水热法过程机理分析优秀课件
第三章水热法
![第三章水热法](https://img.taocdn.com/s3/m/5f9723e35122aaea998fcc22bcd126fff7055d37.png)
水热法的工艺参数控制
温度
水热反应温度是影响产物质量和产量的重要因素 ,需要精确控制。
时间
水热反应时间也是影响产物的重要因素,需要根 据实际反应情况确定。
压力
水热反应压力对产物的结构和形貌有影响,需要 合理控制。
浓度
原料的浓度对水热反应速度和产物也有影响,需 要适当控制。
04
水热法的应用实例
水热法在陶瓷行业的应用实例
第三章 水热法
xx年xx月xx日
目录
• 水热法的简介 • 水热法的原理和特点 • 水热法的工艺流程和设备 • 水热法的应用实例 • 水热法的未来发展趋势和挑战
01
水热法的简介
水热法的定义
定义
水热法是指在密闭的容器中,将水加热到 高温高压状态,形成高温高压水溶液,使 反应物质在这样的水溶液中完成化学反应 并形成结晶的一种方法。
水热法与计算化学结合
计算化学可以模拟和预测水热反应过程中物质的物理化学性质和演变规律, 有助于深入了解水热反应过程和优化制备工艺。
THANKS
感谢观看
2
水热法还具有环保性,因为它是在密闭的反应 器中进行的,避免了环境污染,同时也可以实 现工业废渣的资源化利用。
3
水热法可以制备出常规固相法难以制备的特殊 性能材料,如高熔点氧化物、高活性催化剂等 。
水热法与其他方法的比较
与固相法相比,水热法的制备温度和压力较低,制备周期 短,粉体材料粒度细且分布均匀,晶体发育完整。
05
水热法的未来发展趋势和挑战
水热法的未来发展趋势
应用领域的扩展
水热法有望在更多领域得到应用,如能源、环保、材料科学等领域。特别是在能源领域, 水热法可以用来制备太阳能电池、燃料电池等高性能能源材料。
第三章水热法
![第三章水热法](https://img.taocdn.com/s3/m/4cbe96b56429647d27284b73f242336c1eb930a5.png)
材料科学
水热法可用于制备高质量的晶体或纳米材料,如氧化物、硫化物、碳化物等。
生物学
水热法可用于提取和纯化生物质,如蛋白质、酶等。同时,水热法在生物医学领域也有广泛应用,如药物传递、组织工程等。
环境科学
水热法可用于处理环境污染问题,如重金属离子吸附、废水处理等。
化学
水热法可用于合成有机和无机化合物,如金属有机框架(MOFs)、金属氧化物等。
水热法具有反应温度高、压力大、反应时间短、制备成本低等优点,同时还可以制备出其他方法难以制备的物质。
水热法可以制备出其他方法难以制…
水热法的特点
水热法可以降低反应温度和压力
水热法可以缩短反应时间
水热法可以控制材料的结构和形貌
ቤተ መጻሕፍቲ ባይዱ
01
与干法焙烧相比较,水热法可以在较低的温度和压力下进行反应,同时可以在液相中实现物质的溶解和反应,从而得到更好的产物。
水热法工艺的优化
水热法工艺将不断得到优化,提高制备效率和降低成本,使得水热法在工业生产中更具竞争力。
水热法工艺条件的控制
水热法工业化应用的难题
环境影响问题
水热法面临的挑战
新型水热反应器的研发
目前水热反应器仍存在传热和传质效率低、反应条件不均匀等问题,研发新型的水热反应器是当前的研究热点之一。
水热法与其他方法的结合
在环保行业中,水热法主要应用于废气、废水和固体废物的处理和资源化利用。通过水热法,可以将废气中的有害物质转化为无害物质,将废水中的有害物质分离出来,将固体废物中的有害物质转化为资源化利用的产品。
水热法还可以应用于环境修复。通过水热法,可以将污染土壤中的有害物质转化为无害物质,同时可以将污染土壤中的重金属离子提取出来。
水热法ppt课件
![水热法ppt课件](https://img.taocdn.com/s3/m/c68b54f233d4b14e85246826.png)
Zr(OH)2为前驱体,水热反应制备 ZrO2粉体
9
TiO2与Ba(OH)2· H2O水热反应制备 钛酸钡粉体
10
3 晶粒的聚集生长 水热条件下晶粒的聚集生长分为两种类型: 第一类聚集生长和第二类聚集生长。 第一类聚集生长:物料从小尺寸晶粒向大 尺寸晶粒运输的重结晶过程; 第二类聚集生长:聚集的小晶粒之间由于 暴露的晶面结构相容而在一定条件下配向 生长的过程。 它们的热力学驱动力都是晶粒平均粒度的 增大降低了体系的总表面自由能。
2 为什么要采用水热法?
