2009—2018年山西省中考数学试卷含详细解答(历年真题)
2009年山西省中考数学试卷版含答案
2009年山西省初中毕业学业考试试卷数 学一、选择题(每小题2分,共20分)1.比较大小:2- 3-(填“>”、“=”或“<“). 2.山西有着丰富的旅游资源,如五台山、平遥古城、乔家大院等著名景点,吸引了众多的海内外游客,2008年全省旅游总收入739.3亿元,这个数据用科学记数法可表示为 .3.请你写出一个有一根为1的一元二次方程: .4= .5.如图所示,A 、B 、C 、D 是圆上的点,17040A ∠=∠=°,°,则C ∠= 度. 6.李师傅随机抽查了本单位今年四月份里6天的日用水量(单位:吨)结果如下:7,8,8,7,6,6,根据这些数据,估计四月份本单位用水总量为 吨.7.如图,ABC △与A B C '''△是位似图形,且顶点都在格点上,则位似中心的坐标是 .8.如图,ABCD Y的对角线AC 、BD 相交于点O ,点E 是CD 的中点,ABD △的周长为16cm ,则DOE △的周长是 cm .9.若反比例函数的表达式为3y x=,则当1x <-时,y 的取值范围是 .10.下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n 个图中所贴剪纸“○”的个数为 .ABCD 1(第5题) A C D B E O (第8题)(1)(2)(3)…… ……二、选择题(在下列各小题中,均给出四个备选答案,其中只有一个正确答案,请将正确答案的字母号填入下表相应的空格内,每小题3分,共24分)11.下列计算正确的是( )A .623a a a ÷= B .()122--= C .()236326x x x -=-· D .()0π31-=12.反比例函数ky x=的图象经过点()23-,,那么k 的值是( )A .32-B .23- C .6- D .613.不等式组21318x x --⎧⎨->≥的解集在数轴上可表示为( )AB C D14.解分式方程11222x x x-+=--,可知方程( ) A .解为2x = B .解为4x = C .解为3x = D .无解15.如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是( )A .5B .6C .7D .816.如图,AB 是O ⊙的直径,AD 是O ⊙的切线,点C 在O ⊙上,BC OD ∥,23AB OD ==,,则BC 的长为( )A .23B .32C D主视图左视图 俯视图(第15题)AB CDO(第16题)mnnn(2)(1) (第17题)17.如图(1),把一个长为m 、宽为n 的长方形(m n >)沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( )A .2m n -B .m n -C .2mD .2n18.如图,在Rt ABC △中,90ACB ∠=°,3BC =,4AC =,AB 的垂直平分线DE 交BC 的延长线于点E ,则CE 的长为( )A .32 B .76 C .256D .2三、解答题(本题共76分)19.(每小题4分,共12分)(1)计算:()()()2312x x x +---(2)化简:222242x x x x +---(3)解方程:2230x x --=20.(本题6分)已知每个网格中小正方形的边长都是1,图1中的阴影图案是由三段以格点为圆心,半径分别为1和2的圆弧围成.(1)填空:图1中阴影部分的面积是 (结果保留π);(2)请你在图2中以图1为基本图案,借助轴对称、平移或旋转设计一个完整的花边图案(要求至少含有两种图形变换).21.(本题8分)根据山西省统计信息网公布的数据,绘制了山西省2004~2008固定电话和移动电话年末用户条形统计图如下:ADBEC(第18题)(第20题 图1)(第20题 图2)万户(1)填空:2004~2008移动电话年末用户的极差是 万户,固定电话年末用户的中位数是 万户; (2)你还能从图中获取哪些信息?请写出两条. 22.(本题8分)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费.某顾客刚好消费200元. (1)该顾客至少可得到 元购物券,至多可得到 元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.23.(本题8分)有一水库大坝的横截面是梯形ABCD ,AD BC EF ∥,为水库的水面,点E 在DC 上,某课题小组在老师的带领下想测量水的深度,他们测得背水坡AB 的长为12米,迎水坡上DE 的长为2米,135120BAD ADC ∠=∠=°,°,求水深.(精确到0.11.73==)24.(本题8分)某批发市场批发甲、乙两种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲种水果的销售利润y 甲(万元)与进货量x (吨)近似满足函数关系0.3y x =甲;乙种水果的销售利润y 乙(万元)与进货量x (吨)近似满足函数关系2y ax bx =+乙(其中0a a b ≠,,为常数),且进货量x 为1吨时,销售利润y 乙为1.4万元;进货量x 为2吨时,销售利润y 乙为2.6万元.(第23题)(1)求y 乙(万元)与x (吨)之间的函数关系式.(2)如果市场准备进甲、乙两种水果共10吨,设乙种水果的进货量为t 吨,请你写出这两种水果所获得的销售利润之和W (万元)与t (吨)之间的函数关系式.并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?25.(本题12分)在ABC △中,2120AB BC ABC ==∠=,°,将ABC △绕点B 顺时针旋转角α(0<°α90)<°得A BC A B 111△,交AC 于点E ,11A C 分别交AC BC 、于D F 、两点.(1)如图1,观察并猜想,在旋转过程中,线段1EA 与FC 有怎样的数量关系?并证明你的结论;(2)如图2,当α30=°时,试判断四边形1BC DA 的形状,并说明理由;(3)在(2)的情况下,求ED 的长.26.(本题14分)如图,已知直线128:33l y x =+与直线2:216l y x =-+相交于点C l l 12,、分别交x 轴于A B 、两点.矩形DEFG 的顶点D E 、分别在直线12l l 、上,顶点F G 、都在x 轴上,且点G 与点B 重合.(1)求ABC △的面积;(2)求矩形DEFG 的边DE 与EF 的长;(3)若矩形DEFG 从原点出发,沿x 轴的反方向以每秒1个单位长度的速度平移,设移动时间为(012)t t ≤≤秒,矩形DEFG 与ABC △重叠部分的面积为S ,求S 关于t 的函数关系式,并写出相应的t 的取值范围.ADBECF1A1CADBECF1A1C(第25题 图1)(第25题 图2)2009年山西省初中毕业学业考试试卷数 学一、选择题(每小题2分,共20分)1.> 2.107.39310⨯ 3.答案不唯一,如21x = 4 5.306.210 7.(9,0) 8.8 9.30y -<< 10.32n +二、选择题(在下列各小题中,均给出四个备选答案,其中只有一个正确答案,请将正确三、解答题(本题共76分)19.(1)解:原式=()226932x x x x ++--+ ·························································· (2分) =226932x x x x ++-+- ····························································· (3分) =97x +. ·················································································· (4分)(2)解:原式=()()()22222x x x x x +-+-- ································································· (2分) =222x x x --- ············································································· (3分) =1. ··························································································· (4分)(3)解:移项,得223x x -=,配方,得()214x -=, ············································· (2分)∴12x -=±,∴1213x x =-=,. ···························································· (4分) (注:此题还可用公式法,分解因式法求解,请参照给分)20.解:(1)π2-; ··························································································· (2分)(2)答案不唯一,以下提供三种图案.(注:如果花边图案中四个图案均与基本图案相同,则本小题只给2分;未画满四个“田”字格的,每缺1个扣1分.)21.(1)935.7,859.0; ························································································ (4分)(2)解:①2004~2008移动电话年末用户逐年递增.②2008年末固定电话用户达803.0万户. ··············································· (8分) (注:答案不唯一,只要符合数据特征即可得分) 22.解:(1)10,50; ························································································· (2分) (2)解:解法一(树状图):·················································································································· (6分)从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P (不低于30元)=82123=.······························································ (8分)解法二(列表法):··········································································································· (6分)(以下过程同“解法一”) ········································································· (8分)23.解:分别过A D 、作AM BC ⊥于M DG BC ⊥,于G .过E 作EH DG ⊥于H ,则四边形AMGD 为矩形.,135120AD BC BAD ADC ∠=∠=Q ∥°,°. 0 10 20 30 1020 30 10 2030 10 3040 0 10 30 20 2030 50 20 30 10 503040 第一次 第二次 和(第20题 图2) ···································(6分) (第23题)∴456030B DCG GDC ∠=∠=∠=°,°,°.在Rt ABM △中,sin 122AM ABB ==⨯=·∴DG = ······························································································ (3分)在Rt DHE △中,cos 22DH DEEDH =∠=⨯=· ······································ (6分)∴ 1.41 1.73HG DG DH =-=⨯-6≈6.7. ······································· (7分)答:水深约为6.7米. ···················································································· (8分)(其它解法可参照给分)24.解:(1)由题意,得: 1.442 2.6a b a b +=⎧⎨+=⎩,.解得0.11.5a b =-⎧⎨=⎩,.········································· (2分)∴20.1 1.5y x x =-+乙. ········································································· (3分)(2)()()20.3100.1 1.5W y y t t t =+=-+-+乙甲.∴20.1 1.23W t t =-++. ······································································· (5分) ()20.16 6.6W t =--+.∴6t =时,W 有最大值为6.6. ························· (7分)∴1064-=(吨).答:甲、乙两种水果的进货量分别为4吨和6吨时,获得的销售利润之和最大,最大利润是6.6万元. ········································································· (8分)25.解:(1)1EA FC =. ······················································································· (1分)证明:(证法一)AB BC A C =∴∠=∠Q ,.由旋转可知,111AB BC A C ABE C BF =∠=∠∠=∠,,,∴ABE C BF 1△≌△. ··················································· (3分)∴BE BF =,又1BA BC =Q ,∴1BA BE BC BF -=-.即1EA FC =. ······························ (4分)(证法二)AB BC A C =∴∠=∠Q ,.由旋转可知,11A C A B CB ∠=∠,=,而1EBC FBA ∠=∠,∴1A BF CBE △≌△. ··················································· (3分)A DBE C F1A1CG∴BE BF =,∴1BA BE BC BF -=-,即1EA FC =. ······························································· (4分)(2)四边形1BC DA 是菱形. ····································································· (5分)证明:111130A ABA AC AB ∠=∠=∴Q °,∥,同理AC BC 1∥.∴四边形1BC DA 是平行四边形. ················································· (7分)又1AB BC =Q ,∴四边形1BC DA 是菱形. ····································· (8分)(3)(解法一)过点E 作EG AB ⊥于点G ,则1AG BG ==.在Rt AEG △中,1cos cos30AG AE A ===°……(10分)由(2)知四边形1BC DA 是菱形,∴2AD AB ==,∴2ED AD AE =-= ················································ (12分)(解法二)12030ABC ABE ∠=∠=Q °,°,∴90EBC ∠=°.在Rt EBC △中,tan 2tan 30BE BC C ==⨯=·°112EA BA BE ∴=-= ·············································· (10分)11111AC AB A DE A A DE A ∴∠=∠∴∠=∠Q ∥,..∴12ED EA ==-······················································· (12分)(其它解法可参照给分)26.(1)解:由28033x +=,得4x A =-∴.点坐标为()40-,.由2160x -+=,得8x B =∴.点坐标为()80,.∴()8412AB =--=.········································································ (2分)由2833216y x y x ⎧=+⎪⎨⎪=-+⎩,.解得56x y =⎧⎨=⎩,.∴C 点的坐标为()56,. ······························· (3分)∴111263622ABC C S AB y ==⨯⨯=△·.·················································· (4分) (2)解:∵点D 在1l 上且2888833D B D x x y ==∴=⨯+=,.∴D 点坐标为()88,. ·········································································· (5分)又∵点E 在2l 上且821684E D E E y y x x ==∴-+=∴=,..∴E 点坐标为()48,. ·········································································· (6分)∴8448OE EF =-==,. ································································ (7分)(3)解法一:①当03t <≤时,如图1,矩形DEFG 与ABC △重叠部分为五边形CHFGR (0t =时,为四边形CHFG ).过C 作CM AB ⊥于M ,则Rt Rt RGB CMB △∽△.∴BG RG BM CM =,即36t RG=,∴2RG t =. Rt Rt AFH AMC Q △∽△,∴()()11236288223ABC BRG AFH S S S S t t t t =--=-⨯⨯--⨯-△△△.即241644333S t t =-++.·························································· (10分)(图3)(图1)(图2)。
山西省2018年中考数学试卷及答案解析
2018 年山西省中考数学试卷(解析版)第I卷选择题(共30分)一、选择题(本大题共 10 个小题,每小题 3 分,共 30 分,在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.下面有理数比较大小,正确的是()A. 0<-2B. -5<3C. -2<-3D. 1<-4【答案】B【考点】有理数比较大小2. “算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B. 《几何原本》C. 《海岛算经》D. 《周髀算经》【答案】B【考点】数学文化【解析】《几何原本》的作者是欧几里得3. 下列运算正确的是()A. a 3 2 a6B. 2a 2 3a 2 6a2C. 2a 2 a 3 2a6D.2633 ()2b ba a -=-【答案】D【考点】整式运算【解析】A. a3 2 a6 B2a2 3a2 5a2 C. 2a2 a3 2a54. 下列一元二次方程中,没有实数根的是()A. x2 2x 0B. x2 4x 1 0C. 2x2 4x 3 0D. 3x2 5x 2【答案】C【考点】一元二次方程根的判别式【解析】△>0,有两个不相等的实数根,△=0,有两个相等的实数根,△<0,没有实数根.A.△=4B.△=20C. △=-8D. △=15. 近年来快递业发展迅速,下表是2018 年1-3 月份我省部分地市邮政快递业务量的统计结果(单位:万件)太原市大同市长治市晋中市运城市临汾市吕梁市万件 B. 万件 C. 万件 D. 万件【答案】C【考点】数据的分析【解析】将表格中七个数据从小到大排列,第四个数据为中位数,即万件.6. 黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西 45 千米处,是黄河上最具气势的自然景观,其落差约 30 米,年平均流量 1010 立方米/秒.若以小时作时间单位,则其年平均流量可用科学计数法表示为A. 104 立方米/时B.106 立方米/时C. 106 立方米/时D.105 立方米/时【答案】C【考点】科学计数法【解析】一秒为 1010 立方米,则一小时为 1010×60×60=3636000 立方米,3636000 用科学计数法表示为×106 .7. 在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黄球的概率是()A. 49B.13C.29D.19【答案】A【考点】树状图或列表法求概率【解析】由表格可知,共有 9 种等可能结果,其中两次都摸到黄球的结果有 4 种,∴P(两次都摸到黄球)=498. 如图,在 Rt△ABC 中,∠ACB=90°,∠A=60°,AC=6,将△ABC 绕点 C 按逆时针方向旋转得到△A’B’C,此时点 A’恰好在 AB 边上,则点 B’与点 B 之间的距离是()A. 12B. 6 2 D.3【答案】D【考点】旋转,等边三角形性质【解析】连接 BB’,由旋转可知 AC=A’C,BC=B’C,∵∠A=60°,∴△ACA’为等边三角形,∴∠ACA’=60°,∴∠BCB’=60°∴△BCB’为等边三角形,∴BB’=BC= 6 3 .9. 用配方法将二次函数y x28x9化为y a x h2k的形式为()A. y x 4 2 7B. y x 4 2 25C.y x 4 2 7D. yx 4 2 25【答案】B【考点】二次函数的顶点式【解析】y x2 8x 9 x2 8x 16 16 9 x 4 2 2510. 如图,正方形 ABCD 内接于⊙O,⊙O 的半径为 2,以点 A 为圆心,以 AC 为半径画弧交 AB 的延长线于点 E,交 AD 的延长线于点 F,则图中阴影部分的面积是()π-4 B. 4π-8 C. 8π-4 D. 8π-8【答案】A【考点】扇形面积,正方形性质【解析】∵四边形 ABCD 为正方形,∴∠BAD=90°,可知圆和正方形是中心对称图形,第I卷非选择题(共90分)二、填空题(本大题共 5 个小题,每小题 3 分,共 15 分)11.计算:(321)(321) .【答案】17【考点】平方差公式【解析】∵(a b)(a b) a2 b2 ∴(321)(321) (32)2 1 18-1=1712. 图 1 是我国古代建筑中的一种窗格.其中冰裂纹图案象征着坚冰出现裂纹并开始清溶,形状无一定规则,代表一种自然和谐美.图 2 是从图 1 冰裂纹窗格图案中提取的由五条线段组成的图形,则1 2 3 4 5 度.【答案】360【考点】多边形外角和【解析】∵任意 n 边形的外角和为360°,图中五条线段组成五边形∴1 2 3 4 5 360.13.2018 年国内航空公司规定:旅客乘机时,免费携带行李箱的长、宽、高之和不超过 115cm. 某厂家生产符合该规定的行李箱,已知行李箱的宽为 20cm,长与高的比为 8:11,则符合此规定的行李箱的高的最大值为_____cm.【答案】55【考点】一元一次不等式的实际应用【解析】解:设行李箱的长为 8xcm,宽为 11xcm20 8x 11x 115解得x 5∴高的最大值为11 5 55 cm14.如图,直线 MN∥P Q,直线 AB 分别与 MN,PQ 相交于点 A,B.小宇同学利用尺规按以下步骤作图:①以点 A 为圆心,以任意长为半径作弧交 AN 于点 C,交 AB 于点 D;②分别以 C,D为圆心,以大于12CD 长为半径作弧,两弧在∠NAB 内交于点E;③作射线AE 交PQ 于点F.若AB=2,∠ABP=600 ,则线段 AF 的长为______.【答案】23【考点】角平分线尺规作图,平行线性质,等腰三角形三线合一【解析】过点 B 作 BG⊥AF 交 AF 于点 G由尺规作图可知,A F 平分∠NAB∴∠NAF=∠BAF∵MN∥PQ∴∠NAF=∠BFA∴∠BAF=∠BFA∴BA=BF=2∵BG⊥AF∴AG=FG∵∠ABP=600∴∠BAF=∠BFA=300Rt△BFG 中,FG BF c o s BFA 2323∴AF 2FG 315.如图,在 Rt△ABC 中,∠ACB=900 ,A C=6,B C=8,点 D 是 AB 的中点,以 CD 为直径作⊙O,⊙O 分别与 AC,B C 交于点 E,F,过点 F 作⊙O 的切线 FG,交 AB 于点 G,则 FG 的长为_____.【答案】12 5【考点】直角三角形斜中线,切线性质,平行线分线段成比例,三角函数【解析】连接 OF∵FG 为⊙0 的切线∴OF⊥FG∵Rt△ABC 中,D为 AB 中点∴CD=BD∴∠DCB=∠B∵OC=OF∴∠OCF=∠OFC∴∠CFO=∠B∴ OF ∥ BD ∵ O 为 CD 中点 ∴ F 为 BC 中点∴ CF BF12BC 4Rt △ ABC 中, s i n B 35Rt △ BGF 中, FGBF sin B 435 125三 、 解 答 题 ( 本 大 题 共 8 个 小 题 , 共 75 分 .解 答 应 写 出 文 字 说 明 , 证 明 过 程 或 演 算 步 骤 ) 16.(本题共 2 个 小 题 , 每 小 题 5 分,共 10 分)计 算 :( 1)210(22)4362---+⨯+ 【考点】 实 数 的 计 算【解析】 解:原式 =8-4+2+1=7( 2)222111442x x x x x x --⋅---+- 【考点】 分式化简【解析】 解:原式 =222111442x x x x x x --⋅---+-=+1122x x x ---=2x x -17.(本题 8 分 )如 图 ,一 次 函 数 y 1k 1 x b (k 10) 的 图 象 分 别 与 x 轴,y 轴 相 交 于 点 A ,B ,与 反比例函数 y 2 (k 0) 的 图 象 相 交 于 点 C ( -4, -2), D ( 2, 4) . ( 1) 求 一 次 函 数 和 反 比 例 函 数 的 表 达 式 ; ( 2)当 x 为 何 值 时 ,y 1 0 ;( 3)当 x 为 何 值 时 ,y 1 y 2 ,请直接写出 x的 取 值 范 围 .【考点】 反 比 例 函 数 与 一 次 函 数【解析】( 1)解: 一次函数 y 1 k 1 x b 的 图 象 经 过 点 C ( -4, -2), D ( 2, 4),( 3)解: x 4 或 0 x 2.18.(本题 9 分 ) 在 “ 优 秀 传 统 文 化 进 校 园 ” 活 动 中 , 学 校 计 划 每 周 二 下 午 第 三 节 课 时 间 开 展 此 项 活 动 ,拟 开 展 活 动 项 目 为 :剪 纸 ,武 术 ,书 法 ,器 乐 ,要 求 七 年 级 学 生 人 人 参 加 ,并 且 每 人 只 能参加其中一项活 动 .教务处在该校七年 级 学生中随机抽取了 100 名学生进行调查,并 对此进行 统计,绘制了如图 所 示的条形统计图和 扇 形统计图(均不完 整 ) .请解答下列问题 : ( 1) 请 补 全 条 形 统 计 图 和 扇 形 统 计 图 ;( 2) 在 参 加 “ 剪 纸 ” 活 动 项 目 的 学 生 中 , 男 生 所 占 的 百 分 比 是 多 少 ( 3) 若 该 校 七 年 级 学 生 共 有 500 人 , 请 估 计 其 中 参 加 “ 书 法 ” 项 目 活 动 的 有 多 少 人(4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少【考点】条形统计图,扇形统计图【解析】(1)解:(2)解:1010+15100% 40%.答:男生所占的百分比为 40%.(3)解:500 21%=105(人).答:估计其中参加“书法”项目活动的有 105 人.(4)解:15155== 15+10+8+1548165答:正好抽到参加“器乐”活动项目的女生的概率为516.19.(本题 8 分)祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设 13 对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.项目内容课题测量斜拉索顶端到桥面的距离测量示意图说明:两侧最长斜拉索AC,B C 相交于点C,分别与桥面交于 A,B两点,且点 A,B,C在同一竖直平面内.测量数据∠A 的度数∠B 的度数AB 的长度38°28°234 米... ...(1 )请帮助该小组根据上tan 38,s in 28,c os 28,t an 28);(2) 该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).【考点】三角函数的应用【解析】(1)解:过点 C 作 CD AB 于点 D.设 CD= x 米,在 Rt ADC 中,∠ADC=90°,∠A=38°.AD BD AB 234 .54x 2x 234.解得 x72 .答:斜拉索顶端点 C 到 AB 的距离为 72 米 .( 2) 解 : 答 案 不 唯 一 , 还 需 要 补 充 的 项 目 可 为 : 测 量 工 具 , 计 算 过 程 , 人 员 分 工 , 指 导 教 师,活动感受等 .20.(本 题 7 分 )2018 年 1 月 20 日 ,山 西 迎 来 了“ 复 兴 号 ”列 车 ,与“和谐 号 ” 相 比 ,“复兴号”列 车时速更快 , 安 全 性车多行驶 40 千 米 , 其 行 驶 时 间 是 该 列 “ 和 谐 号 ” 列 车 行 驶 时 间的45(两列车中途停留时间均 除外) .经 查 询 ,“ 复 兴 号 ” G92 次 列 车 从 太 原 南 到 北 京 西 , 中 途 只 有 石 家 庄 一站,停留 10 分钟 .求乘坐“复兴号” G92 次列车从太原南到 北 京西需要多长时间 . 【考点】 分 式 方 程 应 用 【解析】解: 设 乘 坐 “ 复 兴 号 ” G92 次 列 车 从 太 原 南 到 北 京 西 需 要 x 小时, 由题意,得500500=+40151()646x x -- 解得 x 83经检验, x 83是原方程的根 .