩得11x -<<,故选C变式1 函数()1y x =- 的定义域为()A.(0,1) B[0,1) C.(0,1] D[0,1] 变式2求函数()2f x = 的定义域.三、抽象函数定义域已知()f x 的定义域求()f g x ⎡⎤⎣⎦的定义域,或已知()f g x ⎡⎤⎣⎦的定义域求()f x 的定义域,或已知()f g x ⎡⎤⎣⎦的定义域求()f h x ⎡⎤⎣⎦的定义域. 解题时注意:(1)定义域是指自变量的取值范围;(2)在同一对应法则∫的作用下括号内式子的范围相同. 例2.11 (1)已知函数()f x 的定义域为(0,1)求()2f x 的定义域 (2)已知函数()2f x 的定义域为(2,4)求()f x 的定义域 (3)已知函数()2f x 的定义域为(1,2)求()21f x +的定义域.分析 已知函数()f x 的定义域为D ,求函数()f g x ⎡⎤⎣⎦的定又域'D ,只需(){}'D x g x D =∈;已知函数()f g x ⎡⎤⎣⎦ 的定义域'D ,求函数了()f x 的定义域,只需(){},'D t t g x t D ==∈,即求()g x 的值域.解析 (1)()f x 的定义域为(0,1),即0<x<1.故201x <<,所以11x -<<且x ≠0,所以()2f x 的定义域为()()1,00,1-(2) ()2f x 的定义域为(2,4).即2<x<4.所以4<2x <16,故()f x 的定义域为(4,16);(3)因为()2f x 的定义域为(1,2)即1<x <2,所以1<2x <4,故需1<2x +1<4.所以0<x <32, 故()21f x +的定义域为30,2⎛⎫ ⎪⎝⎭评注 定义域是对自变量而言的,如()2f x 的定义域为(1,2)指的是x 的范围而非2x 的范围. 变式1 已知函数()2x f 的定义域是[0,1],求()21f x -的定义域. 变式2设()2lg2xf x x+=-,则22x f f x ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭的定义域为() A(-4,0)U(0,4) B ()()4,41,4-- C. ()()2,11,2-- D ()()4,22,4--三、实际问题中函数定义域的求解例2.12 如图2-3所示,用长为1的铁丝弯成下部为矩形上部为半圆形的框架,若半圆半径为x ,求此框架围成的面积y 与x 的函数式y =()f x ,并写出其定义域.分析 在求实际问题函数的定义域时,应注意根据实际意义再限制,从而得到实际问题函数的定义城.解析 由题意:2,,CD x CD x π==于是122x xAD π--=,因此()212222x x x y f x x ππ--==•+ ,化简即为24.2y x x π+=-+又根据实际应有201202x x x π>⎧⎪⎨-->⎪⎩,得102x π<<+,即所求函数的定义域为10,2π⎛⎫ ⎪+⎝⎭评注 求实际问题函数的定义域时,除考虑函数的解析式有意义外、还要考虑使实际问题有意义,如本题中要根据各种度量的存在性来确定函数的定义域 题型2 函数定义域的应用思路提示 对函数定义域的应用,是逆向思维问题,常常转化为恒成立问题求解,必要时对参数进行分类讨论.例2.13若函数()f x =的定义域为R ,则实数a 的取值范围为_____.分析 函数()f x 的定义域为R,即2221x ax a+-- ≥0在R 上恒成立,再利用指数函数的单调性求解解析 由题意知2221x ax a+--≥0在R 上恒成立,所以220212xax a+-≥=,即有220x ax a +-≥恒成立,其等价于△=244010a a a +≤⇒-≤≤, 则实数a 的取值范围为[―1,0] 变式1 若函数()2143f x ax ax =++的定义域是R ,求则实数a 的取值范围是()A.{}a a R ∈ B.304a a ⎧⎫≤≤⎨⎬⎩⎭ C.34a a ⎧⎫>⎨⎬⎩⎭ D.304a a ⎧⎫≤<⎨⎬⎩⎭变式2 函数()2lg 1y ax ax =-+ 的定义域是R,求a 的取值范围.变式3若函数y =的定义域为R ,求实数a 的取值范围. 题型3 函数值域的求解思路提示 函数值域的求法主要有以下几种(1)观察法:根据最基本函数值域(如2x ≥0,0xa >及函数的图像、性质、简单的计算、推理,凭观察能直接得到些简单的复合函数的值域.(2)配方法:对于形如()20y ax bx c a =++≠的值域问题可充分利用二次函数可配方的特点,结合二次函数的定义城求出函数的值域.(3)图像法:根据所给数学式子的特征,构造合适的几何模型.(4)基本不等式法:注意使用基本不等式的条件,即一正、二定、三相等.(5)换元法:分为三角换元法与代数换元法,对于形y ax b =+转化为二次型函数.(7)判别式法:把函数解析式化为关于x 的―元二次方程,利用一元二次方程的判别式求值域,一般地,形如y Ax B =+ ,c bx ax++2或fex d c bx a y x x ++++=22的函数值域问题可运用判别式法(注意x 的取值范围必须为实数集R ).(8) 单调性法:先确定函数在定义域(或它的子集)内的单调性,再求出值域.对于形如d cx b ax y +++=或d cx b ax y +++=的函数,当ac>0时可利用单调性法.