五年级奥数春季班第10讲 比例法解行程资料讲解
奥数名师指导:如何用比例解“行程问题”
奥数名师指导:如何用比例解“行程问题”行程问题是小学应用题中的难点,是升学试卷中常见的压轴题。
要想在小学升初中测验中获得好的成绩,熟练掌握行程题目的几种数学模子是必不可少的。
行程题目常和比例结合起来,固然标题简捷,然而综合性强,而且情势多变,应用比例知识解决繁杂的行程题目常常考,而且要考都不简单。
下面我向同学们介绍若何行使比例解答行程题目。
咱们都知道行程题目里有三个量:速率、时候、距离,知道此中两个量就可以求出第三个量。
速率×时候=距离;距离÷速率=时候;距离÷时候=速率。
要是要用比例做行程题目,这三个量又有甚么瓜葛呢?(一)时候雷同,速率比=距离比(二)速率雷同,时候比=距离比(三)距离雷同,速率比=时候的反比。
例如:当甲乙行驶时候雷同时,要是V甲:V乙=三:四那么S甲:S乙=三:四;当甲乙速率雷同时,要是T甲:T乙=三:四那么S甲:S乙=三:四当甲乙行驶距离雷同时,要是T甲:T乙=三:四那么V甲:V乙=四:三。
下面咱们看一道例题来领会比例在行程题目中的运用。
甲乙二车同时从AB两地同时启程,相向而行,甲车每小时行56公里,乙车每小时行48公里。
两车在距离中点32公里处相遇。
求AB 两地相距若干公里?剖析:这道题给了两车的速率,咱们很容易获得两车的速率比。
这时候咱们可以用比例来做这道题。
人人要捉住三个要点:1、时候雷同,速率比=距离比。
2、两车第一次劈面相遇时合走一个全程。
3、两车在距离中点32公里处相遇,即:两车相遇时,甲比乙多走32×二=64公里。
解:由题意然V甲:V乙=56:48=七:六即:雷同时间内,甲走七份乙走六份。
两车第一次劈面相遇时合走一个全程。
咱们可以把AB之间的旅程分为(七+六)=13份。
两车相遇时,甲比乙多走一份是32×二=64公里。
AB之间的旅程为13份,AB之间的旅程为13×64=832米。
这时候这道题就变得很简单了。
五年级奥数学第10讲行程问题PPT课件
例:小赵和小李是两位竞走运动员,小赵从甲 地出发,小李同时从乙地出发,相向而行,在 两地之间往返练习。第一次相遇地点距甲地 1.4千米,第二次相遇地点距乙地0.6千米。当 他们两人第四次相遇时,地点距甲地有多远? ()
A.2.6千米B.2.4千米C.1.8千米D.1.5千米
设甲乙两地相距S千米,则
相遇次数: 1, 2, 3, 4
两人所走走程和;S, 3S, 5S, 7S
则甲乙两地相距:1.4*3-0.6=3.6千米(?)
第4次相遇时,2人共走了7S,那么小赵的路程是 1.4*7=9.8
9.8/3.6=2……2.6(即9.8除以3.6等于2,余数是2.6, 即,小赵从甲地走到乙地,又回到甲地,又走了2.6千 米),也就是距离甲地2.6千米。
例.甲从A地步行到B地,出发1小时40分钟后, 乙骑自行车也从同地出发,骑了10公里时追到 甲。于是,甲改骑乙的自行车前进,共经5小 时到达B地,这恰是甲步行全程所需时间的一 半。问骑自行车的速度是多少公里/小时? (05年湖南真题)
A.12 B.10 C.16 D.15
解析:假设乙骑完全部路程,需要5小时-1小 时40分钟=200分钟,甲需要10个小时=600分 钟,则甲乙速度之比1:3,跑相同的距离时间 比3:1,那么乙追了10公里追上甲,多用了1小 时40分钟(100分钟),那么乙用了50分钟, 乙的速度:10÷5/6=12公里/每小时
到了1983年,他们利用这些理论应用在设计汽车车身外形的设计。在九十年代, 他们又在把这些计算几何的理论和方法,应用到开发建筑、服装、内燃机等行 业的计算机辅助设计系统上。设计师可以从电脑的屏幕上修改设计方案。
生活数学:
甲、乙两人同时从两地出发,相向而行。距离是1000 米,甲每分钟走120米,乙每分钟走80米,甲带着一 只小狗,狗每分钟走500米,这只狗与甲一道出发,碰 到乙的时候,它又掉头朝甲这边走,碰到甲的时候又 往乙这边走,直到两人相遇,狗才停下来!问这只狗 走了多少米?你能像苏步青一样,很快说出这道题的 答案吗?
小学五年级奥数课件 比例法解行程问题
1.基本的正比关系
时间跟速度的反比关系.
知识要点屋
1、正比例与反比例
公式:路程=速度×时间
⑴ 路程相等,速度与时间成反比.
⑵ 时间相等,路程与速度成正比.
⑶ 速度相等,路程与时间成正比.
相遇、追及:两个人的时间都是相等的.
知识要点屋
1、甲乙两人分别从A、B两地同时出发,在距离B地
= 3:2
千米?
V客
V货
6
5
6
5
时间相同, =
=
所以全程12份,1份=22千米
AB:22×12=264(千米)
S客
S货
知识链接
关于相遇
1、时间相同,速度比=路程
比
2、利用路程比,找到全程占
几份
例题【三】(★ ★ ★)
A、B两地相距7200米,甲、乙分别从A、B两地同时出发,结果在距B第2400
米处相遇. 如果乙的速度提高到原来的3倍,那么两人可提前10分钟相遇,
发现还有5分钟才上课.求乐乐今天与 平时的速度比是多少?
1 1 2
路程相同, = =
2 1.5 3
t1 3
=
2 2
现在时间,45÷3×2=30(分)
t1
实际,
2
=
45
25
=
=
9
5
知识链接
1、正比列与反比例
2、公式:路程=速度×时间
⑴ 路程相等,速度与时间成反比.
⑵ 时间相等,路程与速度成正比.
.
2. 甲乙两人同Βιβλιοθήκη 从A地同时出发. 其中甲走的较快,到达B地
后,立刻返回. 在距离B地 2 处相遇与乙相遇,那么甲速:乙
五年级奥数竞赛班专题讲义行程问题1比例的技巧
行程问题1·比例的技巧基础达标1. 成正比例的量 1. 判断.⑴比值一定,比的前项和后项成正比例.( ) ⑵ 出粉率一定,小麦的质量和面粉的质量成正比例.( ) ⑶ 正方形的周长和边长成正比例.( )⑷ 行一段路程,已行的路程和剩余的路程成正比例.( ) ⑸ 在同一幅地图上,图上距离和实际距离成正比例.( ) 2. 已知下面每组中的两个量成正比例关系,完成下表.表1:2. 成反比例的量1. 判断下面每题中的两个量是否成比例,成正比例的画“ ”,成反比例的画“△”,不成比例的画“⊗”.⑴ 订阅《小学生天地》的份数和总钱数.( )⑵ 长方形的周长一定,长与宽.( ) ⑶ 李娇的身高和体重.( ) ⑷ 同一种钢材的体积和质量.( ) ⑸ 面粉的质量一定,出粉率与小麦的质量.( ) ⑹ 车轮转数一定,所以路程和车轮周长.( ) 2.拓展与提高1. 运用距离、速度和时间之间的正反比关系分析问题【例1】甲、乙两车先后以相同的速度从A 站开出,10点整甲车距A 站的距离是乙车距A 站距离的三倍,10点10分甲车距A 站的距离是乙车距A 站距离的二倍.问:甲车是何时从A 站开出的?【例2】甲骑自行车,乙走路,同时从A ,B 两地出发,相向而行,中午12时整甲、乙两人在途中相遇,相遇后,他们都没有停留继续前进,12时10分甲到达B 地,13时30分乙走到A 地.如果甲、乙两人速度都是不变的,那么他们出发的时间是 时 分.【例3】如右图所示,甲、乙、丙分别从A 、B 、C 点同时出发,分别向B 、C 、A 前进,同时到达后继续向C 、A 、B 行进,最后回到各自出发点.如果ABC △的周长是460米,甲、乙、丙绕行一周的时间分别是8、9、12分钟,那么BC 长多少米?【例4】A 、B 两地相距7200米,甲从A 地出发到B 地,10分钟后乙、丙也从A 地出发到B 地,又过了15分钟乙追上甲.乙到达B 地后立即返回,途中甲、乙、丙三人同时相遇.已知丙的速度比甲的速度快13,那么甲每分钟行多少米?【例5】一日,小老鼠Jerry 在公园的圆形水池边散步,老对手Tom 闻讯前来“报仇雪恨”,他蹑手蹑脚一步步逼近Jerry .情急之下,Jerry 跳进水池快速向对岸游去.谁知,Jerry 刚游到对岸,却见Tom 已站在岸边.Jerry 赶紧调头往回游,快靠近岸边时,Tom 又等在那里了.见Tom 一步不离采取紧盯战术,Jerry 只得游到水池中央的石柱旁,想办法寻找机会逃脱.如图,大圆代表圆形水池,半径为4米,小圆代表石柱,半径为1米;A 、B 分别是Tom 和Jerry 现在所处的位置.已知Tom 的速度为每分钟60米,Jerry 在水中游的速度为每分钟20米,请问Jerry 有办法脱身吗?为什么?【例6】甲乙两地之间有一条公路,李明从甲地出发步行往乙地;同时张平从乙地出发骑摩托车往甲地.80分钟后两人在途中相遇.张平到达甲地后马上折回往乙地,在第一次相遇后又经过20分钟张平在途中追上李明.张平到达乙地后又马上折回往甲地,这样一直下去.当李明到达乙地时,张平追上李明次数是 次.【例7】已知猫跑5步的路程与狗跑3步的路程相同;猫跑7步的路程与兔跑5步的路程相同.而猫跑3步的时间与狗跑5步的时间相同;猫跑5步的时间与兔跑7步的时间相同.猫、狗、兔沿着周长300米的圆形跑道,同时同向同地出发,问当它们出发后第一次相遇时各跑了多少路程?【例8】甲从A 地,乙丙从B 地同时出发,相向而行.甲乙先相遇.甲乙相遇后,乙又行了3.2小时到达A 地,相遇后甲又行了2小时后遇见丙.甲丙相遇后,甲继续前进,3小时后到达B 地;丙12小时后到达A 地.如果乙比丙每小时多行40千米,则AB 两地相距 千米.2. 一个经典的行程问题【例9】甲、乙两班学生到离校24千米的飞机场参观,有一辆汽车,一次只能剩坐一个班的学生,为了尽快地到达机场,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在中途CB ABA下车步行去飞机场,汽车立即返回接在途中步行的乙班学生,已知甲、乙班步行速度相同,汽车的速度是步行的7倍,那么汽车应在距机场多少千米处返回接乙班学生,才能使两班学生同时到达机场?【例10】某校有200名学生要到离校30千米的工厂参观,只有一辆能载50人的汽车,已知人步行的速度每小时5千米,汽车速度每小时45千米,为使全体同学尽快到达工厂,他们采用步行与乘车相结合的办法前往,那么到达工厂所用最短时间是多少(精确到分)(上、下车所用时间忽略不计)?计算达标 1. 10031003xx -+= 解:9100300x x +-=9300100x x -=- 8200x = 25x =2. 