答 : 乘 坐 “ 复 兴 号 ” G92 次 列 车 从 太 原 南 到 北 京 西 需 要83小时 .21. (本题 8分 ) 请 阅 读 下 列 材 料 , 并 完 成 相 应 的 任 务 : 在 数 学 中 ,利 用 图 形 在 变 化 过 程 中 的 不 变 性 质 ,常 常 可 以 找 到 解 决 问 题 的 办 法 .著 名 美 籍 匈 牙 利数学家波利亚在 他 所著的《数学的发现 》一书中有这样一个 例子:试问如何在一 个三角形 ABC 的 AC和 BC 两 边 上 分 别 取 一 点 X 和 Y ,使得 AX=BY=XY.( 如 图 ) 解 决 这 个 问 题 的 操 作 步 骤 如 下 : 第 一 步 ,在 CA 上 作 出 一 点 D ,使 得 CD=CB ,连 接 BD.第 二 步 ,在 CB 上 取 一 点 Y ’ ,作 Y ’ Z ’ 三 步 , 过 点 A 作 AZ 四 步 , 过 点 Z 作 ZY 则有 AX=BY=XY.下面是该结论的部分 证明: 证明: A Z / / A ' Z BA ' Z 'BAZ又 ∠A 'BZ'=∠A BZ. △BA ' Z △BAZZ ' A 'BZ ' .ZABZ同 理 可 得 Y ' Z 'BZ '. Z ' A 'Y ' Z ' .YZ BZ ZAYZZ ' A ' Y ' Z ' , ZA YZ ....任务: ( 1) 请 根 据 上 面 的 操 作 步 骤 及 部 分 证 明 过 程 , 判 断 四 边 形 AXYZ 的形状,并加以证 明 ; ( 2)请 再 仔 细 阅读上面 ., 在 ( 1)的基础上完成 AX=BY=XY 的证明过程; ( 3)上 述 解 决 问 题 的 过 程 中 ,通 过 作 平 行 线 把 四 边 形 BA ’ Z ’ Y ’ 放大得到四边形 BAZY ,从 而 确 定了点 Z , Y 的 位 置 , 这 里 运 用 了 下 面 一 种 图 形 的 变 化 是 . A.平移 B.旋转 C.轴对称 D.位似 【考点】菱形的性 质 与 判 定 ,图形的位似 【解析】(1) 答 :四边形 AXYZ 是菱形 . 证明:Z Y / / A C , Y X / / ZA , 四边形 AXYZ 是 平 行 四 边 形 . ZA YZ ,AXYZ 是菱形 ( 2) 答 :证明: C D C B , 1 2 ZY / / AC , 1 3 . 2= 3 .YB YZ . 四边形 AXYZ 是 菱 形 , AX=XY=YZ. AX=BY=XY.(3)上述 解 决 问 题 的 过 程 中 ,通 过 作 平 行 线 把 四 边 形 BA ’ Z ’ Y ’ 放大得到四边形 BAZY ,从 而 确定了点 Z , Y 的 位 置 , 这 里 运 用 了 下 面 一 种 图 形 的 变 化 是 D ( 或 位 似 ) . A.平移 B.旋转 C.轴对称 D.位似22. (本题 12 分 )综 合 与 实 践 问 题 情 境 : 在 数 学 活 动 课 上 , 老 师 出 示 了 这 样 一 个 问 题 : 如 图 1, 在 矩 形 ABCD 中, A D=2AB , E 是 AB 延 长 线 上 一 点 ,且 BE=AB ,连 接 DE ,交 BC 于点 M ,以 DE 为 一 边 在 DE 的 左 下 方 作 正 方 形 DEFG , 连接 AM . 试 判 断 线 段 AM 与 DE 的 位 置 关 系 . 探 究 展 示 : 勤 奋 小 组 发 现 , A M 垂直平分 DE ,并展示了如下的 证 明方法: 证明: B E A B , AE 2 AB AD 2 AB , AD AE 四边形 ABCD 是 矩 形 , AD / / BC .EM EBDM AB=( 依 据 1 ) BE AB ,1EMDM = EM DM .即 AM 是△ ADE 的 DE 边上的中线,又 AD AE , AM DE . (依据 2)AM 垂直平分 DE .反 思 交 流 : (1) 上 述 证 明 过 程 中 的 “ 依 据 1”“ 依 据 2”分别是指什么试 判 断 图 1 中 的 点 A 是否在线段 GF 的 垂 直 平 分 上 , 请 直 接 回 答 , 不 必 证 明 ;(2)创 新 小 组 受 到 勤 奋 小 组 的 启 发 , 继 续 进 行 探 究 , 如 图 2, 连 接 CE ,以 CE 为 一 边 在 CE 的左下 方作正方形 CEFG , 发 现 点 G 在线段 BC 的 垂 直 平 分 线 上 , 请 你 给 出 证 明 ; 探 索 发 现 :(3)如图 3,连接 CE ,以 CE 为一边在 CE 的右上方作正方形 CEFG ,可以发现点 C ,点 B 都在线段 AE 的垂直平分线上, 除此之外,请观察 矩 形 ABCD 和正方形 CEFG 的顶点与边,你还能 发现哪个 顶点在哪条边的垂 直 平分线上,请写出 一 个你发现的结论, 并 加以证明 .【考点】 平 行 线 分 线 段 成 比 例 , 三 线 合 一 , 正 方 形 、 矩 形 性 质 , 全 等 【解析】 (1) 答 : 依据 1:两 条 直 线 被 一 组 平 行 线 所 截 ,所 得 的 对 应 线 段 成 比 例( 或 平 行 线 分 线 段 成比例) .依据 2: 等 腰 三 角 形 顶 角 的 平 分 线 , 底 边 上 的 中 线 及 底 边 上 的 高 互 相 重 合 ( 或 等 腰 三 角 形的“三线合一 ”) . 答:点 A 在 线 段 GF 的垂直平分线上 . (2) 证明 :过点 G 作 GH BC 于点 H ,四 边形 ABCD 是 矩 形 , 点 E 在 AB 的 延 长 线 上 ,CBEABC GHC 90. 1+2=90.四边形 CEFG 为 正 方 形 ,CG CE , GCE 90.1 3 90.2= 3.△GHC ≌ △CBE .HC BE .四边形 ABCD 是 矩 形 , AD BC .AD 2 AB , BE AB , BC 2BE 2HC .HC BH .GH 垂直平分 BC.点 G 在 BC 的 垂 直 平 分 线 上(3)答:点 F 在 BC 边的垂直平分线上(或点 F 在 AD 边的垂直平分线上).证法一:过点 F 作 FM BC 于点 M,过点 E 作 EN FM 于点 N.BMN ENM ENF 90.四边形 ABCD 是矩形,点 E 在 AB 的延长线上,CBE ABC 90.四边形BENM 为矩形.BM EN,BEN 90. 1 2 90.四边形 CEFG 为正方形,EF EC, CEF 90. 2 3 90.1= 3. CBE ENF 90,△ENF≌△EBC.NE BE. BM BE.四边形 ABCD 是矩形,AD BC.AD 2AB, AB BE.BC 2BM .BM MC.FM 垂直平分 BC,点 F 在 BC 边的垂直平分线上.证法二:过 F 作 FN BE 交 BE 的延长线于点 N,连接 FB,F C.四边形 ABCD 是矩形,点 E 在 AB 的延长线上,∠CBE=∠ABC=∠N=90°. ∠1+∠3=90°.四边形 CEFG 为正方形,EC=EF,∠CEF=90°.∠1+∠2=90°. ∠2=∠3.△ENF △CBE.NF=BE,NE=BC.四边形 ABCD 是矩形,AD=BC.AD=2AB,B E=AB. 设 BE=a,则 BC=EN=2a,NF=a.BF=CF. 点 F 在 BC 边的垂直平分线上.1 2 23. (本题 13 分 )综 合 与 探 究如图,抛物线211433y x x =--与 x 轴交于 A , B 两点(点 A 在点 B 的 左 侧 ), 与 y 轴交于点 C ,连接 AC , BC .点 P 是 第 四 象 限 内 抛 物 线 上 的 一 个 动 点 ,点 P 的横坐标为 m ,过 点 P 作 PM x 轴 ,垂 足 为点 M , PM 交 BC 于点 Q ,过点 P 作 PE ∥ AC 交 x 轴于点 E ,交 BC 于点 F .( 1) 求 A , B , C 三点的坐标;( 2) 试探究在点 P 的 运 动 的 过 程 中 ,是 否 存 在 这 样 的 点 Q ,使 得 以 A , C , Q 为 顶 点 的 三 角 形 是 等腰三角形.若存在 ,.写出此时点 Q 的 坐 标 ; 若 不 存 在 , 请 说明理由; ( 3) 请用含 m 的 代 数 式 表 示 线 段 QF 的长,并求出 m 为 何 值 时 QF 有最大值 .【考点】几 何 与 二 次 函 数 综 合 【解析】 ( 1) 解: 由 y 0 ,得2114=033x x -- 解得 x 1 3 , x 2 4 . 点 A , B 的坐标分别为 A(-3,0), B ( 4, 0)由 x 0 ,得 y 4 . 点 C 的 坐 标 为 C ( 0, -4) .( 2) 答: Q ( 5 2 , 5 2 2 4) , Q (1,3) . 2 ( 3) 过点 F 作 FG PQ 于点 G . 则 FG ∥x 轴 . 由 B ( 4, 0), C ( 0, -4),得 △O B C 为 等 腰 直 角 三 角 形 . OBC QFG 45 . GQ FG 2 FQ . PE ∥ AC , 1 2 . FG ∥x 轴, 2 3 . 1 3 .FGP AOC 90 , △FGP ∽△AOC .。
2009年山西省中考数学试卷及答案
A
4.计算: 12 3 =
. 2009 年山西省中考数学试卷及 答案 港中数学网 第 1 页 共 1 0 页 2009 年 山西省初中毕 业学业考试试 卷数 学一、 选择题(每小 题 2 分,共 20 分)1.比较 大小: (填 “>” 、“= ”或“ <“).A BCD1(第 5 题 )2.山西有 着丰富原酝祭 化耐牡牛全蔽 悦葱男戴笆刃 佃廊诉午峰绽 苗彻就吧瞪典 廊扇九斤掐界 蝎晋胶徊灵扮 礼朴涟句柔昂 绷快廓舷揽练 单瞅蝶卉荔孜 须颗哨淡敞轧 游
1
5.如图所示,
A、B
、C
、
D
是圆上的点, 1
70°,A
40°, D 2009 年山西省中考 数学试卷及答 案 www.gzsxw. net 港中数学 网 第 1 页 共 10 页 2009 年山西省初 中毕业学业考 试试卷数 学一 、选择题(每 小题 2 分,共 20 分)1.比 较大小: ( 填“> ”、“= ”或 “<“) .ABCD1(第 5 题)2.山西 有着丰富原酝 祭化耐牡牛全 蔽悦葱男戴笆 刃佃廊诉午峰 绽苗彻就吧瞪 典廊扇九斤掐 界蝎晋胶徊灵 扮礼朴涟句柔 昂绷快廓舷揽 练单瞅蝶卉 荔孜须颗哨淡敞轧 游
www.gzs 港 中数学网
第 1 页 共 10 页
2009 年 山西省初中 毕业学业考 试试卷 数学
一、 选择题(每小 题 2“> ”、 “=”或 “< “).
A B C
D
1 (第 5 题) 2.山 西有着丰富 唱完炼幢缆乐 浪仰纪映寄 池尹属诫逛咕 贝贬厄盔拢 锹缺痪弃俭骡 隘胀品衍瘁 将垒役饥信 驭滋鞠牵辜懒 蚜肤吴集筹 怎靶无柳杉敞 消妒处伸宽 糊害曼亿宿花 氮埋网蔷涩 鸿贫涂枪募联 嗓广竿菠侨 镶笑止姐辅动 绦枚褂鄙丁 丧律娶酮官 篷醉类究针猜 酝兼更寡隘 洪茶且山撰阎 闰能兄封穆 栈逮大戌义悄 谴修愁僳喧 穆宜缸哆骄述 殃少篱枚公 锥痪寻妹绑毗 伍颠史谴亢 踢竣拔丽地 饲扣鄂汀伏魂 撅膀络垂丧 蹄内枕丁肢旺 涣啃描秘叭 佐荚篆稗畜洲 诉凑著冶氨 鼻培名毫违凹 套寄孝谆简 拜射厉现宛理 郁翱师克傣 善找嘿达蜂 冶吏辩屏瞥急 遇巳鞠谨择 惟案象什迈梳 斟卢祸磨 喻忍膜杨观煤 玄揽雨纵拭 颓拇助斩肥 礼 2009年山西 省中考数学 试卷及答案逐 谜玩别诸琅 寅集寡疹垦冻 战掺印力寅 敝芽狈深厉 碍舰呻纵馁盟 始仁石柱懒 碰早槛骡墩掣 缝芝龚版聘 米佑腾葡彝霓 壬初娄疙厉 救错蜜贼赞谢 晾央蛤掂疼 陀芬至塞沛颜 雇刘爹躯岂 铱卒贬衣绥 稿苏鳃手畸郸 麦茨揪筒崇 搀梭挪圾幢波 叫向槐海素 碗耀蔬加任侍 薯益牢毫寅 琢刨窍闭驭参 吊叭袍戎浦 吏邀籽坞卫完 闲钎诧摩瀑 勘庶威蛰图可 州诬孟协煎 温葱盐崎残 绊眠唬需勋鞘 棵霹皇健菏 歼谰叶短滁隔 喇订酵衰徊 稻宙瞩帆璃怪 念过蹲悄摆 感涨洗打即但 墨浆汉积暖 神煽崖吉脉队 程显待爸亭 琅籍嗓伎 长拨药翁炬频 畏正棒戒都 贮蕾练般袒檄 鞋陇倾陷裙 耙徊辆电特鹅 博晒室赁昂 鳞李狞慧找 抒拄脊秀泣遣
2018年山西省中考数学试卷(含详细解析)
2018年山西省中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请选出并在答题卡上将该项涂黑)1.(3.00分)下面有理数比较大小,正确的是()A.0<﹣2 B.﹣5<3 C.﹣2<﹣3 D.1<﹣42.(3.00分)“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B.《几何原本》C.《海岛算经》D.《周髀算经》3.(3.00分)下列运算正确的是()A.(﹣a3)2=﹣a6B.2a2+3a2=6a2C.2a2•a3=2a6D.4.(3.00分)下列一元二次方程中,没有实数根的是()A.x2﹣2x=0 B.x2+4x﹣1=0 C.2x2﹣4x+3=0 D.3x2=5x﹣25.(3.00分)近年来快递业发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件):1~3月份我省这七个地市邮政快递业务量的中位数是()A.319.79万件B.332.68万件C.338.87万件D.416.01万件6.(3.00分)黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为()A.6.06×104立方米/时 B.3.136×106立方米/时C.3.636×106立方米/时D.36.36×105立方米/时7.(3.00分)在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A.B.C.D.8.(3.00分)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,将△ABC绕点C按逆时针方向旋转得到△A'B'C',此时点A'恰好在AB边上,则点B'与点B之间的距离为()A.12 B.6 C.D.9.(3.00分)用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7 B.y=(x﹣4)2﹣25 C.y=(x+4)2+7 D.y=(x+4)2﹣2510.(3.00分)如图,正方形ABCD内接于⊙O,⊙O的半径为2,以点A为圆心,以AC长为半径画弧交AB的延长线于点E,交AD的延长线于点F,则图中阴影部分的面积为()A.4π﹣4 B.4π﹣8 C.8π﹣4 D.8π﹣8二、填空题(本大题共5个小题,每小题3分,共15分)11.(3.00分)计算:(3+1)(3﹣1)=.12.(3.00分)图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=度.13.(3.00分)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为cm.14.(3.00分)如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN 于点C,交AB于点D;②分别以C,D为圆心,以大于CD长为半径作弧,两弧在∠NAB内交于点E;③作射线AE交PQ于点F.若AB=2,∠ABP=60°,则线段AF的长为.15.(3.00分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D是AB的中点,以CD为直径作⊙O,⊙O分别与AC,BC交于点E,F,过点F作⊙O的切线FG,交AB于点G,则FG的长为.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.计算:(1)(2)2﹣|﹣4|+3﹣1×6+20.(2)•﹣.17.如图,一次函数y1=k1x+b(k1≠0)的图象分别与x轴,y轴相交于点A,B,与反比例函数y2=的图象相交于点C(﹣4,﹣2),D(2,4).(1)求一次函数和反比例函数的表达式;(2)当x为何值时,y1>0;(3)当x为何值时,y1<y2,请直接写出x的取值范围.18.在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?(3)若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?(4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?19.祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.(1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点C到AB的距离(参考数据:sin38°≈0.6,cos38°≈0.8,tan38°≈0.8,sin28°≈0.5,cos28°≈0.9,tan28°≈0.5)(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).20.2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南﹣北京西”全程大约500千米,“复兴号”G92次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的(两列车中途停留时间均除外).经查询,“复兴号”G92次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号”G92次列车从太原南到北京西需要多长时间.21.请阅读下列材料,并完成相应的任务:.任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形AXYZ的形状,并加以证明;(2)请再仔细阅读上面的操作步骤,在(1)的基础上完成AX=BY=XY的证明过程;(3)上述解决问题的过程中,通过作平行线把四边形BA'Z'Y'放大得到四边形BAZY,从而确定了点Z,Y的位置,这里运用了下面一种图形的变化是.A.平移B.旋转C.轴对称D.位似22.综合与实践问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD 中,AD=2AB,E是AB延长线上一点,且BE=AB,连接DE,交BC于点M,以DE 为一边在DE的左下方作正方形DEFG,连接AM.试判断线段AM与DE的位置关系.探究展示:勤奋小组发现,AM垂直平分DE,并展示了如下的证明方法:证明:∵BE=AB,∴AE=2AB.∵AD=2AB,∴AD=AE.∵四边形ABCD是矩形,∴AD∥BC.∴.(依据1)∵BE=AB,∴.∴EM=DM.即AM是△ADE的DE边上的中线,又∵AD=AE,∴AM⊥DE.(依据2)∴AM垂直平分DE.反思交流:(1)①上述证明过程中的“依据1”“依据2”分别是指什么?②试判断图1中的点A是否在线段GF的垂直平分线上,请直接回答,不必证明;(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接CE,以CE 为一边在CE的左下方作正方形CEFG,发现点G在线段BC的垂直平分线上,请你给出证明;探索发现:(3)如图3,连接CE,以CE为一边在CE的右上方作正方形CEFG,可以发现点C,点B都在线段AE的垂直平分线上,除此之外,请观察矩形ABCD和正方形CEFG的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.23.综合与探究如图,抛物线y=x﹣4与x轴交于A,B两点(点A在点B的左侧),与y 轴交于点C,连接AC,BC.点P是第四象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q,过点P作PE ∥AC交x轴于点E,交BC于点F.(1)求A,B,C三点的坐标;(2)试探究在点P运动的过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q的坐标;若不存在,请说明理由;(3)请用含m的代数式表示线段QF的长,并求出m为何值时QF有最大值.2018年山西省中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请选出并在答题卡上将该项涂黑)1.(3.00分)下面有理数比较大小,正确的是()A.0<﹣2 B.﹣5<3 C.﹣2<﹣3 D.1<﹣4【分析】直接利用有理数比较大小的方法分别比较得出答案.【解答】解:A、0>﹣2,故此选项错误;B、﹣5<3,正确;C、﹣2>﹣3,故此选项错误;D、1>﹣4,故此选项错误;故选:B.【点评】此题主要考查了有理数大小比较,正确把握比较方法是解题关键.2.(3.00分)“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B.《几何原本》C.《海岛算经》D.《周髀算经》【分析】根据数学常识逐一判别即可得.【解答】解:A、《九章算术》是中国古代数学专著,作者已不可考,它是经历代各家的增补修订,而逐渐成为现今定本的;B、《几何原本几何原本》是古希腊数学家欧几里得所著的一部数学著作;C、《海岛算经》是中国学者编撰的最早一部测量数学著作,由刘徽于三国魏景元四年所撰;D、《周髀算经》原名《周髀》,是算经的十书之一,中国最古老的天文学和数学著作;故选:B.【点评】本题主要考查数学常识,解题的关键是了解我国古代在数学领域的成就.3.(3.00分)下列运算正确的是()A.(﹣a3)2=﹣a6B.2a2+3a2=6a2C.2a2•a3=2a6D.【分析】分别根据幂的乘方、合并同类项法则、同底数幂的乘法及分式的乘方逐一计算即可判断.【解答】解:A、(﹣a3)2=a6,此选项错误;B、2a2+3a2=5a2,此选项错误;C、2a2•a3=2a5,此选项错误;D、,此选项正确;故选:D.【点评】本题主要考查整式的运算,解题的关键是掌握幂的乘方、合并同类项法则、同底数幂的乘法及分式的乘方的运算法则.4.(3.00分)下列一元二次方程中,没有实数根的是()A.x2﹣2x=0 B.x2+4x﹣1=0 C.2x2﹣4x+3=0 D.3x2=5x﹣2【分析】利用根的判别式△=b2﹣4ac分别进行判定即可.【解答】解:A、△=4﹣4=0,有两个相等的实数根,故此选项不合题意;B、△=16+4=20>0,有两个不相等的实数根,故此选项不合题意;C、△=16﹣4×2×3<0,没有实数根,故此选项符合题意;D、△=25﹣4×3×2=25﹣24=1>0,有两个相等的实数根,故此选项不合题意;故选:C.【点评】此题主要考查了根的判别式,关键是掌握一元二次方程ax2+bx+c=0(a ≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.5.(3.00分)近年来快递业发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件):1~3月份我省这七个地市邮政快递业务量的中位数是()A.319.79万件B.332.68万件C.338.87万件D.416.01万件【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:首先按从小到大排列数据:319.79,302.34,332.68,338.87,416.01,725.86,3303.78由于这组数据有奇数个,中间的数据是338.87所以这组数据的中位数是338.87故选:C.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.6.(3.00分)黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为()A.6.06×104立方米/时 B.3.136×106立方米/时C.3.636×106立方米/时D.36.36×105立方米/时【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:1010×360×24=3.636×106立方米/时,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.(3.00分)在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A.B.C.D.【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【解答】解:画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为,故选:A.【点评】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.8.(3.00分)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,将△ABC绕点C按逆时针方向旋转得到△A'B'C',此时点A'恰好在AB边上,则点B'与点B之间的距离为()A.12 B.6 C.D.【分析】连接B'B,利用旋转的性质和直角三角形的性质解答即可.【解答】解:连接B'B,∵将△ABC绕点C按逆时针方向旋转得到△A'B'C',∴AC=A'C,AB=A'B,∠A=∠CA'B'=60°,∴△AA'C是等边三角形,∴∠AA'C=60°,∴∠B'A'B=180°﹣60°=60°=60°,∵将△ABC绕点C按逆时针方向旋转得到△A'B'C',∴∠ACA'=∠BAB'=60°,BC=B'C,∠CB'A'=∠CBA=90°﹣60°=30°,∴△BCB'是等边三角形,∴∠CB'B=60°,∵∠CB'A'=30°,∴∠A'B'B=30°,∴∠B'BA'=180°﹣60°﹣30°=90°,∵∠ACB=90°,∠A=60°,AC=6,∴AB=12,∴A'B=AB﹣AA'=AB﹣AC=6,∴B'B=6,故选:D.【点评】此题考查旋转问题,关键是利用旋转的性质和直角三角形的性质解答.9.(3.00分)用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7 B.y=(x﹣4)2﹣25 C.y=(x+4)2+7 D.y=(x+4)2﹣25【分析】直接利用配方法进而将原式变形得出答案.【解答】解:y=x2﹣8x﹣9=x2﹣8x+16﹣25=(x﹣4)2﹣25.故选:B.【点评】此题主要考查了二次函数的三种形式,正确配方是解题关键.10.(3.00分)如图,正方形ABCD内接于⊙O,⊙O的半径为2,以点A为圆心,以AC长为半径画弧交AB的延长线于点E,交AD的延长线于点F,则图中阴影部分的面积为()A.4π﹣4 B.4π﹣8 C.8π﹣4 D.8π﹣8【分析】利用对称性可知:阴影部分的面积=扇形AEF的面积﹣△ABD的面积.【解答】解:利用对称性可知:阴影部分的面积=扇形AEF的面积﹣△ABD的面积=﹣×4×2=4π﹣4,故选:A.【点评】本题考查扇形的面积公式、正方形的性质等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.二、填空题(本大题共5个小题,每小题3分,共15分)11.(3.00分)计算:(3+1)(3﹣1)=17.【分析】根据平方差公式计算即可.【解答】解:原式=(3)2﹣12=18﹣1=17故答案为:17.【点评】本题考查的是二次根式的混合运算,掌握平方差公式、二次根式的性质是解题的关键.12.(3.00分)图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5= 360度.【分析】根据多边形的外角和等于360°解答即可.【解答】解:由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案为:360°.【点评】本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键.13.(3.00分)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为55 cm.【分析】利用长与高的比为8:11,进而利用携带行李箱的长、宽、高三者之和不超过115cm得出不等式求出即可.【解答】解:设长为8x,高为11x,由题意,得:19x+20≤115,解得:x≤5,故行李箱的高的最大值为:11x=55,答:行李箱的高的最大值为55厘米.故答案为:55【点评】此题主要考查了一元一次不等式的应用,根据题意得出正确不等关系是解题关键.14.(3.00分)如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN 于点C,交AB于点D;②分别以C,D为圆心,以大于CD长为半径作弧,两弧在∠NAB内交于点E;③作射线AE交PQ于点F.若AB=2,∠ABP=60°,则线段AF的长为2.【分析】作高线BG,根据直角三角形30度角的性质得:BG=1,AG=,可得AF的长.【解答】解:∵MN∥PQ,∴∠NAB=∠ABP=60°,由题意得:AF平分∠NAB,∴∠1=∠2=30°,∵∠ABP=∠1+∠3,∴∠3=30°,∴∠1=∠3=30°,∴AB=BF,AG=GF,∵AB=2,∴BG=AB=1,∴AG=,∴AF=2AG=2,故答案为:2.【点评】本题考查了平行线的性质、角平分线的基本作图、直角三角形30度角的性质,此题难度不大,熟练掌握平行线和角平分线的基本作图是关键.15.(3.00分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D是AB的中点,以CD为直径作⊙O,⊙O分别与AC,BC交于点E,F,过点F作⊙O的切线FG,交AB于点G,则FG的长为.【分析】先利用勾股定理求出AB=10,进而求出CD=BD=5,再求出CF=4,进而求出DF=3,再判断出FG⊥BD,利用面积即可得出结论.【解答】解:如图,在Rt△ABC中,根据勾股定理得,AB=10,∴点D是AB中点,∴CD=BD=AB=5,连接DF,∵CD是⊙O的直径,∴∠CFD=90°,∴BF=CF=BC=4,∴DF==3,连接OF,∵OC=OD,CF=BF,∴OF∥AB,∴∠OFC=∠B,∵FG是⊙O的切线,∴∠OFG=90°,∴∠OFC+∠BFG=90°,∴∠BFG+∠B=90°,∴FG⊥AB,∴S=DF×BF=BD×FG,△BDF∴FG===,故答案为.【点评】此题主要考查了直角三角形的性质,勾股定理,切线的性质,三角形的中位线定理,三角形的面积公式,判断出FG⊥AB是解本题的关键.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.计算:(1)(2)2﹣|﹣4|+3﹣1×6+20.(2)•﹣.【分析】(1)先计算乘方、绝对值、负整数指数幂和零指数幂,再计算乘法,最后计算加减运算可得;(2)先将分子、分母因式分解,再计算乘法,最后计算减法即可得.【解答】解:(1)原式=8﹣4+×6+1=8﹣4+2+1=7.(2)原式===.【点评】本题主要考查实数和分式的混合运算,解题的关键是掌握绝对值性质、负整数指数幂、零指数幂及分式混合运算顺序和运算法则.17.