角平分线垂直平分线及辅助线专题

合集下载

中考专题垂直平分线与角平分线

中考专题垂直平分线与角平分线

线段的垂直平分线知识要点详解1、线段垂直平分线的性质〔1〕垂直平分线性质定理:线段垂直平分线上的点这条线段两个端点的距离相等. 定理的数学表示:如图1,直线m 与线段AB 垂直相交于点D ,且AD =BD ,假设点C 在直线m 上,那么AC =BC.定理的作用:证明两条线段相等 〔2〕线段关于它的垂直平分线对称.2、线段垂直平分线性质定理的逆定理〔1〕线段垂直平分线的逆定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上. 定理的数学表示:如图2,直线m 与线段AB 垂直相交于点D ,且AD =BD ,假设AC =BC ,那么点C 在直线m 上.定理的作用:证明一个点在某线段的垂直平分线上.3、关于三角形三边垂直平分线的定理〔1〕关于三角形三边垂直平分线的定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.定理的数学表示:如图3,假设直线,,i j k 分别是△ABC 三边AB 、BC 、CA 的垂直平分线,那么直线,,i j k 相交于一点O ,且OA =OB =OC.定理的作用:证明三角形内的线段相等.〔2〕三角形三边垂直平分线的交点位置与三角形形状的关系:假设三角形是锐角三角形,那么它三边垂直平分线的交点在三角形内部;假设三角形是直角三角形,那么它三边垂直平分线的交点是其斜边的中点;假设三角形是钝角三角形,那么它三边垂直平分线的交点在三角形外部.反之,三角形三边垂直平分线的交点在三角形内部,那么该三角形是锐角三角形;三角形三边垂直平分线的交点在三角形的边上,那么该三角形是直角三角形;三角形三边垂直平分线的交点在三角形外部,那么该三角形是钝角三角形.经典例题:m图1DABCm图2DABCjik图3OBCA例1 如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,那么AC 的长等于〔 〕 A .6cm B .8cm C .10cm D .12cm 针对性练习::1)如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交BC 于点 A E ,如果△EBC 的周长是24cm ,那么BC= 2) 如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交BC 于点 E ,如果BC=8cm ,那么△EBC 的周长是如图,AB=AC,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果∠A=28度,那么∠EBC 是例2. :如下图,AB=AC ,DB=DC ,E 是AD 上一点,求证:BE=CE 。

专题、角平分线四种常见辅助线添加方法

专题、角平分线四种常见辅助线添加方法

角平分线具有两条非常重要的性质:一是对称性;二是角平分线上的点到角两边的距离相等。

对于有角平分线的辅助线的作法,一般有四种:①从角平分线上一点向两边作垂线;②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边);③做角平分线的垂线,与角两边构造等腰三角形;④过角平分线上的点做边的平行线。

方法一、在证明线段的和差倍分问题中,常用到的方法是延长法或截取法来证明,以此来构造三角形全等,延长短的线段,或在长的线段上截取一部分,使之等于短的线段。

但无论延长,还是截取都要证明线段的相等。

延长要证明延长后的线段与某条线段相等,截取要证明截取后剩下的线段与某条线段相等,进而达到所要证明的目的。

例2中,用到了角平分线,用到了做垂直,利用三线合一证明边相等,利用SAS来证明三角形全等。

此题的证明,也可以在AB上截取AE=AC,先证明△ADE≌△ADC,再利用AB=2AC,得出E 是AB的中点,再利用三线合一证明DE⊥AB,所以DC⊥AC.课后专项练习一,就是利用延长或者截取法,来证明的。