• 中低温实现晶体的形成和生长,避免高温处理带 来的种种缺陷; • 应用一些溶解度低的原料,也降低了原料成本; • 具有比其他液相方法更快的晶体生长速率; • 可以生长产生各种不同的晶体形貌; • 反应温度相对较低,可以得到一些低温同质异构 体; • 可以方便地控制反应器内的反应气氛。
水热法
1 什么是水热法? 2 为什么要采用水热法? 3 应用中出现的一些现象的解释 4 水热法应用 5 水热法的缺陷 6 几个例子
2
1 什么是水热法
• 在特制的密闭反应容器里,采用水溶液作 为反应介质,通过对反应容器加热,创造 出一个高温、高压反应环境,使通常难溶 或不溶的物质溶解并且重结晶。
3
11
12
13
2.2 前驱体的溶解
化合物在水热溶液里的溶解度的温度特性分 三种情况: 1 正温度系数 2 负温度系数 3 部分温度范围内正温度系数,部分温度范 围内负温度系数。
14
负温度系数化合物
磷酸铝在磷酸 水溶液中的溶 解: 随着温度升高, 和压力降低, 溶解度降低。
15
变温度系数化合物
17
一般的矿化剂可以分为下面5类: 1 金属及铵的卤化物 2 碱金属的氢氧化物 3 弱酸与碱金属形成的盐类 4 强酸的盐类 5 酸类(一般为无机酸)
水热与溶剂热合成方法的概念水热法ppt课件
![水热与溶剂热合成方法的概念水热法ppt课件](https://img.taocdn.com/s3/m/ef2d715f876fb84ae45c3b3567ec102de2bddff0.png)
“溶解-结晶”机制
所谓“溶解”是指水热反应初期,前驱物微粒之 间的团聚和联接遭到破坏,从而使微粒自身在水 热介质中溶解,以离子或离子团的形式进入溶 液,进而成核、结晶而形成晶粒;
16
“结晶”是指当水热介质中溶质的浓度高于晶粒 的成核所需要的过饱和度时,体系内发生晶粒的 成核和生长,随着结晶过程的进行,介质中用于 结晶的物料浓度又变得低于前驱物的溶解度,这 使得前驱物的溶解继续进行。如此反复,只要反 应时间足够长,前驱物将完全溶解,生成相应的 晶粒。
13
水热生长体系中的晶粒形成可分为三种类型:
“均匀溶液饱和析出”机制 “溶解-结晶”机制
“原位结晶”机制
14
“均匀溶液饱和析出”机制
由于水热反应温度和体系压力的升高,溶质在 溶液中溶解度降低并达到饱和,以某种化合物结 晶态形式从溶液中析出。当采用金属盐溶液为前 驱物,随着水热反应温度和体系压力的增大,溶 质(金属阳离子的水合物)通过水解和缩聚反应 ,生成相应的配位聚集体(可以是单聚体,也可 以是多聚体)当其浓度达到过饱和时就开始析出 晶核,最终长大成晶粒。
• 用这种方法可以合成水晶、刚玉(红宝石、蓝宝石)、绿柱
石(祖母绿、海蓝宝石)、及其它多种硅酸盐和钨酸盐等上 百种晶体。
绿柱石(铍铝硅酸盐矿物) 石榴子石(A3B2[SiO4]3 7
水热法(hydrothermal)(高压溶液法)
8
溶剂热合成方法的发展
1985年,Bindy首次在“Nature”杂志上发表文章报道了高
31
热处理反应
利用水热条件处理一般晶体
而得到具有特定性晶体的反 应。
利用水热条件下物质热
力学和动力学稳定性差 异进行的反应。
转晶反应
课件:水热法
![课件:水热法](https://img.taocdn.com/s3/m/488e979602768e9950e7386c.png)
水热法生长祖母绿的鉴别
(1)折射率、双折射率和相对密度:水热法合成祖母 绿与天然祖母绿相同。
(2)查尔斯滤色镜:通常显强红色,但也有些变色效 应较弱,如俄罗斯的呈弱红色。
水热法合成祖母绿
水热法生长红色绿柱石的鉴别 吸收光谱
合成红色绿柱石为钴(Co²+)谱与天然红色绿 柱石明显不同,即530-590nm之间几个模糊到清晰 的吸收带。而天然红色绿柱石是Mn致色,为 450nm以下和540-580nm之间的宽的吸收。
强红色荧光,滤色镜下强红色 黑色底衬下,强光照射会出现红色
如何鉴别? 4. 水热法生长宝石晶体的鉴定特征? 5. 影响水热法生长宝石晶体的因素是什么?