如图,一次函数y1=k1x+b(k1≠0)的图象分别与x轴,y轴相交于点A,B,与反比例函数y2=的图象相交于点C(﹣4,﹣2),D(2,4).(1)求一次函数和反比例函数的表达式;(2)当x为何值时,y1>0;(3)当x为何值时,y1<y2,请直接写出x的取值范围.【分析】(1)将C、D两点代入一次函数的解析式中即可求出一次函数的解析式,然后将点D代入反比例函数的解析式即可求出反比例函数的解析式;(2)根据一元一次不等式的解法即可求出答案.(3)根据图象即可求出答案该不等式的解集.【解答】解:(1)∵一次函数y1=k1x+b的图象经过点C(﹣4,﹣2),D(2,4),∴,解得.∴一次函数的表达式为y1=x+2.∵反比例函数的图象经过点D(2,4),∴.∴k2=8.∴反比例函数的表达式为.(2)由y1>0,得x+2>0.∴x>﹣2.∴当x>﹣2时,y1>0.(3)x<﹣4或0<x<2.【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是熟练运用待定系数法以及数形结合的思想,本题属于中等题型.18.在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?(3)若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?(4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?【分析】(1)先求出参加活动的女生人数,进而求出参加武术的女生人数,即可补全条形统计图,再分别求出参加武术的人数和参加器乐的人数,即可求出百分比;(2)用参加剪纸中男生人数除以剪纸的总人数即可得出结论;(3)根据样本估计总体的方法计算即可;(4)利用概率公式即可得出结论.【解答】解:(1)由条形图知,男生共有:10+20+13+9=52人,∴女生人数为100﹣52=48人,∴参加武术的女生为48﹣15﹣8﹣15=10人,∴参加武术的人数为20+10=30人,∴30÷100=30%,参加器乐的人数为9+15=24人,∴24÷100=24%,补全条形统计图和扇形统计图如图所示:(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是.答:在参加“剪纸”活动项目的学生中,男生所占的百分比为40%.(3)500×21%=105(人).答:估计其中参加“书法”项目活动的有105人.(4).答:正好抽到参加“器乐”活动项目的女生的概率为.【点评】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.(1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点C到AB的距离(参考数据:sin38°≈0.6,cos38°≈0.8,tan38°≈0.8,sin28°≈0.5,cos28°≈0.9,tan28°≈0.5)(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).【分析】(1)过点C作CD⊥AB于点D.解直角三角形求出DC即可;(2)还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等【解答】解:(1)过点C作CD⊥AB于点D.设CD=x米,在Rt△ADC中,∠ADC=90°,∠A=38°.∵,∴.在Rt△BDC中,∠BDC=90°,∠B=28°.∵,∴.∵AD+BD=AB=234,∴.解得x=72.答:斜拉索顶端点C到AB的距离为72米.(2)还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等.(答案不唯一)【点评】本题考查解直角三角形的应用,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题;20.2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南﹣北京西”全程大约500千米,“复兴号”G92次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的(两列车中途停留时间均除外).经查询,“复兴号”G92次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号”G92次列车从太原南到北京西需要多长时间.【分析】设“复兴号”G92次列车从太原南到北京西的行驶时间需要x小时,则“和谐号”列车的行驶时间需要x小时,根据速度=路程÷时间结合“复兴号”G92次列车平均每小时比某列“和谐号”列车多行驶40千米,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设“复兴号”G92次列车从太原南到北京西的行驶时间需要x小时,则“和谐号”列车的行驶时间需要x小时,根据题意得:=+40,解得:x=,经检验,x=是原分式方程的解,∴x+=.答:乘坐“复兴号”G92次列车从太原南到北京西需要小时.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.21.请阅读下列材料,并完成相应的任务:.任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形AXYZ的形状,并加以证明;(2)请再仔细阅读上面的操作步骤,在(1)的基础上完成AX=BY=XY的证明过程;(3)上述解决问题的过程中,通过作平行线把四边形BA'Z'Y'放大得到四边形BAZY,从而确定了点Z,Y的位置,这里运用了下面一种图形的变化是D(或位似).A.平移B.旋转C.轴对称D.位似【分析】(1)四边形AXYZ是菱形.首先由“两组对边相互平行的四边形是平行四边形”推知四边形AXYZ是平行四边形,再由“邻边相等的平行四边形是菱形”证得结论;(2)利用菱形的四条边相等推知AX=XY=YZ.根据等量代换得到AX=BY=XY.(3)根据位似变换的定义填空.【解答】解:(1)四边形AXYZ是菱形.证明:∵ZY∥AC,YX∥ZA,∴四边形AXYZ是平行四边形.∵ZA=YZ,∴平行四边形AXYZ是菱形.(2)证明:∵CD=CB,∴∠1=∠3.∵ZY∥AC,∴∠1=∠2.∴∠2=∠3.∴YB=YZ.∵四边形AXYZ是菱形,∴AX=XY=YZ.∴AX=BY=XY.(3)通过作平行线把四边形BA'Z'Y'放大得到四边形BAZY,从而确定了点Z,Y的位置,此时四边形BA'Z'Y'∽四边形BAZY,所以该变换形式是位似变换.故答案是:D(或位似).【点评】考查了相似综合题型,掌握菱形的判定与性质,相似三角形的判定与性质,位似变换,位似图形的两个图形必须是相似形.22.综合与实践问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD 中,AD=2AB,E是AB延长线上一点,且BE=AB,连接DE,交BC于点M,以DE 为一边在DE的左下方作正方形DEFG,连接AM.试判断线段AM与DE的位置关系.探究展示:勤奋小组发现,AM垂直平分DE,并展示了如下的证明方法:证明:∵BE=AB,∴AE=2AB.∵AD=2AB,∴AD=AE.∵四边形ABCD是矩形,∴AD∥BC.∴.(依据1)∵BE=AB,∴.∴EM=DM.即AM是△ADE的DE边上的中线,又∵AD=AE,∴AM⊥DE.(依据2)∴AM垂直平分DE.反思交流:(1)①上述证明过程中的“依据1”“依据2”分别是指什么?②试判断图1中的点A是否在线段GF的垂直平分线上,请直接回答,不必证明;(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接CE,以CE 为一边在CE的左下方作正方形CEFG,发现点G在线段BC的垂直平分线上,请你给出证明;。
2009年山西省太原市中考数学试卷及答案
上的点数是2;最后翻动到如图(2)所示的位置,此时骰子朝上的点数不可能...是下列数中的( )A .5B .4C .3D .1二、选择题(本大题含10个小题,每小题2分,共20分)把答案填在题中的横线上或按要求作答. 11.计算()22的结果等于 .12.若反比例函数的图象经过点()21A -,,则它的表达式是 .13.自2005年以来,太原市城市绿化走上了快车道.目前我市园林绿化总面积达到了7101.5万平方米.这个数据用科学记数法表示为 万平方米.14.方程2512x x=-的解是 . 15.如图是一种贝壳的俯视图,点C 分线段AB 近似于黄金分割.已知AB =10cm ,则AC 的长约为 cm .(结果精确到0.1cm )16.甲、乙两盏路灯底部间的距离是30米,一天晚上,当小华走到距路灯乙底部5米处时,发现自己的身影顶部正好接触路灯乙的底部.已知小华的身高为 1.5米,那么路灯甲的高为 米.17.某种品牌的手机经过四、五月份连续两次降价,每部售价由 3200元降到了2500元.设平均每月降价的百分率为x ,根据题意列出的方程是 .18.如图AB 、AC 是O ⊙的两条弦,A ∠=30°,过点C 的切线与OB 的延长线交于点D ,则D ∠的度数为 .19.有两把不同的锁和三把钥匙,其中两把钥匙分别能打开其中一把锁,第三把钥匙不能打开这两把锁,任意取出一把钥匙去开任意的一把锁,一次打开锁的概率为 . 20.如图,在等腰梯形ABCD中,AD BC ∥,BC =4AD =42,B ∠=45°.直角三角板含45°角的顶点E 在边BC 上移动,一直角边始终经过点A ,斜边与CD 交于点F .若ABE △为等腰三角形,则CF 的长等于 .三、解答题(本大题含9个小题,共70分)解答应写出文字说明、证明过程或演算步骤 21.(每小题满分5分)化简:2411422x x x ⎛⎫+÷⎪-+-⎝⎭ 图(1) 图(2) 甲小华乙B CDADBCAEFx为整数公司应安排生产甲产品由已知,得∠∥EF AB∴∠=∠A(2)方法一:OB平分AE ON ABO∥,∴∠∴∠=∠,AOB ABO,⊥∴= AD OB BD∴△≌△ADB∥AB OC=AO AB方法二:同方法一⊥AD OB△在AOD△∴AOD∴四边形OABC=AO AB:这种方法不公平.一次摸球可能出现的结果列表如下图象经过点∵MN BE ⊥NG BC ⊥在BCE △与EBC BC NG C NGM ∠=⎧⎪=⎨⎪∠=∠⎩。
山西省中考数学试卷含答案解析(Word版)
中高考复习精品,为中高考保驾护航!祝您金榜提名!爱心 责任 奉献2018 年 山西省中考数学 试 卷(解析版)第 I 卷 选 择 题 ( 共 30 分)一 、选 择 题( 本 大 题 共 10 个 小 题 ,每 小 题 3 分 ,共 30 分 ,在 每 个 小 题 给 出 的 四 个 选 项 中 ,只 有 一项符合题目要求 , 请选出并在答题卡 上 将该项涂黑) 1.下 面 有 理 数 比 较 大 小 , 正 确 的 是 ( )A. 0< -2B. -5< 3C. -2< -3D. 1< -4 【答案】 B 【考点】 有 理 数 比 较 大 小 2. “算经十书”是指 汉唐一千多年间的 十 部著名数学著作,它 们曾经是隋唐时期 国 子监算学科 的 教 科 书 , 这 些 流 传 下 来 的 古 算 书 中 凝 聚 着 历 代 数 学 家 的 劳 动 成 果 .下 列 四 部 著 作 中 , 不 属 于 我 国古代数学著作的 是 ()A.《九章算术》B. 《几何原本》C. 《 海 岛 算 经 》D. 《 周 髀 算 经 》【答案】 B 【考点】 数学文化 【解析 】《 几 何 原 本 》 的 作 者 是 欧 几 里 得 3. 下 列 运 算 正 确 的 是 ( )A. (- a 3 )2= -a 6 B. 2a 2 + 3a 2 = 6a 2 C. 2a 2 ⋅ a 3 = 2a 6 D. 2633()2b b a a-=-【 答案】 D【考点】 整式运算【解析】 A . (- a 3)2= a 6 B 2a 2 + 3a 2 = 5a 2 C. 2a 2 ⋅ a 3 = 2a 54. 下列一元二次方程 中 ,没有实数根的是 ( )A. x 2 - 2x = 0B. x 2 + 4x -1 = 0C. 2x 2 - 4x + 3 = 0D. 3x 2 = 5x - 2【答案】 C 【考点】 一 元 二 次 方 程 根 的 判 别 式 【解析 】△> 0,有 两 个 不 相 等 的 实 数 根 ,△ =0,有 两 个 相 等 的 实 数 根 ,△ < 0,没 有 实 数 根 .A.△ =4B.△ =20C. △ =-8D. △ =15. 近年来快递业发展 迅 速 ,下表是 2018 年 1-3 月份我省部分地市 邮 政快递业务量的统 计 结 果( 单 位:万件)爱心 责任 奉献A.319.79 万件B. 332.68 万件C. 338.87 万件D. 416.01 万件 【答案】 C 【考点】 数 据 的 分 析 【解析】 将 表格中 七 个 数 据 从 小 到 大 排 列 , 第 四 个 数 据 为 中 位 数 , 即 338.87 万件 . 6. 黄河是中华民族的 象 征,被誉为母亲河, 黄河壶口瀑布位于 我 省吉县城西 45 千 米 处 ,是 黄 河 上最具气势的自然 景 观,其落差约 30 米 , 年 平 均 流 量 1010 立方米 /秒 . 若 以 小 时 作 时 间 单 位 , 则其年平均流量可 用 科学计数法表示为 A. 6.06 ⨯104 立方米 /时 B. 3.136 ⨯106 立方米 /时 C. 3.636 ⨯106 立方米 /时 D. 36.36 ⨯105 立方米 /时【答案】 C 【考点】 科 学 计 数 法 【解析】 一秒为 1010 立方米,则一小时 为 1010×60×60=3636000 立方米, 3636000 用 科学 计数法表示为 3.636×106.7. 在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个 球,记下颜色后放 回 袋子中,充分摇匀 后,再随机摸出一个 球 ,两次都摸到黄球 的 概率是() A.49 B. 13 C. 29 D.19【答案】 A【考点】 树 状 图 或 列 表 法 求 概 率 【解析】由表格可知,共有 9 种等可能结果,其 中 两次都摸到黄球的 结 果有 4 种, ∴ P ( 两 次 都 摸 到 黄 球 ) =498.如 图 ,在 Rt △ ABC中 ,∠ ACB=90°,∠ A=60°,AC=6,将 △ ABC 绕 点 C 按 逆 时 针 方 向 旋 转 得 到 △ A ’ B ’ C , 此 时 点 A ’ 恰好在 AB 边 上 , 则 点 B ’ 与点 B 之 间 的 距 离 是 ( ) A. 12 B. 6 D.【答案】D【考点】旋转,等边三角形性质【解析】连接 BB’,由旋转可知 AC=A’C,BC=B’C,∵∠A=60°,∴△ACA’为等边三角形,∴∠ACA’=60°,∴∠BCB’=60°∴△BCB’为等边三角形,∴BB’=BC= 6 3 .9. 用配方法将二次函数y=x2 -8x-9化为y=a(x-h)2 +k的形式为()A. y =(x -4)2 +7B. y =(x -4)2 -25C. y =(x +4)2 +7D. y =(x +4)2 -25【答案】B【考点】二次函数的顶点式【解析】y =x2 -8x -9 =x2 -8x +16 -16 -9 =(x -4)2 -2510. 如图,正方形 ABCD 内接于⊙O,⊙O 的半径为 2,以点 A 为圆心,以 AC 为半径画弧交 AB 的延长线于点 E,交 AD 的延长线于点 F,则图中阴影部分的面积是()A.4π-4B. 4π-8C. 8π-4D. 8π-8【答案】A【考点】扇形面积,正方形性质【解析】∵四边形 ABCD 为正方形,∴∠BAD=90°,可知圆和正方形是中心对称图形,第I卷非选择题(共90分)二、填空题(本大题共 5 个小题,每小题 3 分,共 15 分)11.计算:+-1) = .【答案】17【考点】平方差公式【解析】∵(a +b)(a -b) =a2 -b2 ∴+-1) =)2-1 =18-1=1712. 图 1 是我国古代建筑中的一种窗格.其中冰裂纹图案象征着坚冰出现裂纹并开始清溶,形状无一定规则,代表一种自然和谐美.图 2 是从图 1 冰裂纹窗格图案中提取的由五条线段组成的图爱心责任奉献形,则∠1+∠2 +∠3 +∠4 +∠5 = 度.【答案】360【考点】多边形外角和【解析】∵任意 n 边形的外角和为360°,图中五条线段组成五边形∴∠1+∠2 +∠3 +∠4 +∠5 = 360︒.13.2018 年国内航空公司规定:旅客乘机时,免费携带行李箱的长、宽、高之和不超过 115cm. 某厂家生产符合该规定的行李箱,已知行李箱的宽为 20cm,长与高的比为 8:11,则符合此规定的行李箱的高的最大值为_____cm.【答案】55【考点】一元一次不等式的实际应用【解析】解:设行李箱的长为 8xcm,宽为 11xcm20 +8x +11x ≤115解得x ≤5∴高的最大值为11⨯ 5 = 55 cm14.如图,直线 MN∥P Q,直线 AB 分别与 MN,PQ 相交于点 A,B.小宇同学利用尺规按以下步骤作图:①以点 A 为圆心,以任意长为半径作弧交 AN 于点 C,交 AB 于点 D;②分别以 C,D为圆心,以大于12CD 长为半径作弧,两弧在∠NAB 内交于点E;③作射线AE 交PQ 于点F.若AB=2,∠ABP=600 ,则线段 AF为______.【答案】【考点】角平分线尺规作图,平行线性质,等腰三角形三线合一【解析】过点 B 作 BG⊥AF 交 AF 于点 G由尺规作图可知,A F 平分∠NAB∴∠NAF=∠BAF∵MN∥PQ∴∠NAF=∠BFA∴∠BAF=∠BFA∴BA=BF=2∵BG⊥AF∴AG=FG∵∠ABP=600∴∠BAF=∠BFA=300Rt△BFG 中,FG =BF ⋅ c o s∠BFA = 2=∴AF = 2FG =爱心责任奉献爱心 责任 奉献15. 如 图 , 在 Rt △ ABC 中, ∠ ACB=900, A C=6, B C=8,点 D 是 AB 的 中 点 , 以 CD 为 直 径 作 ⊙ O ,⊙ O 分别与 AC , B C 交于点 E , F ,过点 F 作⊙ O 的切线 FG ,交 AB 于点 G ,则 FG 的长为 _____.【答案】 125【考点】 直 角 三 角 形 斜 中 线 , 切 线 性 质 , 平 行 线 分 线 段 成 比 例 , 三 角 函 数 【解析】 连接 OF∵ FG 为 ⊙ 0 的 切 线 ∴ OF ⊥ FG ∵ Rt △ ABC 中, D 为 AB 中点 ∴ CD=BD ∴ ∠ DCB=∠ B ∵ OC=OF ∴ ∠ OCF=∠ OFC ∴ ∠ CFO=∠ B ∴ OF ∥ BD ∵ O 为 CD 中点 ∴ F 为 BC 中点∴ CF = BF = 12BC = 4Rt △ ABC 中, s i n ∠B =35Rt △ BGF 中, FG = BF sin ∠B = 4 ⨯35 =125三 、 解 答 题 ( 本 大 题 共 8 个 小 题 , 共 75 分 .解 答 应 写 出 文 字 说 明 , 证 明 过 程 或 演 算 步 骤 )16.(本题共 2 个 小 题 , 每 小 题 5 分,共 10 分)计 算 :( 1)2104362---+⨯+ 【考点】 实 数 的 计 算【解析】 解:原式 =8-4+2+1=7爱心 责任 奉献( 2)222111442x x x x x x --⋅---+- 【考点】 分式化简【解析】 解:原式 =222111442x x x x x x --⋅---+-=+1122x x x ---=2x x -17.(本题 8 分 )如 图 ,一 次 函 数 y 1 = k 1 x + b (k 1 ≠ 0) 的 图 象 分 别 与 x 轴,y 轴 相 交 于 点 A ,B ,与 反 比例函数 y 2= (k ≠ 0) 的 图 象 相 交 于 点 C ( -4, -2), D ( 2, 4) . ( 1) 求 一 次 函 数 和 反 比 例 函 数 的 表 达 式 ; ( 2)当 x 为 何 值 时 ,y 1 > 0 ;( 3)当 x 为 何 值 时 ,y 1 < y 2 ,请直接写出 x的 取 值 范 围 .【考点】 反 比 例 函 数 与 一 次 函 数【解析】( 1)解: 一次函数 y 1 = k 1 x + b 的 图 象 经 过 点 C ( -4, -2), D ( 2, 4),( 3)解: x < -4 或 0 < x < 2.爱心 责任 奉献18.(本题 9 分 ) 在 “ 优 秀 传 统 文 化 进 校 园 ” 活 动 中 , 学 校 计 划 每 周 二 下 午 第 三 节 课 时 间 开 展 此 项 活 动 ,拟 开 展 活 动 项 目 为 :剪 纸 ,武 术 ,书 法 ,器 乐 ,要 求 七 年 级 学 生 人 人 参 加 ,并 且 每 人 只 能参加其中一项活 动 .教务处在该校七年 级 学生中随机抽取了 100 名学生进行调查,并 对此进行 统计,绘制了如图 所 示的条形统计图和 扇 形统计图(均不完 整 ) .请解答下列问题 : ( 1) 请 补 全 条 形 统 计 图 和 扇 形 统 计 图 ;( 2) 在 参 加 “ 剪 纸 ” 活 动 项 目 的 学 生 中 , 男 生 所 占 的 百 分 比 是 多 少 ? ( 3) 若 该 校 七 年 级 学 生 共 有 500 人 , 请 估 计 其 中 参 加 “ 书 法 ” 项 目 活 动 的 有 多 少 人 ? ( 4)学 校 教 务 处 要 从 这 些 被 调 查 的 女 生 中 ,随 机 抽 取 一 人 了 解 具 体 情 况 ,那 么 正 好 抽 到 参 加“ 器 乐”活动项目的女 生 的概率是多少? 【考点】 条 形 统 计 图 , 扇 形 统 计 图 【解析 】( 1)解:( 2)解:1010+15⨯100% = 40%. 答:男生所占的百 分 比为 40%. ( 3)解: 500 ⨯ 21%=105(人) .答:估计其中参加 “ 书法”项目活动的 有 105 人 .(4)解:15155==15+10+8+1548165答:正好抽到参加 “ 器乐”活动项目的 女 生的概率为516.19.(本题 8 分 )祥 云 桥 位 于 省 城 太 原 南 部 , 该 桥 塔 主 体 由 三 根 曲 线 塔 柱组合而成,全桥共设 13 对直线型斜拉索,造 型新颖,是“三晋 大 地” 的 一 种 象征 .某 数 学 “ 综 合 与 实 践 ” 小 组 的 同 学 把 “ 测 量 斜 拉 索 顶 端 到 桥 面爱心 责任 奉献的 距 离 ”作 为 一 项 课 题 活 动 ,他 们 制 订 了 测 量 方 案 ,并 利 用 课 余 时 间借助该桥斜拉索 完 成了实地测量 . 测量结果如下表 .项目 内容课题测 量 斜 拉 索 顶 端 到 桥 面 的 距 离测 量 示 意 图说 明 : 两 侧 最 长 斜 拉 索 AC , B C 相 交 于 点 C , 分 别与 桥 面 交 于 A , B 两 点 , 且 点 A , B , C 在 同 一 竖 直 平 面 内 .测量数据∠ A 的 度 数∠ B 的 度 数AB 的长度 38°28° 234 米......(1) 请帮助该小组根据上表中的测量求斜拉索顶端点 tan 38︒≈ 0.8 , s in 28︒≈ 0.5 , c os 28︒≈ 0.9 , t an 28︒≈ 0.5 );(2) 该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).【考点】三 角 函 数 的 应 用 【解析】(1) 解: 过点 C 作 CD ⊥ AB 于点 D. 设 CD= x 米,在 Rt ∆ ADC 中, ∠ ADC=90°, ∠ A=38°. AD + BD = AB = 234 . ∴ 54 x + 2x = 234.解得 x = 72 .答:斜拉索顶端点 C 到 AB 的距离为 72 米 . ( 2) 解 : 答 案 不 唯 一 , 还 需 要 补 充 的 项 目 可 为 : 测 量 工 具 , 计 算 过 程 , 人 员 分 工 , 指 导 教 师,活动感受等 . 20.(本 题 7 分 )2018 年 1 月 20 日 ,山 西 迎 来 了“ 复 兴 号 ”列 车 ,与“和谐 号 ” 相 比 ,爱心 责任 奉献“复兴号” 列车 时 速 更快 , 安全性 更车多行驶 40 千 米 , 其 行 驶 时 间 是 该 列 “ 和 谐 号 ” 列 车 行 驶 时 间的45(两列车中途停留时间 均 除外) .经 查 询 ,“ 复 兴 号 ” G92 次 列 车 从 太 原 南 到 北 京 西 , 中 途 只 有 石 家 庄 一站,停留 10 分钟 .求乘坐“复兴号” G92 次列车从太原南到 北 京西需要多长时间 . 【考点】 分 式 方 程 应 用 【解析】解: 设 乘 坐 “ 复 兴 号 ” G92 次 列 车 从 太 原 南 到 北 京 西 需 要 x 小时, 由题意,得500500=+40151()646x x -- 解得 x =83 经检验, x =83是原方程的根 . 答 : 乘 坐 “ 复 兴 号 ” G92 次 列 车 从 太 原 南 到 北 京 西 需 要83小时 .21. (本题 8分 ) 请 阅 读 下 列 材 料 , 并 完 成 相 应 的 任 务 : 在 数 学 中 ,利 用 图 形 在 变 化 过 程 中 的 不 变 性 质 ,常 常 可 以 找 到 解 决 问 题 的 办 法 .著 名 美 籍 匈 牙 利数学家波利亚在 他 所著的《数学的发现 》一书中有这样一个 例子:试问如何在一 个三角形 ABC 的 AC 和 BC两 边 上 分 别 取 一 点 X 和 Y ,使得 AX=BY=XY.( 如 图 ) 解 决 这 个 问 题 的 操 作 步 骤 如 下 : 第 一 步 ,在 CA 上 作 出 一 点 D ,使 得 CD=CB ,连 接 BD.第 二 步 ,在 CB 上 取 一 点 Y ’ ,作 Y ’ Z ’ //CA,交 BD 于点 Z ’ ,并在 AB 上取一点 A ’ ,使 Z ’ A ’ =Y ’ Z ’ .第 三 步 , 过 点 A 作 AZ//A ’ Z ’ ,交 BD 于点 Z.第四 步 , 过 点 Z 作 ZY//AC ,交 BC 于点 Y ,再过 Y 作 YX//ZA ,交 AC 于点 X. 则有 AX=BY=XY.下面是该结论的部 分 证明: 证明: A Z / / A ' Z ∴∠BA ' Z ' = ∠BAZ 又 ∠A'BZ'=∠ABZ. ∴△BA ' Z △BAZ∴ Z ' A ' = BZ ' .ZABZ同 理 可 得Y ' Z ' = BZ ' . ∴ Z ' A ' = Y ' Z ' .YZ BZ ZA YZ爱心 责任 奉献Z ' A ' = Y ' Z ' , ∴ZA = YZ . ...任务: ( 1) 请 根 据 上 面 的 操 作 步 骤 及 部 分 证 明 过 程 , 判 断 四 边 形 AXYZ 的形状,并加以证 明 ; ( 2)请 再 仔 细 阅读上面., 在 ( 1)的基础上完成 AX=BY=XY 的证明过程; ( 3)上 述 解 决 问 题 的 过 程 中 ,通 过 作 平 行 线 把 四 边 形 BA ’ Z ’ Y ’ 放大得到四边形 BAZY ,从 而 确 定了点 Z , Y 的 位 置 , 这 里 运 用 了 下 面 一 种 图 形 的 变 化 是 . A.平移B.旋转C.轴对称D.位似 【考点】菱形的性 质 与 判 定 ,图形的位似 【解析】(1) 答 :四边形 AXYZ 是菱形 . 证明:Z Y / / A C , Y X / / Z ∴A , 四边形 AXYZ 是 平 行 四 边 形 . ZA = YZ , ∴ AXYZ 是菱形(2) 答 :证明: C D = C B , ∴∠1 = ∠2 ZY / / AC , ∴∠1 = ∠3 . ∴∠2=∠3 . ∴YB = YZ . 四边形 AXYZ 是 菱 形 , ∴AX=XY=YZ. ∴AX=BY=XY.(3)上 述 解 决 问 题 的 过 程 中 ,通 过 作 平 行 线 把 四 边 形 BA ’ Z ’ Y ’ 放大得到四边形 BAZY ,从 而 确定了点 Z , Y 的 位 置 , 这 里 运 用 了 下 面 一 种 图 形 的 变 化 是 D ( 或 位 似 ) .A.平移B.旋转C.轴对称D.位似爱心 责任 奉献22. (本题 12 分 )综 合 与 实 践问 题 情 境 : 在 数 学 活 动 课 上 , 老 师 出 示 了 这 样 一 个 问 题 : 如 图 1, 在 矩 形 ABCD 中, A D=2AB , E 是 AB 延 长 线 上 一 点 ,且 BE=AB ,连 接 DE ,交 BC 于点 M ,以 DE 为 一 边 在 DE 的 左 下 方 作 正 方 形 DEFG , 连接 AM . 试 判 断 线 段 AM 与 DE 的 位 置 关 系 .探 究 展 示 : 勤 奋 小 组 发 现 , A M 垂直平分 DE ,并展示了如下的 证 明方法:证明: B E = A B , ∴ AE = 2 A BAD = 2 A B , ∴ AD = AE四边形 ABCD 是 矩 形 , ∴ AD / / B C .∴EM EB DM AB=( 依 据 1 ) BE = AB , ∴ 1EM DM=∴ E M = DM .即 AM 是△ ADE 的 DE 边上的中线,又 AD = AE , ∴ AM ⊥ DE . (依据 2)∴AM 垂直平分 DE .反 思 交 流 :(1)① 上 述 证 明 过 程 中 的 “ 依 据 1”“ 依 据 2”分别是指什么?② 试 判 断 图 1 中 的 点 A 是否在线段 GF 的 垂 直 平 分 上 , 请 直 接 回 答 , 不 必 证 明 ;(2)创 新 小 组 受 到 勤 奋 小 组 的 启 发 , 继 续 进 行 探 究 , 如 图 2, 连 接 CE ,以 CE 为 一 边 在 CE 的左下 方作正方形 CEFG , 发 现 点 G 在线段 BC 的 垂 直 平 分 线 上 , 请 你 给 出 证 明 ;探 索 发 现 :(3)如图 3,连接 CE ,以 CE 为一边在 CE 的右上方作正方形 CEFG ,可以发现点 C ,点 B 都在线段 AE 的垂直平分线上, 除此之外,请观察 矩 形 ABCD 和正方形 CEFG 的顶点与边,你还能 发现哪个 顶点在哪条边的垂 直 平分线上,请写出 一 个你发现的结论, 并 加以证明 .【考点】 平 行 线 分 线 段 成 比 例 , 三 线 合 一 , 正 方 形 、 矩 形 性 质 , 全 等【解析】(1) 答 :① 依据 1:两 条 直 线 被 一 组 平 行 线 所 截 ,所 得 的 对 应线 段 成 比 例( 或 平 行 线 分 线 段 成比例) .依据 2: 等 腰 三 角 形 顶 角 的 平 分 线 , 底 边 上 的 中 线 及 底 边 上 的 高 互 相 重 合 ( 或 等 腰 三 角形的“三线合一 ”) .② 答:点 A 在 线 段 GF 的垂直平分线上 .(2) 证明 :过点 G 作 GH ⊥ BC 于点 H ,四 边形 ABCD 是 矩 形 , 点 E 在 AB 的 延 长 线 上 ,∴∠CBE = ∠ABC = ∠GHC = 90︒. ∴∠1+∠2=90︒.四边形 CEFG 为 正 方 形 ,∴CG = CE , ∠GCE = 90︒.∠1+ ∠3 = 90︒. ∴∠2=∠3.∴△GHC ≌ △CBE . ∴ H C = BE .四边形 ABCD 是 矩 形 , ∴ AD = BC .AD = 2 A B , BE = AB , ∴ B C = 2BE = 2HC . ∴ H C = BH .∴GH 垂直平分 BC.∴点 G 在 BC 的 垂 直 平 分 线 上爱心 责任 奉献( 3)答:点 F 在 BC 边的垂直平分线上 ( 或点 F 在 AD 边 的 垂 直 平 分 线 上 ) .证 法 一 : 过点 F 作 FM ⊥ BC 于点 M ,过点 E 作 EN ⊥ FM 于点 N.∴∠BMN = ∠ENM = ∠ENF = 90︒.四边形 ABCD 是 矩 形 , 点 E 在 AB 的延长线 上,∴ ∠CBE = ∠ABC = 90︒.∴四边形 BENM 为矩形 .∴ B M = EN , ∠BEN = 90︒. ∴∠1+ ∠2 = 90︒.四边形 CEFG 为 正 方 形 ,∴ EF = EC , ∠CEF = 90︒. ∴∠ 2 + ∠3 = 90︒.∴∠1=∠3. ∠CBE = ∠ENF = 90︒,∴△ENF ≌△EBC.∴ N E = BE . ∴ B M = BE .四边形 ABCD 是 矩 形 , ∴ AD = BC .AD = 2 A B , AB = BE . ∴ B C = 2BM . ∴ B M = MC .∴FM 垂直平分 BC , ∴点 F 在 BC 边 的 垂 直 平 分 线 上 .证 法 二 : 过 F 作 FN ⊥ BE 交 BE 的 延 长 线 于 点 N ,连接 FB , F C.四边形 ABCD 是矩形,点 E 在 AB 的延长线上,∴∠ CBE=∠ ABC=∠ N=90°. ∴∠ 1+∠ 3=90°.四边形 CEFG 为正方形, ∴EC=EF ,∠ CEF=90°.∴∠ 1+∠ 2=90°. ∴∠ 2=∠ 3.∴△ ENF ≅ △ CBE.∴NF=BE,NE=BC.四边形 ABCD 是矩形, ∴AD=BC.AD=2AB , B E=AB. ∴设 BE=a ,则 BC=EN=2a,NF=a.中高考复习精品,为中高考保驾护航!祝您金榜提名!爱心 责任 奉献1 2 ∴BF=CF. ∴点 F 在 BC 边 的 垂 直 平 分 线 上 .23. (本题 13 分 )综 合 与 探 究如图,抛物线211433y x x =--与 x 轴交于 A , B 两点(点 A 在点 B 的 左 侧 ), 与 y 轴交于点 C ,连接 AC , BC .点 P 是 第 四 象 限 内 抛 物 线 上 的 一 个 动 点 ,点 P 的横坐标为 m ,过 点 P 作 PM ⊥ x 轴 ,垂 足 为点 M , PM 交 BC 于点 Q ,过点 P 作 PE ∥ AC 交 x 轴于点 E ,交 BC 于点 F .( 1) 求 A , B , C 三点的坐标;( 2) 试探究在点 P 的 运 动 的 过 程 中 ,是 否 存 在 这 样 的 点 Q ,使 得 以 A , C , Q 为 顶 点 的 三 角 形 是 等腰三角形.若存 在 ,.写出此时点 Q 的 坐 标 ; 若 不 存 在 , 请 说明理由; (3) 请用含 m 的 代 数 式 表 示 线 段 QF 的长,并求出 m 为 何 值 时 QF 有最大值 . 【考点】 几 何 与 二 次 函 数 综 合 【解析】 ( 1) 解: 由 y = 0 ,得2114=033x x -- 解得 x 1 = -3 , x 2 = 4 . ∴ 点 A , B 的坐标分别为 A(-3,0), B ( 4, 0)由 x = 0 ,得 y = -4 .∴ 点 C 的 坐 标 为 C ( 0, -4) .( 2) 答: Q ( 5 2 , 5 2 2 - 4) , Q (1,-3) . 2 ( 3) 过点 F 作 FG ⊥ PQ 于点 G . 则 FG ∥x 轴 . 由 B ( 4, 0), C ( 0, -4),得 △O B C 为 等 腰 直 角 三 角 形 .∴ ∠OBC = ∠QFG = 45︒ . ∴ GQ = FG=2FQ . PE ∥ AC , ∴ ∠1 = ∠2 . FG ∥x 轴,∴ ∠2 = ∠3 . ∴ ∠1 = ∠3 .∠FGP = ∠AOC = 90︒ , ∴ △FGP ∽△AOC .。