(9)有界性法:充分利用三角函数或一些代数表达式的有界性,求出值域.因为常出现反解出y 的表达式的过程,故又常称此为反解有界性法.(10) 导数法:先利用导数求出函数的极大值和极小值,再确定最大(小)值,从而求出函数的值域. 一 观察法 例 2.14 求函数1+=x y 的值域.分析 由观察法直接得到函数的值域.解析 因为0≥x ,所以函数的值域为),1[+∞. 变式1 函数)(122R x y x x ∈+=的值域是 . 变式2 函数)(1||||R x x x y ∈+=的值域是 . 二 配方法例 2.15 求函数xx y 245-+=的值域.分析 对于根式中的二次函数,利用配方法求解. 解析 由0452≥-+xx ,得]5,1[-∈x .[0,3]y ==.变式1 求函数)1(11)(x x x f --=的值域.变式2 求x x x f -++=53)(的值域. 变式3 设函数)0()(2<++=a c bx a x f x 的定义域为D ,若所有点),()),(,(D t s t f s ∈构成一个正方形区域,则a 的值为( ).A -2B -4C -8D 不能确定 三 图像法(数形结合)例 2.16 求函数y =.分析 由函数表达式易联想到两点间距离公式,可将其转化为动点与两定点的距离之和. 解析 如图2-4所示,1)1(1)1(2222+++=-+x x y ,所示动点P (x,1)到两定点A (-1,0)和B(1,0)的距离之和,作点B (1,0)关于直线y=1的对称点,(1,2)B ,连接B¹A 交y=1于点P¹(0,1),此时AB¹的长即为PA 与PB 的长之和的最小值,点P¹(0,1)到A,B 两点的距离之和为[,+∞﹚.评注 本题中也可看着动点P (x,0)与两定点A¹(-1,1),B¹(1,1)的距离之和,同理利用数形结合思想,|PA¹|+|PB¹|'''||A B ≥=|PA¹|+|PB¹|的最小值为.变式1 求函数y=|x+1|+|x-2|的值域. 变式2函数()2)f x x π=≤≤的值域是( ).A2⎡⎤-⎢⎥⎣⎦B []1,0- C⎡⎤⎣⎦ D⎡⎤⎣⎦变式3函数()f x =的值域是( ).A6655⎡⎢⎣⎦ B6355⎡⎢⎣⎦ C2⎤⎥⎣⎦D⎡-⎢⎣⎦四 基本不等式法例2.17 已知x>2,求函数245()24x x f x x -+=-的值域.解析 令24(0,)t x =-∈+∞,则42t x +=, 224445412244t t t t y t t t ++⎛⎫-⨯+ ⎪+⎝⎭===+≥1=(当且仅当14t t=,即t=2,x=3时取等号).故函变式1 求函数11y x x =++的值域. 五、换元法(代数换元与三角换元)【例2.18】求函数]2,1[,3243)(-∈+-⋅=x x f xx的值域.解析 令]2,1[,2-∈=x t x,则]4,21[∈t ,得]4,21[,332∈+-=t t t y .因为函数332+-=t t y 的对称轴61=t ,所以函数在区间]4,21[上单调递增,所以值域为]47,413[.故函数)(x f 的值域为]47,413[.变式1:求函数x x y -+=2的值域.变式2:求函数22x x y -+=的值域.六、分离常数法【例2.19】求212++=x x e e y 的值域.分析 本例中的函数是关于xe 的齐次分式,故可以考虑使用分离常数法加以求解.解析 由题意得2322342112+-=+-+=++=x x x x x e e e e e y ,因为0>xe ,所以23230<+<xe . 223221,02323<+-<<+-<-x x e e ,故值域为)2,21(.变式1:求函数153--x x y 的值域.变式2:求函数66522-++-=x x x x y 的值域.七、判别式法【例2.20】求函数2211x x y x x -+=++的值域.解析 因为043)21(122≠++=++x x x 恒成立,所以函数的定义域为R. 原式可化为1)1(22+-=++x x x x y .整理得01)1()1(2=-+++-y x y x y .若1=y ,即02=x ,即0=x ;若1≠y ,因为R x ∈,即有0≥∆,所以0)1(4)1(22≥--+y y ,解得331≤≤y 且1≠y .综上所述,函数的值域为]3,31[.变式1:已知函数1)(2++=x bax x f 的值域为]4,1[-,求b a ,的值.变式2:已知函数18log )(223+++=x nx mx x f 的定义域为R ,值域为]2,0[,求n m ,的值.八、单调性法 【例2.21】求函数11++-=x x y 的值域.解析 由函数的定义域为),1[+∞,且函数11++-=x x y 在区间),1[+∞上单调递增.当1=x 时,2=y ,所以函数的值域为),2[+∞.变式1:求函数11--+=x x y 的值域.变式2:函数x x x f 3245)(---=的值域是_______________.变式3:求函数225222+++++=x x x x y 的值域.变式4:求函数225222++-++=x x x x y 的值域.九、有界性法【例2.22】求函数)(2222R x x x y ∈+=的值域. 