174162x x ⎛⎫-+= ⎪⎝⎭解:74216x x --= 74162x x -=+ 318x = 6x =3. 1113153x x ⎛⎫-=- ⎪⎝⎭解:1135x x -=-5155x x -=- 5155x x -=- 410x =52x = 4.211132x x --+= 解:2(21)3(1)6x x -+-=42336x x -+-=43623x x +=++711x =117x = 练习1. 运用距离、速度和时间之间的正反比关系分析问题 1. 如图所示,甲车从A ,乙车从B 同时相向而行.两车第一次相遇后,甲车继续行驶4小时到达B ,而乙车只行驶了1小时就到达A .甲、乙两车的速度比为 .【解】设甲车车速为1v ,乙车车速为2v ,第一次相遇在C 点,则12v AC BC v =. 因为2AC v =,14BC v =,所以21124v vv v =,212v v =. 所以1212v v =,即甲、乙两车的速度比为1:2. 2. 甲、乙和丙三只蚂蚁爬行的速度之比是8:6:5,它们沿一个圆圈从同一点同时同向爬行,当它们首次同时回到出发点时,就结束爬行.问蚂蚁甲追上蚂蚁乙一共多少次?(包括结束时刻) 【答案】2次【解】甲、乙、丙三只蚂蚁的速度之比为8:6:5,所以,当它们首次同时回到出发点时,甲运动8圈,乙运动6圈,蚂蚁甲比蚂蚁乙每多运动1圈,就追上蚂蚁乙1次,所以,甲一共追上乙2次. 3. 甲,乙,丙三只蚂蚁从A ,B ,C 三个不同的洞穴同时出发,分别向洞穴B ,C ,A 爬行,同时到达后,继续向洞穴C 、A 、B 爬行,然后返回自己出发的洞穴.如果甲,乙,丙三只蚂蚁爬行的路径相同,爬行的总距离都是7.3米,所用时间分别是6分钟、7分钟和8分钟,则蚂蚁乙从洞穴B 到达洞穴C 时爬行了( )米,蚂蚁丙从洞穴C 到达洞穴A 时爬行了( )米. 【答案】2.4;2.1【解】如图所示,蚂蚁沿ABC △的边爬行.路程一定时,速度与时间成反比,所以甲、乙、丙速度的连比为111168168168::::28:24:21678678==.因为甲走AB ,乙走BC ,丙走CA 所用时间相同,所以::28:24:21AB BC CA =. 24247.37.3 2.428242173BC =⨯=⨯=++(米),21217.37.3 2.128242173CA =⨯=⨯=++(米). 4. 甲、乙两辆车分别同时从A ,B 两地相向而行,相遇后甲又经过15分钟到达B 地,乙又经过1小时到达A 地.甲车速度是乙车速度的 倍. 【答案】2【解】设两车相遇时用了x 分钟,则由6015x x=,解得30x =.这表明甲车走了30分钟的路,乙车需1小时,所以甲车速度是乙车速度的2倍. 5. 从甲地到乙地全部是山路,其中上山路程是下山路程的23.一辆汽车上山速度是下山速度的一半,从甲地到乙地共得7小时,这辆汽车从乙地返回甲地要多少小时? 【答案】8小时【解】上山与下山的路程比为2:3,速度比为1:2,所以所用时间比为3(21):(32)2:4:32÷÷==.甲车ABCBA因为从甲地到乙地共行7小时,所以上山用4小时,下山用3小时.如上图所示,从乙地返回甲地时,因为下山的速度是上山的2倍,所以从乙到丙用326⨯=(时),从丙到甲用422÷=(时),车用628+=(时).6. 三个环行跑道如图排列,每个环行跑道周长为210厘米,甲、乙两只爬虫分别从A 、B 两地按箭头所示方向出发.甲爬虫绕1、2号环行跑道作“8”字形循环运动,乙爬虫绕3、2号环行跑道作“8”字形循环运动.已知甲、乙两只爬虫的速度分别为每分钟20、15厘米.甲、乙两爬虫第二次相遇时,甲爬虫爬了多少厘米?【答案】300【解】甲、乙的速度比为20:154:3=.甲爬1圈时,乙爬0.75圈,即甲到D 时乙已经爬过D (如右上图),所以甲、乙第一次相遇在甲到D 之前;甲爬1.5圈时,乙爬1.125圈,即甲到C 时乙已经爬过C ,所以甲、乙第二次相遇到甲到D 之后,回C 之前.甲、乙第二次相遇时,甲、乙共爬2.5圈,甲爬了210 2.5(43)4300⨯÷+⨯=(厘米). 2. 一个经典的行程问题1. 甲、乙、丙三人步行速度都是每小时6千米,他们有一辆时速为90千米的摩托车,该车最多载两人.他们三人都要去162千米远的目的地,那么,他们最快需要 小时到达.【解】90615÷=,因为都要到达,则同时达到时,时间最快. ∵15v v =人车且可载两人,则将全程分为151192++=(份). 先甲、乙坐车到D ,乙步行至B ,甲回到C 点接丙,再同往B . 总耗时:16292334905÷⨯=(小时). 2. 甲班与乙班的学生同时从学校出发去某公园.甲班步行的速度是每小时4千米,乙班步行的速度是每小时3千米.学校有一辆汽车,它的速度是每小时48千米.这辆汽车恰好能坐一个班的学生,为了使两班学生在最短时间内到达,那么甲班学生与乙班学生需要步行的距离之比是多少? 【答案】15:11【解】设开始时甲班乘车,乙班步行;车行到B 点,甲班下车步行,车调头去接乙班;车到A 点接上乙班后调头,最后乙班、甲班同时到达学校(见下图).丙乙甲1871D CBA由题中条件,车速是乙班速度的16倍,是甲班的12倍.设从营地到A 点的距离为a .当车接到乙班时,乙班走了a ,车行了16a ,因为车开到B 后又返回到A ,所以A 到B 的距离为7.5a .车放下甲班后,直到又追上甲班,比甲班多行15a .由于车速是甲班的12倍,所以甲班走的距离是车追上距离的111,即1511a .乙班和甲班步行的距离之比是:15:11:1511a a =.3. 甲、乙、丙三人从A 地到B 地,只有一辆自行车,自行车每小时行15千米,步行每小时行5千米.现先由甲骑自行车带乙,丙步行同时出发,行1小时甲骑自行车返回去接途中的丙,乙下车后步行,丙坐1小时自行车.这样轮换数次,5小时三人正好同时到达B 地,A ,B 两地相距( )千米. 【答案】45【解】如下图所示,甲带乙骑车1小时行15千米,此时丙步行5千米;甲返回接丙,0.5小时后与丙在7.5千米处相遇,甲带丙骑车1小时行至22.5千米处,此时乙经过1.5小时从15千米处刚好也步行至22.5千米处.经过2.5小时,三人刚好同时到达22.5千米处.重复上面的过程,5小时三人同时到达目的地,所以A ,B 两地相距22.5245⨯=(千米).4. A 、B 两地相距18千米,20名学生从A 地到B 地去.现有一辆汽车,每次可乘坐5名学生,车速是学生步行速度的11倍.学生们从A 地出发的同时,汽车先从A 地将5名学生送到途中某地,这5名学生下车后继续步行前往B 地;汽车立即返回,在途中与步行的学生相遇,再接5名学生送至途中某地,这5名学生下车后继续步行前往B 地;汽车立即返回……最后,汽车与所有的学生同时到达B 地.问:在接送学生期间,汽车共行了多少千米? 【答案】78千米 【解】20名学生分四批乘车,因为汽车与所有的学生同时到达B 地,所以四批学生乘车的时间都相同,步行的时间也相同.如下图所示,①②③④分别表示四批学生步行的情况.由对称性知,AC CD DE FG GH HB =====.设a AC =,则汽车行驶的路程为(718)EF a +.因为每个学生步行的路程为3a ,在第一批学生步行的时间里汽车行驶了718718(3)615EF a AF EF a a EF EF a +-=+-+=+. 又因为汽车的速度是学生步行速度的11倍,所以615113EF a a +=⨯,解得3EF a =.从而9AB a =,92a AB =÷=(千米 ).ABa7.5a学校营地甲、乙057.5101522.5乙AB CDEFGH汽车行驶的路程为7183978+==(千米).EF a a。
比例行程
学员姓名: 上课日期: 上课时间: 教师姓名:1、掌握行程问题中基本量之间的比例关系。
2、利用比例解行程问题。
比例的只是是小学数学最后一个重要内容,从某种意义上讲仿佛扮演着一个小学“压轴知识点”的角色。
从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活性和思维的巧妙性上,使得一道看似很难的题目变得简单明了。
比例的技巧不仅可用在行程问题,对于工程问题、分数百分数应用题也有广泛应用。
一、行程问题中基本量之间的比例关系。
行程问题的基本公式:路程=速度×时间 (1) 速度相同,时间比=路程比===:⎫⎪⎪−−−−→⎬⎪⎪⎭=速度相同甲路程甲速度甲路程乙路程甲时间甲时间乙时间乙路程乙速度乙时间甲路程:乙路程甲时间乙时间(2) 时间相同,速度比=路程比===:⎫⎪⎪−−−−→⎬⎪⎪⎭=时间相同甲路程甲时间甲路程乙路程甲速度甲速度乙速度乙路程乙时间乙速度甲路程:乙路程甲速度乙速度(3) 路程相同,速度比=时间的反比===:⨯⎫−−−−→⨯⨯⎬⨯⎭=路程相同甲路程甲速度甲时间甲速度甲时间乙速度乙速度乙路程乙速度乙速度甲速度:乙速度乙时间甲时间知识要点教学目标 比例行程例题精讲【路程一定】【例1】(掌握)一艘轮船往返于甲乙两个码头,去时顺水,每小时行18千米;返回时逆水,每小时15千米。
去时比返回时少用了2.4小时。
甲乙两港间的水路长多少千米?课堂演练1:从A到B是上坡路。
某人从A到B每小时行3千米,原路返回时每小时行5.2千米,如果去时比返回时多行了1.1小时,那么A到B这段路路长多少千米?课堂演练2:六(1)班同学秋游开展登山活动,上山用了2小时,沿原路下山时的速度与上山速度的比是5:4.下山用了多少时间?课堂演练3:一辆汽车从甲站出发,到达乙站立即沿原路返回甲站,共用去4小时。
已知汽车去时每小时行45千米,返回时每小时行30千米,求甲乙两站相距多少千米?【例2】(掌握)A、B两车都从甲地出发去相距60千米的乙地,A车比B车先行1小时,A车比B车晚到30分钟。
第10讲 比例法解行程
4:48
乙
全程150千米 甲 汽车
乙
第二阶段:乙坐车,甲步行
S甲:S车=V甲:V车=1:12 第一阶段:甲坐车,乙步行 S乙:S车=V乙:V车=1:12
第二阶段:乙坐车,甲步行
S甲:S乙=V甲:V乙=1:12 第一阶段:甲坐车,乙步行 S甲:S乙=V甲:V乙=1:12
所以:车和人的路程差的份数为12-1=11 份 而 路程差= 汽车往返的路程/2 所以 汽车往返单程= 11/2=5.5份 设人走x千米,就可列出方程: x+5.5x+x=150 7.5x=150
谢谢!