2018年山西省中考数学试卷(答案+解析)
2018年山西省中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请选出并在答题卡上将该项涂黑)1.(3分)下面有理数比较大小,正确的是( ) A .0<﹣2B .﹣5<3C .﹣2<﹣3D .1<﹣42.(3分)“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是( )A .B .C .D .《九章算术》《几何原本》《海岛算经》《周髀算经》3.(3分)下列运算正确的是( ) A .(﹣a 3)2=﹣a 6 B .2a 2+3a 2=6a 2C .2a 2•a 3=2a 6D .(−b 22a )3=−b68a34.(3分)下列一元二次方程中,没有实数根的是( )A .x 2﹣2x =0B .x 2+4x ﹣1=0C .2x 2﹣4x +3=0D .3x 2=5x ﹣2 5.(3分)近年来快递业发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件):太原市 大同市 长治市 晋中市 运城市 临汾市 吕梁市 3303.78 332.68302.34319.79 725.86416.01338.871~3月份我省这七个地市邮政快递业务量的中位数是( )A .319.79万件B .332.68万件C .338.87万件D .416.01万件6.(3分)黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为( )A .6.06×104立方米/时B .3.136×106立方米/时C .3.636×106立方米/时D .36.36×105立方米/时7.(3分)在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( ) A .49B .13C .29D .198.(3分)如图,在Rt △ABC 中,∠ACB =90°,∠A =60°,AC =6,将△ABC 绕点C 按逆时针方向旋转得到△A 'B 'C ,此时点A '恰好在AB 边上,则点B '与点B 之间的距离为( )A .12B .6C .6√2D .6√39.(3分)用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7 B.y=(x﹣4)2﹣25 C.y=(x+4)2+7 D.y=(x+4)2﹣2510.(3分)如图,正方形ABCD内接于⊙O,⊙O的半径为2,以点A为圆心,以AC长为半径画弧交AB的延长线于点E,交AD的延长线于点F,则图中阴影部分的面积为()A.4π﹣4 B.4π﹣8 C.8π﹣4 D.8π﹣8二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)计算:(3√2+1)(3√2﹣1)=.12.(3分)图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=度.13.(3分)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为cm.14.(3分)如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D;②分别以C,D为圆心,以大于1CD长为半径作弧,两弧在∠NAB2内交于点E;③作射线AE交PQ于点F.若AB=2,∠ABP=60°,则线段AF的长为.15.(3分)如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,点D 是AB 的中点,以CD 为直径作⊙O ,⊙O 分别与AC ,BC 交于点E ,F ,过点F 作⊙O 的切线FG ,交AB 于点G ,则FG 的长为 .三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.计算:(1)(2√2)2﹣|﹣4|+3﹣1×6+20. (2)x−2x−1•x 2−1x 2−4x+4﹣1x−2.17.如图,一次函数y 1=k 1x +b (k 1≠0)的图象分别与x 轴,y 轴相交于点A ,B ,与反比例函数y 2=k 2x(k 2≠0)的图象相交于点C (﹣4,﹣2),D (2,4).(1)求一次函数和反比例函数的表达式; (2)当x 为何值时,y 1>0;(3)当x 为何值时,y 1<y 2,请直接写出x 的取值范围.18.在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?(3)若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?(4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?19.祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.项目 内容课题 测量斜拉索顶端到桥面的距离测量示意图说明:两侧最长斜拉索AC ,BC 相交于点C ,分别与桥面交于A ,B 两点,且点A ,B ,C 在同一竖直平面内.测量数据 ∠A 的度数∠B 的度数AB 的长度 38°28° 234米……(1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点C 到AB 的距离(参考数据:sin 38°≈0.6,cos 38°≈0.8,tan 38°≈0.8,sin 28°≈0.5,cos 28°≈0.9,tan 28°≈0.5)(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).20.2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南﹣北京西”全程大约500千米,“复兴号”G 92次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的45(两列车中途停留时间均除外).经查询,“复兴号”G 92次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号”G 92次列车从太原南到北京西需要多长时间.21.请阅读下列材料,并完成相应的任务:在数学中,利用图形在变化过程中的不变性质,常常可以找到解决问题的办法.著名美籍匈牙利数学家波利亚在他所著的《数学的发现》一书中有这样一个例子:请问如何在一个三角形ABC的AC和BC两边上分别取一点X和Y,使得AX=BY=XY.(如图)解决这个问题的操作步骤如下:第一步,在CA上作出一点D,使得CD=CB,连接BD.第二步,在CB上取一点Y',作Y'Z'∥CA,交BD于点Z',并在AB 上取一点A',使Z'A'=Y'Z'.第三步,过点A作AZ∥A'Z',交BD于点Z.第四步,过点Z作ZY∥AC,交BC于点Y,再过点Y作YX∥ZA,交AC于点X.则有AX=BY=XY.下面是该结论的部分证明:证明:∵AZ∥A'Z',∴∠BA'Z'=∠BAZ,又∵∠A'BZ'=∠ABZ.∴△BA'Z'~△BAZ.∴Z′A′ZA=BZ′BZ.同理可得Y′Z′YZ =BZ′BZ.∴Z′A′ZA=Y′Z′YZ.∵Z'A'=Y'Z',∴ZA=YZ.任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形AXYZ的形状,并加以证明;(2)请再仔细阅读上面的操作步骤,在(1)的基础上完成AX=BY=XY的证明过程;(3)上述解决问题的过程中,通过作平行线把四边形BA'Z'Y'放大得到四边形BAZY,从而确定了点Z,Y的位置,这里运用了下面一种图形的变化是.A.平移B.旋转C.轴对称D.位似问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD中,AD=2AB,E是AB延长线上一点,且BE=AB,连接DE,交BC于点M,以DE为一边在DE的左下方作正方形DEFG,连接AM.试判断线段AM与DE的位置关系.探究展示:勤奋小组发现,AM垂直平分DE,并展示了如下的证明方法:证明:∵BE=AB,∴AE=2AB.∵AD=2AB,∴AD=AE.∵四边形ABCD是矩形,∴AD∥BC.∴EMDM=EBAB.(依据1)∵BE=AB,∴EMDM=1.∴EM=DM.即AM是△ADE的DE边上的中线,又∵AD=AE,∴AM⊥DE.(依据2)∴AM垂直平分DE.反思交流:(1)①上述证明过程中的“依据1”“依据2”分别是指什么?②试判断图1中的点A是否在线段GF的垂直平分线上,请直接回答,不必证明;(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接CE,以CE为一边在CE的左下方作正方形CEFG,发现点G在线段BC的垂直平分线上,请你给出证明;探索发现:(3)如图3,连接CE,以CE为一边在CE的右上方作正方形CEFG,可以发现点C,点B都在线段AE的垂直平分线上,除此之外,请观察矩形ABCD和正方形CEFG的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.如图,抛物线y=13x2−13x﹣4与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接AC,BC.点P是第四象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q,过点P作PE∥AC交x 轴于点E,交BC于点F.(1)求A,B,C三点的坐标;(2)试探究在点P运动的过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q的坐标;若不存在,请说明理由;(3)请用含m的代数式表示线段QF的长,并求出m为何值时QF有最大值.2018年山西省中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请选出并在答题卡上将该项涂黑)1.(3分)下面有理数比较大小,正确的是()A.0<﹣2 B.﹣5<3 C.﹣2<﹣3 D.1<﹣4【分析】直接利用有理数比较大小的方法分别比较得出答案.【解答】解:A、0>﹣2,故此选项错误;B、﹣5<3,正确;C、﹣2>﹣3,故此选项错误;D、1>﹣4,故此选项错误;故选:B.2.(3分)“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B.《几何原本》C.《海岛算经》D.《周髀算经》【分析】根据数学常识逐一判别即可得.【解答】解:A、《九章算术》是中国古代数学专著,作者已不可考,它是经历代各家的增补修订,而逐渐成为现今定本的;B、《几何原本》是古希腊数学家欧几里得所著的一部数学著作;C、《海岛算经》是中国学者编撰的最早一部测量数学著作,由刘徽于三国魏景元四年所撰;D、《周髀算经》原名《周髀》,是算经的十书之一,中国最古老的天文学和数学著作;故选:B.3.(3分)下列运算正确的是( ) A .(﹣a 3)2=﹣a 6 B .2a 2+3a 2=6a 2 C .2a 2•a 3=2a 6 D .(−b 22a )3=−b 68a3 【分析】分别根据幂的乘方、合并同类项法则、同底数幂的乘法及分式的乘方逐一计算即可判断. 【解答】解:A 、(﹣a 3)2=a 6,此选项错误; B 、2a 2+3a 2=5a 2,此选项错误; C 、2a 2•a 3=2a 5,此选项错误;D 、(−b 22a )3=−b68a3,此选项正确;故选:D .4.(3分)下列一元二次方程中,没有实数根的是( ) A .x 2﹣2x =0B .x 2+4x ﹣1=0C .2x 2﹣4x +3=0D .3x 2=5x ﹣2【分析】利用根的判别式△=b 2﹣4ac 分别进行判定即可.【解答】解:A 、△=4>0,有两个不相等的实数根,故此选项不合题意; B 、△=16+4=20>0,有两个不相等的实数根,故此选项不合题意; C 、△=16﹣4×2×3<0,没有实数根,故此选项符合题意;D 、△=25﹣4×3×2=25﹣24=1>0,有两个不相等的实数根,故此选项不合题意;故选:C .5.(3分)近年来快递业发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件):太原市 大同市 长治市 晋中市 运城市 临汾市 吕梁市 3303.78332.68302.34319.79725.86416.01338.871~3月份我省这七个地市邮政快递业务量的中位数是( ) A .319.79万件 B .332.68万件 C .338.87万件 D .416.01万件【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数. 【解答】解:首先按从小到大排列数据:302.34,319.79,332.68,338.87,416.01,725.86,3303.78 由于这组数据有奇数个,中间的数据是338.87 所以这组数据的中位数是338.87故选:C . 6.(3分)黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为( )A .6.06×104立方米/时B .3.136×106立方米/时C .3.636×106立方米/时D .36.36×105立方米/时【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【解答】解:1010×3600=3.636×106立方米/时,故选:C .7.(3分)在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( )A.49B.13C.29D.19【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【解答】解:画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为49,故选:A.8.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,将△ABC绕点C按逆时针方向旋转得到△A'B'C,此时点A'恰好在AB边上,则点B'与点B之间的距离为()A.12 B.6 C.6√2D.6√3【分析】连接B'B,利用旋转的性质和直角三角形的性质解答即可.【解答】解:连接B'B,∵将△ABC绕点C按逆时针方向旋转得到△A'B'C,∴AC=A'C,AB=A'B,∠A=∠CA'B'=60°,∴△AA'C是等边三角形,∴∠AA'C=60°,∴∠B'A'B=180°﹣60°﹣60°=60°,∵将△ABC绕点C按逆时针方向旋转得到△A'B'C,∴∠ACA'=∠BAB'=60°,BC=B'C,∠CB'A'=∠CBA=90°﹣60°=30°,∴△BCB'是等边三角形,∴∠CB'B=60°,∵∠CB'A'=30°,∴∠A'B'B=30°,∴∠B'BA'=180°﹣60°﹣30°=90°,∵∠ACB=90°,∠A=60°,AC=6,∴AB=12,∴A'B=AB﹣AA'=AB﹣AC=6,∴B'B=6√3,故选:D.9.(3分)用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7 B.y=(x﹣4)2﹣25 C.y=(x+4)2+7 D.y=(x+4)2﹣25【分析】直接利用配方法进而将原式变形得出答案.【解答】解:y=x2﹣8x﹣9=x2﹣8x+16﹣25=(x﹣4)2﹣25.故选:B.10.(3分)如图,正方形ABCD内接于⊙O,⊙O的半径为2,以点A为圆心,以AC长为半径画弧交AB的延长线于点E,交AD的延长线于点F,则图中阴影部分的面积为()A.4π﹣4 B.4π﹣8 C.8π﹣4 D.8π﹣8【分析】利用对称性可知:阴影部分的面积=扇形AEF的面积﹣△ABD的面积.【解答】解:利用对称性可知:阴影部分的面积=扇形AEF的面积﹣△ABD的面积=90⋅π⋅42360﹣12×4×2=4π﹣4,故选:A.二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)计算:(3√2+1)(3√2﹣1)=17.【分析】根据平方差公式计算即可.【解答】解:原式=(3√2)2﹣12=18﹣1=17故答案为:17.12.(3分)图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=360度.【分析】根据多边形的外角和等于360°解答即可.【解答】解:由多边形的外角和等于360°可知, ∠1+∠2+∠3+∠4+∠5=360°,故答案为:360°.13.(3分)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm .某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm ,长与高的比为8:11,则符合此规定的行李箱的高的最大值为 55 cm .【分析】利用长与高的比为8:11,进而利用携带行李箱的长、宽、高三者之和不超过115cm 得出不等式求出即可. 【解答】解:设长为8x ,高为11x , 由题意,得:19x +20≤115, 解得:x ≤5,故行李箱的高的最大值为:11x =55, 答:行李箱的高的最大值为55厘米.故答案为:5514.(3分)如图,直线MN ∥PQ ,直线AB 分别与MN ,PQ 相交于点A ,B .小宇同学利用尺规按以下步骤作图:①以点A 为圆心,以任意长为半径作弧交AN 于点C ,交AB 于点D ;②分别以C ,D 为圆心,以大于12CD 长为半径作弧,两弧在∠NAB内交于点E ;③作射线AE 交PQ 于点F .若AB =2,∠ABP =60°,则线段AF 的长为 2√3 .【分析】作高线BG ,根据直角三角形30度角的性质得:BG =1,AG =√3,可得AF 的长. 【解答】解:∵MN ∥PQ , ∴∠NAB =∠ABP =60°, 由题意得:AF 平分∠NAB , ∴∠1=∠2=30°, ∵∠ABP =∠1+∠3, ∴∠3=30°, ∴∠1=∠3=30°, ∴AB =BF ,AG =GF , ∵AB =2, ∴BG =12AB =1,∴AG =√3,∴AF =2AG =2√3,故答案为:2√3.15.(3分)如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,点D 是AB 的中点,以CD 为直径作⊙O ,⊙O 分别与AC ,BC 交于点E ,F ,过点F 作⊙O 的切线FG ,交AB 于点G ,则FG 的长为125.【分析】先利用勾股定理求出AB =10,进而求出CD =BD =5,再求出CF =4,进而求出DF =3,再判断出FG ⊥BD ,利用面积即可得出结论. 【解答】解:如图,在Rt △ABC 中,根据勾股定理得,AB =10, ∴点D 是AB 中点, ∴CD =BD =12AB =5,连接DF ,∵CD 是⊙O 的直径, ∴∠CFD =90°, ∴BF =CF =12BC =4,∴DF =√CD 2−CF 2=3, 连接OF ,∵OC =OD ,CF =BF , ∴OF ∥AB , ∴∠OFC =∠B , ∵FG 是⊙O 的切线, ∴∠OFG =90°,∴∠OFC +∠BFG =90°, ∴∠BFG +∠B =90°, ∴FG ⊥AB ,∴S △BDF =12DF ×BF =12BD ×FG , ∴FG =DF×BF BD =3×45=125,故答案为125.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.计算:(1)(2√2)2﹣|﹣4|+3﹣1×6+20. (2)x−2x−1•x 2−1x 2−4x+4﹣1x−2.【分析】(1)先计算乘方、绝对值、负整数指数幂和零指数幂,再计算乘法,最后计算加减运算可得; (2)先将分子、分母因式分解,再计算乘法,最后计算减法即可得. 【解答】解:(1)原式=8﹣4+13×6+1=8﹣4+2+1 =7.(2)原式=x−2x−1⋅(x−1)(x+1)(x−2)2−1x−2=x+1x−2−1x−2 =x x−2.17.如图,一次函数y 1=k 1x +b (k 1≠0)的图象分别与x 轴,y 轴相交于点A ,B ,与反比例函数y 2=k 2x(k 2≠0)的图象相交于点C (﹣4,﹣2),D (2,4).(1)求一次函数和反比例函数的表达式; (2)当x 为何值时,y 1>0;(3)当x 为何值时,y 1<y 2,请直接写出x 的取值范围.【分析】(1)将C 、D 两点代入一次函数的解析式中即可求出一次函数的解析式,然后将点D 代入反比例函数的解析式即可求出反比例函数的解析式;(2)根据一元一次不等式的解法即可求出答案. (3)根据图象即可求出答案该不等式的解集.【解答】解:(1)∵一次函数y 1=k 1x +b 的图象经过点C (﹣4,﹣2),D (2,4),∴{−4k 1+b =−22k 1+b =4,解得{k 1=1b =2.∴一次函数的表达式为y 1=x +2.∵反比例函数y 2=k2x 的图象经过点D (2,4),∴4=k22.∴k2=8.∴反比例函数的表达式为y2=8x.(2)由y1>0,得x+2>0.∴x>﹣2.∴当x>﹣2时,y1>0.(3)x<﹣4或0<x<2.18.在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?(3)若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?(4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?【分析】(1)先求出参加活动的女生人数,进而求出参加武术的女生人数,即可补全条形统计图,再分别求出参加武术的人数和参加器乐的人数,即可求出百分比;(2)用参加剪纸中男生人数除以剪纸的总人数即可得出结论;(3)根据样本估计总体的方法计算即可;(4)利用概率公式即可得出结论.【解答】解:(1)由条形图知,男生共有:10+20+13+9=52人,∴女生人数为100﹣52=48人,∴参加武术的女生为48﹣15﹣8﹣15=10人,∴参加武术的人数为20+10=30人,∴30÷100=30%,参加器乐的人数为9+15=24人,∴24÷100=24%,补全条形统计图和扇形统计图如图所示:(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是1010+15×100%=40%.答:在参加“剪纸”活动项目的学生中,男生所占的百分比为40%.(3)500×21%=105(人).答:估计其中参加“书法”项目活动的有105人.(4)1515+10+8+15=1548=516.答:正好抽到参加“器乐”活动项目的女生的概率为516.19.祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.项目内容课题测量斜拉索顶端到桥面的距离测量示意图说明:两侧最长斜拉索AC,BC相交于点C,分别与桥面交于A,B两点,且点A,B,C在同一竖直平面内.测量数据∠A的度数∠B的度数AB 的长度38°28° 234米……(1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点C 到AB 的距离(参考数据:sin 38°≈0.6,cos 38°≈0.8,tan 38°≈0.8,sin 28°≈0.5,cos 28°≈0.9,tan 28°≈0.5)(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).【分析】(1)过点C 作CD ⊥AB 于点D .解直角三角形求出DC 即可;(2)还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等 【解答】解:(1)过点C 作CD ⊥AB 于点D .设CD =x 米,在Rt △ADC 中,∠ADC =90°,∠A =38°. ∵tan38°=CD AD ,∴AD =CD tan38°=x 0.8=54x . 在Rt △BDC 中,∠BDC =90°,∠B =28°.∵tan28°=CD BD ,∴BD =CD tan28°=x 0.5=2x . ∵AD +BD =AB =234,∴54x +2x =234.解得x =72.答:斜拉索顶端点C 到AB 的距离为72米.(2)还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等.(答案不唯一)20.2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南﹣北京西”全程大约500千米,“复兴号”G 92次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的45(两列车中途停留时间均除外).经查询,“复兴号”G 92次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号”G 92次列车从太原南到北京西需要多长时间.【分析】设“复兴号”G 92次列车从太原南到北京西的行驶时间需要x 小时,则“和谐号”列车的行驶时间需要54x 小时,根据速度=路程÷时间结合“复兴号”G 92次列车平均每小时比某列“和谐号”列车多行驶40千米,即可得出关于x 的分式方程,解之经检验后即可得出结论.【解答】解:设“复兴号”G 92次列车从太原南到北京西的行驶时间需要x 小时,则“和谐号”列车的行驶时间需要54x 小时,根据题意得:500x=50054x+40,解得:x =52,经检验,x =52是原分式方程的解, ∴x +16=83.答:乘坐“复兴号”G 92次列车从太原南到北京西需要83小时.21.请阅读下列材料,并完成相应的任务:在数学中,利用图形在变化过程中的不变性质,常常可以找到解决问题的办法.著名美籍匈牙利数学家波利亚在他所著的《数学的发现》一书中有这样一个例子:请问如何在一个三角形ABC 的AC 和BC 两边上分别取一点X 和Y ,使得AX =BY =XY .(如图)解决这个问题的操作步骤如下:第一步,在CA 上作出一点D ,使得CD =CB ,连接BD .第二步,在CB 上取一点Y ',作Y 'Z '∥CA ,交BD 于点Z ',并在AB 上取一点A ',使Z 'A '=Y 'Z '.第三步,过点A 作AZ ∥A 'Z ',交BD 于点Z .第四步,过点Z 作ZY ∥AC ,交BC 于点Y ,再过点Y作YX ∥ZA ,交AC 于点X .则有AX =BY =XY . 下面是该结论的部分证明:证明:∵AZ ∥A 'Z ',∴∠BA 'Z '=∠BAZ , 又∵∠A 'BZ '=∠ABZ .∴△BA 'Z '~△BAZ .∴Z′A′ZA =BZ′BZ .同理可得Y′Z′YZ=BZ′BZ.∴Z′A′ZA=Y′Z′YZ.∵Z 'A '=Y 'Z ',∴ZA =YZ .任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形AXYZ 的形状,并加以证明; (2)请再仔细阅读上面的操作步骤,在(1)的基础上完成AX =BY =XY 的证明过程;(3)上述解决问题的过程中,通过作平行线把四边形BA 'Z 'Y '放大得到四边形BAZY ,从而确定了点Z ,Y 的位置,这里运用了下面一种图形的变化是 D (或位似) .A .平移B .旋转C .轴对称D .位似【分析】(1)四边形AXYZ 是菱形.首先由“两组对边相互平行的四边形是平行四边形”推知四边形AXYZ 是平行四边形,再由“邻边相等的平行四边形是菱形”证得结论;(2)利用菱形的四条边相等推知AX =XY =YZ .根据等量代换得到AX =BY =XY . (3)根据位似变换的定义填空.【解答】解:(1)四边形AXYZ 是菱形. 证明:∵ZY ∥AC ,YX ∥ZA , ∴四边形AXYZ 是平行四边形. ∵ZA =YZ ,∴平行四边形AXYZ 是菱形.(2)证明:∵CD =CB , ∴∠1=∠3.∵ZY∥AC,∴∠1=∠2.∴∠2=∠3.∴YB=YZ.∵四边形AXYZ是菱形,∴AX=XY=YZ.∴AX=BY=XY.(3)通过作平行线把四边形BA'Z'Y'放大得到四边形BAZY,从而确定了点Z,Y的位置,此时四边形BA'Z'Y'∽四边形BAZY,所以该变换形式是位似变换.故答案是:D(或位似).22.综合与实践问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD中,AD=2AB,E是AB延长线上一点,且BE=AB,连接DE,交BC于点M,以DE为一边在DE的左下方作正方形DEFG,连接AM.试判断线段AM与DE的位置关系.探究展示:勤奋小组发现,AM垂直平分DE,并展示了如下的证明方法:证明:∵BE=AB,∴AE=2AB.∵AD=2AB,∴AD=AE.∵四边形ABCD是矩形,∴AD∥BC.∴EMDM=EBAB.(依据1)∵BE=AB,∴EMDM=1.∴EM=DM.即AM是△ADE的DE边上的中线,又∵AD=AE,∴AM⊥DE.(依据2)∴AM垂直平分DE.反思交流:(1)①上述证明过程中的“依据1”“依据2”分别是指什么?②试判断图1中的点A是否在线段GF的垂直平分线上,请直接回答,不必证明;(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接CE,以CE为一边在CE的左下方作正方形CEFG,发现点G在线段BC的垂直平分线上,请你给出证明;探索发现:(3)如图3,连接CE,以CE为一边在CE的右上方作正方形CEFG,可以发现点C,点B都在线段AE的垂直平分线上,除此之外,请观察矩形ABCD和正方形CEFG的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.【分析】(1)①直接得出结论;②借助问题情景即可得出结论;(2)先判断出∠BCE+∠BEC=90°,进而判断出∠BEC=∠BCG,得出△GHC≌△CBE,判断出AD=BC,进而判断出HC=BH,即可得出结论;(3)先判断出四边形BENM为矩形,进而得出∠1+∠2=90°,再判断出∠1=∠3,得出△ENF≌△EBC,即可得出结论.【解答】解:(1)①依据1:两条直线被一组平行线所截,所得的对应线段成比例(或平行线分线段成比例).依据2:等腰三角形顶角的平分线,底边上的中线及底边上的高互相重合(或等腰三角形的“三线合一”).②答:点A在线段GF的垂直平分线上.理由:由问题情景知,AM⊥DE,∵四边形DEFG是正方形,∴DE∥FG,∴点A在线段GF的垂直平分线上.(2)证明:过点G作GH⊥BC于点H,∵四边形ABCD是矩形,点E在AB的延长线上,∴∠CBE=∠ABC=∠GHC=90°,∴∠BCE+∠BEC=90°.∵四边形CEFG为正方形,∴CG=CE,∠GCE=90°,∴∠BCE+∠BCG=90°.∴∠2BEC=∠BCG.∴△GHC≌△CBE.∴HC=BE,∵四边形ABCD是矩形,∴AD=BC.∵AD=2AB,BE=AB,∴BC=2BE=2HC,∴HC=BH.∴GH垂直平分BC.∴点G在BC的垂直平分线上.(3)答:点F在BC边的垂直平分线上(或点F在AD边的垂直平分线上).证法一:过点F作FM⊥BC于点M,过点E作EN⊥FM于点N.∴∠BMN=∠ENM=∠ENF=90°.∵四边形ABCD是矩形,点E在AB的延长线上,∴∠CBE=∠ABC=90°,。