题目不难,非常基础,请同学们,认真仿照例题,认真推敲,加强练习。

方法二、角平分线上的点向角两边做垂线。

通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。

至于选取哪种方法,要结合题目图形和已知条件。

一般来说,出现角平分线,做双垂直,都是非常通用的方法。

要么过角平线上的点做角两边的垂直,要么做角平分线的垂直交两边,都是必出三角形全等。

方法三,过角平分线上的一点,做角平分线的垂线,必然交于角的两边,构造出等腰三角形。

这个方法,在很多题型中,非常实用。

专项练习三,有两个题,需要自行画图。

只要我们一个专题一个专题的突破,把基础扎实起来,那么初中几何还难吗?初中数学还难吗?方法四、过角平分想上一点,做角的另一边的平行线。

因为角平分线有两角相等,平行线则有内错角相等,则必然出现角相等,得等腰三角形。

线段的垂直平分线和角平分线专题训练及答案

线段的垂直平分线和角平分线专题训练及答案

线段的垂直平分线和角平分线专题训练及答案一、选择题(本大题共7小题,共21.0分)1.如图是一块三角形草坪,现要在草坪上建一个凉亭供大家休息.若要使凉亭到草坪三条边的距离都相等,则凉亭应建在三角形草坪()A. 三条角平分线的交点处B. 三条中线的交点处C. 三条高的交点处D. 三条边的垂直平分线的交点处2.下列说法错误的是()A. 等腰三角形底边上的高所在的直线是它的对称轴B. 等腰三角形底边上的中线所在的直线是它的对称轴C. 等腰三角形顶角的平分线所在的直线是它的对称轴D. 等腰三角形一个内角的平分线所在的直线是它的对称轴3.如图,在Rt△ABC中,∠A=90°,BD是角平分线,DE垂直平分BC,AD=3,则AC的长为()A. 9B. 5C. 4D. 3√34.如图,在△ABC中,AB的垂直平分线交BC于D,AC的垂直平分线交BC于E,∠BAC=124°,则∠DAE的度数为()A. 68°B. 62°C. 66°D. 56°5.如图,在△ABC中,CD平分∠ACB,交AB于点D,DE⊥AC于点E,若BC=2m+6,DE=m+3,则△BCD的面积为()A. 2m2−18B. 2m2+12m+18C. m2+9D. m2+6m+96.如图,P是∠BAC平分线上的点,PM⊥AB于M,PN⊥AC于N,则下列结论:①PM=PN;②AM=AN;③△APM≌△APN;④∠PAN+∠APM=90°.其中正确结论的个数是()A. 4个B. 3个C. 2个D. 1个7.如图所示,在△ABC中,AB=AC,AD是BC边上的高线,E,F是AD的三等分点,若△ABC的面积为12,则图中△BEF的面积为()A. 2B. 3C. 4D. 6二、解答题(本大题共10小题,共80.0分)8.直线OA,OB表示两条相互交叉的公路,点M,N表示两个蔬菜种植基地.现要建一个蔬菜批发市场P,要求它到两条公路的距离相等,且到两个蔬菜基地的距离也相等,请用尺规作图说明市场的位置.9.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠BAC,交BC于点D,DE⊥AB于点E.已知AB=10cm,求△DEB的周长.10.如图,已知AD是∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F,且BE=CF,试判断BD和CD的数量关系,并说明理由.11.如图,要在街道旁修建一个奶站,向居民区A,B提供牛奶.奶站应建在什么地方才能使A,B到它的距离相等?12.A,B,C这3个村庄的位置如图所示,每两个村庄之间有公路相连,村民希望共同投资建一个货运中转站,使中转站的位置到3个村庄的距离相等.请你利用尺规作图确定中转站的位置.13.如图,四边形ABCD为矩形台球桌面,现有一白球M和黑球N,应怎样去打白球M,才能使白球M撞击桌边AB后反弹击中黑球N?请你画出白球M经过的路线.14.如图,在△ABC中,AB=AC,M是BC的中点,D,E分别是AB,AC边上的点,且BD=CE.试说明MD=ME.15.如图,在Rt△ABC中,∠C=90°,BC=3.∠CAB的平分线交BC于点D,DE是AB的垂直平分线,垂足为E.(1)求∠B度数.(2)求DE的长.16.如图,已知∠ABC,射线BC上一点D.求作:等腰三角形PBD,使线段BD为等腰三角形PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等(保留作图痕迹,但不要求写作法).17.如图,在Rt△ABC中,∠ACB=90°.