比例法解行程
例4
甲班与乙班学生同时从学校出发去公园,两班的步行 的速度都是每小时4千米。学校有一辆汽车,它的速度 是每小时48千米,这辆汽车恰好能坐一个班的学生。 为了使两班学生在最短时间内到达公园,设两地相距 150千米,那么各个班的步行距离是多少千米?
思0千米 甲 汽车
比和比例解行程问题
比和比例知识在行程问题中的运用知识导航行程问题是根据速度、时间、路程三要素之间的关系,研究物体相向、相背、和同向运动的问题。
按运动方向可以分为相遇问题、追及问题等,也可以按运动路线分为直线上的行程问题和封闭曲线上的行程问题等。
解决相遇问题和追及问题常用到:相遇时间=路程和÷速度和,追及时间=路程差÷速度差在分析中要注意出发的时间、地点、行驶的方向、速度的变化、相遇的地点等基本要素。
有的行程问题结合了周期问题或将行程问题中的几种基本形式综合在同一个题中,使得数量关系变得复杂,我们可先画出线段图帮助分析,再结合所学知识综合分析进行解答。
行程问题常常要用到分数、比和比例的知识。
我们知道:时间一定,路程与速度成正比;速度一定,路程与时间成正比;路程一定,速度与时间成反比。
有时我们还可以根据题目中的条件和比例关系列方程解答。
例题例1:小明每天早晨6∶50从家出发,7∶20到校。
老师要求他明天提早6分钟到校。
如果小明明天早晨还是6∶50从家出发,那么,每分钟必须比往常多走25米,才能按老师的要求准时到校。
问小明家距学校多远?(1995年“《小学数学报》杯”初赛试题)变式训练张、李、赵三人都从甲地到乙地,上午六时,张、李二人一起从甲地出发,张每小时走5千米,李每小时走4千米,赵上午八时才从甲地出发,傍晚六时,赵、张同时到达乙地,那么赵追上李的时间是什么时候?(1994年小学数学奥林匹克初赛民族卷)例2:小东和小西骑摩托车分别从甲、乙两城同时相对出发,经过4小时相遇,相遇后各自继续前进,又经过3小时,小东到达乙地,小西离甲地还有25千米。
甲、乙两地相距多少千米?变式训练甲、乙两车分别同时从A、B两地相对开出,速度比是7∶11。
两车第一次相遇后继续按原方向前进,各自到达终点后立即返回,第二次相遇时甲车离B 地40千米。
A、B两地相距多少千米?例3:甲、乙二人分别从A、B两地同时出发相向而行,出发时他们的速度比是4∶3,他们相遇后,甲的速度增加了10%,乙的速度增加了20%。
(小学奥数)比例解行程问题
1. 理解行程問題中的各種比例關係.2. 掌握尋找比例關係的方法來解行程問題.比例的知識是小學數學最後一個重要內容,從某種意義上講仿佛扮演著一個小學“壓軸知識點”的角色。
從一個工具性的知識點而言,比例在解很多應用題時有著“得天獨厚”的優勢,往往體現在方法的靈活性和思維的巧妙性上,使得一道看似很難的題目變得簡單明瞭。
比例的技巧不僅可用於解行程問題,對於工程問題、分數百分數應用題也有廣泛的應用。
我們常常會應用比例的工具分析2個物體在某一段相同路線上的運動情況,我們將甲、乙的速度、時間、路程分別用,,v v t t s s 乙乙乙甲甲甲,;;來表示,大體可分為以下兩種情況:1. 當2個物體運行速度在所討論的路線上保持不變時,經過同一段時間後,他們走過的路程之比就等於他們的速度之比。
s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,這裏因為時間相同,即t t t ==乙甲,所以由s s t t v v ==甲乙乙甲乙甲, 得到s s t v v ==甲乙乙甲,s v s v =甲甲乙乙,甲乙在同一段時間t 內的路程之比等於速度比2. 當2個物體運行速度在所討論的路線上保持不變時,走過相同的路程時,2個物體所用的時間之比等於他們速度的反比。
s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,這裏因為路程相同,即s s s ==乙甲,由s v t s v t =⨯=⨯乙乙乙甲甲甲, 得s v t v t =⨯=⨯乙乙甲甲,v t v t =甲乙乙甲,甲乙在同一段路程s 上的時間之比等於速度知識精講教學目標比例解行程問題比的反比。
模組一:比例初步——利用簡單倍比關係進行解題【例 1】甲、乙兩車從相距330千米的A、B兩城相向而行,甲車先從A城出發,過一段時間後,乙車才從B城出發,並且甲車的速度是乙車速度的5。
當兩車相遇時,甲車比乙車多行駛了30千米,則甲車開出6千米,乙車才出發。
【考點】行程問題之比例解行程【難度】2星【題型】解答【關鍵字】希望杯,5年級,1試【解析】兩車相遇時共行駛330千米,但是甲多行30千米,可以求出兩車分別行駛的路程,可得甲車行駛180千米,乙車行駛150千米,由甲車速度可以知道,當乙車行駛150千米的時候,甲車實際只行是乙車速度的56駛了5⨯=千米,那麼可以知道在乙車出發之前,甲車已經行駛了1501256180-125=55千米。
比例法解行程
比例法解行程
比例法是一种解决行程问题的数学方法。
它基于比例的概念,将已知条件与未知条件之间的比例关系应用于问题中,从而求解未知行程。
使用比例法解决行程问题的步骤如下:
1. 理清问题的已知条件和未知条件。
已知条件是已知行程的比例关系,而未知条件是需要求解的行程。
2. 设置比例。
根据已知条件和未知条件,设置一个比例,其中包含已知行程和未知行程。
3. 设置方程。
将比例中的已知行程和未知行程表示为代数式,并建立一个方程。
4. 解方程。
根据方程求解未知行程。
5. 检验答案。
将求解得到的未知行程代入原问题中,检验是否符合已知的比例关系。
需要注意的是,比例法只适用于已知行程之间存在比例关系的问题。
如果问题中没有给出比例关系,就不能使用比例法来解决。
此外,比例法也只能求解未知行程,不能求解其他未知量。
举例来说,如果问题中已知两个车辆的速度比为2:5,并已知其中
一个车辆的行程为100公里,需要求解另一个车辆的行程。
可以按照以下步骤使用比例法解决:
1. 已知条件:速度比为2:5,其中一个车辆的行程为100公里。
2. 设置比例:假设另一个车辆的行程为x公里,则速度比为2:5可以表示为2/5 = 100/x。
3. 设置方程:根据比例关系,可以建立方程2/5 = 100/x。
4. 解方程:通过求解方程,可以得到x = 250。
5. 检验答案:将x = 250代入原问题中,计算速度比为2:5时,另一个车辆的行程是否为250公里。
通过比例法,可以求解出另一个车辆的行程为250公里。
五年级奥数春季班第10讲-比例法解行程
第十讲比例法解行程模块一、比例的简单运用例1.A、B两地相距300千米,甲、乙两车分别从A、B两地同时出发。
(1)甲车的速度是30千米/时,乙车的速度是20千米/时,相遇时距A地千米;(2)甲车的速度是60千米/时,乙车的速度是40千米/时,相遇时距A地千米;(3)甲车的速度是40千米/时,乙车的速度是20千米/时,各自走完全程,两车行驶的时间之比是;(4)如果两地距离未知,甲车的速度是50千米/时,乙车的速度是30千米/时,相遇时,甲车走了全程的,各自走完全程,两车行驶的时间之比是。
解:(1)V甲 : V乙=30 : 20=3 : 2,所以S甲 : S乙=3 : 2,300×332+=180(千米);(2)V甲 : V乙=60 : 40=3 : 2,所以S甲 : S乙=3 : 2,300×332+=180(千米);(3)V甲 : V乙=40 : 20=2 : 1,所以t甲 : t乙=1 : 2,(4)V甲 : V乙=50 : 30=5 : 3,所以S甲 : S乙=5 : 3,t甲 : t乙=3 : 5,相遇时,甲走了全程的55=538+,各自走完全程,两车行驶的时间之比是3 : 5.例2.(1)甲、乙两人的速度比是 4 : 5,两人同时出发,行走的时间比为 3 : 7,则甲、乙走的路程比为;(2)甲、乙两人要走的路程比为3 : 2,甲、乙的速度比是4 : 3,则甲、乙的时间比是;(3)甲、乙两人的路程比为7 : 8,两人用的时间比为6 : 5,甲的速度为70千米/时,则乙的速度为。
解:(1)已知V甲 : V乙=4 : 5,t甲 : t乙=3 : 7,所以S甲 : S乙=12 : 35;(2)S甲 : S乙=3 : 2,V甲 : V乙=4 : 3,所以t甲 : t乙=32:43=9 : 8;(3)S甲 : S乙=7 : 8,t甲 : t乙=6 : 5,所以V甲 : V乙=78:65=35 : 48;于是70 : V乙=35 : 48,V乙=96千米/小时。
小学奥数之比例解行程问题(完整版)
1. 理解行程问题中的各种比例关系.2. 掌握寻找比例关系的方法来解行程问题.比例的知识是小学数学最后一个重要内容,从某种意义上讲仿佛扮演着一个小学“压轴知识点”的角色。
从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活性和思维的巧妙性上,使得一道看似很难的题目变得简单明了。
比例的技巧不仅可用于解行程问题,对于工程问题、分数百分数应用题也有广泛的应用。
我们常常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时间、路程分别用,,v v t t s s 乙乙乙甲甲甲,;;来表示,大体可分为以下两种情况:1. 当2个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的速度之比。