2018年山西省中考数学试卷(含详细答案及解析)中考真题
2018年山西省中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请选出并在答题卡上将该项涂黑)1.(3.00分)下面有理数比较大小,正确的是()A.0<﹣2 B.﹣5<3 C.﹣2<﹣3 D.1<﹣42.(3.00分)“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B.《几何原本》C.《海岛算经》D.《周髀算经》3.(3.00分)下列运算正确的是()A.(﹣a3)2=﹣a6B.2a2+3a2=6a2C.2a2•a3=2a6D.4.(3.00分)下列一元二次方程中,没有实数根的是()A.x2﹣2x=0 B.x2+4x﹣1=0 C.2x2﹣4x+3=0 D.3x2=5x﹣25.(3.00分)近年来快递业发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件):1~3月份我省这七个地市邮政快递业务量的中位数是()A.319.79万件B.332.68万件C.338.87万件D.416.01万件6.(3.00分)黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为()A.6.06×104立方米/时 B.3.136×106立方米/时C.3.636×106立方米/时D.36.36×105立方米/时7.(3.00分)在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A.B.C.D.8.(3.00分)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,将△ABC绕点C按逆时针方向旋转得到△A'B'C',此时点A'恰好在AB边上,则点B'与点B之间的距离为()A.12 B.6 C.D.9.(3.00分)用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7 B.y=(x﹣4)2﹣25 C.y=(x+4)2+7 D.y=(x+4)2﹣2510.(3.00分)如图,正方形ABCD内接于⊙O,⊙O的半径为2,以点A为圆心,以AC长为半径画弧交AB的延长线于点E,交AD的延长线于点F,则图中阴影部分的面积为()A.4π﹣4 B.4π﹣8 C.8π﹣4 D.8π﹣8二、填空题(本大题共5个小题,每小题3分,共15分)11.(3.00分)计算:(3+1)(3﹣1)=.12.(3.00分)图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=度.13.(3.00分)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为cm.14.(3.00分)如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN 于点C,交AB于点D;②分别以C,D为圆心,以大于CD长为半径作弧,两弧在∠NAB内交于点E;③作射线AE交PQ于点F.若AB=2,∠ABP=60°,则线段AF的长为.15.(3.00分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D是AB的中点,以CD为直径作⊙O,⊙O分别与AC,BC交于点E,F,过点F作⊙O的切线FG,交AB于点G,则FG的长为.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.计算:(1)(2)2﹣|﹣4|+3﹣1×6+20.(2)•﹣.17.如图,一次函数y1=k1x+b(k1≠0)的图象分别与x轴,y轴相交于点A,B,与反比例函数y2=的图象相交于点C(﹣4,﹣2),D(2,4).(1)求一次函数和反比例函数的表达式;(2)当x为何值时,y1>0;(3)当x为何值时,y1<y2,请直接写出x的取值范围.18.在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?(3)若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?(4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?19.祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.(1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点C到AB的距离(参考数据:sin38°≈0.6,cos38°≈0.8,tan38°≈0.8,sin28°≈0.5,cos28°≈0.9,tan28°≈0.5)(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).20.2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南﹣北京西”全程大约500千米,“复兴号”G92次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的(两列车中途停留时间均除外).经查询,“复兴号”G92次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号”G92次列车从太原南到北京西需要多长时间.21.请阅读下列材料,并完成相应的任务:.任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形AXYZ的形状,并加以证明;(2)请再仔细阅读上面的操作步骤,在(1)的基础上完成AX=BY=XY的证明过程;(3)上述解决问题的过程中,通过作平行线把四边形BA'Z'Y'放大得到四边形BAZY,从而确定了点Z,Y的位置,这里运用了下面一种图形的变化是.A.平移B.旋转C.轴对称D.位似22.综合与实践问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD 中,AD=2AB,E是AB延长线上一点,且BE=AB,连接DE,交BC于点M,以DE 为一边在DE的左下方作正方形DEFG,连接AM.试判断线段AM与DE的位置关系.探究展示:勤奋小组发现,AM垂直平分DE,并展示了如下的证明方法:证明:∵BE=AB,∴AE=2AB.∵AD=2AB,∴AD=AE.∵四边形ABCD是矩形,∴AD∥BC.∴.(依据1)∵BE=AB,∴.∴EM=DM.即AM是△ADE的DE边上的中线,又∵AD=AE,∴AM⊥DE.(依据2)∴AM垂直平分DE.反思交流:(1)①上述证明过程中的“依据1”“依据2”分别是指什么?②试判断图1中的点A是否在线段GF的垂直平分线上,请直接回答,不必证明;(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接CE,以CE 为一边在CE的左下方作正方形CEFG,发现点G在线段BC的垂直平分线上,请你给出证明;探索发现:(3)如图3,连接CE,以CE为一边在CE的右上方作正方形CEFG,可以发现点C,点B都在线段AE的垂直平分线上,除此之外,请观察矩形ABCD和正方形CEFG的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.23.综合与探究如图,抛物线y=x﹣4与x轴交于A,B两点(点A在点B的左侧),与y 轴交于点C,连接AC,BC.点P是第四象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q,过点P作PE ∥AC交x轴于点E,交BC于点F.(1)求A,B,C三点的坐标;(2)试探究在点P运动的过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q的坐标;若不存在,请说明理由;(3)请用含m的代数式表示线段QF的长,并求出m为何值时QF有最大值.2018年山西省中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请选出并在答题卡上将该项涂黑)1.(3.00分)下面有理数比较大小,正确的是()A.0<﹣2 B.﹣5<3 C.﹣2<﹣3 D.1<﹣4【分析】直接利用有理数比较大小的方法分别比较得出答案.【解答】解:A、0>﹣2,故此选项错误;B、﹣5<3,正确;C、﹣2>﹣3,故此选项错误;D、1>﹣4,故此选项错误;故选:B.【点评】此题主要考查了有理数大小比较,正确把握比较方法是解题关键.2.(3.00分)“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B.《几何原本》C.《海岛算经》D.《周髀算经》【分析】根据数学常识逐一判别即可得.【解答】解:A、《九章算术》是中国古代数学专著,作者已不可考,它是经历代各家的增补修订,而逐渐成为现今定本的;B、《几何原本》是古希腊数学家欧几里得所著的一部数学著作;C、《海岛算经》是中国学者编撰的最早一部测量数学著作,由刘徽于三国魏景元四年所撰;D、《周髀算经》原名《周髀》,是算经的十书之一,中国最古老的天文学和数学著作;故选:B.【点评】本题主要考查数学常识,解题的关键是了解我国古代在数学领域的成就.3.(3.00分)下列运算正确的是()A.(﹣a3)2=﹣a6B.2a2+3a2=6a2C.2a2•a3=2a6D.【分析】分别根据幂的乘方、合并同类项法则、同底数幂的乘法及分式的乘方逐一计算即可判断.【解答】解:A、(﹣a3)2=a6,此选项错误;B、2a2+3a2=5a2,此选项错误;C、2a2•a3=2a5,此选项错误;D、,此选项正确;故选:D.【点评】本题主要考查整式的运算,解题的关键是掌握幂的乘方、合并同类项法则、同底数幂的乘法及分式的乘方的运算法则.4.(3.00分)下列一元二次方程中,没有实数根的是()A.x2﹣2x=0 B.x2+4x﹣1=0 C.2x2﹣4x+3=0 D.3x2=5x﹣2【分析】利用根的判别式△=b2﹣4ac分别进行判定即可.【解答】解:A、△=4﹣4=0,有两个相等的实数根,故此选项不合题意;B、△=16+4=20>0,有两个不相等的实数根,故此选项不合题意;C、△=16﹣4×2×3<0,没有实数根,故此选项符合题意;D、△=25﹣4×3×2=25﹣24=1>0,有两个相等的实数根,故此选项不合题意;故选:C.【点评】此题主要考查了根的判别式,关键是掌握一元二次方程ax2+bx+c=0(a ≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.5.(3.00分)近年来快递业发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件):1~3月份我省这七个地市邮政快递业务量的中位数是()A.319.79万件B.332.68万件C.338.87万件D.416.01万件【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:首先按从小到大排列数据:319.79,302.34,332.68,338.87,416.01,725.86,3303.78由于这组数据有奇数个,中间的数据是338.87所以这组数据的中位数是338.87故选:C.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.6.(3.00分)黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为()A.6.06×104立方米/时 B.3.136×106立方米/时C.3.636×106立方米/时D.36.36×105立方米/时【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:1010×360×24=3.636×106立方米/时,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.(3.00分)在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A.B.C.D.【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【解答】解:画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为,故选:A.【点评】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.8.(3.00分)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,将△ABC绕点C按逆时针方向旋转得到△A'B'C',此时点A'恰好在AB边上,则点B'与点B之间的距离为()A.12 B.6 C.D.【分析】连接B'B,利用旋转的性质和直角三角形的性质解答即可.【解答】解:连接B'B,∵将△ABC绕点C按逆时针方向旋转得到△A'B'C',∴AC=A'C,AB=A'B,∠A=∠CA'B'=60°,∴△AA'C是等边三角形,∴∠AA'C=60°,∴∠B'A'B=180°﹣60°=60°=60°,∵将△ABC绕点C按逆时针方向旋转得到△A'B'C',∴∠ACA'=∠BAB'=60°,BC=B'C,∠CB'A'=∠CBA=90°﹣60°=30°,∴△BCB'是等边三角形,∴∠CB'B=60°,∵∠CB'A'=30°,∴∠A'B'B=30°,∴∠B'BA'=180°﹣60°﹣30°=90°,∵∠ACB=90°,∠A=60°,AC=6,∴AB=12,∴A'B=AB﹣AA'=AB﹣AC=6,∴B'B=6,故选:D.【点评】此题考查旋转问题,关键是利用旋转的性质和直角三角形的性质解答.9.(3.00分)用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7 B.y=(x﹣4)2﹣25 C.y=(x+4)2+7 D.y=(x+4)2﹣25【分析】直接利用配方法进而将原式变形得出答案.【解答】解:y=x2﹣8x﹣9=x2﹣8x+16﹣25=(x﹣4)2﹣25.故选:B.【点评】此题主要考查了二次函数的三种形式,正确配方是解题关键.10.(3.00分)如图,正方形ABCD内接于⊙O,⊙O的半径为2,以点A为圆心,以AC长为半径画弧交AB的延长线于点E,交AD的延长线于点F,则图中阴影部分的面积为()A.4π﹣4 B.4π﹣8 C.8π﹣4 D.8π﹣8【分析】利用对称性可知:阴影部分的面积=扇形AEF的面积﹣△ABD的面积.【解答】解:利用对称性可知:阴影部分的面积=扇形AEF的面积﹣△ABD的面积=﹣×4×2=4π﹣4,故选:A.【点评】本题考查扇形的面积公式、正方形的性质等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.二、填空题(本大题共5个小题,每小题3分,共15分)11.(3.00分)计算:(3+1)(3﹣1)=17.【分析】根据平方差公式计算即可.【解答】解:原式=(3)2﹣12=18﹣1=17故答案为:17.【点评】本题考查的是二次根式的混合运算,掌握平方差公式、二次根式的性质是解题的关键.12.(3.00分)图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5= 360度.【分析】根据多边形的外角和等于360°解答即可.【解答】解:由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案为:360°.【点评】本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键.13.(3.00分)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为55 cm.【分析】利用长与高的比为8:11,进而利用携带行李箱的长、宽、高三者之和不超过115cm得出不等式求出即可.【解答】解:设长为8x,高为11x,由题意,得:19x+20≤115,解得:x≤5,故行李箱的高的最大值为:11x=55,答:行李箱的高的最大值为55厘米.故答案为:55【点评】此题主要考查了一元一次不等式的应用,根据题意得出正确不等关系是解题关键.14.(3.00分)如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN 于点C,交AB于点D;②分别以C,D为圆心,以大于CD长为半径作弧,两弧在∠NAB内交于点E;③作射线AE交PQ于点F.若AB=2,∠ABP=60°,则线段AF的长为2.【分析】作高线BG,根据直角三角形30度角的性质得:BG=1,AG=,可得AF的长.【解答】解:∵MN∥PQ,∴∠NAB=∠ABP=60°,由题意得:AF平分∠NAB,∴∠1=∠2=30°,∵∠ABP=∠1+∠3,∴∠3=30°,∴∠1=∠3=30°,∴AB=BF,AG=GF,∵AB=2,∴BG=AB=1,∴AG=,∴AF=2AG=2,故答案为:2.【点评】本题考查了平行线的性质、角平分线的基本作图、直角三角形30度角的性质,此题难度不大,熟练掌握平行线和角平分线的基本作图是关键.15.(3.00分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D是AB的中点,以CD为直径作⊙O,⊙O分别与AC,BC交于点E,F,过点F作⊙O的切线FG,交AB于点G,则FG的长为.【分析】先利用勾股定理求出AB=10,进而求出CD=BD=5,再求出CF=4,进而求出DF=3,再判断出FG⊥BD,利用面积即可得出结论.【解答】解:如图,在Rt△ABC中,根据勾股定理得,AB=10,∴点D是AB中点,∴CD=BD=AB=5,连接DF,∵CD是⊙O的直径,∴∠CFD=90°,∴BF=CF=BC=4,∴DF==3,连接OF,∵OC=OD,CF=BF,∴OF∥AB,∴∠OFC=∠B,∵FG是⊙O的切线,∴∠OFG=90°,∴∠OFC+∠BFG=90°,∴∠BFG+∠B=90°,∴FG⊥AB,∴S=DF×BF=BD×FG,△BDF∴FG===,故答案为.【点评】此题主要考查了直角三角形的性质,勾股定理,切线的性质,三角形的中位线定理,三角形的面积公式,判断出FG⊥AB是解本题的关键.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.计算:(1)(2)2﹣|﹣4|+3﹣1×6+20.(2)•﹣.【分析】(1)先计算乘方、绝对值、负整数指数幂和零指数幂,再计算乘法,最后计算加减运算可得;(2)先将分子、分母因式分解,再计算乘法,最后计算减法即可得.【解答】解:(1)原式=8﹣4+×6+1=8﹣4+2+1=7.(2)原式===.【点评】本题主要考查实数和分式的混合运算,解题的关键是掌握绝对值性质、负整数指数幂、零指数幂及分式混合运算顺序和运算法则.17.如图,一次函数y1=k1x+b(k1≠0)的图象分别与x轴,y轴相交于点A,B,与反比例函数y2=的图象相交于点C(﹣4,﹣2),D(2,4).(1)求一次函数和反比例函数的表达式;(2)当x为何值时,y1>0;(3)当x为何值时,y1<y2,请直接写出x的取值范围.【分析】(1)将C、D两点代入一次函数的解析式中即可求出一次函数的解析式,然后将点D代入反比例函数的解析式即可求出反比例函数的解析式;(2)根据一元一次不等式的解法即可求出答案.(3)根据图象即可求出答案该不等式的解集.【解答】解:(1)∵一次函数y1=k1x+b的图象经过点C(﹣4,﹣2),D(2,4),∴,解得.∴一次函数的表达式为y1=x+2.∵反比例函数的图象经过点D(2,4),∴.∴k2=8.∴反比例函数的表达式为.(2)由y1>0,得x+2>0.∴x>﹣2.∴当x>﹣2时,y1>0.(3)x<﹣4或0<x<2.【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是熟练运用待定系数法以及数形结合的思想,本题属于中等题型.18.在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?(3)若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?(4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?【分析】(1)先求出参加活动的女生人数,进而求出参加武术的女生人数,即可补全条形统计图,再分别求出参加武术的人数和参加器乐的人数,即可求出百分比;(2)用参加剪纸中男生人数除以剪纸的总人数即可得出结论;(3)根据样本估计总体的方法计算即可;(4)利用概率公式即可得出结论.【解答】解:(1)由条形图知,男生共有:10+20+13+9=52人,∴女生人数为100﹣52=48人,∴参加武术的女生为48﹣15﹣8﹣15=10人,∴参加武术的人数为20+10=30人,∴30÷100=30%,参加器乐的人数为9+15=24人,∴24÷100=24%,补全条形统计图和扇形统计图如图所示:(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是.答:在参加“剪纸”活动项目的学生中,男生所占的百分比为40%.(3)500×21%=105(人).答:估计其中参加“书法”项目活动的有105人.(4).答:正好抽到参加“器乐”活动项目的女生的概率为.【点评】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.(1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点C到AB的距离(参考数据:sin38°≈0.6,cos38°≈0.8,tan38°≈0.8,sin28°≈0.5,cos28°≈0.9,tan28°≈0.5)(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).【分析】(1)过点C作CD⊥AB于点D.解直角三角形求出DC即可;(2)还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等【解答】解:(1)过点C作CD⊥AB于点D.设CD=x米,在Rt△ADC中,∠ADC=90°,∠A=38°.∵,∴.在Rt△BDC中,∠BDC=90°,∠B=28°.∵,∴.∵AD+BD=AB=234,∴.解得x=72.答:斜拉索顶端点C到AB的距离为72米.(2)还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等.(答案不唯一)【点评】本题考查解直角三角形的应用,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题;20.2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南﹣北京西”全程大约500千米,“复兴号”G92次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的(两列车中途停留时间均除外).经查询,“复兴号”G92次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号”G92次列车从太原南到北京西需要多长时间.【分析】设“复兴号”G92次列车从太原南到北京西的行驶时间需要x小时,则“和谐号”列车的行驶时间需要x小时,根据速度=路程÷时间结合“复兴号”G92次列车平均每小时比某列“和谐号”列车多行驶40千米,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设“复兴号”G92次列车从太原南到北京西的行驶时间需要x小时,则“和谐号”列车的行驶时间需要x小时,根据题意得:=+40,解得:x=,经检验,x=是原分式方程的解,∴x+=.答:乘坐“复兴号”G92次列车从太原南到北京西需要小时.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.21.请阅读下列材料,并完成相应的任务:.任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形AXYZ的形状,并加以证明;(2)请再仔细阅读上面的操作步骤,在(1)的基础上完成AX=BY=XY的证明过程;(3)上述解决问题的过程中,通过作平行线把四边形BA'Z'Y'放大得到四边形BAZY,从而确定了点Z,Y的位置,这里运用了下面一种图形的变化是D(或位似).A.平移B.旋转C.轴对称D.位似【分析】(1)四边形AXYZ是菱形.首先由“两组对边相互平行的四边形是平行四边形”推知四边形AXYZ是平行四边形,再由“邻边相等的平行四边形是菱形”证得结论;(2)利用菱形的四条边相等推知AX=XY=YZ.根据等量代换得到AX=BY=XY.(3)根据位似变换的定义填空.【解答】解:(1)四边形AXYZ是菱形.证明:∵ZY∥AC,YX∥ZA,∴四边形AXYZ是平行四边形.∵ZA=YZ,∴平行四边形AXYZ是菱形.(2)证明:∵CD=CB,∴∠1=∠3.∵ZY∥AC,∴∠1=∠2.∴∠2=∠3.∴YB=YZ.∵四边形AXYZ是菱形,∴AX=XY=YZ.∴AX=BY=XY.(3)通过作平行线把四边形BA'Z'Y'放大得到四边形BAZY,从而确定了点Z,Y的位置,此时四边形BA'Z'Y'∽四边形BAZY,所以该变换形式是位似变换.故答案是:D(或位似).【点评】考查了相似综合题型,掌握菱形的判定与性质,相似三角形的判定与性质,位似变换,位似图形的两个图形必须是相似形.22.综合与实践问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD 中,AD=2AB,E是AB延长线上一点,且BE=AB,连接DE,交BC于点M,以DE 为一边在DE的左下方作正方形DEFG,连接AM.试判断线段AM与DE的位置关系.探究展示:勤奋小组发现,AM垂直平分DE,并展示了如下的证明方法:证明:∵BE=AB,∴AE=2AB.∵AD=2AB,∴AD=AE.∵四边形ABCD是矩形,∴AD∥BC.∴.(依据1)∵BE=AB,∴.∴EM=DM.即AM是△ADE的DE边上的中线,又∵AD=AE,∴AM⊥DE.(依据2)∴AM垂直平分DE.反思交流:(1)①上述证明过程中的“依据1”“依据2”分别是指什么?②试判断图1中的点A是否在线段GF的垂直平分线上,请直接回答,不必证明;(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接CE,以CE 为一边在CE的左下方作正方形CEFG,发现点G在线段BC的垂直平分线上,请你给出证明;。
2009年初中数学毕业试卷及答案(山西省太
20.