水热法
水热法是利用高温高压的水溶液溶解矿物质, 控制高压釜内溶液的温差产生对流和形成过 饱和状态,使溶解在溶液中的矿物质在种晶 上析出,生长成较大的晶体。 自然界热液成矿就是在一定的温度和压力下, 成矿热液中成矿物质从溶液中析出的过程。 水热法合成宝石就是模拟自然界热液成矿过 程中晶体的生长。
⑤ 面包屑状包裹体:在暗域下呈白色,形态上 与面包屑相似的包裹体,较小而且通常数量不 多。 ⑥ 尘埃状包裹体和种晶残余:尘埃状包裹体成 片地分布在无色种晶片与橙红色部分的交界面 上。
§5 水热法生长祖母绿晶体与鉴别
1960年澳大利亚人约翰.莱奇特纳首次获得 成功,后被林德公司购买了销售权
1969-1970年达高峰期,年产量2万克拉 我国1987年开始研究,1989年获得成功,
色绿柱石等其它颜色绿柱石及合成刚玉也纷纷面市。 因此,水热法合成的宝石品种有:
水热法过程机理分析-课件
![水热法过程机理分析-课件](https://img.taocdn.com/s3/m/212fd740580102020740be1e650e52ea5418ce1e.png)
水热生长体系中的晶粒形成可分为三种类型: “均匀溶液饱和析出”机制 ”溶解-结晶”机制 “原位结晶”机制
“均匀溶液饱和析出”机制
• 由于水热反应温度和体系压力的升高,溶质在 溶液中溶解度降低并达到饱和,以某种化合物结 晶态形式从溶液中析出。当采用金属盐溶液为前 驱物,随着水热反应温度和体系压力的增大,溶 质(金属阳离子的水合物)通过水解和缩聚反应, 生成相应的配位聚集体(可以是单聚体,也可以 是多聚体)当其浓度达到过饱和时就开始析出晶 核,最终长大成晶粒
水热合成法的概念
• 水热法(Hydrothermal Synthesis),是指在特制的 密闭反应器(高压釜)中,采用水溶液作为反应体 系,通过对反应体系加热、加压,创造一个相对高 温、高压的反应环境,使得通常难溶或不溶的物质 溶解,并且重结晶而进行无机合成与材料处理的一 种有效方法。
• 在水热条件下,水既作为溶剂又作为矿化剂,在 液态或气态还是传递压力的媒介,同时由于在高压 下绝大多数反应物均能部分溶解于水,从而促使反 应在液相或气相中进行。
2.微波水热合成
微波水热法是美国宾州大学的Roy R提出的。微波 水热的显著特点是可以将反应时间大大降低,反 应温度也有所下降,从而在水热过程中能以更低 的温度和更短的时间进行晶核的形成和生长,反 应温度和时间的降低,限制了产物微晶粒的进一步 长大,有利于制备超细粉体材料。
水热法制备出的粉体
• 简单的氧化物: ZrO2、Al2O3、SiO2、CrO2、 Fe2O3、MnO2等;
在高温高压下水的作用可归纳如下:
• 有时作为化学组分起化学反应; • 反应和重排的促进剂; • 起压力传递介质的作用; • 起溶剂作用; • 起低熔点物质的作用; • 提高物质的溶解度; • 有时与容器反应。
水热法合成宝石 ppt课件
![水热法合成宝石 ppt课件](https://img.taocdn.com/s3/m/9ea13d96a8114431b80dd83f.png)
b、气泡群:早期的较多,现在一般难以见到。 c、籽晶片 d、固体包裹体:呈点絮状或团絮状分布的黄金或箔
金微晶集合体,还可见白的Al(OH)3粉末,外 形似面包屑。
Hale Waihona Puke 晶体内部特征e、生长纹理和色带 锯齿状微波纹,分布在籽晶片与生长层之
间。色带不规则,多呈楔状或者条带状。 f、云烟状裂纹
等温法高压釜
3.2 摆动法
摆动法的装置由A、B两个圆筒组成,其中 A筒放置培养液,B筒放置籽晶,两筒间保持一定的 温度差。定时地摆动A、B两个圆筒以加速它们之间 的对流,利用两筒之间的温差在高压环境下生长出 晶体,此法也曾用于水晶的生长。