解析 解法一(有界性法):由题意可得y x y x y yx x x y 2)2(222222222-=-⇒=+⇒+=,即有222--=y y x ,由R x ∈,可知02≥x ,故0222≥--=y y x ,可得20<≤y ,因此所求函数的值域为)2,0[. 解法二(分离常数法):24224)2(2222+-=+-+=x x x y ,由Rx ∈,可知222≥+x ,故22402≤+<x ,因此函数的值域为)2,0[.变式1:已知函数])1,0[(22∈+=x e e y xx,求函数的值域.变式2:已知函数34)(,1)(2-+-=-=x x x g e x f x,若有)()(b f a f =,则b 的取值范围为( )]22,22.[+-A )22,22.(+-B ]3,1.[C )3,1.(D【例2.23】已知π<<x 0,求函数xxy sin cos 2-=的值域.解析 由x x y cos 2sin -=,得2cos sin =+x x y 2)sin(12=++⇒ϕx y ,且y1tan =ϕ,故112)sin(2≤+=+y x ϕ.得3≥y 或3-≤y .又0sin ),,0(>∈x x π,0cos 2>-x ,则0>y .故3≥y .因此函数的值域为),3[+∞.评注 本题也可以用数形结合思想求解,设x v x u cos ,sin =-=,则y 的几何意义为点)2,0(与点),(v u 所确定直线的斜率,其中),(v u 为单位圆在y 轴左侧部分.变式1:已知)2,0[π∈x ,求函数xxy cos 2sin 1--=的值域.十、导数法【例2.24】求函数])3,3[(12)(3-∈-=x x x x f 的值域.解析 由0312)('2=-=x x f ,得2,221=-=x x .由表21-看出,)(x f 的最大值)(,16)}2(),3(m ax {)(max x f f f x f =-=的最小值16)}3(),2(m in{)(min -=-=f f x f ,故)(x f 的值域为]16,16[-.()()()2-133,222,222,33()00()99x f x f x -----'-+--表极小值极大值评注 对于三次函数以及复杂的函数求值域一般都用导数法求解,此类解法在第三章导数中有更为系统的介绍.变式1:若函数cx bx x y ++=23在区间]0,(-∞及),2[+∞上都是增函数,而在)2,0(上是减函数,求此函数在]4,1[-上的值域.最有效训练题1.已知R a ∈,则下列函数中定义域和值域都可能是R 的是( )a x y A +=2. 1.2+=ax y B 1.2++=x ax y C 1.2++=ax x y D 2.若函数344)(2++-=mx mx x x f 的定义域为R ,则实数m 的取值范围是( )R A . )43,0.(B ),43.(+∞C )43,0.[D3.定义域为R 是函数)(x f y =的值域为],[b a ,则函数)(a x f y +=的值域是( ) ],2.[b a a A + ],0.[a b B - ],.[b a C ],[b a a +-4.函数x y 416-=的值域是( )),0.[+∞A ]4,0.[B )4,0.[C )4,0.(D5.设函数)(2)(2R x x x g ∈-=,⎩⎨⎧≥-<++=))(()())((4)()(x g x x x g x g x x x g x f ,则)(x f 的值域是( )),1(]0,49.[+∞-A ),0.[+∞B ),49.[+∞-C ),2(]0,49.[+∞- D 6.对任意两实数b a ,,定义运算“*”如下:⎩⎨⎧>≤=)()(*b a b b a a b a 若若,函数x x x f 221log *)23(log )(-=的值域为( ))0,.(-∞A ),0.(+∞B ]0,.(-∞C ),0.[+∞D 7.函数)2lg(1x x y -++=的定义域是________________.8.函数],0[,2sin 1cos π∈--=x x x y 的值域为________________.9.若函数)(x f y =的值域为]3,1[,则函数)3(21)(+-=x f x F 的值域是____________. 10.已知函数430(2--=x x x f ,定义域为],0[m ,值域为]4,425[--,则m 的取值范围是_________________. 11.求下列函数的定义域. (1)1||212-+-=x x y ;(2)02)45()34lg(-++=x x x y ;(3)x x y cos lg 252+-=;(4))34(log 25.0x x y -=; (5)xey -=11;(6)229)2lg()(xx x x f --=;(7)已知函数)(x f 的定义域是]4,2[-,求)3(2x x f -的定义域; (8)已知函数)1(+x f 的定义域为]3,2[-,求)22(2-x f 的定义域.12.求下列函数的值域.(1))30(1422≤≤+-=x x x y ; (2)xxy 2121+-=; (3)2234x x y -+-=;(4)x x y 212-+=;(5)21x x y -+=;(6)xx y sin 2sin -=; (7))1)(111(log 5.0>+-+=x x x y ; (8)1322+-+-=x x x x y .。