(1)请用直尺和圆规按下列步骤作图,保留作图痕迹:①作∠ACB的平分线,交斜边AB于点D;②过点D作AC的垂线,垂足为点E.(2)在(1)作出的图形中,若CB=4,CA=6,则DE=______.答案和解析1.【答案】A【解析】[分析]本题主要考查的是角平分线的性质在实际生活中的应用.由于凉亭到草坪三条边的距离相等,所以根据角平分线上的点到角两边的距离相等,可知是三角形三条角平分线的交点.由此即可确定凉亭位置.[详解]解:∵凉亭到草坪三条边的距离相等,∴凉亭应建在三角形草坪的三条角平分线的交点处.故选A.2.【答案】D【解析】[分析]本题考查了等腰三角形的性质,属于基础题,解题的关键是了解对称轴是一条直线,难度不大.根据等腰三角形性质分别判断后即可确定正确的选项.[详解]解:A.等腰三角形底边上的高所在的直线是对称轴,正确;B.等腰三角形底边上的中线所在的直线是对称轴,正确;C.等腰三角形顶角的平分线所在的直线是对称轴,正确;D.等腰三角形顶角的平分线所在的直线是对称轴,如果这个内角是底角,不一定是它的对称轴,错误.故选D.3.【答案】A【解析】[分析]根据角平分线性质得出AD=DE,证明Rt△ADB≌Rt△EDB(HL),得BE=AB,由DE 是BC的垂直平分线,得BC=2AB,所以∠C=30°,可得CD的长,从而得AC的长.本题考查了直角三角形的性质,线段垂直平分线的性质,角平分线性质的应用,注意:角平分线上的点到角两边的距离相等.[详解]解:∵BD是角平分线,DE⊥BC,∠A=90°,∴DE=AD=3,在Rt△ADB和Rt△EDB中,∵{AD=DEBD=BD,∴Rt△ADB≌Rt△EDB(HL),∴BE=AB,∵DE是BC的垂直平分线,∴CE=BE,∴BC=2AB,∴∠C=30°,∴CD=2DE=6,∴AC=CD+AD=6+3=9,故选:A.4.【答案】A【解析】[分析]根据三角形内角和定理求出∠B+∠C,根据线段垂直平分线的性质得到DA=DB,得到∠DAB=∠B,同理可得,∠EAC=∠C,结合图形计算,得到答案.本题考查的是线段的垂直平分线的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.[详解]解:∠B+∠C=180°−∠BAC=56°,∵AB的垂直平分线交BC于D,∴DA=DB,∴∠DAB=∠B,∵AC的垂直平分线交BC于E,∴EA=EC,∴∠EAC=∠C,∴∠DAE=∠BAC−(∠DAB+∠EAC)=124°−56°=68°.故选A.5.【答案】D【解析】[分析]过点D作DF⊥BC交CB的延长线于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据三角形面积公式列式,然后根据多项式乘多项式法则进行计算即可得解.本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质并作辅助线构造出BC边上的高线是解题的关键.[详解]解:如图,过点D作DF⊥BC交CB的延长线于F,∵CD平分∠ACB,DE⊥AC,∴DE=DF,∴△BCD的面积=12·BC·DF=12(2m+6)(m+3)=m2+6m+9.故选D.6.【答案】A【解析】[分析]利用角平分线的性质结合全等三角形的判定与性质分析得出答案.此题主要考查了角平分线的性质,全等三角形的判定与性质,正确得出△APM≌△APN 是解题关键.[详解]解:∵P是∠BAC平分线上的点,PM⊥AB于M,PN⊥AC于N,∴∠MAP=∠NAP,∠AMP=∠ANP=90°,PM=PN,故①正确在△APM和△APN中{∠MAP=∠NAP ∠AMP=∠ANP AP=AP,∴△APM≌△APN(AAS),故③正确,∴AM=AN,故②正确,∠APM=∠APN,∵∠PAN+∠APN=90°,∴∠PAN+∠APM=90°,故④正确,综上所述:正确的有4个.故选A.7.【答案】A【解析】[分析]本题考查了等腰三角形的性质及轴对称性质;利用对称发现并利用△ABD和△ACD的面积相等是正确解答本题的关键.由图,根据等腰三角形是轴对称图形知,△ABD和△ACD的面积相等,再根据点E、F,依此即可求解.是AD的三等分点,可得△BEF的面积为△ACD的面积的13[详解]解:∵在△ABC中,AB=AC,AD是BC边上的高,S△ABC=12,BC,S△ABD=6,∴BD=CD=12∵点E、F是AD的三等分点,AD,∴EF=13S△BEF=1S△ABD=2.2故选A.8.【答案】解:如图:P为所求做的点.【解析】本题考查了基本作图,理解角的平分线以及线段的垂直平分线的作图是关键.连接MN,先画出∠AOB的角平分线,然后再画出线段MN的中垂线.