3.3 温差法
温差法是在立式高压釜内生产晶体,高压釜内部的 对流挡板将釜腔分成上、下两部分,籽晶挂在生长 区的培育架上,晶体在籽晶上逐步生长;对流挡板 的下部为培养料区(也称溶解区),溶解区内放人适 量的高纯度原料和矿化剂。加热,使高压釜的上、 下部分形成一定的温差。当高压釜温度超过100℃后, 由于热膨胀和大量蒸汽的形成,釜内形成气压。
b、晶面条纹: 六方双锥晶面上普遍发育有各种生长花 纹,常见的有舌状或乳滴生长丘、阶状生长台阶、格状 生长纹理和不规则生长斜纹,偶见放射纤维状条纹。
c、开裂现象: 沿籽晶面裂开或者在(22-43)晶面上 呈规则的网状开裂。
晶体内部特征
a、气液包裹体:生长过程中水的参与而形成,与天 然的极为相似,主要区别在于二者包裹体
自然界热液成矿就是在一定的温度和压力下,成矿 热液中成矿物质从溶液中析出的过程。水热法合成 宝石就是模拟自然界热液成矿过程中晶体的生长。
2.合成装置
主要装置:
高压釜 加热器 控温设备 原料、溶剂、 籽晶等
第三章水热法
![第三章水热法](https://img.taocdn.com/s3/m/c0d715e77e192279168884868762caaedc33ba5a.png)
反应时间
原料浓度可以影响反应速率和生成物的性质,进而影响材料的性能。
原料浓度
水热法的工艺流程和技术参数
03
水热法的工艺流程
选择合适的原材料,进行破碎、磨细等预处理
准备阶段
合成阶段
分离和洗涤阶段
干燥和包装阶段
将原料按一定比例混合,加入适量的水,放入高压反应釜中,在一定温度和压力下进行合成反应
反应结束后,将产物从反应釜中取出,进行分离和洗涤,得到最终产物
水热法在陶瓷行业的应用
水热法可以用来制备各种有色的金属,如铜、镍、钴等。通过水热还原反应,可以将金属氧化物还原成金属单质,并分离出来。
有色金属制备
水热法可以用来制备钢铁材料,通过将铁矿石和碳混合,再加入水蒸气,在高温高压下反应,可制备出优质的钢铁材料。
钢铁工业
水热法在冶金行业的应用
废水处理
水热法可以用来处理工业废水,通过将废水中的有害物质在密封的压力容器中加热到一定温度,并进行压力分解,可将其中的有害物质分解成无害物质,达到废水处理的目的。
材料合成
水热法可以用来合成各种无机非金属材料,如水晶、宝石等。通过控制反应条件,可以得到不同颜色、不同形状、不同光学性能的材料。
ห้องสมุดไป่ตู้
水热法在其他领域的应用
THANKS
感谢观看
水热法是合成新型功能材料和无机晶体材料的重要手段之一。例如,水热法可以合成各种类型的氧化物、硫化物、碳化物等材料,这些材料在光学、电子、催化等领域具有广泛的应用前景。
水热法的应用领域
水热法在处理环境污染和废弃物资源化方面也有广泛应用。例如,利用水热法可以将含重金属离子的废水转化为沉淀物,从而达到废水处理的目的。同时,水热法可以将废弃物资源转化为具有使用价值的材料,如将废玻璃转化为陶瓷材料等。
水热与溶剂热合成的的原理、特点与应用PPT公开课(39页)
![水热与溶剂热合成的的原理、特点与应用PPT公开课(39页)](https://img.taocdn.com/s3/m/36b8f22e58f5f61fb636663e.png)
纳米羟基磷灰石(n-HAP)的超声波辅助水热合成
配水料热程 法序制摸备索祖,母混绿料耐C搅rB酸拌e3;A碱l2[S耐i6O1腐8] 蚀性,化学稳定 性优良,缺点是热传导能力 水热法:是指在特制的密闭反应器(高压釜)中,采用水溶液作为反应体系,通过对反应体系加热加压(或自生蒸汽压),创造一个相对高温、
1、 水热与溶剂热合成的概念及原理
水热与溶剂热合成:在一定温度(100-1000℃)和压力(1-100MPa) (广义条地件)下,利用溶液中物质化学反应所进行的合成。