函数定义域值域求法(全十一种)

函数定义域值域求法(全十一种)

实用标准高中函数定义域和值域的求法总结一、常规型即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式 或不等式组,解此不等式(或组)即得原函数的定义域。

2x2x 15例 1 求函数 y的定义域。

| x 3| 8解:要使函数有意义,则必须满足2x 2x 15 0① | x 3 | 8 0②由①解得 x 3或 x 5。

③由②解得x5或 x 11 ④ ③和④求交集得 x 3且 x 11或 x>5。

故所求函数的定义域为 {x | x 3且x 11} {x | x 5} 。

例 2 求函数1ysin x的定义域。

216 x解:要使函数有意义,则必须满足sin x0 ① 216 x② 由①解得 2kx2k ,kZ③ 由②解得 4 x 4 ④由③和④求公共部分,得4 x 或0 x 故函数的定义域为 ( 4, ] (0, ]评注:③和④怎样求公共部分?你会吗? 二、抽象函数型抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函 数的定义域求另一个抽象函数的解析式,一般有两种情况。

(1)已知 f (x) 的定义域,求 f[g(x )] 的定义域。

(2)其解法是:已知 f (x) 的定义域是[a ,b ]求 f [g(x)] 的定义域是解 a g(x) b ,即为所求的定义域。

2 例3 已知 f (x) 的定义域为[-2,2],求 f ( x 1)的定义域。

2 解:令 2 x 1 2 2 ,得 1 x 32,即 0x3,因此 0 | x |3 ,从而3 x 3 ,故函数的定义域是 { x | 3 x 3} 。

(2)已知 f [g( x)] 的定义域,求 f(x) 的定义域。

其解法是:已知 f [g(x )] 的定义域是[a , b ],求 f(x) 定义域的方法是:由 a x b ,求g(x)的值域,即所求 f(x) 的定义域。

例 4 已知 f (2x 1) 的定义域为[1,2],求 f(x) 的定义域。

求函数定义域和值域方法和典型题归纳

求函数定义域和值域方法和典型题归纳

求函数定义域、值域方法和典型例题一、基础知识整合1.函数的定义:设集合A和B是非空数集,按照某一确定的对应关系f,使得集合A中任意一个数x,在集合B中都有唯一确定的数f(x)与之对应。

则称f:为A到B的一个函数。

2.由定义可知:确定一个函数的主要因素是①确定的对应关系(f),②集合A的取值范围。

由这两个条件就决定了f(x)的取值范围③{y|y=f(x),x ∈A}。

3.定义域:由于定义域是决定函数的重要因素,所以必须明白定义域指的是:(1)自变量放在一起构成的集合,成为定义域。

(2)数学表示:注意一定是用集合表示的范围才能是定义域,特殊的一个个的数时用“列举法”;一般表示范围时用集合的“描述法”或“区间”来表示。

4.值域:是由定义域和对应关系(f)共同作用的结果,是个被动变量,所以求值域时一定注意求的是定义域范围内的函数值的范围。

(1)明白值域是在定义域A内求出函数值构成的集合:{y|y=f(x),x∈A}。

(2)明白定义中集合B是包括值域,但是值域不一定为集合B。

二、求函数定义域(一)求函数定义域的情形和方法总结1已知函数解析式时:只需要使得函数表达式中的所有式子有意义。

(1)常见要是满足有意义的情况简总:①表达式中出现分式时:分母一定满足不为0;②表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于0(非负数)。

③表达式中出现指数时:当指数为0时,底数一定不能为0.④根号与分式结合,根号开偶次方在分母上时:根号下大于0.⑤表达式中出现指数函数形式时:底数和指数都含有x ,必须满足指数底数大于0且不等于1.(0<底数<1;底数>1)⑥表达式中出现对数函数形式时:自变量只出现在真数上时,只需满足真数上所有式子大于0,且式子本身有意义即可;自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大于0且不等于 1.(2()log (1)x f x x =-)注:(1)出现任何情形都是要注意,让所有的式子同时有意义,及最后求的是所有式子解集的交集。