这两条直线的交点即为所求.9.【答案】解:∵AD平分∠BAC交BC于D,DE⊥AB,∠C=90°,∴CD=DE.又∵AD=AD,∴Rt△ACD≌△RtAED.∴AE=AC,∴△DEB的周长=DE+DB+EB=CD+DB+BE=BC+BE=AC+BE=AE+BE=AB=10cm.【解析】本题主要考查的是全等三角形的判定及性质,角平分线的性质等有关知识,由题意根据AD平分∠BAC交BC于D,DE⊥AB,∠C=90°,得到CD=DE,然后利用全等三角形的判定及性质得到AE=AC,最后利用三角形的周长公式进行求解即可.10.【答案】解:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠E=∠DFC=90°.在△BED和△DFC中,DE=DF,∠E=∠DFC,BE=CF,∴△BED≌△DFC(SAS),∴BD=CD.【解析】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即对应边、对应角相等)是解题的关键.由角平分线的性质可得DE=DF,再结合条件可证明Rt△BED≌Rt△CFD,即可求得BE=CF.11.【答案】解:连接AB,作AB的垂直平分线,与街道的交点为P,点P即为所求作的点.【解析】本题考查线段垂直平分线的性质,根据线段垂直平分线上的点到线段两端点的距离相等,可知此点P在AB的垂直平分线上即可解答,12.【答案】解:如图,【解析】此题主要考查了应用设计与作图,正确掌握线段垂直平分线的性质是解题关键.利用线段垂直平分线的性质进而得出AB,AC的垂直平分线进而得出交点,得出M即可.13.【答案】解:如图所示,作点N于AB的对称点N′,连接N′M,与AB相交于点O,连接MO,NO,就是白球路线.【解析】此题考查了轴对称作图,作点N于AB的对称点N′,连接N′M,与AB相交于点O,连接MO,NO,就是白球路线.14.【答案】证明:△ABC中,∵AB=AC,∴∠DBM=∠ECM.∵M是BC的中点,∴BM=CM.在△BDM和△CEM中,,∴△BDM≌△CEM(SAS),∴MD=ME.【解析】本题主要考察等腰三角形的性质和全等三角形的判定与性质.根据等腰三角形的性质可证∠DBM=∠ECM,可证△BDM≌△CEM,可得MD=ME,即可解题.15.【答案】解:(1)∵DE是AB的垂直平分线,∴DA=DB,∴∠B=∠DAB.∵AD平分∠CAB,∴∠CAD=∠DAB.∵∠C=90°,∴3∠CAD=90°,∴∠CAD=30°,∴∠B=30°;(2)∵AD平分∠CAB,DE⊥AB,CD⊥AC,BD,∴CD=DE=12∵BC=3,∴CD=DE=1.【解析】本题主要考查线段垂直平分线的性质,熟悉掌握是关键.(1)由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°;(2)根据角平分线的性质即可得到结论.16.【答案】解:如图,△PBD即为所求作的三角形【解析】【分析】本题考查尺规作图.根据角平分线的性质及线段垂直平分线的性质作图即可.作∠ABC的平分线与线段BD的垂直平分线交于点P,则△PBD为所求作的等腰三角形.作∠ABC的平分线与线段BD的垂直平分线交于点P,则△PBD为所求作的等腰三角形.【解答】解:∵点P到∠ABC两边的距离相等,∴点P在∠ABC的平分线上,∵线段BD为等腰△PBD的底边,∴PB=PD,∴点P在线段BD的垂直平分线上,∴点P是∠ABC的平分线与线段BD的垂直平分线的交点.17.【答案】解:(1)如图所示;(2)解:∵DC是∠ACB的平分线,∴∠BCD=∠ACD,∵DE⊥AC,BC⊥AC,∴DE//BC,∴∠EDC=∠BCD,∴∠ECD=∠EDC,∴DE=CE,∵DE//BC,∴△ADE∽△ABC,∴DEBC =AEAC,设DE=CE=x,则AE=6−x,∴x4=6−x6,解得:x=125,即DE=125,故答案为:12.5【解析】本题考查了角的平分线的性质,平行线的性质,等腰三角形的性质,相似三角形的判定和性质,基本作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.(1)以C为圆心,任意长为半径画弧,交BC,AC两点,再以这两点为圆心,大于这两点的线段的一半为半径画弧,过这两弧的交点与C在直线交AB于D即可,根据过直线外一点作已知直线的垂线的方法可作出垂线即可;(2)根据平行线的性质和角平分线的性质推出∠ECD=∠EDC,进而证得DE=CE,由DE//BC,推出△ADE∽△ABC,根据相似三角形的性质即可推得结论.。