水热合成:在水体系中进行。 溶剂热合成:在非水(主要是有机溶剂)体系中进行。
水热法:是指在特制的密闭反应器(高压釜)中,采用水溶 液作为反应体系,通过对反应体系加热加压(或自生蒸汽 压),创造一个相对高温、高压的反应环境,使通常难溶或 不溶的物质溶解并且重结晶(或反应)而进行无机合成 与材料处理的一种有效方法。
② 特殊结构\物质价态:由于中间态、介稳 态以及特殊物相易于生成.因此能合成 特种介稳结构、特种凝聚态的新合成产 物。
③ 能够使低熔点化合物、高蒸气压且不能 在融体中生成的物质、高温分解相在水 热与溶剂热低温条件下晶化生成。
难合成物质、 降低合成温度 特种介稳结构、 特种凝聚态、 新合成产物。 低熔点化合物、 高温分解相、 高蒸气压物质
水热法制备祖母绿 CrBe3Al2[Si6O18]
水热合成的机理: 粉体晶粒的形成经
历了“溶解-结晶”2 个阶段:首先营养料在 热介质里溶解,以离子、 分子团的形式进入溶液, 利用强烈对流,将这些 离子、分子和离子团输 送并放在籽晶的生长区 (低温区)形成饱和溶液, 进而成核,形成晶粒,继 而结晶。
2 水是怎样热起来的(课件)(共27张PPT)人教鄂教版科学五年级上册
![2 水是怎样热起来的(课件)(共27张PPT)人教鄂教版科学五年级上册](https://img.taocdn.com/s3/m/2b698abbcf2f0066f5335a8102d276a20029609f.png)
04
03
拓展与应用
冬季,有的家庭用暖气取暖。暖气是怎样使整个房间变暖的?
请替换文字内容
04
02
暖气加热附近的空气,空气受热 后上升,周围冷空气补充过来,再受 热,再上升……就这样请,替换室文内字内空容 气在 不断流动的过程中逐渐变暖。
03
拓展与应用
你还知道哪些热对流现象?
02
请替换文字内容
04
请替换文字内容
科学实践
研究水的传热方式
想一想: ➢ 如何设计实验,才能观察到热的传递方式? ➢ 需要用到什么材料?
将小组的实验方案写下来,并分享
科学实践
实验一:加热烧杯内的水,观察水的变化
实验材料
02
请替换文字内容
烧杯
04
石棉网
三脚架
请替换文字内容
03
酒精灯
黑芝麻
(或木屑、纸屑)
科学实践
请替换文字内容
04
实验操作:
03
课堂巩固
1.冬天取暖的方式有很多种,其中热传递方式是热对流的是( B )。
A.热水袋取暖
B.暖风机取暖
C.晒太阳
D.生火炉取暖
2.如图,当长颈烧瓶瓶颈处的水加热到沸腾时,瓶内的鱼0依2 然在水中游动,
以下解释合理的是( D)。
A.鱼比较耐热
请替换文字内容
B.长颈烧瓶颈部的玻璃容易被加热
请替换文字内容
(热水染成红色,冷水染成蓝色)
02
实验操作: 将热水杯倒扣在冷水杯上
请替换文字内容
实验操作: 03 将冷水杯倒扣在热水杯上
科学实践
注意事项:
02
➢ 操作时,要先给上面的水杯盖上塑料片,
水热合成法
![水热合成法](https://img.taocdn.com/s3/m/4c6c882089eb172dec63b72b.png)
精选版课件ppt
11
5.3 其他应用
煤的液体化、气体化:在水热条件下,煤可以液化、气体化,产生油性状,所以 如果煤在水热条件下处理实现工业化,煤的运输,煤的有效利用,因烧煤而造成的 环境污染,将会得到较大的改变。
制作硬化体:用水热合成法能制作各种各样无机化合物硬化体,应用于建筑材 料、耐火材料。
精选版课件ppt
无机 1
1
原理
2
分类
目录
3
过程
精选版课件ppt
5
具体应用
4
与核壳结构 的关系
2
沉淀法
制备微粉
水解法 喷雾法
要得到化合物微粉,加热处理必 不可少。 而高温易造成缺陷,不能保持组 分的均匀性。
氧化还原法
冻结干燥法
水热合成法 提纯与合成双重
作用!