5 ,2, 4 2 3 . 2
4 x2 1 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2分 x 2 x 2 x 2 x 2 x 2 ·
2
20 1
21 1
2
22 2
23 4
24 5
2
27 8
28 10
29 6 )
30 2
B.28 分 B. 5 x 1
C.25 分 C. 13 x 1
D.10 人 D. 13 x 1 )
4.已知一个多项式与 3x 9 x 的和等于 3x 4 x 1 ,则这个多项式是( 5.用配方法解方程 x 2 x 5 0 时,原方程应变形为( A. x 1 6
28. (本小题满分 9 分)
A 、 B 两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口 处驶入,并始终在高速公路上正常行驶.甲车驶往 B 城,乙车驶往 A 城,甲车在行驶 过程中速度始终不变. 甲车距 B 城高速公路入口处的距离 y(千米) 与行驶时间 x(时)
之间的关系如图. ( 1)求 y 关于 x 的表达式; ( 2) 已知乙车以 60 千米 /时的速度匀速行驶, 设行驶过程中, 两车相距的路程为 s(千 米) .请直接写出 s 关于 x 的表达式; ( 3)当乙车按( 2)中的状态行驶与甲车相遇后,速度随即改为 a (千米 /时)并保 持匀速行驶,结果比甲车晚 40 分钟到达终点,求乙车变化后的速度 a .在下图 中画出乙车离开 B 城高速公路入口处的距离 y (千米)与行驶时间 x (时)之间 的函数图象. 360 300 240 180 120 60 O 29. (本小题满分 12 分) 问题解决 如图 ( 1) , 将正方形纸片 ABCD 折叠, 使点 B 落在 CD 边上一点 E (不与点 C , D 重合) ,压平后得到折痕 MN .当 1 2 3 3 A M 4 3 F D 5 x /时 3
2018年山西省中考数学试卷(附详细答案)
数学试卷 第1页(共28页) 数学试卷 第2页(共28页)绝密★启用前山西省2018年高中阶段教育学校招生统一考试数 学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算12-+的结果是 ( )A .3-B .1-C .1D .32.如图,直线,a b 被直线c 所截,下列条件不能判定直线a 与b 平行的是( )A .13∠=∠B .24180∠+∠=oC .14∠=∠D .34∠=∠3.在体育课上,甲、乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的 ( )A .众数B .平均数C .中位数D .方差4.将不等式组260,40x x -⎧⎨+>⎩≤的解集表示在数轴上,下面表示正确的是( )ABAB 5.下列运算错误的是( )A.0(31)1-=B .291(3)44-÷= C .22256x x x -=-D .3224(2)(2)m m m ÷=6.如图,将矩形纸片ABCD 沿BD 折叠,得到BC D '△,C D '与AB 交于点E .若135∠=o ,则2∠的度数为( )A .20oB .30oC .35oD .55o 7.化简2442x xx x ---的结果是 ( )A .22x x -+B .26x x -+C .2xx -+ D .2x x - 8.2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为 ( ) A .818610⨯吨 B .918.610⨯吨 C .101.8610⨯吨 D .110.18610⨯吨9.公元前5世纪,毕达哥拉斯学派中的一名成员希伯索斯发现了无理数2,导致了第一次数学危机.2是无理数的证明如下:假设2是有理数,那么它可以表示成qp(p 与q 是互质的两个正整数).于是22()(2)2qp==,所以,222q p =.于是2q 是偶数,进而q 是偶数.从而可设2q m =,所以22(2)2m p =,222p m =,于是可得p 也是偶数.这与“p 与q 是互质的两个正整数”矛盾,从而可知“2是有理数”的假设不成立,所以,2是无理数.这种证明“2是无理数”的方法是 ( ) A .综合法 B .反证法 C .举反例法 D .数学归纳法 10.如图是某商品的标志图案.AC 与BD 是O e 的两条直径,首尾顺次连接点A ,B ,C ,D ,得到四边形ABCD .若10cm AC =,36BAC ∠=o ,则图中阴影部分的面积为( )A .25cm πB .210cm π C .215cm πD .220cm π第Ⅱ卷(非选择题 共90分)二、填空题(本大题共5小题,每小题3分,共15分.请把答案填在题中的横线上)11.计算:41892-= .12.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为 元.毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共28页) 数学试卷 第4页(共28页)13.如图,已知ABC △三个顶点的坐标分别为(0,4)A ,(1,1)B -,(2,2)C -.将ABC △向右平移4个单位,得到A B C '''△,点,,A B C 的对应点分别为,,A B C ''',再将A B C '''∆绕点B '顺时针旋转90o ,得到A B C ''''''△,点,,A B C '''的对应点分别为''A ,''B ,''C ,则点''A 的坐标为 .14.如图,创新小组要测量公园内一棵树的高度AB ,其中一名小组成员站在距离树10米的点E 处,测得树顶A 的仰角为54o .已知测角仪的架高 1.5CE =米,则这颗树的高度为 米(结果保留一位小数.参考数据:sin 540.8090=o,cos540.5878=o,tan 54 1.3764=o ).15.一副三角板按如图方式摆放,得到ABD △和BCD △,其中90ADB BCD ∠=∠=o ,60A ∠=o ,45CBD ∠=o .E 为AB 的中点,过点E 作EF CD ⊥于点F .若4cm AD =,则EF 的长为 cm .三、解答题(本大题共8小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤) 16.(本小题满分10分,每题5分)(1)计算:231(2)8sin 453-⎛⎫-+- ⎪⎝⎭o g .(2)分解因式:22(2)(2)y x x y +-+.17.(本小题满分6分)已知:如图,在ABCD Y 中,延长AB 至点E ,延长CD 至点F ,使得BE DF =.连接EF ,与对角线AC 交于点O .求证:OE OF =.18.(本小题满分7分)如图,在平面直角坐标系中,正方形OABC 的顶点O 与坐标原点重合,其边长为2,点A ,点C 分别在x 轴,y 轴的正半轴上.函数2y x =的图象与CB 交于点D ,函数ky x=(k 为常数,0k ≠)的图象经过点D ,与AB 交于点E ,与函数2y x =的图象在第三象限内交于点F ,连接AF ,EF . (1)求函数ky x=的表达式,并直接写出E ,F 两点的坐标; (2)求AEF △的面积.19.(本小题满分7分)“春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟”即谷子(去皮后则称为“小米”),被誉为中华民族的哺育作物.山西省有着“小杂粮王国”的美誉,谷子作为山西省杂粮谷物中的大类,其种植面积已连续三年全国第一.2016年全国谷子种植面积为2 000万亩,年总产量为150万吨,山西省谷子平均亩产量为160 kg ,国内其他地区谷子的平均亩产量为60 kg .请解答下列问题: (1)求山西省2016年谷子的种植面积是多少万亩.(2)2017年,若山西省谷子的平均亩产量仍保持160 kg 不变,要使山西省谷子的年总产量不低于52万吨,那么,2017年山西省至少应再多种植多少万亩的谷子?20.(本小题满分12分)从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告2017》显示,2016年我国共享经济市场交易额约为34 520亿元,比上年增长103%;超6亿人参与共享经济活动,比上年增加约1亿人.下图是源于该报告中的中国共享经济重点领域市场规模统计图:(1)请根据统计图解答下列问题:①图中涉及的七个重点领域中,2016年交易额的中位数是 亿元;毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第5页(共28页) 数学试卷 第6页(共28页)②请分别计算图中的“知识技能”和“资金”两个重点领域从2015年到2016年交易额的增长率(精确到1%),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识.(2)小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为,,,A B C D 的四张卡片(除编号和内容外,其余完全相同).他们将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张.请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号,,,A B C D 表示).21.(本小题满分7分)如图,ABC △内接于O e ,且AB 为O e 的直径,OD AB ⊥,与AC 交于点E ,与过点C 的O e 的切线交于点D . (1)若4AC =,2BC =,求OE 的长;(2)试判断A ∠与CDE ∠的数量关系,并说明理由.22.(本小题满分12分) 综合与实践背景阅读 早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三,股四,弦五”.它被记载于我国古代著名数学著作《周髀算经》中.为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形.例如:三边长分别为9,12,15或,形就是(3,4,5)型三角形.用矩形纸片按下面的操作方法可以折出这种类型的三角形. 实践操作 如图1,在矩形纸片ABCD 中,8cm AD =,12cm AB =.第一步:如图2,将图1中的矩形纸片ABCD 沿过点A 的直线折叠,使点D 落在AB 上的点E 处,折痕为AF ,再沿EF 折叠,然后把纸片展平.第二步:如图3,将图2中的矩形纸片再次折叠,使点D 与点F 重合,折痕为GH ,然后展平,隐去AF .第三步:如图4,将图3中的矩形纸片沿AH 折叠,得到AD H '△,再沿AD '折叠,折痕为AM ,AM 与折痕EF 交于点N ,然后展平.问题解决(1)请在图2中证明四边形AEFD 是正方形;(2)请在图4中判断NF 与ND '的数量关系,并加以证明; (3)请在图4中证明AEN △是(3,4,5)型三角形.探索发现(4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称. 23.(本小题满分14分) 综合与探究如图,抛物线2y x x =+x 轴交于,A B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC ,BC .点P 沿AC 以每秒1个单位长度的速度由点A 向点C 运动,同时,点Q 沿BO 以每秒2个单位长度的速度由点B 向点O 运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ ,过点Q 作QD x ⊥轴,与抛物线交于点D ,与BC 交于点E .连接PD ,与BC 交于点F .设点P 的运动时间为t秒(0t >).(1)求直线BC 的函数表达式;(2)①直接写出,P D 两点的坐标(用含t 的代数式表示,结果需化简); ②在点P ,Q 运动的过程中,当PQ PD =时,求t 的值.(3)试探究在点P ,Q 运动的过程中,是否存在某一时刻,使得点F 为PD 的中点.若存在,请直接写出此时t 的值与点F 的坐标;若不存在,请说明理由.数学试卷 第7页(共28页)数学试卷 第8页(共28页)山西省2017年高中阶段教育学校招生统一考试数学答案解析第Ⅰ卷一、选择题 1.【答案】C 【解析】121-+=.【提示】直接利用有理数加减运算法则得出答案. 【考点】有理数的加法 2.【答案】D【解析】由13∠=∠,可得直线a 与b 平行,故A 能判定;由24180∠+∠=o ,25∠=∠,43∠=∠,可得35180∠+∠=o ,故直线a 与b 平行,故B 能判定;由14∠=∠,43∠=∠,可得13∠=∠,故直线a与b 平行,故C 能判定;由34∠=∠,不能判定直线a 与b 平行,故选D .【提示】根据同位角相等,两直线平行;同旁内角互补,两直线平行进行判断即可. 【考点】平行线的判定 3.【答案】D【解析】因为方差是反映一组数据的波动大小的一个量,方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好;所以要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的方差.【提示】方差是反映一组数据的波动大小的一个量,方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好. 【考点】数据的集中趋势和离散程度 4.【答案】A 【解析】26040x x -≤⎧⎨+>⎩①②,解不等式①得,3x ≤;解不等式②得,4x >-.在数轴上表示为:5/ 14则点A''的坐标为(6,0).数学试卷第11页(共28页)数学试卷第12页(共28页)13.8 1.515.3mAB AD BD∴=+=+=.27/ 14数学试卷第15页(共28页)数学试卷第16页(共28页)(2)画树状图为:9/ 14数学试卷 第19页(共28页)数学试卷 第20页(共28页)312A A ∠=∠+∠=∠Q ,2CDE A ∴∠=∠.(2)连接OC ,由等腰三角形的性质得出1A ∠=∠,由切线的性质得出OC CD ⊥,得出290CDE ∠+∠=o ,证出3CDE ∠=∠,再由三角形的外角性质即可得出结论.【考点】圆的有关性质,切线的性质,相似三角形的判定和性质22.【答案】(1)证明:Q 四边形ABCD 是矩形,90D DAE ∴∠=∠=o ,由折叠的性质得,AE AD =,90AEF D ∠=∠=o ,90D DAE AEF ∴∠=∠=∠=o ,∴四边形AEFD 是矩形,AE AD =Q ,∴矩形AEFD 是正方形;(2)NF ND '=,理由:连接HN ,由折叠得,90AD H D '∠=∠=o ,HF HD HD '==,Q 四边形AEFD 是正方形,90EFD ∴∠=o ,90AD H ∠'=o Q ,90HD N '∴∠=o ,在Rt HNF △与Rt HND '△中,HN HN HF HD =⎧⎨'=⎩, Rt Rt HNF HND ∴'△≌△,NF ND ∴=';(3)Q 四边形AEFD 是正方形,8cm AE EF AD ∴===,由折叠得,8AD AD cm '==,设cm NF x =,则cm ND x '=,在Rt AEN △中,222AN AE EN =+Q ,222(8)8(8)x x ∴+=+-,解得2x =,810cm AN x ∴=+=,6cm EN =,:3:4:5EN AE AN ∴=:,AEN ∴△是(345),,型三角形; (4)图4中还有MFN △,MD H '△,MDA △是(345),,型三角形, CF AE Q ∥,MFN AEN ∴△∽△,:3:4:5EN AE AN =Q :,:34:5FN MF CN ∴=::,MFN ∴△是(345),,型三角形; 同理,MD H '△,MDA △是(345),,型三角形.【解析】(1)根据矩形的性质得到90D DAE ∠=∠=o ,由折叠的性质得到AE AD =,90AEF D ∠=∠=o ,。
2009年山西省中考数学真题及答案(word带详细解析)
2009年山西省初中毕业学业考试试卷数学全品中考网全品中考网一、选择题(每小题2分,共20分) 1.比较大小:2-3-(填“>”、“=”或“<“).1.>【解析】本题是基础题,考查了实数大小的比较.两负数比大小,绝对值大的反而小;或者直接想象在数轴上比较,右边的数总比左边的数大.2.山西有着丰富的旅游资源,如五台山、平遥古城、乔家大院等著名景点,吸引了众多的海内外游客,2008年全省旅游总收入739.3亿元,这个数据用科学记数法可表示为.×1010×1010元.本题主要考查科学记数法的表示,解决本题的关键是先把原数写成原始数据,然后再看数据的整数位数,指数比整数位数少一位.3.请你写出一个有一根为1的一元二次方程:.3.答案不唯一,如x 2=1等.【解析】本题属于开放性试题,主要考查一元二次方程的概念的理解与掌握.可以用因式分解法写出原始方程,然后化为一般形式即可,如(y-1)(y+2)0,后化为一般形式为y 2+y-2=0.4.4.3【解析】12-3=23-3=3.本题属于基础题,主要考查算数平方根的开方及平方根的运算.5.如图所示,A 、B 、C 、D 是圆上的点,17040A ∠=∠=°,°, 则C ∠=度.5.30【解析】∠1=∠A+∠B,∠B=30°,又∵∠C=∠B=30°.(同弧所对的圆周角相等)本题主要考查同弧所对的圆周角相等及三角形的外角的性质.有的同学会错误地应用同弧所对的圆周角等于圆心角的一半从而得到∠C=21∠1=35°. 6.李师傅随机抽查了本单位今年四月份里6天的日用水量(单位:吨)结果如下:7,8,8,7,6,6,根据这些数据,估计四月份本单位用水总量为吨.6.210【解析】4月份本单位用水量为:(7+8+8+7+6+6)÷6×30=210(吨).本题主要考查用样本估计总体的方法.还可以根据已知数据有6天的用水量,求出总和然后乘以5即可. 7.如图,ABC △与A B C '''△是位似图形,且顶点都在格点上,则位似中心的坐标是. .连接A ′A 、B ′B 、C ′C 并延长可以得到ABCD 的对角线BD 相交于点O ,点E 是CD 的中点,ABD △的周16cm ,则DOE △的周长是. 【解析】本题主要考查平行四边形的性质及三角形中位线的性质的应用.根据平行四边形的对边相等和对角线互相平分可得,,E 点是CD 的中点,可得OE 是△DCB 的中位OE=21BC.从而得到结果 ABCD 1(第5题)A C DB E O (第8题)AB C 3 4 56 7 8 9 10 119.若反比例函数的表达式为3y x=,则当1x <-时,y 的取值范围是. 9.-3<y<0【解析】本题主要考查反比例函数图象的性质,此题中的K=3>0,所以在每个象限内y 随x 的减小而增大,但又无限接近x 轴,因此-3<y<0.同学们往往容易忽略无限接近x 轴,从而容易出现漏解.10.下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n 个图中所贴剪纸“○”的个数为. 全品中考网全品中考网10.3n+2【解析】本题体现了地域特色,对同学们有教育意义并且具有探究性质.第一个图案为3个窗花+2个窗花,第二个图案为6个窗花+2个窗花,第三个图案为9个窗花+2个窗花,…从而可以探究第n 个图案所贴窗花数为(3n+2)个.二、选择题(在下列各小题中,均给出四个备选答案,其中只有一个正确答案,请将正确答案的字母号填入下表相应的空格内,每小题3分,共24分) 11.下列计算正确的是()全品中考网A .623a a a ÷=B .()122--=C .()236326x x x -=-· D .()0π31-=11.D 【解析】本题主要考查幂的运算性质.A 式为同底数幂相除,底数不变底数相减,因此错误;B 为一个数的负指数幂等于这个数的正指数幂的倒数,因此错误;C 同底数幂相乘,底数不变,指数相加,从而出错.因此选D. 12.反比例函数ky x=的图象经过点()23-,,那么k 的值是()A .32-B .23-C .6-D .6 12.C 【解析】本题考查反比例函数图象的性质,反比例函数经过的点一定满足此函数,因此代入即可得到.k=xy=(-2)×3=-6,因此选C. 13.不等式组21318x x --⎧⎨->≥的解集在数轴上可表示为()A .BC 13.D 【解析】本题考查一元一次不等式组的解集及在数轴上的表示方法.解决本题的关键是先解不等式组,然后再在数轴上表示.容易出错的地方是在数轴上表示时,≥或≤用实心圆点而>或<用空心圆圈表示解集,发生混淆. 14.解分式方程11222x x x-+=--,可知方程() A .解为2x =B .解为4x =C .解为3x =D .无解14.D 【解析】本题考查分式方程的解法.一定要注意去分母会出现增根要检验的环节,否则容易出错.x x x -=+--21221,可变形为21221--=+--x x x ,两边都乘以2-x ,得(1-x)+2(2-x )=-1,解之,得x=2.代入最简公分母2-x =0,因此原分式方程无解.因此选D.15.如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数(1) (2) (3) …… …… (第10题)是()全品中考网全品中考网A .5B .6C .7D .8 15.B 【解析】本题考查三视图的知识.由主视图与左视图可以在俯视图上标注数字为:,因此总个数为6个,因此选B.16.如图,AB 是O ⊙的直径,AD 是O ⊙的切线,点C 在O ⊙上,BC OD ∥,23AB OD ==,,则BC 的长为()A .23B .32C .D 16.A 【解析】本题属于一个小综合题,主要考查的知识点有相似三角形的性质及判定、圆周角定理的推论、切线的性质、平行线的性质.根据BC ∥OD ,可得∠B=∠AOD ,根据直径所对的圆周角为90度,切线垂直于经过切点的直径,可以得到∠C=∠OAD,从而得到△ABC ∽△OAD,可得BC:OA=AB:OD,从而得到BC=32. 17.如图(1),把一个长为m 、宽为n 的长方形(m n >)沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为() A .2m n- B .m n -C .2mD .2n 全品中考网全品中考网17.A 【解析】本题考查同学们拼接剪切的动手能力,解决此类问题一定要联系方程来解决.设去掉的小正方形的边长为x ,则有(n+x )2=mn+x 2,解之得x=2nm -.因此选A. 18.如图,在Rt ABC △中,90ACB ∠=°,3BC =,4AC =,AB 的垂 直平分线DE 交BC 的延长线于点E ,则CE 的长为()A .32B .76C .256D .218.B 【解析】本题主要考查直角三角形性质、线段垂直平分线的性质及相似三角形性质的应用及方程的数学思想,由题意可得△ABC ∽△EDB,可得BC:BD=AB:(BC+CE),从而得到CE=67. 三、解答题(本题共76分) 19.(每小题4分,共12分)(1)计算:()()()2312x x x +---(2)化简:222242x x x x +---(3)解方程:2230x x --=19.(1)解决本题的关键是掌握整式乘法法则(2)本题主要考查分式运算的掌握.(3)主要考查主视图 左视图 俯视图(第15题) A B C(第16题) m nn n (2)(1) (第17题) AD BE(第18题)一元二次方程的解法方法多样.20.