s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,这里因为时间相同,即t t t ==乙甲,所以由s s t t v v ==甲乙乙甲乙甲, 得到s s t v v ==甲乙乙甲,s v s v =甲甲乙乙,甲乙在同一段时间t 内的路程之比等于速度比2. 当2个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时,2个物体所用的时间之比等于他们速度的反比。
s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,这里因为路程相同,即s s s ==乙甲,由s v t s v t =⨯=⨯乙乙乙甲甲甲, 得s v t v t =⨯=⨯乙乙甲甲,v t v t =甲乙乙甲,甲乙在同一段路程s 上的时间之比等于速度比的反比。
模块一:比例初步——利用简单倍比关系进行解题【例 1】 甲、乙两车从相距330千米的A 、B 两城相向而行,甲车先从A 城出发,过一段时间后,乙车才从B 城出发,并且甲车的速度是乙车速度的56。
当两车相遇时,甲车比乙车多行驶了30千米,则甲车开出 千米,乙车才出发。
【考点】行程问题之比例解行程 【难度】2星 【题型】解答 【关键词】希望杯,5年级,1试 【解析】 两车相遇时共行驶330千米,但是甲多行30千米,可以求出两车分别行驶的路程,可得甲车行驶180千米,乙车行驶150千米,由甲车速度是乙车速度的56可以知道,当乙车行驶150千米的时候,甲车实际只行驶了51501256⨯=千米,那么可以知道在乙车出发之前,甲车已经行驶了180-125=55千米。
(完整版)比例解行程问题
巧用比例解行程问题精品教案〖学情分析〗〖教学重点〗掌握比例法解行程问题的思路方法〖教学难点〗正确判断和转化题中成比例的量〖考点分析〗属课外拓展内容,用来对付较棘手的行程问题〖教学过程〗巧用比例解行程问题一、教学链接1、了解家长的反馈意见;2、检查学生的作业,及时指点3、捕捉学生的思想动态4、课前小测10分背∏值.二、教学内容方法指导:复杂行程问题经常运用到比例知识:速度一定,时间和路程成正比;时间一定,速度和路程成正比;路程一定,速度和时间成反比。
分析时可以抓住题中含有比的句子进行分析,以此作为突破口,一步一步求得结果。
也可以从题意的叙述中找出等量关系,从而得出所需的数量之比,再根据比与分数的关系求解。
例1:甲、乙两车的速度比是4:7,两车同时从两地相对出发,在距中点15千米处相遇,两地相距多少千米?甲乙两车的速度比是4:7,同一时间内两个物体经过的路程的比等于它们的速度的比,所以相遇时,甲乙两车所行的路程比也是4:7。
相遇时乙比甲多行了15*2=30千米两地相距(15+15)÷(7-4)=10 (4+7)×10=110千米边讲边练:1、甲、乙两车同时从AB两地相对而行,甲、乙两车速度比7:5,相遇时距中点12千米,AB两地相距多少千米?例2:两列火车同时从两个城市相对开出,6。
5小时相遇.相遇时甲车比乙车多行52千米,乙车的速度是甲车的错误!。
求两城之间的距离.6。
5×(52×2+52×3)=1690边讲边练:1、甲、乙两车分别从AB两地同时相向而行,3小时相遇。
已知甲车行1小时距B地340千米,乙车行1小时距A地360千米。
AB两地相距多少千米?(420)2、客车由甲城到乙城需行10小时,货车从乙城到甲城需行15小时,两车同时相向开出,相遇时客车距离乙城还有192千米,求两城间的距离。
例3:甲、乙两车同时从AB 两地相对而行,5小时相遇,已知甲、乙两车速度的比是2:3,甲车行完全程需多少小时?已知甲、乙两车速度的比是2:3,则甲乙两车的时间比是3:2边讲边练:甲、乙两车同时从AB 两地相对而行,4小时相遇,已知甲、乙两车速度的比是3:5,乙车行完全程需多少小时?例4:客车和货车同时从AB 两地相对开出,客车每小时行60千米,货车每小时行全程的错误!,相遇时客车和货车所行路程的比是5:4。
五年级奥数-用比例解行程问题(含答案解析)
1. 理解行程问题中正比例和反比例关系.2. 用比例和份数思想解行程问题.本讲是在秋季所学的火车过桥和流水行船的行程问题基础上,讲解运用比例性质解多次相遇追及行程问题.体会比例解决问题的优势.距离、速度、时间这三个数量之间的关系,可以用下面的公式来表示:距离=速度⨯时间.显然,知道其中的两个量,就可以求出第三个量,这是我们在小学课堂中经常解决的问题.同时对于三者之间的关系,我们还可以发现:当时间相同时,路程和速度成正比;当速度相同时,路程和时间成正比;当路程相同时,速度和时间成反比.也就是说:设甲、乙两个人,所走的路程分别为S 甲、S 乙;速度分别为V 甲、V 乙;所用时间分别为T 甲、T 乙时,由于S V T =⨯甲甲甲,S V T =⨯乙乙乙,有如下关系:⑴当时间相同即T T =乙甲时,有::S S V V =乙乙甲甲; ⑵当速度相同即V V =乙甲时,::S S T T =乙乙甲甲; ⑶当路程相同即S S =乙甲时,::V V T T =乙乙甲甲.【例 1】 甲、乙二人分别从A 、B 两地同时相向而行,甲的速度是每小时30千米,乙的速度是每小时20千米,二人相遇后继续行进,甲到B 地、乙到A 地后立即返回.已知二人第二次相遇的地点距第一次相遇的地点是20千米,那么,A 、B 两地相距___千米.用比例解行程问题用比例解多次相遇问题乙21BA【分析】 因为甲乙同时出发,同时相遇,所以甲、乙相遇时间相同,因此:30:203:2S V V ===乙乙甲甲:S ,设全程为5份,则一个全程中,甲走了3份,乙走了2份,所以C 是第一次相遇地点,第一次相遇到第二次相遇,甲、乙共走2个AB ,因此从开始到第二次相遇,甲、乙共走了3个全程,一个全程甲走3份,3个全程甲共走339⨯=份,所以D 是第二次相遇地点,由图看出DC 是2份.但已知DC 是20千米,所以AB 的长度是20÷2⨯(2+3)=50(千米).(也可以用乙进行计算)[铺垫] 甲、乙两人在一条长100米的直路上来回跑步,甲的速度3米/秒,乙的速度2米/秒.如果他们同时分别从直路的两端出发,当他们跑了10分钟后,共相遇多少次?[分析] (方法一)10分钟两人共跑了(3+2)⨯60⨯10=3000 米 3000÷100=30个全程.我们知道两人同时从两地相向而行,他们总是在奇数个全程时相遇(不包括追上)1,3,5,7,,29共15次. (方法二)第一次两个人相遇需要100÷(3+2)=20(秒),从第一次开始到第二次相遇要走两个全程需要:200÷(3+2)=40(秒)所以一个相遇:(10⨯60-20)÷40+1=15.5(次),即为15次.[拓展] 老师可以把【例 1】的问题改为:已知两个人第四次相遇的地点距离第三次相遇的地点20千米,那么A 、B 两地相距多少千米?[分析] 由此推出,第三次相遇甲乙共走:3⨯2-1=5(个全程),甲走了:3⨯5=15(份)在B 点,第四次相遇甲乙共走:4⨯2-1=7(个全程),甲走了:3⨯7=21(份)在D 点,已知BD 是20千米,所以AB 的长度是20÷4⨯(2+3)=25(千米).【例 2】 甲、乙二人同时从A 地出发同向而行去往B 地,甲的速度是每小时30千米,乙的速度是每小时20千米,二人相遇后继续行进,甲、乙到B 地后立即返回A 地.已知二人第三次相遇的地点距第一次相遇的地点是20千米(两人相遇指迎面相遇),那么,A 、B 两地相距___千米.FE乙甲21DCBA【分析】 因为甲乙同时出发,同时相遇,所以甲、乙相遇时间相同,因此::30:203:2S S V V ===乙乙甲甲,设全程为5份,则一个全程中,甲走了3份,乙走了2份,第一次相遇,甲、乙一共行了两个全程,一个全程甲走3份,2个全程甲共走了326⨯=(份)所以C 是第一次相遇地点,第一次相遇到第二次相遇,甲、乙共走2个AB ,因此从开始到第二次相遇,甲、乙共走了4个全程,一个全程甲走3份,4个全程甲共走3412⨯=份,所以D 是第二次相遇地点,由图看出DC 是2份.但已知DC 是20千米,所以AB 的长度是20÷2⨯(2+3)=50(千米).(也可以用乙进行计算)[拓展] 老师可以把【例 2】的问题改为:已知两个人第四次相遇的地点距离第三次相遇的地点20千米,那么A 、B 两地相距多少千米?[分析] 由此推出,第三次相遇甲乙共走:3⨯2=6(个全程),甲走了:3⨯6=18(份)在第D 点,第四次相遇甲乙共走:4⨯2=8(个全程),甲走了:3⨯8=24(份)在F 点,已知DF 是20千米,所以AB 的长度是20⨯(2+3)=100(千米).[总结] 设一个全程中甲走的路程为M ,乙走的路程为N⑴甲乙二人从两端出发的直线型多次相遇问题: ⑵ 同一出发点的直线型多次相遇问题【例 3】 甲、乙两车分别从A 、B 两地同时出发相向而行,在A 、B 两地之间不断往返行驶.甲车速度是乙车速度的37,并且甲、乙两车第2008次相遇的地点和第2009次相遇的地点恰好相距120千米(注:当甲、乙两车同向时,乙车追上甲车不算作相遇),那么,A 、B 两地之间的距离是多少千米? 