(完整版)求函数定义域及值域方法及典型题归纳

(完整版)求函数定义域及值域方法及典型题归纳

<一>求函数定义域、值域方法和典型题归纳一、基础知识整合1.函数的定义:设集合A 和B 是非空数集,按照某一确定的对应关系f ,使得集合A 中任意一个数x,在集合B 中都有唯一确定的数f(x)与之对应。

则称f:为A 到B 的一个函数。

2.由定义可知:确定一个函数的主要因素是①确定的对应关系(f ),②集合A 的取值范围。

由这两个条件就决定了f(x)的取值范围③{y|y=f(x),x ∈A}。

3.定义域:由于定义域是决定函数的重要因素,所以必须明白定义域指的是:(1)自变量放在一起构成的集合,成为定义域。

(2)数学表示:注意一定是用集合表示的范围才能是定义域,特殊的一个个的数时用“列举法”;一般表示范围时用集合的“描述法”或“区间”来表示。

4.值域:是由定义域和对应关系(f )共同作用的结果,是个被动变量,所以求值域时一定注意求的是定义域范围内的函数值的范围。

(1)明白值域是在定义域A 内求出函数值构成的集合:{y|y=f(x),x ∈A}。

(2)明白定义中集合B 是包括值域,但是值域不一定为集合B 。

二、求函数定义域(一)求函数定义域的情形和方法总结1已知函数解析式时:只需要使得函数表达式中的所有式子有意义。

(1)常见要是满足有意义的情况简总:①表达式中出现分式时:分母一定满足不为0;②表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于0(非负数)。

③表达式中出现指数时:当指数为0时,底数一定不能为0.④根号与分式结合,根号开偶次方在分母上时:根号下大于0.⑤表达式中出现指数函数形式时:底数和指数都含有x ,必须满足指数底数大于0且不等于1.(0<底数<1;底数>1)⑥表达式中出现对数函数形式时:自变量只出现在真数上时,只需满足真数上所有式子大于0,且式子本身有意义即可;自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大于0且不等于 1.(2()log (1)x f x x =-)注:(1)出现任何情形都是要注意,让所有的式子同时有意义,及最后求的是所有式子解集的交集。

(完整word版)函数定义域、值域求法总结,推荐文档

(完整word版)函数定义域、值域求法总结,推荐文档

函数定义域、值域求法总结一、定义域是函数 yf x 中的自变量 x 的范围。

求函数的定义域需要从这几个方面下手: (1)分母不为零 (2)偶次根式的被开方数非负。

(3)对数中的真数部分大于 0。

(4)指数、对数的底数大于 0,且不等于 1(5)y=tanx 中 x ≠k π+π/2; y=cotx 中 x ≠k π等等。

( 6 ) x 0 中 x 0二、值域是函数 yf x 中 y 的取值范围。

常用的求值域的方法: ( 1)直接法 (2)图象法(数形联合) (3)函数单一性法( 4)配方法 (5)换元法 (包含三角换元) (6)反函数法(逆求法)( 7)分别常数法 (8)鉴别式法 (9)复合函数法( 10)不等式法 (11)平方法等等这些解题思想与方法贯串了高中数学的一直。

三、典例分析1、定义域问题例 1 求以下函数的定义域:① f ( x)1f ( x) 3x 2 ;③ f ( x)x 11;②2 xx 21解:①∵ x-2=0 ,即 x=2 时,分式无心义,1 x 2而 x 2 时,分式存心义,∴这个函数的定义域是x | x2 .2x②∵ 3x+2<0 ,即 x<-2时,根式3x 2 无心义,3而 3x 20 ,即 x2 2 才存心义,时,根式 3x32 ∴这个函数的定义域是{ x | x}.31③∵当 x1 0且2 x 0 ,即 x1 且 x2 时,根式 x1 和分式同时存心义,{ x | x 1 且 x 2 }2x∴这个函数的定义域是另解:要使函数存心义,一定:x 1 0 x 12 xx 2例 2 求以下函数的定义域:① f ( x)4 x 21② f (x)x 2 3x 4x 1 2③ f ( x)1 1111x⑤ yx2313x 73解:①要使函数存心义,一定:( x1) 0④ f ( x)x x4 x 2 1即:3x 3∴函数 f (x)4 x 21 的定义域为: [3, 3 ]②要使函数存心义,一定: x 23x 4 0x 4或 x 1x 1 2x3且 x 1x3或 3 x1或 x 4∴定义域为: { x| x3或 3 x1或 x 4}x1x③要使函数存心义,一定:1 0 x 1xx111 0211x1}∴函数的定义域为:{ x | x R 且 x 0, 1,2④要使函数存心义,一定:x 1 0x 1xxx 0∴定义域为:x | x1或 1xx 2 3 0x R⑤要使函数存心义,一定:x73x737 或x>7 ∴定义域为: { x | x 7}即 x<333例 3若函数 yax 2ax 1 的定义域是 R ,务实数 a 的取值范围a解:∵定义域是R,∴ ax 2ax1 0恒建立,a∴ 等价于a 010 a2a 24aa例 4 若函数 yf (x) 的定义域为 [ 1, 1],求函数 yf (x1) f ( x 1 ) 的定义域44解:要使函数存心义,一定:1 x15 314x33441 3 5 x41 x41 4x44∴函数 y f (x1) f ( x1) 的定义域为:x | 3x 3444 4例 5 已知 f(x) 的定义域为 [-1,1],求 f(2x -1)的定义域。