(本题6分)已知每个网格中小正方形的边长都是1,图1中的阴影图案是由三段以格点为圆心,半径分别为1和2的圆弧围成. (1)填空:图1中阴影部分的面积是(结果保留π);(2)请你在图2中以图1为基本图案,借助轴对称、平移或旋转设计 一个完整的花边图案(要求至少含有两种图形变换).全品中考网全品中考网20.解决本题的关键是弄清图中的扇形的半径与圆心.21.(本题8分)根据山西省统计信息网公布的数据,绘制了山西省2004~2008固定电话和移动电话年末用户条形统计图如下: (1)数是万户; (221.22.(本题84顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费.某顾客刚好消费200元.(1)该顾客至少可得到元购物券,至多可得到元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率. 全品中考网全品中考网22.本题主要考查概率知识.解决本题的关键是弄清题意,满200元可以摸两次,但摸出一个后不放回,概率在变化.23.(本题8分)有一水库大坝的横截面是梯形ABCD ,AD BC EF ∥,为水库的水面,点E 在DC 上,某课题小组在老师的带领下想测量水的深度,他们测得背水坡AB 的长为12米,迎水坡上DE 的长为2米,135120BAD ADC ∠=∠=°,°,求水深.(精确到0.1 1.73==) 全品中考网全品中考网23.本题主要考查三角函数及解直角三角形的有关知识.24.(本题8分)某批发市场批发甲、乙两种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲种水果的销售利润y 甲(万元)与进货量x (吨)近似满足函数关系0.3y x =甲;乙种水果的销售利润y 乙(万元)与进货量x (吨)近似满足函数关系2y ax bx =+乙(其中0a a b ≠,,为常数),且进货量x 为1吨时,销售利润y 乙为(第20题图1)(第20题图2)(第23题)万户(第21题)1.4万元;进货量x 为2吨时,销售利润y 乙为2.6万元. (1)求y 乙(万元)与x (吨)之间的函数关系式.(2)如果市场准备进甲、乙两种水果共10吨,设乙种水果的进货量为t 吨,请你写出这两种水果所获得的销售利润之和W (万元)与t (吨)之间的函数关系式.并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少? 全品中考网全品中考网24.解决本题的关键是从现实问题中抽象出函数模型,然后解答.特别要注意数量间的关系.25.(本题12分)在ABC △中,2120AB BC ABC ==∠=,°,将ABC △绕点B 顺时针旋转角α(0<°α90)<°得A BC A B 111△,交AC 于点E ,11A C 分别交AC BC 、于D F 、两点.(1)如图1,观察并猜想,在旋转过程中,线段1EA 与FC 有怎样的数量关系?并证明你的结论;(2)如图2,当α30=°时,试判断四边形1BC DA 的形状,并说明理由;(3)在(2)的情况下,求ED 的长.全品中考网全品中考网 25.本题主要考查旋转、全等三角形、特殊平行四边形、解直角三角形等知识.解决本题的关键是结合图形,大胆猜想.26.(本题14分)如图,已知直线128:33l y x =+与直线2:216l y x =-+相交于点C l l 12,、分别交x 轴于A B 、两点.矩形DEFG 的顶点D E 、分别在直线12l l 、上,顶点F G 、都在x 轴上,且点G 与点B 重合.(1)求ABC △的面积;(2)求矩形DEFG 的边DE 与EF 的长; (3)若矩形DEFG 从原点出发,沿x 轴的反方向以每秒1个单位长度的速度平移,设移动时间为(012)t t ≤≤秒,矩形DEFG 与ABC △关于t 的函数关系式,并写出相应的t 的取值范围. 全品中考网全品中考网26.面积、三角形的相似等知识点.为零,各个击破.2009年山西省初中毕业学业考试试卷数学AD BE CF AD BECF(第25题图1) (第25题图2)(第26题)一、选择题(每小题2分,共20分)1.>2.107.39310⨯3.答案不唯一,如21x =4.30 6.2107.(9,0)8.89.30y -<<10.32n +二、选择题(在下列各小题中,均给出四个备选答案,其中只有一个正确答案,请将正确答案的字母号填入下表相应的空格内,每小题3分,共24分) 题号 11 12 13 14 15 16 17 18 答案DCDDBAAB三、解答题(本题共76分)19.(1)解:原式=()226932x x x x ++--+ ······················································ (2分) =226932x x x x ++-+- ·············································································· (3分) =97x +. ·································································································· (4分) (2)解:原式=()()()22222x x x x x +-+-- ···························································· (2分) =222x x x --- ··························································································· (3分) =1. ······································································································· (4分) (3)解:移项,得223x x -=,配方,得()214x -=, ········································· (2分) ∴12x -=±,∴1213x x =-=,. ····································································· (4分) (注:此题还可用公式法,分解因式法求解,请参照给分) 20.解:(1)π2-; ···················································································· (2分)(2)答案不唯一,以下提供三种图案.(注:21.(1)935.7,859.0; ··············································································· (4分) (2)解:①2004~2008移动电话年末用户逐年递增.②2008年末固定电话用户达803.0万户. ·························································· (8分)(注:答案不唯一,只要符合数据特征即可得分) 22.解:(1)10,50; ··················································································· (2分) (2)解:解法一(树状图): ··········································································································· (6分)从上图可以看出,共有12种可0 20 30 10 20 30 10 0 20 30 10 30 40 0 10 30 20 20 30 50 20 30 0 10 50 30 40 第一次 第二次 和 (第20题图2) ···························· (6分)能结果,其中大于或等于30元共有8种可能结果,因此P (不低于30元)=82123=.························································································· (8分) 解法二(列表法):第一次第二次10 20 30 0 1020 3010 10 3040 2020305030 30 40 50····································································································· (6分) (以下过程同“解法一”) ··································································· (8分)23.解:分别过A D 、作AM BC ⊥于M DG BC ⊥,于G .过E 作EH DG ⊥于H ,则四边形AMGD 为矩形.∴456030B DCG GDC ∠=∠=∠=°,°,°.在Rt ABM △中,sin 12AM ABB ===· ∴DG = ························································································· (3分)在Rt DHE △中,cos 2DH DEEDH =∠==· ··································· (6分) ∴ 1.41 1.73HG DG DH =-=⨯-6≈6.7. ···································· (7分) 答:水深约为6.7米. ·············································································· (8分) (其它解法可参照给分) 24.解:(1)由题意,得: 1.442 2.6a b a b +=⎧⎨+=⎩,.解得0.11.5a b =-⎧⎨=⎩,.····································· (2分)∴20.1 1.5y x x =-+乙. ···················································································· (3分)(2)()()20.3100.1 1.5W y y t t t =+=-+-+乙甲.∴20.1 1.23W t t =-++. ········································································ (5分) ()20.16 6.6W t =--+.∴6t =时,W 有最大值为6.6. ································ (7分) ∴1064-=(吨).答:甲、乙两种水果的进货量分别为4吨和6吨时,获得的销售利润之和最大,最大利润是6.6万元. ······························································· (8分)25.解:(1)1EA FC =. ················································································· (1分)证明:(证法一)AB BC A C =∴∠=∠,.(第23题)AD BE CF由旋转可知,111AB BC A C ABE C BF =∠=∠∠=∠,,,∴ABE C BF 1△≌△. ················································ (3分) ∴BE BF =,又1BA BC =,∴1BA BE BC BF -=-.即1EA FC =. ···························· (4分)(证法二)AB BC A C =∴∠=∠,.由旋转可知,11A C A B CB ∠=∠,=,而1EBC FBA ∠=∠,∴1A BF CBE △≌△. ················································ (3分) ∴BE BF =,∴1BA BE BC BF -=-,即1EA FC =. ··························································· (4分)(2)四边形1BC DA 是菱形. ··········································································· (5分)证明:111130A ABA AC AB ∠=∠=∴°,∥,同理AC BC 1∥. ∴四边形1BC DA 是平行四边形. ·············································· (7分) 又1AB BC =,∴四边形1BC DA 是菱形.···································· (8分)(3)(解法一)过点E 作EG AB ⊥于点G ,则1AG BG ==. 在Rt AEG △中,1cos cos30AG AE A ===°……(10分) 由(2)知四边形1BC DA 是菱形, ∴2AD AB ==,∴2ED AD AE =-=-············································· (12分) (解法二)12030ABC ABE ∠=∠=°,°,∴90EBC ∠=°.在Rt EBC △中,tan 2tan 30BE BC C ==⨯=·°112EA BA BE ∴=-= ············································· (10分)∴12ED EA == ···················································· (12分) (其它解法可参照给分)全品中考网26.(1)解:由28033x +=,得4x A =-∴.点坐标为()40-,.由2160x -+=,得8x B =∴.点坐标为()80,.∴()8412AB =--=. ··································································· (2分)由2833216y x y x ⎧=+⎪⎨⎪=-+⎩,.解得56x y =⎧⎨=⎩,.∴C 点的坐标为()56,. ···························· (3分) ∴111263622ABC C S AB y ==⨯⨯=△·.··············································· (4分) (2)解:∵点D 在1l 上且2888833D B D x x y ==∴=⨯+=,.∴D 点坐标为()88,. ······················································································ (5分) 又∵点E 在2l 上且821684E D E E y y x x ==∴-+=∴=,..∴E 点坐标为()48,.全 ·································································· (6分) ∴8448OE EF =-==,.····························································· (7分)(3)解法一:①当03t <≤时,如图1,矩形DEFG 与ABC △重叠部分为五边).过C 作CM AB ⊥于M ,t ).即2333S t t =-++. ······················································ (10分) 全品中考网(图3) (图1) (图2)生于忧患,死于安乐《孟子•告子》舜发于畎亩之中,傅说举于版筑之间,胶鬲举于鱼盐之中,管夷吾举于士,孙叔敖举于海,百里奚举于市。
真题】2018年山西省中考数学试卷含答案解析(Word版)
真题】2018年山西省中考数学试卷含答案解析(Word版)2018年山西省中考数学试卷(解析版)第I卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分,在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.下面有理数比较大小,正确的是()A。
<-2B。
-5<3C。
-2<-3D。
1<-4答案】B考点】有理数比较大小2.“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果。
下列四部著作中,不属于我国古代数学著作的是()A。
《九章算术》B。
《几何原本》C。
《海岛算经》D。
《周髀算经》答案】B考点】数学文化解析】《几何原本》的作者是___。
3.下列运算正确的是()A。
-a3= a6B。
(b2/b3)- (b6/b2)=-b2/b3C。
2a2×a3=2a6D。
2a/a=2答案】D考点】整式运算4.下列一元二次方程中,没有实数根的是()A。
x2-2x=0B。
x2+4x-1=0C。
2x2-4x+3=0D。
3x2=5x-2答案】C考点】一元二次方程根的判别式解析】△>0,有两个不相等的实数根;△=0,有两个相等的实数根;△<0,没有实数根。
A.△=4,B.△=20,C.△=-8,D.△=1.5.近年来快递业发展迅速,下表是2018年1-3月份我省部分地市邮政快递业务量的统计结果(单位:万件)太原市 3303.78大同市 332.68长治市 302.34晋中市 319.79运城市 725.86临汾市 416.01吕梁市 338.871-3月份我省这七个地市邮政快递业务量的中位数是()A。
319.79万件B。
332.68万件C。
338.87万件D。
416.01万件答案】C考点】数据的分析解析】将表格中七个数据从小到大排列,第四个数据为中位数,即338.87万件。
6.黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观,其落差约30米,年平均流量1010立方米/秒。
2018年山西省中考数学试卷(带解析答案)
第 5页(共 21页)
A.4π﹣4 B.4π﹣8 C.8π﹣4 D.8π﹣8
【解答】解:利用对称性可知:阴影部分的面积=扇形 AEF 的面积﹣△ABD 的面
第 2页(共 21页)
故选:C.
5.(3 分)近年来快递业发展迅速,下表是 2018 年 1~3 月份我省部分地市邮政 快递业务量的统计结果(单位:万件):
太原市 大同市 长治市 晋中市 运城市 临汾市 吕梁市 3303.78 332.68 302.34 319.79 725.86 416.01 338.87 1~3 月份我省这七个地市邮政快递业务量的中位数是( ) A.319.79 万件 B.332.68 万件 C.338.87 万件 D.416.01 万件 【解答】解:首先按从小到大排列数据:302.34,319.79,332.68,338.87,416.01, 725.86,3303.78 由于这组数据有奇数个,中间的数据是 338.87 所以这组数据的中位数是 338.87 故选:C.
3.(3 分)下列运算正确的是( ) A.(﹣a3)2=﹣a6 B.2a2+3a2=6a2
C.2a2•a3=2a6 D. t ﷽
t﷽
【解答】解:A、(﹣a3)2=a6,此选项错误;
B、2a2+3a2=5a2,此选项错误;
C、2a2•a3=2a5,此选项错误;
D、 t ﷽ 故选:D.
t
,此选项正确; ﷽
2.(3 分)“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋 唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳 动成果.下列四部著作中,不属于我国古代数学著作的是( )
2009年山西省中考数学试卷及答案
24. (本题 8 分)某批发市场批发甲、乙两种水果,根据以往经验和市场行情,预计夏季某 一段时间内,甲种水果的销售利润 y甲 (万元)与进货量 x (吨)近似满足函数关系
y甲 0.3x ;乙种水果的销售利润 y乙 (万元)与进货量 x (吨)近似满足函数关系
,且进货量 x 为 1 吨时,销售利润 y乙 为 1.4 y乙 ax2 bx (其中 a 0,a,b 为常数) 万元;进货量 x 为 2 吨时,销售利润 y乙 为 2.6 万元. (1)求 y乙 (万元)与 x (吨)之间的函数关系式. (2)如果市场准备进甲、乙两种水果共 10 吨,设乙种水果的进货量为 t 吨,请你写出 这两种水果所获得的销售利润之和 W (万元)与 t (吨)之间的函数关系式.并求出 这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?
y
11 A 10 9 8 7 6 5 A B 4 C 3 B C 2 1 O 1 2 3 4 5 6 7 8 9 10 11 12 x (第 7 题)
A O B (第 8 题) C E
D
8.如图, ABCD 的对角线 AC 、 BD 相交于点 O ,点 E 是 CD 的中点, △ ABD 的周长 为 16cm,则 △DOE 的周长是 cm. 9.若反比例函数的表达式为 y
t 的函数关系式,并写出相应的 t 的取值范围.
y
y
l2
E C D
l1
y
A O
Bx F(G)
(第 26 题)
2009 年山西省初中毕业学业考试试卷 数
一、选择题(每小题 2 分,共 20 分) 1.> 6.210 2. 7.393 10 7. (9,0)
10
学
3.答案不唯一,如 x 1
2009年山西省中考市中考数学试卷及答案
A. 2 3
B. 3 2
B CB
C
O
C. 3 2
m
n
D. 2 2
n
D
A
(第 16 题A)
(1)
(n 2)
(第 17 题)
17.如图(1),把一个长为 m 、宽为 n 的长方形( m n )沿虚线剪开,拼接成图(2),
成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( )
A. m n 2
(3)解:移项,得 x2 2x 3,配方,得 x 12 4,·············································(2 分)
∴ x 1 2,∴ x1 1,x2 3.····························································(4 分)
为
.
3.请你写出一个有一根为 1 的一元二次方程:
.
B
A
4.计算: 12 3 =
.
1
C
5.如图所示, A 、 B 、 C 、 D 是圆上的点, 1 70°,A 40°,
D
则 C
度.