20092008甲DBA【分析】 因为甲乙同时出发,同时相遇,所以甲、乙相遇时间相同,因此3:7S V V ==乙乙甲甲:S :,设全程为10份,则一个全程中,甲走了3份,乙走了7份,通过总结的规律分析第2008次相遇时,甲走:(2008⨯2-1)⨯3=12045(份),120451012045÷=,所以第2008次相遇地点是在从A 地向右数5份的C 点,第2009次相遇时甲走:(2009⨯2-1)3⨯=12051(份),120511012051÷=,所以第2009次相遇地点在从B 点向左数1份的D 点,由图看出CD 间距离为4份,A 、B 两地之间的距离是120410300÷⨯=(千米).[总结] 对于份数比较大找相遇地点时,用甲走的总份数除以全程份数,得到商和余数,当商为偶数时,从甲的出发点向终点数余数的份数即为相遇地点,当商为奇数时,从终点向甲的起点数余数的份数即为相遇地点[巩固] 甲、乙二人分别从A 、B 两地同时出发,往返跑步.甲每分跑180米,乙每分跑240米.如果他们的第100次相遇点与第101次相遇点的距离是160米,求A 、B 两点间的距离为多少米?101100乙甲A相遇次数 甲乙共走的路程和 甲共走的路程 乙共走的路程1 1 M N2 3 3M 3N3 5 5M 5N… … … …n 21n - (21)n M - (21)n N - 相遇次数 甲乙共走的路程和 甲共走的路程 乙共走的路程1 2 M N 2 4 4M 4N 3 6 6M 6N … … … … n2n 2nM 2nN[分析]因为甲乙同时出发,同时相遇,所以甲、乙相遇时间相同,因此180:2403:4S V V====乙乙甲甲:S:,设全程为7份,则一个全程中,甲走了3份,乙走了4份,通过总结的规律分析第100次相遇时,甲走:(100⨯2-1)⨯3=597(份),5977852÷=,所以第100次相遇地点是在从B地向左数2份的C点,第101次相遇时甲走:(101⨯2-1)3⨯=603(份),6037861÷=,所以第101次相遇地点在从A点向右数1份的D点,由图看出CD间距离为4份,A、B两地之间的距离是16047280÷⨯=(米).【例 4】小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第六次相遇的地点离乙村多远(相遇指迎面相遇)?【分析】画示意图如下.2123.5乙甲第二次相遇两人已共同走了甲、乙两村距离的3倍,因此张走了3.5⨯3=10.5(千米).从图上可看出,第二次相遇处离乙村2千米.因此,甲、乙两村距离是10.5-2=8.5(千米).第六次相遇时,两人已共同走了两村距离26111⨯-=倍的行程.其中张走了3.51138.5⨯=(千米),38.58.54 4.5÷=,就知道第六次相遇处,离乙村4.5千米.[巩固]甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.[分析]第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4⨯3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9-(3+4)=2千米.【例 5】A、B两地相距2400米,甲从A地、乙从B地同时出发,在A、B间往返长跑.甲每分钟跑300米,乙每分钟跑240米,在30分钟后停止运动.甲、乙两人在第几次相遇时距A地最近?最近距离是多少米?【分析】(300240)302400 6.75+⨯÷=(个),即甲乙共行了6.75个全程,共相遇了3次,甲乙两人的速度比是300:2405:4=,设全程为9份,第一次相遇甲行5份,乙行4份,所以第一次相遇地点距A地是全程的59,第二次相遇时两人共行了3个全程,甲行的距A地9(359)3-⨯-=份,所以第二次相遇地点距A地是全程的13,第三次相遇时两人共行了5个全程,55927⨯÷=甲行的距A地7份,所以第三次相遇地点距A地是全程的79,所以第二次相遇距A地最近,最近距离是124008003⨯=(米)【例 6】A、B是一圈形道路的一条直径的两个端点,现有甲、乙两人分别从A、B两点同时沿相反方向绕道匀速跑步(甲、乙两人的速度未必相同),假设当乙跑完100米时,甲、乙两人第一次相遇,当甲差60米跑完一圈时,甲、乙两人第二次相遇,那么当甲、乙两人第二十一次相遇时,甲跑完几圈又几米?【分析】 甲、乙第一次相遇时共跑0.5圈,乙跑了100米;第二次相遇时,甲、乙共跑1.5圈,则乙跑了1003300⨯=米,此时甲差60米跑一圈,则可得0.5圈是30060240-=米,一圈是480米. 第一次相遇时甲跑了240100140-=米,以后每次相遇甲又跑了1402280⨯=米,所以第二十一次相遇时甲共跑了:140280(211)5740+⨯-=(米),574048011460÷=.即跑完11圈又460米.[铺垫] 甲和乙两人分别从圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长?[分析] 第一次相遇,两人共走了0.5圈;第二次相遇,两人共走了1.5圈.所以第二次相遇时,乙一共走了BAD 1003300=⨯=(米),又知到AD 60=(米),所以圆形场地的半周长为30060240-=(米),那么,周长为2402480⨯=米.【例 7】 A 、B 两地相距13.5千米,甲、乙两人分别由A 、B 两地同时相向而行,往返一次,甲比乙早返回原地,途中两人第一次相遇于C 点,第二次相遇于点D ,CD 相距3千米,则甲.乙两人的速度比是为多少?【分析】 方法一:根据题意画图如下乙甲21DB设甲、乙第一次相遇时分别走的路程为x 千米,y 千米,依题意列方程组得,3313.53313.5x y y x --=⎧⎨+-=⎩解得7.56x y =⎧⎨=⎩,所以甲乙的速度比,即为甲乙路程比7.5:65:4==方法二:用甲、乙代表两个人第一次相遇走的路程,可以整体的分析从开始到第二次相遇甲走的路程为:3⨯甲,乙走的路程为:3⨯乙,甲乙二人的路程差为:3⨯(甲-乙);分开考虑甲一共走的路程为:一个全程+乙+3,乙一共走的路程为:一个全程+甲-3,两个人的路程差为:(一个全程+乙+3)-(一个全程+甲-3)=乙-甲+6.综合列式为:3(甲-乙)=乙-甲+6,得到:甲-乙=1.5,由于,甲+乙=13.5,所以甲=7.5(千米),乙=6(千米),所以甲乙的速度比,即为甲乙路程比7.5:65:4==.【例 8】 两辆电动小汽车在周长为360米的圆形道上不断行驶,甲车每分行驶20米.甲、乙两车同时分别从相距90米的A ,B 两点相背而行,相遇后乙车立即返回,甲车不改变方向,当乙车到达B 点时,甲车过B 点后恰好又回到A 点.此时甲车立即返回(乙车过B 点继续行驶),再过多少分与乙车相遇?DC 甲B A乙甲ABC乙甲AB【分析】 设右图中C 表示甲、乙第一次相遇地点.因为乙从B 到C 又返回B 时,甲恰好转一圈回到A ,所以甲、乙第一次相遇时,甲刚好走了半圈,因此C 点距B 点809090-=(米).因此相同时间内,甲乙所行路程比为180:902:1=,所以甲乙二人的速度比为2:1,因此乙每分行驶20210÷=(米),甲、乙第二次相遇,即分别同时从A ,B 出发相向而行相遇需要90(1020)3÷+=(分).[拓展] 如图所示,某单位沿着围墙外面的小路形成一个边长300米的正方形.甲、乙两人分别从两个对角处沿逆时针方向同时出发.如果甲每分走90米,乙每分走70米,那么经过多少时间甲才能看到乙?乙甲[分析] 甲看到乙的时候,甲和乙在同一条边上,甲乙两人之间的距离最多有300米长,当甲追上乙一条边(300米)需300(9070)15÷-=(分),此时甲走了9015300 4.5⨯÷=(条)边,甲、乙不在同一条边上,甲看不到乙.甲再走0.5条边就可以看到乙了,即甲走5条边后可看到乙,共需2300590163⨯÷=分钟,即16分40秒.【例 9】 甲、乙二人分别从A 、B 两地同时出发,如果两人同向而行,甲26分钟赶上乙;如果两人相向而行,6分钟可相遇,又已知乙每分钟行50米,求A 、B 两地的距离.【分析】 先画图如下:C262666乙甲BA方法一: 若设甲、乙二人相遇地点为C ,甲追及乙的地点为D ,则由题意可知甲从A 到C 用6分钟.而从A 到D 则用26分钟,因此甲从C 走到D 之间的路程时,所用时间应为:26620-=(分).用比例解其他行程问题同理乙从C走到D之间的路程时,所用时间应为:26632+=(分),所以相同路程内甲乙所用时间比为20:325:8=,因此甲、乙二人的速度比为8:5,所以甲的速度为505880÷⨯=(米/分),A、B两地的距离为(8050)6780+⨯=(米),或(8050)26780-⨯=(米)方法二:设甲的速度是x米/分钟那么有(50)26(50)6x x-⨯=+⨯解得80x=A、B两地的距离为(8050)6780+⨯=(米),或(8050)26780-⨯=(米)[拓展]甲、乙两人分别从A、B两地同时相向出发.相遇后,甲继续向B地走,乙马上返回,往B地走.甲从A地到达B地.比乙返回B地迟0.5小时.已知甲的速度是乙的34.甲从A地到达地B共用了多少小时?[分析]相遇时,甲、乙两人所用时间相同.由题意知,甲乙二人速度比为3:4,所以甲乙二人所行的路程比为3:4,从相遇到返回B地,甲乙所行路程相同,所以返回所用时间比为4:3,又知甲从A地到达B地比乙返回B地迟0.5小时,即从相遇点到B地这同一段路程中,甲比乙多用0.5小时.