专题训练(四) 有关线段的垂直平分线和角的平分线的四种解题方法-学习文档

专题训练(四) 有关线段的垂直平分线和角的平分线的四种解题方法-学习文档

专题训练(四) 有关线段的垂直平分线和角的平分线的四种解题方法►方法一直接根据相关性质定理解题1.如图4-ZT-1所示,在四边形ABCD中,AC,BD相交于点O,AB=BC=CD=DA.求证:AC与BD互相垂直平分.图4-ZT-1►方法二连线构造全等三角形2.如图4-ZT-2,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F.求证:DE=DF.图4-ZT-23.如图4-ZT-3,在△ABC中,AB=2AC,∠BAD=∠CAD,AD=DB.求证:CD⊥CA.图4-ZT-3►方法三作垂线段得距离4.如图4-ZT-4,在△ABC中,∠BAC的平分线AD平分底边BC.求证:AB=AC.图4-ZT-45.如图4-ZT-5,在△ABC中,∠ABC与∠ACB的平分线相交于点O,OE⊥BC于点E,△ABC的周长为12,面积为6,求OE的长.图4-ZT-56.如图4-ZT-6所示,在△ABC中,AD是△ABC的角平分线,E,F分别是AB,AC上的点,并且有∠EDF+∠EAF=180°,DG⊥AB于点G.(1)试判断DE和DF的数量关系,并说明理由;(2)若△ADF和△AED的面积分别为50和39,求△EDG的面积.图4-ZT-67.如图4-ZT-7,DA⊥AB于点A,CB⊥AB于点B,P为AB边上一点,且DP平分∠ADC,CP平分∠DCB.求证:(1)P为AB的中点;(2)DC=AD+BC.图4-ZT-78.如图4-ZT -8,D 是△ABC 的边BC 的延长线上一点,BE 平分∠ABC,CE 平分∠ACD. 求证:(1)∠BAC=2∠BEC;(2)∠CAE+∠BEC=90°.图4-ZT -8► 方法四 作线段的延长线构造全等三角形9.如图4-ZT -9,在△ABC 中,∠BAC =90°,AB =AC ,CD 垂直于∠ABC 的平分线BD 于点D ,BD 交AC 于点E.求证:BE =2CD.图4-ZT -9详解详析1.证明:∵AB =DA ,BC =CD ,∴点A ,C 在线段BD 的垂直平分线上,即AC 垂直平分BD ,同理可证得BD 垂直平分AC.∴AC 与BD 互相垂直平分.2.证明:连接AD.在△ABD 与△ACD 中,∵⎩⎨⎧AB =AC ,BD =CD ,AD =AD ,∴△ABD ≌△ACD ,∴∠BAD =∠CAD. 又∵DE ⊥AB ,DF ⊥AC ,∴DE =DF.3.[解析] 要证明CD ⊥CA ,只要使∠ACD =90°即可.由于AD =DB ,可在AB 边上取中点E ,连接DE ,由AB =2AC 及∠BAD =∠CAD ,得△ADE ≌△ADC ,从而得∠ACD =∠AED.由AD =DB 知DE 是AB 的垂直平分线,可得∠AED =90°.证明:在AB 边上取中点E ,连接DE.因为AD =DB ,E 为AB 的中点,所以ED ⊥AB.因为AB =2AC ,所以AE =12AB =AC. 在△ADE 和△ADC 中,⎩⎨⎧AE =AC ,∠DAE =∠DAC ,AD =AD ,所以△ADE ≌△ADC , 所以∠ACD =∠AED =90°,所以CD ⊥CA.4.[解析] 根据题意可知AD 是∠BAC 的平分线,可过点D 作∠BAC 两边的垂线段,根据角平分线的性质,并结合三角形的面积进行证明.证明:如图,分别过点D 作DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F.因为AD 为∠BAC 的平分线,所以DE =DF.又因为AD 平分BC ,所以BD =CD ,所以S △ABD =S △ACD .又S △ABD =12AB ·DE ,S △ACD =12AC ·DF , 所以AB·DE =AC·DF ,所以AB =AC.5.