精选版课件ppt
3
一、原理:水热合成是什么?
• 水热法制备纳米二氧化锡微粉:纳米SnO2具有很大的比表面积,是一种很好 的气皿和湿皿材料。水热法制备纳米氧化物微粉有很多优点,如产物直接为晶 体,无需经过焙烧净化过程,因而可以减少其它方法难以避免的颗粒团聚,同 时粒度比较均匀,形态比较规则。
精选版课件ppt
10
5.2 水热法制备BaTiO3薄膜
• 反应过程的驱动力是最后可溶的前驱体或中间产物与最终产物之间的溶解度差, 即反应向吉布斯焓减小的方向进行。
精选版课件ppt
4
二、水热生长体系中的晶粒形成可分为三种类型:
➢ “均匀溶液饱和析出”机制:由于水热反应温度和体系压力的升高,溶质在溶 液中溶解度降低并达到饱和,以某种化合物结晶态形式从溶液中析出。
精选版课件ppt
水热法原理
![水热法原理](https://img.taocdn.com/s3/m/fafc7e65842458fb770bf78a6529647d27283405.png)
水热法原理水热法是19 世纪中叶地质学家模拟自然界成矿作用而开始研究的。
1900 年后科学家们建立了水热合成理论,以后又开始转向功能材料的研究。
目前用水热法已制备出百余种晶体。
水热法又称热液法,属液相化学法的范畴。
是指在密封的压力容器中,以水为溶剂,在高温高压的条件下进行的化学反应。
水热反应依据反应类型的不同可分为水热氧化、水热还原、水热沉淀、水热合成、水热水解、水热结晶等。
其中水热结晶用得最多。
在这里简单介绍一下它的原理: 水热结晶主要是溶解———再结晶机理。
首先营养料在水热介质里溶解,以离子、分子团的形式进入溶液。
利用强烈对流(釜内上下部分的温度差而在釜内溶液产生) 将这些离子、分子或离子团被输运到放有籽晶的生长区(即低温区) 形成过饱和溶液,继而结晶。
基本原理水热法是利用高温高压的水溶液使那些在大气条件下不溶或难溶的的物质溶解,或反应生成该物质的溶解产物,通过控制高压釜内溶液的温差使产生对流以形成过饱和状态而析出生长晶体的方法。
自然界热液成矿就是在一定的温度和压力下,成矿热液中成矿物质从溶液中析出的过程。
水热法合成宝石就是模拟自然界热液成矿过程中晶体的生长。
一、水热法的历史背景水热研究最早是在地质学领域开展的。
在自然界中,一个典型的水热条件就是温度高于100 ℃和压力大于1个大气压的地热水环境,自然界中众多的矿物就是在这种环境中形成的。
19世纪中期英国的地质学家Murchison首次使用“水热”一词来描述高温高压条件下的水溶液对地球内部变化的影响。
与此同时,人们相继开展了水热法的基础研究,如物理化学(相平衡、溶解度测定、矿化剂作用、反应动力学、物理缺陷等),地球化学,矿物学与岩石学(高温高压下矿物的相平衡、实验岩石学、热液活动、成岩成矿模拟、地热利用等)。
二、水热法的定义与原理水热法是在高压反应釜里的高温、高压反应环境中,采用水作为反应介质,使得通常难溶或不溶的物质溶解并发生反应来制备材料的方法。
水热法过程机理分析
![水热法过程机理分析](https://img.taocdn.com/s3/m/0db2dd6725c52cc58bd6bedb.png)
• 复合氧化物:BaFe12O19、BaZrO3、CaSiO3、 PbTiO3、LaFeO3、LaCrO3、NaZrP3O12等;
• 羟基化合物、羟基金属粉:Ca10(PO4)6(OH)2、 羟基铁、羟基镍;
• 复合材料粉体:ZrO2-C、ZrO2-CaSiO3、TiO2C、TiO2-Al2O3等。