可求出从相遇点到B地甲用了0.542⨯=(小时),相遇时,甲乙二人所行的路程比为3:4,甲用时为243 1.5÷⨯=(小时)甲从A地到达地B共用2 1.5 3.5+=(小时)【例10】一辆汽车从甲地开往乙地,如果车速提高20%,可以提前1小时到达.如果按原速行驶一段距离后,再将速度提高30%,也可以提前1小时到达,那么按原速行驶了全部路程的几分之几?【分析】设原速度是1. 后来速度为(120%) 1.2+=,速度比值:1:(120%)5:6+=这是具体地反映:距离固定,时间与速度成反比.时间比值6:5这样可以把原来时间看成6份,后来就是5份,这样就节省1份,节省1个小时.原来时间就是1⨯6=6小时.同样道理,车速提高30%,速度比值:1:(130%)10:13+=时间比值:13:10这样节省了3份,节省1小时,可以推出行驶一段时间后那段路程的原时间为13 3所以前后的时间比值为(6-133):1335:13=.所以总共行驶了全程的5135=+518.[巩固](第三届走美试题)从上海开车去南京,原计划中午11:30到达.但出发后车速提高了17,11点钟就到了.第二天返回,同一时间从南京出发.按原速行驶了120千米后,再将车速提高16,到达上海时恰好11:10.上海、南京两市的路程是千米.[分析]由题意设原来速度和车速提高了17后速度比为7:8,则所用时间比为8:7,设原计划用时8份,提速后用时7份,差的一份正好是30分钟,,则原计划用时为240分钟,返回时间缩短20分钟,是由于车速提高16,原来计划速度与返回提速后速度比为6:7,则返回提速后这段路程内所用时间比为7:6,设这段路程原计划用时7份,提速后用时为6份,差的一份正好是20分钟,所以返回提速后用时120分钟,原计划用时140分钟,则原速行驶120千米用时240140100-=(分钟),上海、南京两市的路程是120100240288÷⨯=(千米)【例11】甲、乙两人分别从A、B两地同时出发,相向而行,出发时他们的速度之比是3:2,他们第一次相遇后甲的速度提高了20﹪,乙的速度提高了30﹪,这样,当甲到达B地时,乙离A地还有14千米,那么A、B两地的距离是多少千米?【分析】 因为他们第一次相遇时所行的时间相同,所以第一次相遇时甲、乙两人行的路程之比也为3:2,设第一次相遇时甲、乙两人行的路程分别是3份,2份相遇后,甲、乙两人的速度比为[][]3(120%):2(130%)18:13⨯+⨯+=,到达B 地时,即甲又行了2份的路程,这时乙行的路程和甲行的路程比是13:18,即乙的路程为21318⨯=419.乙从相遇后到达A 还要行3份的路程,还剩下4531199-=(份),正好还剩下14千米,所以1份这样的路程是514199÷=(千米).A 、B 两地有这样的325+=(份),因此A 、B 两地的总路程为:9545⨯=(千米)【例12】 (第五届走美决赛试题)小王8点骑摩托车从甲地出发前往乙地,8点15追上一个骑车人.小李开大客车8点15从甲地出发前往乙地,8点半追上这个骑车人.小张8点多也从甲地开小轿车出发前往乙地,速度是小李的1.25倍.当他追上骑车人后,速度提高了20%.结果小王、小李、小张三人一同于9点整到达乙地.小王、小李、骑车人的速度始终不变.骑车人从甲地出发时是 点 分,小张从甲地出发时是8点 分 秒.【分析】9:009:009:009:00骑车人小张小李8:15小王8:00乙地15分15分由题意知小王与小李从甲地到乙地所用时间分别是60分、45分,因此小王与小李的速度比是3:4,又小张速度是小李的1.25倍,因此小王、小李、小张的速度比为3:4:5,设小王、小李、小张的速度分别为3、4、5.由上图可以看小李比小王15分钟多行的路程恰是骑车人15分钟的路程,因此骑车人的速度为(43)15151-⨯÷=,即小王的速度是骑车人的3倍,而小王追上骑车人要15分钟,所以骑车人行这段路程要45分钟,因此骑车人是8点30分出发的.小王从甲地到乙地要1小时,可知全程为603180⨯=,因此骑车人到乙地要3小时,骑车人在9点时恰好行了全程的一半,由题意小张追上骑车人后速度变为6,从追上骑车人到到达乙地小张比骑车人多行了180290÷=,因此小张以速度6行驶路程所用时间为90(61)18÷-=(分),所行路程为186108⨯=,则追赶骑车人所用时间为(180108)514.4-÷=(分),因此小张从甲地到乙地共用时间为1814.432.4+=(分)=32分24秒,即小张从甲地出发时是8点27分36秒[巩固] 甲从A 出发步行向B .同时,乙、丙两人从B 地驾车出发,向A 行驶.甲乙两人相遇在离A 地3千米的C 地,乙到A 地后立即调头,与丙在C 地相遇.若开始出发时甲就跑步,速度提高到步行速度的2.5倍,则甲、丙相遇地点距A 地7.5千米.求AB 两地距离. [分析] 设BC 间的路程为S ,甲的速度为v 甲,乙的速度为v 乙,丙的速度为v 丙,由题意知,3v v S=甲乙,6v S v S +=乙丙,则36)v S v S S ⨯+=⨯甲丙(,甲提速后速度变为2.5v 甲.则2.57.5(7.53)v v S =--甲丙,即34.5v v S =-甲丙,所以36)34.5S S S S ⨯+=⨯-(,解得18S =,所以AB 两地间路程为18321+=(千米)1.甲、乙两车同时分别从相距55千米的AB 两地相向开出,甲行驶了23千米后跟乙相遇,相遇后两车继续前进,到达对方出发地后立刻返回.问:⑴ 第2次相遇点距B 地多少千米?⑵第6次相遇点距A 地多少千米?【分析】 通过分析,我们可以发现:一个全程里甲走23千米,⑴ 第2次相遇共3全程,故甲走了23⨯3=69(千米),甲走了一个全程多了一点,故距离B 地就是69-55=14(千米).⑵第6次相遇总共是11个全程,故甲走了23⨯11=253(千米),25355433÷=,甲走了4个全程多点,多的那部分就是我们要求的距A 的距离为:33千米.2. 甲、乙两列车同时从A 、B 两地相对开出,第一次在离A 地75千米处相遇.相遇后继续前进,到达对方出发地后都又立刻返回,第二次相遇在离B 地55千米处,求A 、B 两地相距多远.【分析】 通过画图找出行程之间的关系.第一次相遇就相当于甲车和乙车一共走了一个全程,根据总结:第2次相遇总共走了3个全程,则甲就走了3个75千米,3⨯75=225千米,画图可以知道甲走了一个全程多了那55千米,所以全程为225-55=170千米.3. 甲、乙两车分别从A 、B 两地出发,并在A 、B 两地间不断往返行驶,已知甲车的速度是15千米/小时,乙车的速度是25千米/小时,甲乙两车第三次相遇地点与第四次相遇的地点相差100千米,求A 、B 两地的距离是多少千米?【分析】 甲、乙两车的速度比为:15:253:5=,所以可以把全程分成8份,每走一个全程甲走3份,乙走5份,第三次相遇甲乙共走:3215⨯-=(个全程),甲走了:3515⨯=(份),第四次相遇甲乙共走:4217⨯-=(个全程),甲走了:3721⨯=(份),画图知到两次相遇点100米是4份,所以AB 的长度是10048200÷⨯=(千米).4. 甲、乙两车的速度分别为52千米/时和40千米/时.他们同时从A 地出发去B 地,在A 、B 两地间往返而行,从开始走到第三次相遇,共用了6小时.A 、B 两地相距多少千米?【分析】 从开始走到第一次相遇,两车走的路程是两个AB 之长;而到第三次相遇,两车走的路程总共就是6个AB 之长是:(52+40)⨯6=552(千米),A 、B 两地相距的路程是:552÷6=92(千米).5. 一列火车从甲地开往乙地,如果将车速提高,可以比原计划提前1小时到达;如果先以原速度行驶240千米后,再将速度提高25%,则可提前40分钟到达.求甲、乙两地之间的距离及火车原来的速度.【分析】 根据题意可知车速提高后与原来速度比为(1+20%) :1=6:5,由于所行路程相同,所以所用时间比为5:6,所差时间是1小时,即1份是1小时,所以原来行完全程需要6小时,同理可求出行完240千米后所用时间为40⨯5=200(分钟)=133(时),所以行240千米所用时间为6-133=83(时),火车速度为240÷83=90(千米/时),甲乙两地间的距离为90⨯6=540(千米)6.一只小船第一次顺流航行65千米,逆流航行21千米,一共用了10小时;第二次顺流航行20千米,逆流航行12千米,用了4小时.那么船在静水中航行64千米需要多长时间?【分析】如果把第二次航行中顺流和逆流的航程增加到2.5倍,显然时间会变成:4 2.510⨯=小时;顺流航行20 2.550⨯=千米;逆流航行12 2.530⨯=千米.而第一次航行也是花了10小时,但是顺流航程和逆流航程分别是65和21千米.通过比较很容易看出第二次航行比第一次少了,655015-=千米的顺流航程,但是多了30219-=千米的逆流航程.顺流走15千米所花的时间和逆流走9千米所花的时间相等,由此可知顺流速度和逆流速度比应该是15:95:3=,因此相同时间内顺水路程和逆水路程比为5:3,逆流航行21千米相当于顺流航行35千米,所以顺水速度为(6535)1010+÷=(千米/时),逆水速度为10536÷⨯=(千米/时),静水速度为(106)28+÷=(千米/时),船在静水中航行64千米需要6488÷=(小时)。
五年级春季第10讲——比例法解行程
吴超超
第十讲 比例法解行程