函数的定义域和值域知识题型总结(含答案)

函数的定义域和值域知识题型总结(含答案)

函数得定义域与值域一、定义域:1。

函数得定义域就就是使函数式得集合、2。

常见得三种题型确定定义域:①已知函数得解析式,就就是、②复合函数f [g(x)]得有关定义域,就要保证内函数g(x)得域就是外函数f (x)得域、③实际应用问题得定义域,就就是要使得有意义得自变量得取值集合、二、值域:1。

函数y=f(x)中,与自变量x得值得集合、2.常见函数得值域求法,就就是优先考虑,取决于 ,常用得方法有:①观察法;②配方法;③反函数法;④不等式法;⑤单调性法;⑥数形法;⑦判别式法;⑧有界性法;⑨换元法(又分为法与法)例如:①形如y=,可采用法;②y=,可采用法或法;③y=a[f(x)]2+bf (x)+c,可采用法;④y=x-,可采用法;⑤y=x-,可采用法;⑥y=可采用法等、典型例题例1、求下列函数得定义域:(1)y=;(2)y=; (3)y=、解:(1)由题意得化简得即故函数得定义域为{x|x〈0且x≠—1}、(2)由题意可得解得故函数得定义域为{x|—≤x≤且x≠±}、(3)要使函数有意义,必须有即∴x≥1,故函数得定义域为[1,+∞)、变式训练1:求下列函数得定义域:(1)y=+(x—1)0 ; (2)y=+(5x-4)0; (3)y=+lgcosx;解:(1)由得所以-3〈x〈2且x≠1、故所求函数得定义域为(—3,1)∪(1,2)、(2)由得∴函数得定义域为(3)由,得借助于数轴,解这个不等式组,得函数得定义域为例2、设函数y=f(x)得定义域为[0,1],求下列函数得定义域、(1)y=f(3x); (2)y=f();(3)y=f(; (4)y=f(x+a)+f(x-a)、解:(1)0≤3x≤1,故0≤x≤,y=f(3x)得定义域为[0, ]、(2)仿(1)解得定义域为[1,+∞)、(3)由条件,y得定义域就是f与定义域得交集、列出不等式组故y=f得定义域为、(4)由条件得讨论:①当即0≤a≤时,定义域为[a,1—a];②当即-≤a≤0时,定义域为[-a,1+a]、综上所述:当0≤a≤时,定义域为[a,1-a];当—≤a≤0时,定义域为[—a,1+a]、(0<a<)得定义域就是( ) 变式训练2:若函数f(x)得定义域就是[0,1],则f(x+a)·f(x—a)A、 B、[a,1—a] C、[—a,1+a]D、[0,1]解: B例3、求下列函数得值域:(1)y= (2)y=x—;(3)y=、解:(1)方法一(配方法)∵y=1—而∴0〈∴∴值域为、方法二 (判别式法)由y=得(y-1)∵y=1时,1、又∵R,∴必须=(1-y)2—4y(y-1)≥0、∴∵∴函数得值域为、(2)方法一(单调性法)定义域,函数y=x,y=-均在上递增,故y≤∴函数得值域为、方法二 (换元法)令=t,则t≥0,且x=∴y=-(t+1)2+1≤(t≥0),∴y∈(—∞,]、(3)由y=得,ex=∵ex>0,即>0,解得-1<y<1、∴函数得值域为{y|—1〈y〈1}、变式训练3:求下列函数得值域:(1)y=; (2)y=|x|、解:(1)(分离常数法)y=-,∵≠0,∴y≠-、故函数得值域就是{y|y∈R,且y≠-}、(2)方法一(换元法)∵1-x2≥0,令x=sin,则有y=|sincos|=|sin2|,故函数值域为[0,]、方法二y=|x|·∴0≤y≤即函数得值域为、例4.若函数f(x)=x2-x+a得定义域与值域均为[1,b](b>1),求a、b得值、解:∵f(x)=(x-1)2+a-、∴其对称轴为x=1,即[1,b]为f(x)得单调递增区间、∴f(x)min=f(1)=a—=1①f(x)max=f(b)=b2—b+a=b ②由①②解得变式训练4:已知函数f(x)=x2—4ax+2a+6(x∈R)、(1)求函数得值域为[0,+∞)时得a得值;(2)若函数得值均为非负值,求函数f(a)=2—a|a+3|得值域、解:(1)∵函数得值域为[0,+∞),∴Δ=16a2—4(2a+6)=02a2-a-3=0∴a=-1或a =、(2)对一切x∈R,函数值均非负,∴Δ=8(2a2-a-3)≤0-1≤a≤,∴a+3>0,∴f(a)=2-a(a+3)=-a2-3a+2=-(a+)2+(a)、∵二次函数f(a)在上单调递减,∴f(a)min=f=—,f(a)max=f(-1)=4,∴f(a)得值域为、小结归纳1。