• 图1(B) XRD 图谱的衍射角2θ为23.92 、32.76 、 38.06 、49.15 、55.00 、65.62 处出现Mn2O3 的特征峰, 各衍射角的位置(2θ)、峰强(I)及半峰宽 与编号为24 -0508 的PDF 卡片相对应, 表明煅烧 后的产物为尖晶石型方铁锰矿Mn2O3。
SEM 测试分析
• 不同煅烧温度所得Mn2O3 的SEM 图谱分析
图2 不同温度煅烧后所获产物的SEM 图谱
• 将碳酸锰粉体置于马弗炉内进行煅烧时, 首先进行 的是MnCO3 分解反应。反应先发生在颗粒的表面, 然后沿所产生的孔道, 由外至内进行。产生孔道的 原因:一是因为MnO 的密度大于MnCO3 的密度, 分解后颗粒有收缩作用;二是因为CO2 气体的逸出。 孔道有利于气体的由内向外扩散和空气中氧气的 进入, 从而促进MnCO3 颗粒的完全反应。
在高温高压下水的作用可归纳如下:
• 有时作为化学组分起化学反应; • 反应和重排的促进剂; • 起压力传递介质的作用; • 起溶剂作用; • 起低熔点物质的作用; • 提高物质的溶解度; • 有时与容器反应。
水热法的原理
• 水热法常用氧化物或者氢氧化物或凝胶体作为前 驱物,以一定的填充比进入高压釜,它们在加热 过程中溶解度随温度升高而增大,最终导致溶液 过饱和,并逐步形成更稳定的新相。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水热生长体系中的晶粒形成可分为三种类型: “均匀溶液饱和析出”机制 ”溶解-结晶”机制 “原位结晶”机制
“均匀溶液饱和析出”机制
• 由于水热反应温度和体系压力的升高,溶质在 溶液中溶解度降低并达到饱和,以某种化合物结 晶态形式从溶液中析出。当采用金属盐溶液为前 驱物,随着水热反应温度和体系压力的增大,溶 质(金属阳离子的水合物)通过水解和缩聚反应, 生成相应的配位聚集体(可以是单聚体,也可以 是多聚体)当其浓度达到过饱和时就开始析出晶 核,最终长大成晶粒
水热合成法的概念
• 水热法(Hydrothermal Synthesis),是指在特制的 密闭反应器(高压釜)中,采用水溶液作为反应体 系,通过对反应体系加热、加压,创造一个相对高 温、高压的反应环境,使得通常难溶或不溶的物质 溶解,并且重结晶而进行无机合成与材料处理的一 种有效方法。
• 在水热条件下,水既作为溶剂又作为矿化剂,在 液态或气态还是传递压力的媒介,同时由于在高压 下绝大多数反应物均能部分溶解于水,从而促使反 应在液相或气相中进行。
热力学分析
• 对于遵循“溶解_结晶机制”的晶粒形成过程, 相应 的自由能变化 ΔG′为
• 与(1)式相比,(3)式右边增加了固态前驱物溶解并以离 子形式进入水热反应介质而引起的自由能变化ΔGion , 它可表示为 ΔGion =[ kTln(ρ+1)] i′ (4)
• 混合氧化物:ZrO2-SiO2、ZrO2-HfO2、UO2ThO2 等;
• 复合氧化物:BaFe12O19、BaZrO3、CaSiO3、 PbTiO3、LaFeO3、LaCrO3、NaZrP3O12等;
• 羟基化合物、羟基金属粉:Ca10(PO4)6(OH)2、 羟基铁、羟基镍;
• 复合材料粉体:ZrO2-C、ZrO2-CaSiO3、TiO2C、TiO2-Al2O3等。
水热合成技术
• 尽管水热合成的技术优势很显著,国内外也取得了很多研 究成果,但它的缺陷也比较明显的,其中最为突出的是反 应周期长。故近年来在水热合成技术上发展了几种新技术。
Ø超临界水热合成法 Ø微波水热法
1.超临界水热合成