从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优 势, 往往体现在方法的灵活性和思维的巧妙性上, 使得一道看似很难的题目变得 简单明了。比例的技巧不仅可用于解行程问题,对于工程问题、分数百分数应用 题也有广泛的应用。
一.基本概念与比例关系
������ ������
: 速度一定(即路程和时间的比值一定) ,路程与时间成正比。
s甲 s乙
即: ������甲 = =
t甲 t乙
: 时间一定(即路程和速度的比值一定) ,路程与速度成正比。
s甲 s乙
即: t甲 = t乙 :
=
v甲 v乙
1
五年级春季知识点总结
1.比和比例: 比:代表两个数相除的关系。也就是说“比”就是“除法”算式。 比例:表示两个比相等的式子。也就是说“比例”是个“等式” 。 2.正比例与反比例: 正比例:比值(或者商)一定的两个量成正比。 反比例:乘积一定的两个量成反比。 注意:①判断两个量成正比还是反比的唯一依据就是定义! ②若两个量成正比,则两个量同增同减;若两个量成反比,则两个量 一增一减。 但是并不是同方向变化的都叫成正比, 反方向变化的都叫 成反比。 3.行程中的比例关系: ⑴v =
通常, 在解这一类问题时, 只需要画图比较速度不同的部分。 画图时, 可按照 “不 同速度不同形” 的原则, 用不同形状的线表示不同速度下的路程, 帮助分析题目。
四.练习题
【练习 1 】 A、 B 两地相距 7200 米,甲、乙分别从 A, B 两地同时出发,结 果在距 B 地 2400 米处相遇.如果乙的速度提高到原来的 3 倍,那么两人可提 前 10 分钟相遇,则甲的速度是每分钟行多少米?
比例解行程
1.基本公式:路程=速度×时间2.解题方法:解行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。
3.比例解行程:行程问题中有很多比例关系,在只知道和差、比例时,用比例法可求得具体数值.更重要的是,在一些较复杂的题目中,有些条件(如路程、速度、时间等)往往是不确定的,在没有具体数值的情况下,只能用比例解题,我们常常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时间、路程分别用,,v v t t s s 乙乙乙甲甲甲,;;来表示,大体可分为以下两种情况:(1)当2个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的速度之比。
s v s v =甲甲乙乙,甲乙在同一段时间t 内的路程之比等于速度比 (2)当2个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时,2个物体所用的时间之比等于他们速度的反比。
v t v t =甲乙乙甲,甲乙在同一段路程s 上的时间之比等于速度比的反比。
二.例题精讲 例1: 小张从甲地到乙地步行需要36分钟,小王骑自行车从乙地到甲地需要12分钟.他们同时出发,多少分钟后两人相遇?点睛:相同的路程时,速度与时间成反比.两人的时间比为:36:12=3:1即速度比为:1:336÷(3+1)=9(分)例2:甲、乙二人同时从学校出发到少年宫去,已知学校到少年宫的距离是2400米,甲到少年宫后立即返回学校,在距离少年宫300米处遇到乙,此时他们离开学校已30分钟.甲每分钟走多少米,乙每分钟走多少米.点睛:已知两速度之差与两速度之和,求单独的速度,可用和差公式.速度差=300×2÷30=20(米/分)速度和=2400×2÷30=160(米/分)甲:(160+20)÷2=90(米/分)乙:(160-20)÷2=70(米/分)例3:小李从A 城到B 城,速度是5千米/小时.小兰从B 城到A 城,速度是4千米/小时.两人同时出发,结果在离A 、B 两城的中点1千米的地方相遇,求A 、B 两城间的距离?点睛:小李和小兰的速度比是:5:4则路程比是:5:4在距离中点1千米处相遇,那么速度快的比速度慢的多走了2×1=2千米小李比小兰多走了1个单位=2千米所以两地距离=2×(4+5)=18千米答:两地距离为18千米.例4:一辆汽车从甲地开往乙地,每小时行50千米,返回时每小时行60千米,已知去时用了6小时,那么返回时用了多少小时?点睛:因为去时和返回时所行的路程一定,那么去时与返回时的速度和所用时间成反比.去时和返回时的速度比是:50:60=5:6所用的时间比与速度比是:6:5返回时用的时间为:6÷6×5=5(小时)答:返回时用了5小时.例5:甲乙两车分别从AB两地同时出发相向而行,甲车每小时行50千米,乙车的速度是甲车的4/5,当甲车行至全程的2/5时,乙车距中点还有36千米.AB两地相距多少千米?点睛:由题中条件可求出速度比,因为时间一定,所以两车所行的路程和它们的速度成正比.甲乙两车的速度比是:5:4两车在相同时间里所行的路程比是:5:4当甲车行至全程的2/5时,乙车响起了全程的2/5×4/5=8/25乙车距中点还有全程的:1/2-8/25=9/25AB两地相距:36÷9/25=200(千米)答:两地相距200千米.例6:甲乙两车同时分别从AB两地出发相向而行,当甲车行了全程的1/4时,乙车行了全程的1/3,当乙车行完全程时,甲车距终点还有20千米,AB两地相距多少千米?点睛:由条件”当甲车行了全程的1/4时,乙车行了全程的1/3”可求出两车在相同时间里所行的路程比.甲乙两车在相同时间里所行的路程比是:1/4:1/3=3:4就是说当乙车行完全程时,甲车距终点还有4-3=1(份)路程,这一份的路程就是20千米.因此,AB两地相距:20÷(4-3)×4=80(千米)答:AB两地相距80千米、例7:甲乙两车的速度分别是50千米每小时,40千米每小时,乙车先从B站开入A站,当到离B站72千米的D地时,甲车从A站开入B站,在C地与乙车相遇,如果甲乙两车相遇地C地离AB两站的路程比是3:4,那么AB两站之间的路程是多少千米?点睛:由题意知甲乙两车的速度比是:50:40=5:4甲乙两车在相同时间里所行路程比是:5:4所以AC:CD=5:4,又因为AC:CB=3:4,而5:4=15:12,3:4=15:20所以,AB两站之间的路程为:72÷(20-12)×(15+20)=315(千米)答:AB两站之间的路程是315千米。
五年级奥数.行程.比例解行程问题.教师版
比例的知识是小学数学最后一个重要内容,从某种意义上讲仿佛扮演着一个小学“压轴知识点”的角色。
从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活性和思维的巧妙性上,使得一道看似很难的题目变得简单明了。
比例的技巧不仅可用于解行程问题,对于工程问题、分数百分数应用题也有广泛的应用。
我们常常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时间、路程分别用,,v v t t s s 乙乙乙甲甲甲,;;来表示,大体可分为以下两种情况:1. 当2个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的速度之比。
s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,这里因为时间相同,即t t t ==乙甲,所以由s st t v v ==甲乙乙甲乙甲, 得到s s t v v ==甲乙乙甲,s v s v =甲甲乙乙,甲乙在同一段时间t 内的路程之比等于速度比2. 当2个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时,2个物体所用的时间之比等于他们速度的反比。
s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,这里因为路程相同,即s s s ==乙甲,由s v t s v t =⨯=⨯乙乙乙甲甲甲, 得s v t v t =⨯=⨯乙乙甲甲,v t v t =甲乙乙甲,甲乙在同一段路程s 上的时间之比等于速度比的反比。
知识框架比例解行程问题【例 1】甲、乙两车往返于A,B两地之间。
甲车去时的速度为60千米/时,返回时的速度为40千米/时;乙车往返的速度都是50千米/时。
求甲、乙两车往返一次所用时间的比。
【考点】行程问题之比例解行程【难度】2星【题型】解答【解析】25∶24。
提示:设A,B两地相距600千米。
【答案】25∶24【巩固】一段路程分为上坡、平路、下坡三段,各段路程的长度之比是1∶2∶3,某人走这三段路所用的时间之比是4∶5∶6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级奥数春季班第10讲比例法解行程第十讲比例法解行程模块一、比例的简单运用例1.A、B两地相距300千米,甲、乙两车分别从A、B两地同时出发。
(1)甲车的速度是30千米/时,乙车的速度是20千米/时,相遇时距A地千米;(2)甲车的速度是60千米/时,乙车的速度是40千米/时,相遇时距A地千米;(3)甲车的速度是40千米/时,乙车的速度是20千米/时,各自走完全程,两车行驶的时间之比是;(4)如果两地距离未知,甲车的速度是50千米/时,乙车的速度是30千米/时,相遇时,甲车走了全程的,各自走完全程,两车行驶的时间之比是。