函数定义域值域求法(全十一种)

函数定义域值域求法(全十一种)

实用标准高中函数定义域和值域的求法总结一、常规型即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。

例 1求函数 y x 22x15| x 3 |8的定义域。

解:要使函数有意义,则必须满足x 22x150①| x 3 |8 0②由①解得x3或 x 5 。

③由②解得x5或 x11④③和④求交集得x3且 x11或x>5。

故所求函数的定义域为{ x | x 3且x11}{ x | x5} 。

例 2求函数 y sin x1的定义域。

16x 2解:要使函数有意义,则必须满足sin x0①16x 20②由①解得2k x2k,k Z③由②解得 4 x4④由③和④求公共部分,得4x或 0x故函数的定义域为(4, ](0, ]评注:③和④怎样求公共部分?你会吗?二、抽象函数型抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况。

( 1)已知f (x )的定义域,求f [ g(x )]的定义域。

( 2)其解法是:已知 f (x) 的定义域是[a,b]求 f [g(x)] 的定义域是解a g(x) b ,即为所求的定义域。

例 3已知 f (x) 的定义域为[-2, 2],求f ( x 21) 的定义域。

解:令 2 x21 2 ,得 1 x2 3 ,即0 x 23,因此0| x | 3 ,从而3 x 3 ,故函数的定义域是{ x | 3 x3} 。

( 2)已知f [g( x)]的定义域,求f(x) 的定义域。

其解法是:已知 f [g(x )] 的定义域是[a,b],求f(x)定义域的方法是:由a x b,求g(x) 的值域,即所求f(x) 的定义域。

例 4已知 f (2x1) 的定义域为[1,2],求f(x)的定义域。

解:因为 1 x2,22x4,32x 1 5 。

即函数 f(x) 的定义域是{ x | 3x5} 。

函数定义域与值域经典类型总结-练习题-含答案

函数定义域与值域经典类型总结-练习题-含答案

<一>求函数定义域、值域方法和典型题归纳一、基础知识整合1.函数的定义:设集合A 和B 是非空数集,按照某一确定的对应关系f ,使得集合A 中任意一个数x,在集合B 中都有唯一确定的数f(x)与之对应。

则称f:为A 到B 的一个函数。

2.由定义可知:确定一个函数的主要因素是①确定的对应关系(f ),②集合A 的取值范围。

由这两个条件就决定了f(x)的取值范围③{y|y=f(x),x ∈A}。

3.定义域:由于定义域是决定函数的重要因素,所以必须明白定义域指的是:(1)自变量放在一起构成的集合,成为定义域。

(2)数学表示:注意一定是用集合表示的范围才能是定义域,特殊的一个个的数时用“列举法”;一般表示范围时用集合的“描述法”或“区间”来表示。

4.值域:是由定义域和对应关系(f )共同作用的结果,是个被动变量,所以求值域时一定注意求的是定义域范围内的函数值的范围。

(1)明白值域是在定义域A 内求出函数值构成的集合:{y|y=f(x),x ∈A}。

(2)明白定义中集合B 是包括值域,但是值域不一定为集合B 。

二、求函数定义域(一)求函数定义域的情形和方法总结1已知函数解析式时:只需要使得函数表达式中的所有式子有意义。

(1)常见情况简总:①表达式中出现分式时:分母一定满足不为0;②表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于0(非负数)。