(第 5 题)
6.李师傅随机抽查了本单位今年四月份里 6 天的日用水量(单位:吨)结果如下:7,8,8,
7,6,6,根据这些数据,估计四月份本单位用水总量为
分)
= x 2 ·············································································(3 分) x2 x2
=1.···························································································(4 分)
2018年山西省中考数学试卷(答案 解析)
2018年山西省中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请选出并在答题卡上将该项涂黑)1.(3分)下面有理数比较大小,正确的是( ) A .0<﹣2B .﹣5<3C .﹣2<﹣3D .1<﹣42.(3分)“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是( )A .B .C .D .《九章算术》《几何原本》《海岛算经》《周髀算经》3.(3分)下列运算正确的是( ) A .(﹣a 3)2=﹣a 6 B .2a 2+3a 2=6a 2C .2a 2•a 3=2a 6D .(−b 22a )3=−b 68a3 4.(3分)下列一元二次方程中,没有实数根的是( )A .x 2﹣2x =0B .x 2+4x ﹣1=0C .2x 2﹣4x +3=0D .3x 2=5x ﹣2 5.(3分)近年来快递业发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件):太原市 大同市 长治市 晋中市 运城市 临汾市 吕梁市 3303.78 332.68302.34319.79 725.86416.01338.871~3月份我省这七个地市邮政快递业务量的中位数是( )A .319.79万件B .332.68万件C .338.87万件D .416.01万件6.(3分)黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为( ) A .6.06×104立方米/时B .3.136×106立方米/时C .3.636×106立方米/时D .36.36×105立方米/时7.(3分)在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( ) A .49B .13C .29D .198.(3分)如图,在Rt △ABC 中,∠ACB =90°,∠A =60°,AC =6,将△ABC 绕点C 按逆时针方向旋转得到△A 'B 'C ,此时点A '恰好在AB 边上,则点B '与点B 之间的距离为( ) A .12B .6C .6√2D .6√39.(3分)用配方法将二次函数y =x 2﹣8x ﹣9化为y =a (x ﹣h )2+k 的形式为( ) A .y =(x ﹣4)2+7B .y =(x ﹣4)2﹣25C .y =(x +4)2+7D .y =(x +4)2﹣2510.(3分)如图,正方形ABCD 内接于⊙O ,⊙O 的半径为2,以点A 为圆心,以AC 长为半径画弧交AB 的延长线于点E ,交AD 的延长线于点F ,则图中阴影部分的面积为( ) A .4π﹣4B .4π﹣8C .8π﹣4D .8π﹣8二、填空题(本大题共5个小题,每小题3分,共15分) 11.(3分)计算:(3√2+1)(3√2﹣1)= .12.(3分)图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5= 度. 13.(3分)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm .某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm ,长与高的比为8:11,则符合此规定的行李箱的高的最大值为 cm . 14.(3分)如图,直线MN ∥PQ ,直线AB 分别与MN ,PQ 相交于点A ,B .小宇同学利用尺规按以下步骤作图:①以点A 为圆心,以任意长为半径作弧交AN 于点C ,交AB 于点D ;②分别以C ,D 为圆心,以大于12CD 长为半径作弧,两弧在∠NAB内交于点E ;③作射线AE 交PQ 于点F .若AB =2,∠ABP =60°,则线段AF 的长为 .15.(3分)如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,点D 是AB 的中点,以CD 为直径作⊙O ,⊙O 分别与AC ,BC 交于点E ,F ,过点F 作⊙O 的切线FG ,交AB 于点G ,则FG 的长为 . 三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.计算:(1)(2√2)2﹣|﹣4|+3﹣1×6+20.(2)x−2x−1•x 2−1x 2−4x+4﹣1x−2.17.如图,一次函数y 1=k 1x +b (k 1≠0)的图象分别与x 轴,y 轴相交于点A ,B ,与反比例函数y 2=k 2x(k 2≠0)的图象相交于点C (﹣4,﹣2),D (2,4).(1)求一次函数和反比例函数的表达式; (2)当x 为何值时,y 1>0;(3)当x 为何值时,y 1<y 2,请直接写出x 的取值范围.18.在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整). 请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?(3)若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?(4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?19.祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.项目 内容课题 测量斜拉索顶端到桥面的距离测量示意图说明:两侧最长斜拉索AC ,BC 相交于点C ,分别与桥面交于A ,B 两点,且点A ,B ,C 在同一竖直平面内. 测量数据∠A 的度数∠B 的度数AB 的长度 38°28° 234米……(1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点C 到AB 的距离(参考数据:sin 38°≈0.6,cos 38°≈0.8,tan 38°≈0.8,sin 28°≈0.5,cos 28°≈0.9,tan 28°≈0.5)(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).20.2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南﹣北京西”全程大约500千米,“复兴号”G 92次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的45(两列车中途停留时间均除外).经查询,“复兴号”G 92次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号”G 92次列车从太原南到北京西需要多长时间. 21.请阅读下列材料,并完成相应的任务:在数学中,利用图形在变化过程中的不变性质,常常可以找到解决问题的办法.著名美籍匈牙利数学家波利亚在他所著的《数学的发现》一书中有这样一个例子:请问如何在一个三角形ABC 的AC 和BC 两边上分别取一点X 和Y ,使得AX =BY =XY .(如图)解决这个问题的操作步骤如下:第一步,在CA 上作出一点D ,使得CD =CB ,连接BD .第二步,在CB 上取一点Y ',作Y 'Z '∥CA ,交BD 于点Z ',并在AB上取一点A',使Z'A'=Y'Z'.第三步,过点A作AZ∥A'Z',交BD于点Z.第四步,过点Z作ZY∥AC,交BC于点Y,再过点Y作YX∥ZA,交AC于点X.则有AX=BY=XY.下面是该结论的部分证明:证明:∵AZ∥A'Z',∴∠BA'Z'=∠BAZ,又∵∠A'BZ'=∠ABZ.∴△BA'Z'~△BAZ.∴Z′A′ZA=BZ′BZ.同理可得Y′Z′YZ =BZ′BZ.∴Z′A′ZA=Y′Z′YZ.∵Z'A'=Y'Z',∴ZA=YZ.任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形AXYZ的形状,并加以证明;(2)请再仔细阅读上面的操作步骤,在(1)的基础上完成AX=BY=XY的证明过程;(3)上述解决问题的过程中,通过作平行线把四边形BA'Z'Y'放大得到四边形BAZY,从而确定了点Z,Y的位置,这里运用了下面一种图形的变化是.A.平移B.旋转C.轴对称D.位似22.综合与实践问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD中,AD=2AB,E是AB延长线上一点,且BE=AB,连接DE,交BC于点M,以DE为一边在DE的左下方作正方形DEFG,连接AM.试判断线段AM与DE的位置关系.探究展示:勤奋小组发现,AM垂直平分DE,并展示了如下的证明方法:证明:∵BE=AB,∴AE=2AB.∵AD=2AB,∴AD=AE.∵四边形ABCD是矩形,∴AD∥BC.∴EMDM=EBAB.(依据1)∵BE=AB,∴EMDM=1.∴EM=DM.即AM是△ADE的DE边上的中线,又∵AD=AE,∴AM⊥DE.(依据2)∴AM垂直平分DE.反思交流:(1)①上述证明过程中的“依据1”“依据2”分别是指什么?②试判断图1中的点A是否在线段GF的垂直平分线上,请直接回答,不必证明;(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接CE,以CE为一边在CE的左下方作正方形CEFG,发现点G在线段BC的垂直平分线上,请你给出证明;探索发现:(3)如图3,连接CE,以CE为一边在CE的右上方作正方形CEFG,可以发现点C,点B都在线段AE的垂直平分线上,除此之外,请观察矩形ABCD和正方形CEFG的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.23.综合与探究如图,抛物线y=13x2−13x﹣4与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接AC,BC.点P是第四象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q,过点P作PE∥AC交x 轴于点E,交BC于点F.(1)求A,B,C三点的坐标;(2)试探究在点P运动的过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q的坐标;若不存在,请说明理由;(3)请用含m的代数式表示线段QF的长,并求出m为何值时QF有最大值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年山西省中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请选出并在答题卡上将该项涂黑)1.(3分)下面有理数比较大小,正确的是()A.0<﹣2B.﹣5<3C.﹣2<﹣3D.1<﹣42.(3分)“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B.《几何原本》C.《海岛算经》D.《周髀算经》3.(3分)下列运算正确的是()A.(﹣a3)2=﹣a6B.2a2+3a2=6a2C.2a2•a3=2a6D.4.(3分)下列一元二次方程中,没有实数根的是()A.x2﹣2x=0B.x2+4x﹣1=0C.2x2﹣4x+3=0D.3x2=5x﹣2 5.(3分)近年来快递业发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件):1~3月份我省这七个地市邮政快递业务量的中位数是()A.319.79万件B.332.68万件C.338.87万件D.416.01万件6.(3分)黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为()A.6.06×104立方米/时B.3.136×106立方米/时C.3.636×106立方米/时D.36.36×105立方米/时7.(3分)在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A.B.C.D.8.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,将△ABC绕点C 按逆时针方向旋转得到△A'B'C,此时点A'恰好在AB边上,则点B'与点B之间的距离为()A.12B.6C.D.9.(3分)用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7B.y=(x﹣4)2﹣25C.y=(x+4)2+7D.y=(x+4)2﹣2510.(3分)如图,正方形ABCD内接于⊙O,⊙O的半径为2,以点A为圆心,以AC长为半径画弧交AB的延长线于点E,交AD的延长线于点F,则图中阴影部分的面积为()A.4π﹣4B.4π﹣8C.8π﹣4D.8π﹣8二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)计算:(3+1)(3﹣1)=.12.(3分)图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=度.13.(3分)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为cm.14.(3分)如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D;②分别以C,D为圆心,以大于CD长为半径作弧,两弧在∠NAB内交于点E;③作射线AE交PQ于点F.若AB=2,∠ABP=60°,则线段AF的长为.15.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D是AB的中点,以CD为直径作⊙O,⊙O分别与AC,BC交于点E,F,过点F作⊙O的切线FG,交AB于点G,则FG的长为.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.计算:(1)(2)2﹣|﹣4|+3﹣1×6+20.(2)•﹣.17.如图,一次函数y1=k1x+b(k1≠0)的图象分别与x轴,y轴相交于点A,B,与反比例函数y2=的图象相交于点C(﹣4,﹣2),D(2,4).(1)求一次函数和反比例函数的表达式;(2)当x为何值时,y1>0;(3)当x为何值时,y1<y2,请直接写出x的取值范围.18.在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?(3)若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?(4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?19.祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.(1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点C到AB的距离(参考数据:sin38°≈0.6,cos38°≈0.8,tan38°≈0.8,sin28°≈0.5,cos28°≈0.9,tan28°≈0.5)(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).测量示意说明:两侧最长斜拉索20.2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南﹣北京西”全程大约500千米,“复兴号”G92次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的(两列车中途停留时间均除外).经查询,“复兴号”G92次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号”G92次列车从太原南到北京西需要多长时间.21.请阅读下列材料,并完成相应的任务:∵Z'A'=Y'Z',∴ZA=YZ.任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形AXYZ的形状,并加以证明;(2)请再仔细阅读上面的操作步骤,在(1)的基础上完成AX=BY=XY的证明过程;(3)上述解决问题的过程中,通过作平行线把四边形BA'Z'Y'放大得到四边形BAZY,从而确定了点Z,Y的位置,这里运用了下面一种图形的变化是.A.平移 B.旋转 C.轴对称 D.位似22.综合与实践问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD 中,AD=2AB,E是AB延长线上一点,且BE=AB,连接DE,交BC于点M,以DE为一边在DE的左下方作正方形DEFG,连接AM.试判断线段AM与DE的位置关系.探究展示:勤奋小组发现,AM垂直平分DE,并展示了如下的证明方法:证明:∵BE=AB,∴AE=2AB.∵AD=2AB,∴AD=AE.∵四边形ABCD是矩形,∴AD∥BC.∴.(依据1)∵BE=AB,∴.∴EM=DM.即AM是△ADE的DE边上的中线,又∵AD=AE,∴AM⊥DE.(依据2)∴AM垂直平分DE.反思交流:(1)①上述证明过程中的“依据1”“依据2”分别是指什么?②试判断图1中的点A是否在线段GF的垂直平分线上,请直接回答,不必证明;(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接CE,以CE 为一边在CE的左下方作正方形CEFG,发现点G在线段BC的垂直平分线上,请你给出证明;探索发现:(3)如图3,连接CE,以CE为一边在CE的右上方作正方形CEFG,可以发现点C,点B都在线段AE的垂直平分线上,除此之外,请观察矩形ABCD和正方形CEFG的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.23.综合与探究如图,抛物线y=x﹣4与x轴交于A,B两点(点A在点B的左侧),与y 轴交于点C,连接AC,BC.点P是第四象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q,过点P 作PE∥AC交x轴于点E,交BC于点F.(1)求A,B,C三点的坐标;(2)试探究在点P运动的过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q的坐标;若不存在,请说明理由;(3)请用含m的代数式表示线段QF的长,并求出m为何值时QF有最大值.2018年山西省中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请选出并在答题卡上将该项涂黑)1.(3分)下面有理数比较大小,正确的是()A.0<﹣2B.﹣5<3C.﹣2<﹣3D.1<﹣4【解答】解:A、0>﹣2,故此选项错误;B、﹣5<3,正确;C、﹣2>﹣3,故此选项错误;D、1>﹣4,故此选项错误;故选:B.2.(3分)“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B.《几何原本》C.《海岛算经》D.《周髀算经》【解答】解:A、《九章算术》是中国古代数学专著,作者已不可考,它是经历代各家的增补修订,而逐渐成为现今定本的;B、《几何原本》是古希腊数学家欧几里得所著的一部数学著作;C、《海岛算经》是中国学者编撰的最早一部测量数学著作,由刘徽于三国魏景元四年所撰;D、《周髀算经》原名《周髀》,是算经的十书之一,中国最古老的天文学和数学著作;故选:B.3.(3分)下列运算正确的是()A.(﹣a3)2=﹣a6B.2a2+3a2=6a2C.2a2•a3=2a6D.【解答】解:A、(﹣a3)2=a6,此选项错误;B、2a2+3a2=5a2,此选项错误;C、2a2•a3=2a5,此选项错误;D、,此选项正确;故选:D.4.(3分)下列一元二次方程中,没有实数根的是()A.x2﹣2x=0B.x2+4x﹣1=0C.2x2﹣4x+3=0D.3x2=5x﹣2【解答】解:A、△=4>0,有两个不相等的实数根,故此选项不合题意;B、△=16+4=20>0,有两个不相等的实数根,故此选项不合题意;C、△=16﹣4×2×3<0,没有实数根,故此选项符合题意;D、△=25﹣4×3×2=25﹣24=1>0,有两个不相等的实数根,故此选项不合题意;故选:C.5.(3分)近年来快递业发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件):1~3月份我省这七个地市邮政快递业务量的中位数是()A.319.79万件B.332.68万件C.338.87万件D.416.01万件【解答】解:首先按从小到大排列数据:302.34,319.79,332.68,338.87,416.01,725.86,3303.78由于这组数据有奇数个,中间的数据是338.87所以这组数据的中位数是338.87故选:C.6.(3分)黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为()A.6.06×104立方米/时B.3.136×106立方米/时C.3.636×106立方米/时D.36.36×105立方米/时【解答】解:1010×3600=3.636×106立方米/时,故选:C.7.(3分)在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A.B.C.D.【解答】解:画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为,故选:A.8.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,将△ABC绕点C 按逆时针方向旋转得到△A'B'C,此时点A'恰好在AB边上,则点B'与点B之间的距离为()A.12B.6C.D.【解答】解:连接B'B,∵将△ABC绕点C按逆时针方向旋转得到△A'B'C,∴AC=A'C,AB=A'B,∠A=∠CA'B'=60°,∴△AA'C是等边三角形,∴∠AA'C=60°,∴∠B'A'B=180°﹣60°﹣60°=60°,∵将△ABC绕点C按逆时针方向旋转得到△A'B'C,∴∠ACA'=∠BAB'=60°,BC=B'C,∠CB'A'=∠CBA=90°﹣60°=30°,∴△BCB'是等边三角形,∴∠CB'B=60°,∵∠CB'A'=30°,∴∠A'B'B=30°,∴∠B'BA'=180°﹣60°﹣30°=90°,∵∠ACB=90°,∠A=60°,AC=6,∴AB=12,∴A'B=AB﹣AA'=AB﹣AC=6,∴B'B=6,故选:D.9.(3分)用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7B.y=(x﹣4)2﹣25C.y=(x+4)2+7D.y=(x+4)2﹣25【解答】解:y=x2﹣8x﹣9=x2﹣8x+16﹣25=(x﹣4)2﹣25.故选:B.10.(3分)如图,正方形ABCD内接于⊙O,⊙O的半径为2,以点A为圆心,以AC长为半径画弧交AB的延长线于点E,交AD的延长线于点F,则图中阴影部分的面积为()A.4π﹣4B.4π﹣8C.8π﹣4D.8π﹣8【解答】解:利用对称性可知:阴影部分的面积=扇形AEF的面积﹣△ABD的面积=﹣×4×2=4π﹣4,故选:A.二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)计算:(3+1)(3﹣1)=17.【解答】解:原式=(3)2﹣12=18﹣1=17故答案为:17.12.(3分)图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5= 360度.【解答】解:由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案为:360°.13.(3分)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为55cm.【解答】解:设长为8x,高为11x,由题意,得:19x+20≤115,解得:x≤5,故行李箱的高的最大值为:11x=55,答:行李箱的高的最大值为55厘米.故答案为:5514.(3分)如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D;②分别以C,D为圆心,以大于CD长为半径作弧,两弧在∠NAB内交于点E;③作射线AE交PQ于点F.若AB=2,∠ABP=60°,则线段AF的长为2.【解答】解:∵MN∥PQ,∴∠NAB=∠ABP=60°,由题意得:AF平分∠NAB,∴∠1=∠2=30°,∵∠ABP=∠1+∠3,∴∠3=30°,∴∠1=∠3=30°,∴AB=BF,AG=GF,∵AB=2,∴BG=AB=1,∴AG=,∴AF=2AG=2,故答案为:2.15.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D是AB的中点,以CD为直径作⊙O,⊙O分别与AC,BC交于点E,F,过点F作⊙O的切线FG,交AB于点G,则FG的长为.【解答】解:如图,在Rt△ABC中,根据勾股定理得,AB=10,∴点D是AB中点,∴CD=BD=AB=5,连接DF,∵CD是⊙O的直径,∴∠CFD=90°,∴BF=CF=BC=4,∴DF==3,连接OF,∵OC=OD,CF=BF,∴OF∥AB,∴∠OFC=∠B,∵FG是⊙O的切线,∴∠OFG=90°,∴∠OFC+∠BFG=90°,∴∠BFG+∠B=90°,∴FG⊥AB,=DF×BF=BD×FG,∴S△BDF∴FG===,故答案为.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.计算:(1)(2)2﹣|﹣4|+3﹣1×6+20.(2)•﹣.【解答】解:(1)原式=8﹣4+×6+1=8﹣4+2+1=7.(2)原式===.17.如图,一次函数y1=k1x+b(k1≠0)的图象分别与x轴,y轴相交于点A,B,与反比例函数y2=的图象相交于点C(﹣4,﹣2),D(2,4).(1)求一次函数和反比例函数的表达式;(2)当x为何值时,y1>0;(3)当x为何值时,y1<y2,请直接写出x的取值范围.【解答】解:(1)∵一次函数y1=k1x+b的图象经过点C(﹣4,﹣2),D(2,4),∴,解得.∴一次函数的表达式为y1=x+2.∵反比例函数的图象经过点D(2,4),∴.∴k2=8.∴反比例函数的表达式为.(2)由y1>0,得x+2>0.∴x>﹣2.∴当x>﹣2时,y1>0.(3)x<﹣4或0<x<2.18.在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?(3)若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?(4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?【解答】解:(1)由条形图知,男生共有:10+20+13+9=52人,∴女生人数为100﹣52=48人,∴参加武术的女生为48﹣15﹣8﹣15=10人,∴参加武术的人数为20+10=30人,∴30÷100=30%,参加器乐的人数为9+15=24人,∴24÷100=24%,补全条形统计图和扇形统计图如图所示:(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是.答:在参加“剪纸”活动项目的学生中,男生所占的百分比为40%.(3)500×21%=105(人).答:估计其中参加“书法”项目活动的有105人.(4).答:正好抽到参加“器乐”活动项目的女生的概率为.19.祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.测量示意说明:两侧最长斜拉索(1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点C到AB的距离(参考数据:sin38°≈0.6,cos38°≈0.8,tan38°≈0.8,sin28°≈0.5,cos28°≈0.9,tan28°≈0.5)(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).【解答】解:(1)过点C作CD⊥AB于点D.设CD=x米,在Rt△ADC中,∠ADC=90°,∠A=38°.∵,∴.在Rt△BDC中,∠BDC=90°,∠B=28°.∵,∴.∵AD+BD=AB=234,∴.解得x=72.答:斜拉索顶端点C到AB的距离为72米.(2)还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等.(答案不唯一)20.2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南﹣北京西”全程大约500千米,“复兴号”G92次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的(两列车中途停留时间均除外).经查询,“复兴号”G92次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号”G92次列车从太原南到北京西需要多长时间.【解答】解:设“复兴号”G92次列车从太原南到北京西的行驶时间需要x小时,则“和谐号”列车的行驶时间需要x小时,根据题意得:=+40,解得:x=,经检验,x=是原分式方程的解,∴x+=.答:乘坐“复兴号”G92次列车从太原南到北京西需要小时.21.请阅读下列材料,并完成相应的任务:下面是该结论的部分证明:证明:∵AZ∥A'Z',∴∠BA'Z'=∠BAZ,又∵∠A'BZ'=∠ABZ.∴△BA'Z'~△BAZ.∴.同理可得.∴.∵Z'A'=Y'Z',∴ZA=YZ.任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形AXYZ的形状,并加以证明;(2)请再仔细阅读上面的操作步骤,在(1)的基础上完成AX=BY=XY的证明过程;(3)上述解决问题的过程中,通过作平行线把四边形BA'Z'Y'放大得到四边形BAZY,从而确定了点Z,Y的位置,这里运用了下面一种图形的变化是D (或位似).A.平移 B.旋转 C.轴对称 D.位似【解答】解:(1)四边形AXYZ是菱形.证明:∵ZY∥AC,YX∥ZA,∴四边形AXYZ是平行四边形.∵ZA=YZ,∴平行四边形AXYZ是菱形.(2)证明:∵CD=CB,∴∠1=∠3.∵ZY∥AC,∴∠1=∠2.∴∠2=∠3.∴YB=YZ.∵四边形AXYZ是菱形,∴AX=XY=YZ.∴AX=BY=XY.(3)通过作平行线把四边形BA'Z'Y'放大得到四边形BAZY,从而确定了点Z,Y 的位置,此时四边形BA'Z'Y'∽四边形BAZY,所以该变换形式是位似变换.故答案是:D(或位似).22.综合与实践问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD 中,AD=2AB,E是AB延长线上一点,且BE=AB,连接DE,交BC于点M,以DE为一边在DE的左下方作正方形DEFG,连接AM.试判断线段AM与DE的位置关系.探究展示:勤奋小组发现,AM垂直平分DE,并展示了如下的证明方法:证明:∵BE=AB,∴AE=2AB.∵AD=2AB,∴AD=AE.∵四边形ABCD是矩形,∴AD∥BC.∴.(依据1)∵BE=AB,∴.∴EM=DM.即AM是△ADE的DE边上的中线,又∵AD=AE,∴AM⊥DE.(依据2)∴AM垂直平分DE.反思交流:(1)①上述证明过程中的“依据1”“依据2”分别是指什么?②试判断图1中的点A是否在线段GF的垂直平分线上,请直接回答,不必证明;(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接CE,以CE 为一边在CE的左下方作正方形CEFG,发现点G在线段BC的垂直平分线上,请你给出证明;探索发现:(3)如图3,连接CE,以CE为一边在CE的右上方作正方形CEFG,可以发现点C,点B都在线段AE的垂直平分线上,除此之外,请观察矩形ABCD和正方形CEFG的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.【解答】解:(1)①依据1:两条直线被一组平行线所截,所得的对应线段成比例(或平行线分线段成比例).依据2:等腰三角形顶角的平分线,底边上的中线及底边上的高互相重合(或等腰三角形的“三线合一”).②答:点A在线段GF的垂直平分线上.理由:由问题情景知,AM⊥DE,∵四边形DEFG是正方形,∴DE∥FG,∴点A在线段GF的垂直平分线上.(2)证明:过点G作GH⊥BC于点H,∵四边形ABCD是矩形,点E在AB的延长线上,∴∠CBE=∠ABC=∠GHC=90°,∴∠BCE+∠BEC=90°.∵四边形CEFG为正方形,∴CG=CE,∠GCE=90°,∴∠BCE+∠BCG=90°.∴∠2BEC=∠BCG.∴△GHC≌△CBE.∴HC=BE,∵四边形ABCD是矩形,∴AD=BC.∵AD=2AB,BE=AB,∴BC=2BE=2HC,∴HC=BH.∴GH垂直平分BC.∴点G在BC的垂直平分线上.(3)答:点F在BC边的垂直平分线上(或点F在AD边的垂直平分线上).证法一:过点F作FM⊥BC于点M,过点E作EN⊥FM于点N.∴∠BMN=∠ENM=∠ENF=90°.∵四边形ABCD是矩形,点E在AB的延长线上,∴∠CBE=∠ABC=90°,∴四边形BENM为矩形.∴BM=EN,∠BEN=90°.∴∠1+∠2=90°.∵四边形CEFG为正方形,∴EF=EC,∠CEF=90°.∴∠2+∠3=90°.∴∠1=∠3.∵∠CBE=∠ENF=90°,∴△ENF≌△EBC.∴NE=BE.∴BM=BE.∵四边形ABCD是矩形,∴AD=BC.∵AD=2AB,AB=BE.∴BC=2BM.∴BM=MC.∴FM垂直平分BC.∴点F在BC边的垂直平分线上.23.综合与探究如图,抛物线y=x﹣4与x轴交于A,B两点(点A在点B的左侧),与y 轴交于点C,连接AC,BC.点P是第四象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q,过点P 作PE∥AC交x轴于点E,交BC于点F.(1)求A,B,C三点的坐标;(2)试探究在点P运动的过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q的坐标;若不存在,请说明理由;(3)请用含m的代数式表示线段QF的长,并求出m为何值时QF有最大值.【解答】解:(1)当y=0,x﹣4=0,解得x1=﹣3,x2=4,∴A(﹣3,0),B(4,0),当x=0,y=x﹣4=﹣4,∴C(0,﹣4);(2)AC==5,易得直线BC的解析式为y=x﹣4,设Q(m,m﹣4)(0<m<4),当CQ=CA时,m2+(m﹣4+4)2=52,解得m1=,m2=﹣(舍去),此时Q点坐标为(,﹣4);当AQ=AC时,(m+3)2+(m﹣4)2=52,解得m1=1,m2=0(舍去),此时Q点坐标为(1,﹣3);当QA=QC时,(m+3)2+(m﹣4)2=m2+(m﹣4+4)2,解得m=(舍去),综上所述,满足条件的Q点坐标为(,﹣4)或(1,﹣3);(3)解:过点F作FG⊥PQ于点G,如图,则FG∥x轴.由B(4,0),C(0,﹣4)得△OBC为等腰直角三角形∴∠OBC=∠QFG=45∴△FQG为等腰直角三角形,∴FG=QG=FQ,∵PE∥AC,PG∥CO,∴∠FPG=∠ACO,∵∠FGP=∠AOC=90°,∴△FGP~△AOC.∴=,即=,∴PG=FG=•FQ=FQ,∴PQ=PG+GQ=FQ+FQ=FQ,∴FQ=PQ,设P(m,m2﹣m﹣4)(0<m<4),则Q(m,m﹣4),∴PQ=m﹣4﹣(m2﹣m﹣4)=﹣m2+m,∴FQ=(﹣m2+m)=﹣(m﹣2)2+∵﹣<0,∴QF有最大值.∴当m=2时,QF有最大值.2017年山西省中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)计算﹣1+2的结果是()A.﹣3B.﹣1C.1D.32.(3分)如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3B.∠2+∠4=180°C.∠1=∠4D.∠3=∠4 3.(3分)在体育课上,甲、乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的()A.众数B.平均数C.中位数D.方差4.(3分)将不等式组>的解集表示在数轴上,下面表示正确的是()A.B.C.D.5.(3分)下列运算错误的是()A.(﹣1)0=1B.(﹣3)2÷=C.5x2﹣6x2=﹣x2D.(2m3)2÷(2m)2=m46.(3分)如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E.若∠1=35°,则∠2的度数为()A.20°B.30°C.35°D.55°7.(3分)化简﹣的结果是()A.﹣x2+2x B.﹣x2+6x C.﹣D.8.(3分)2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨,用科学记数法可表示为()A.186×108吨B.18.6×109吨C.1.86×1010吨D.0.186×1011吨9.(3分)公元前5世纪,毕达哥拉斯学派中的一名成员希伯索斯发现了无理数,导致了第一次数学危机,是无理数的证明如下:假设是有理数,那么它可以表示成(p与q是互质的两个正整数).于是()2=()2=2,所以,q2=2p2.于是q2是偶数,进而q是偶数,从而可设q=2m,所以(2m)2=2p2,p2=2m2,于是可得p也是偶数.这与“p与q 是互质的两个正整数”矛盾.从而可知“是有理数”的假设不成立,所以,是无理数.这种证明“是无理数”的方法是()A.综合法B.反证法C.举反例法D.数学归纳法10.(3分)如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD.若AC=10cm,∠BAC=36°,则图中阴影部分的面积为()A.5πcm2B.10πcm2C.15πcm2D.20πcm2二、填空题(本大题共5个小题,每小题3分)11.(3分)计算:4﹣9=.12.(3分)某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为元.13.(3分)如图,已知△ABC三个顶点的坐标分别为A(0,4),B(﹣1,1),C(﹣2,2),将△ABC向右平移4个单位,得到△A′B′C′,点A,B,C的对应点分别为A′、B′、C′,再将△A′B′C′绕点B′顺时针旋转90°,得到△A″B″C″,点A′、B′、C′的对应点分别为A″、B″、C″,则点A″的坐标为.14.(3分)如图,创新小组要测量公园内一棵树的高度AB,其中一名小组成员站在距离树10米的点E处,测得树顶A的仰角为54°.已知测角仪的架高CE=1.5米,则这棵树的高度为米.(结果保留一位小数.参考数据:sin54°=0.8090,cos54°=0.5878,tan54°=1.3764)15.(3分)一副三角板按如图方式摆放,得到△ABD和△BCD,其中∠ADB=∠BCD=90°,∠A=60°,∠CBD=45°,E为AB的中点,过点E作EF⊥CD于点F.若AD=4cm,则EF的长为cm.三、解答题(本大题共8个小题,共75分)16.(10分)(1)计算:(﹣2)3+()﹣2﹣•sin45°(2)分解因式:(y+2x)2﹣(x+2y)2.17.(6分)已知:如图,在▱ABCD中,延长AB至点E,延长CD至点F,使得BE=DF.连接EF,与对角线AC交于点O.求证:OE=OF.18.(7分)如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,其边长为2,点A,点C分别在x轴,y轴的正半轴上,函数y=2x的图象与CB交于点D,函数y=(k为常数,k≠0)的图象经过点D,与AB交于点E,与函数y=2x的图象在第三象限内交于点F,连接AF、EF.(1)求函数y=的表达式,并直接写出E、F两点的坐标;(2)求△AEF的面积.19.(7分)“春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟”即谷子(去皮后则称为“小米”),被誉为中华民族的哺育作物.我省有着“小杂粮王国”的美誉,谷子作为我省杂粮谷物中的大类,其种植面积已连续三年全国第一.2016年全国谷子种植面积为2000万亩,年总产量为150万吨,我省谷子平均亩产量为160kg,国内其他地区谷子的平均亩产量为60kg,请解答下列问题:(1)求我省2016年谷子的种植面积是多少万亩.(2)2017年,若我省谷子的平均亩产量仍保持160kg不变,要使我省谷子的年总产量不低于52万吨,那么,今年我省至少应再多种植多少万亩的谷子?20.(12分)从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告2017》显示,2016年我国共享经济市场交易额约为34520亿元,比上年增长103%;超6亿人参与共享经济活动,比上年增加约1亿人.如图是源于该报告中的中国共享经济重点领域市场规模统计图:。