解:(1)V甲 : V乙=30 : 20=3 : 2,所以S甲 : S乙=3 : 2,300×332+=180(千米);(2)V甲 : V乙=60 : 40=3 : 2,所以S甲 : S乙=3 : 2,300×332+=180(千米);(3)V甲 : V乙=40 : 20=2 : 1,所以t甲 : t乙=1 : 2,(4)V甲 : V乙=50 : 30=5 : 3,所以S甲 : S乙=5 : 3,t甲 : t乙=3 : 5,相遇时,甲走了全程的55=538+,各自走完全程,两车行驶的时间之比是3 : 5.例2.(1)甲、乙两人的速度比是4 : 5,两人同时出发,行走的时间比为3 : 7,则甲、乙走的路程比为;(2)甲、乙两人要走的路程比为3 : 2,甲、乙的速度比是4 : 3,则甲、乙的时间比是;(3)甲、乙两人的路程比为7 : 8,两人用的时间比为6 : 5,甲的速度为70千米/时,则乙的速度为。
解:(1)已知V甲 : V乙=4 : 5,t甲 : t乙=3 : 7,所以S甲 : S乙=12 : 35;(2)S甲 : S乙=3 : 2,V甲 : V乙=4 : 3,所以t甲 : t乙=32:43=9 : 8;(3)S甲 : S乙=7 : 8,t甲 : t乙=6 : 5,所以V甲 : V乙=78:65=35 : 48;于是70 : V乙=35 : 48,V乙=96千米/小时。
模块二、行程的正比例模型行程的正比例模型是指时间一定,路程和速度成正比。
在没有发生变速的情况下,路程比等于速度比。
如果两人同时从同地出发,速度比为 1 : n,则路程比也为1 : n,相遇时,两人各自走了21Sn+,21nSn+。
例3.甲、乙两人同时从A地出发前往B地,甲骑车的速度是15米/秒,乙步行的速度是5米/秒,如果甲到达B地后立即返回,请问两人在相遇。
解:设A、B两地的距离为S,V甲 : V乙=15 : 5=3 : 1,则相遇时甲走了233312S S ⨯=+,乙走了2312S S =+,所以在中点相遇。
例4.甲班与乙班学生同时从学校出发去公园,两班的步行速度相等都是4千米/小时,学校有一辆汽车,它的速度是每小时48千米。
这辆汽车恰好能坐下一个班的学生,为了使两班学生在最短时间内到达公园,设两地相距150千米,那么各个班的步行距离是 千米。
解:两个班步行的距离相同,乘车所走的距离也相同,A车速 : 步行速度=48 : 4=12 : 1,汽车开到C 点时,将甲班学生放下,甲班从C 走到B 点;汽车从C 点返回接乙班的学生,在D 点接上,然后开往B 点。
AD =BC ,CD +DC +CB 是汽车后半程的路程,BC 是甲班学生的路程,它们的比是12 : 1,设CB 为1份,则2倍的CD 是11份,CD 是5.5份,AD 也是1份,所以AD =BC =150×11 5.51++=20(千米)。
例5.早上8 : 00,菲菲从家步行去上学,3分钟后,狗狗出发跑去追她,在离家200米的地方追上了她;追上后立刻往家跑去,到家后又立刻回去追菲菲,在离家400米的地方再次追上了她,追上后又立刻往家跑,到家后又立刻去追菲菲,刚好在学校追上,请问:(1)狗狗的速度是菲菲的 倍;(2)菲菲家到学校的距离为 米;(3)菲菲到校的时间是8点 分。
小狗菲菲学校家 解:(1)看第二段,小狗从200米处回家再到达400米处,跑了600米,菲菲走了200米,所以狗狗的速度是菲菲速度的3倍;(2)看第三段,设从800处到学校的距离为x 米,狗狗跑了800+x 米,菲菲走了x 米,所以800+x =3x ,解得x =400米,所以菲菲家到学校的距离是400+400=800米;(3)再看第一段,菲菲走了200米,用的时间是y 分钟,狗狗也跑了200米,用的时间是(y −3)分钟,距离相同,速度比是1 : 3,所用时间的比是3 : 1,时间差为2份,2份为3分钟,所以菲菲在前200米用的时间是4.5分钟,于是菲菲800米用的时间是4.5×4=18分钟,菲菲到学校的时间是8点18分。
模块3、行程的反比模型行程的反比模型是指在路程一定时,速度与时间成反比。
在速度不同或速度发生变化时,速度的比等于实际的反比。
题目中通常会出现① 如果已知的两个量在同一个圆中,我们可以通过差倍问题的方法,求出速度或时间;② 如果已知的两个量不在同一个圆中,我们可以通过转换速度与时间的比,变成类型①; 特别注意:比可以相互转换,而差不能。
例6.一辆汽车从A 地去B 地。
(1)若速度提高了20%后,每小时快了20千米,3小时到达B 地,则A 、B 两地的距离是 千米;(2)若速度提高了25%后,提前30分钟到达,则到达B 地所需的时间是 小时;(3)若速度降低了15千米后,时间增加了16,则原来的速度是 千米/时; (4)若速度提高了20%,提前1小时到达,如果原速行驶100千米后再将车速提高30%,也是提前1小时到达,则A 、B 两地距离是 千米。
解:(1)速度比V 1 : V 2=5 : 6,一份是20千米/小时,所以V 1=100千米/小时,V 2=120千米/小时,3小时到达,所以A 、B 两地相距120×3=360千米;(2)V 1 : V 2=4 : 5,所以时间比是t 1 : t 2=5 : 4,时间差是30分钟,1份是30分钟,4份是120分钟;(3)时间增加了16,即时间比是6 : 7,所以速度比是7 : 6,1份是15千米/小时, 所以原来的速度是7×15=105千米/小时;(4)速度提高了20%,则V 1 : V 2=5 : 6,时间比是6 : 5,一份是1小时,原速度行驶,需要6小时;第二次速度提高30%,速度比是V 1 : V 3=10 : 13, 131310V V =, 距离是S =6V 1,所以11361001005V V V -+=,111601000100513V V V -+=, 解得V 1=60,所以A 、B 两地的距离是60×6=360(千米)。
解2:速度提高了20%,则V 1 : V 2=5 : 6,时间比是6 : 5,一份是1小时,原速度行驶,需要6小时;第二次速度提高30%,速度比是V 1 : V 3=10 : 13,,后一段路程中所用的时间比是13 :10,这时3份为1小时,所以13份为133小时,即用原速走这一段路用时为133小时,而用原速走一共需要6小时,于是走前一段路100千米需要用6−133=53小时, 于是原速为100÷53=60(千米/小时),AB 之间的距离为6×60=360(千米)。
随 堂 测 试1.A 、B 两地距离270千米,甲、乙两车分别从A 、B 两地同时出发。
(1)甲车的速度是50千米/时,乙车的速度是40千米/时,相遇时距A 地 千米;(2)甲车的速度是63千米/时,乙车的速度是42千米/时,相遇时距A 地 千米;解:(1)V 甲 : V 乙=50 : 40=5 : 4,相遇时距离A 地 270×554+=150(千米); (2)V 甲 : V 乙=63 : 42=3 : 2,相遇时距离A 地 270×332+=162(千米);2.(1)甲、乙两人同时出发,速度比为2 : 3,行走的时间比为3 : 5,则甲、乙走的路程比为 ;(2)甲、乙两人要走的路程比是5 : 4,甲、乙的速度比是3 : 2,则甲、乙的时间比为 。
解:(1)速度比为2 : 3,行走的时间比为3 : 5,则甲、乙走的路程比为6 : 15=2 : 5;(2)路程比是5 : 4,速度比是3 : 2,则甲、乙的时间比为54 : 32=5 : 6.3.甲、乙两车同时从A 地出发前往B 地,两车的速度比为5 : 1,如果甲到达B 地后立刻返回,则两车在相遇。
解:V 甲 : V 乙=5 : 1,相遇地点在离A 点 21513=+AB 处。
4.李经理的司机每天早上7点30分到达李经理家接他去公司。
有一天李经理7点从家里出发去公司,路上遇到从公司按时来接他的车,再乘车去公司,结果比平常早到5分钟,则李经理乘车的速度是步行速度的倍。
解:李经理提前了30分钟出发,遇到汽车时,前段距离汽车单程需要走5÷2=2.5(分钟),即正常情况下汽车用2.5分钟到李经理家,再用2.5分钟回到此地,所以李经理早出来走的距离相当于给汽车省了5分钟,也就是李经理步行这段路用了30−2.5=27.5分钟,所以李经理乘车的速度是步行速度的 27.5÷2.5=11(倍)。
5.一辆汽车从甲地开往乙地,如果把车速提高20%,可以比原定时间提前1小时到达。
如果以原速行驶160千米后,再将速度提高25%,则可以提前40分钟到达。
那么甲、乙两地相距 千米。
解:车速提高20%,则V 1 : V 2=5 : 6,时间比是6 : 5,一份是1小时,原速度行驶,需要6小时;速度提高25%,则V 1 : V 3=4 : 5,1354V V =, 距离是S =6V 1,所以1136160160163V V V -+=,111246401601653V V V -+=, 解得V 1=60,所以A 、B 两地的距离是60×6=360(千米)。
解2:车速提高20%,则V 1 : V 2=5 : 6,时间比是6 : 5,一份是1小时,原速度行驶,需要6小时;速度提高25%,则V 1 : V 3=4 : 5,时间比为5 : 4,提前40分钟(即23小时),所以1份为23小时, 用原速走后一段用时5×23=103小时,于是原速走前160千米用时为6−103=83小时, 所以原速为160÷83=60(千米/小时),所以A 、B 两地的距离是60×6=360(千米)。