超临界流体(SCF)是指温度及压力都处于临界 温度和临界压力之上的流体。 在超临界状态下,物质有近于液体的溶解特性以 及气体的传递特性: Ø粘度约为普通液体的0.1~0.01; Ø扩散系数约为普通液体的10~100倍; Ø密度比常压气体大102~103倍。
水热体系下晶粒形成的热力学分析
• 对于遵循“均匀溶液饱和形成机制”的晶粒形成 过程, ΔG = ΔGunit +ΔGcryst (1)
• 相应的自由能变化ΔG 为式中ΔGunit是配位多聚体 形成而引起的自由能变化;ΔGcryst是晶粒成核和生 长引起的自由能变化.晶粒的形成速度J 可表示为
15
• 式中, ΔE 是晶核的形成功, 它由金属阳离子配位 聚集体的形成功ΔE unit和由聚集体转变为晶粒的 形成功ΔEcry st两部分构成, ΔEunit的负值即是聚 集体(生长基元)的稳定能U.生长基元稳定能越高, 晶粒形成速度越快
• 某些种类的粉体的水热法制备已实现工业化生产 :日本 Showa Denko K.K 生产的Al2O3粉, Chichibu Cement Co. Ltd生产的 ZrO2粉体和Sakai Chemical Co.Ltd生产的BaTiO3粉体,美国Cabot Corp生产的介电陶瓷粉体,日本Sakai Chem.Corp 和NEC生产的PZT粉体等。
16
“溶解-结晶”机制
• 当选用的前驱体是在常温常压下不可溶的固体 粉末、凝胶或沉淀时,在水热条件下,所谓“溶 解”是指水热反应初期,前驱物微粒之间的团聚 和联接遭到破坏,从而使微粒自身在水热介质中 溶解,以离子或离子团的形式进入溶液,进而成 核、结晶而形成晶粒;
• “结晶”是指当水热介质中溶质的浓度高于晶 粒的成核所需要的过饱和度时,体系内发生晶粒的 成核和生长,随着结晶过程的进行,介质中用于结 晶的物料浓度又变得低于前驱物的溶解度,这使得 前驱物的溶解继续进行。如此反复,只要反应时间 足够长,前驱物将完全溶解,生成相应的晶粒。
2.微波水热合成
微波水热法是美国宾州大学的Roy R提出的。微波 水热的显著特点是可以将反应时间大大降低,反 应温度也有所下降,从而在水热过程中能以更低 的温度和更短的时间进行晶核的形成和生长,反 应温度和时间的降低,限制了产物微晶粒的进一步 长大,有利于制备超细粉体材料。
水热法制备出的粉体
• 简单的氧化物: ZrO2、Al2O3、SiO2、CrO2、 Fe2O3、MnO2等;
10
在高温高压下水的作用可归纳如下:
• 有时作为化学组分起化学反应; • 反应和重排的促进剂; • 起压力传递介质的作用; • 起溶剂作用; • 起低熔点物质的作用; • 提高物质的溶解度; • 有时与容器反应。
11
水热法的原理
• 水热法常用氧化物或者氢氧化物或凝胶体作为前 驱物,以一定的填充比进入高压釜,它们在加热 过程中溶解度随温度升高而增大,最终导致溶液 过饱和,并逐步形成更稳定的新相。
水热法及其应用
水热合成法的发展
➢ 最早采用水热法制备材料的是1845年K.F. Eschafhautl以硅 酸为原料在水热条件下制备石英晶体
➢ 一些地质学家采用水热法制备得到了许多矿物,到1900年 已制备出约80种矿物,其中经鉴定确定有石英,长石,硅 灰石等
➢ 1900年以后,G.W. Morey和他的同事在华盛顿地球物理实 验室开始进行相平衡研究,建立了水热合成理论,并研究 了众多矿物系统。
• 水热法一直主要用于地球科学研究,二战以后才
逐渐用于单晶生长等材料的制备领域备超细颗粒,
无机薄膜,微孔材料等方面都得到了广泛应用。
• ➢ 1944~1960年间, 化学家致力于低
温水热合成,美
国联合碳化物林
德分公司开发了 林德A型沸石。
林德A型沸石的结构