③表达式中出现指数时:当指数为0时,底数一定不能为0. ④根号与分式结合,根号开偶次方在分母上时:根号下大于0. ⑤表达式中出现指数函数形式时:底数和指数都含有x ,必须满足指数底数大于0且不等于1.(0<底数<1;底数>1)⑥表达式中出现对数函数形式时:自变量只出现在真数上时,只需满足真数上所有式子大于0,且式子本身有意义即可;自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大于0且不等于 1.(2()log (1)x f x x =-)注:(1)出现任何情形都是要注意,让所有的式子同时有意义,及最后求的是所有式子解集的交集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

◎求函数定义域的主要依据:
(1)分式的分母不为零; (2)偶次方根的被开方数不小于零,零取零次方没有意义; (3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1; (5)*三角函数中的正切x y tan =的定义域为⎭
⎬⎫
⎩⎨⎧
∈+
≠Z k k x x ,2
π
π;
(6)已知函数()x f 的定义域为D ,求函数()[]x g f 的定义域,只需()D x g ∈;
(7)已知函数()[]x g f 的定义域D ,求()x f 的定义域,只需(){}x g y y x =∈,即求()x g 的值域。

(8)已知函数()[]x g f 的定义域D ,求()[]x t f 的定义域,只需()1D x g D x ∈⇒∈,()21D x D x t ∈⇒∈⇒。

(9)已知函数()x f 或()[]x g f 的定义域D ,求()[]x t f 与别的函数的复合函数的定义域,按(6)、(7)的方法求()[]x t f 的定义域,再与别的函数定义域的交集。

(10)已知()x f 的解析式,求()[]x f f 的定义域,先求出()x f 的定义域D ,让()D x f ∈,求出x 的范围。

如果()x f 的定义域是D x ≠,则让()D x f ≠求出1D x ≠,最终D x ≠且1D x ≠。

例:求下列函数的定义域
1、)2-lg(=2x x y 2>0<x x 或
2、1
21+2=
2
--x x x y ()+∞⋃-,1)1,5.0(
3、2-x y 2
log
=[)+∞,4 4、)
1(log 3422-+-=
x x x y [)+∞,3
5、已知
()y f x =的定义域是[]1,0,则函数()x f 21-的定义域是 []5.0,0 6、已知()x f y =的定义域是[]2,0,则函数()1
2)(-=x x f x g 的定义域是 [)1,0
7、已知()x
f 2
的定义域是[]1,1-,则()x f 2
log
是定义域是
[
]
4,2
8、已知()1
1+=
x x f ,则函数()[]x f f 的定义域是 {}2,1≠≠x x x
9、已知若()y f x =的定义域是[]
0,2,则函数()()121f
x f x ++-的定义域是
[][]5.1,5.01,1⋂-
10、已知函数()3
41
2
++-=
mx mx
mx x f 的定义域是R ,则实数m 的取值范围是 ⎪⎭

⎢⎣

43,
◎求函数值域的方法
①图象法; ②单调性法; ③对于复合函数从内向外逐层递推; ④换元法:设一个式子为t ,从而将函数化为关于t 的一个函数,进而求解;
⑤判别式法:运用方程思想,依据二次方程有根,求出y 的取值范围;适合分母为二次且x ∈R 的分式; ⑥分离常数:适合分子分母皆为一次式(x 有范围限制时要画图); ⑦利用式子或变量的有界性求解;
⑧几何意义法:由数形结合,转化距离等求值域。

主要是含绝对值函数。

例:求下列各式的值域
①(直接法)2
123
y x x =
++ ②()2f x =-
【解析】 ()221322
2≥++=++x x x ()2512242
2+--=-+x x x
【答案】 .50≤<0y 23≤≤-y ③(换元法)12-+
-=x x y ④(Δ法) 4
32
+=
x x y
【解析】 令u x =-12,()2
12
--
=u y 0342=-+x y y x 0432=-+y x yx
【答案】 0≤y 0169≥+=∆y or 0=y 16
9-≥y
⑤(单调性)3([1,3])2y x x x
=-
∈- ⑥ 311
x y x -=
+(5)x ≥
【解析】 递增函数 1
43+-=x y
【答案】 5.2≤≤5.0y 7[
,3)
3
y ∈ ⑦1
y =分子/分母有理化) ⑧(图象法)()5211
2<≤<-=
x or x x y
【解析】 上下乘以11-++x x 画出图像
【答案】 2≥
y ()⎥


⎝⎛⋃∞-∈2,210,y
⑨(几何意义)31y x x =-++
【解析】 可以看成是数轴上动点P (x )与定点A (3)、B (-1)的距离的差。

【答案】 4134≤+--≤-x x
如果()x f y =的定义域是[]1,0,值域为[]2,1,则函数)2(+x f 的定义域和值域分别是 [][]2,1,2,2-
4、构成函数概念的三要素:①定义域;②对应法则;③值域。

两个函数是同一个函数的条件:三要素都相同。

相关文档
最新文档