[解析] 连接OA ,过点O 作OM ⊥AC 于点M ,OF ⊥AB 于点F ,则OE =OF =OM.由S △ABC =S △AOB +S △BOC +S △AOC 可求OE 的长.解:如图,连接OA ,过点O 作OM ⊥AC 于点M ,OF ⊥AB 于点F.∵BO 平分∠ABC ,OF ⊥AB ,OE ⊥BC ,∴OF =OE.同理OE =OM.∴OF =OE =OM.∵S △ABC =S △AOB +S △BOC +S △AOC ,∴12AB ·OF +12BC ·OE +12AC ·OM =6, ∴12OE ·(BC +AB +AC)=6. 又∵△ABC 的周长为12,即BC +AB +AC =12,∴OE =1.6.解:(1)DE =DF.理由:过点D 作DN ⊥AC 于点N.∵DG ⊥AB 于点G ,∴∠EGD =∠FND =90°.∵AD 平分∠BAC ,DG ⊥AB ,DN ⊥AC ,∴DG =DN(角平分线的性质).∵∠EAF +∠EDF =180°,∴∠AED +∠AFD =360°-180°=180°.∵∠AED +∠DEG =180°,∴∠DEG =∠NFD.在△EGD 和△FND 中,⎩⎨⎧∠GED =∠DFN ,∠DGE =∠DNF ,DG =DN ,∴△EGD ≌△FND(AAS),∴DE =DF.(2)由已知易证△ADG ≌△ADN.由(1)知△EGD ≌△FND ,∴S △ADG =S △ADN ,S △EGD =S △FND ,∴S △ADE +S △EGD =S △ADF -S △EGD ,即39+S △EGD =50-S △EGD ,∴S △EGD =5.5.7.证明:(1)如图,过点P 作PE ⊥DC 于点E.∵DP 平分∠ADC ,PA ⊥AD ,PE ⊥DC ,∴PA =PE.同理PB =PE.∴PA =PB ,∴P 为AB 的中点.(2)在△ADP 与△EDP 中,∵DP 平分∠ADC ,∴∠ADP =∠EDP.又∵∠PAD =∠PED =90°,DP =DP ,∴△ADP ≌△EDP ,∴AD =ED.同理BC =EC.∵DC =DE +EC ,∴DC =AD +BC.8.证明:(1)∵∠ACD =∠BAC +∠ABC ,CE 平分∠ACD ,∴∠ECD =12∠ACD =12(∠BAC +∠ABC). ∵BE 平分∠ABC ,∴∠EBC =12∠ABC. ∴∠ECD =∠BEC +∠EBC =∠BEC +12∠ABC , ∴∠BEC +12∠ABC =12(∠BAC +∠ABC), ∴∠BEC =12∠BAC ,即∠BAC =2∠BEC. (2)过点E 作EM ⊥BD 于点M ,EN ⊥BA 支BH 的延长线于点N ,EG ⊥AC 于点G. ∵CE 平分∠ACD ,EM ⊥BD ,EG ⊥AC ,∴EG =EM.∵BE 平分∠ABC ,EM ⊥BD ,EN ⊥BA ,∴EN =EM ,∴EG =EN ,∴AE 平分∠CAN ,∴∠CAE =12∠CAN =12(180°-∠BAC), ∴∠CAE +∠BEC =12(180°-∠BAC)+12∠BAC =90°. 9.[解析] 要证BE =2CD ,想到要构造等于2CD 的线段,结合角平分线, 利用轴对称的性质把△CBD 沿BD 翻折,使BC 重叠到BA 所在的直线上,构造全等三角形,然后证明BE 和CF(2CD)所在的三角形全等.证明:如图,延长BA ,CD 交于点F.∵BD ⊥CF(已知),∴∠BDC =∠BDF =90°.∵BD 平分∠ABC(已知),∴∠1=∠2.在△BCD 和△BFD 中,⎩⎨⎧∠2=∠1(已证),BD =BD (公共边),∠BDC =∠BDF (已证),∴△BCD ≌△BFD(ASA),∴CD =FD ,即CF =2CD.∵∠5=∠4=90°,∠BDF =90°,∴∠3+∠F =90°,∠1+∠F =90°,∴∠1=∠3.在△ABE 和△ACF 中,⎩⎨⎧∠4=∠5,AB =AC ,∠1=∠3(已证),∴△ABE ≌△ACF(ASA),∴BE =CF ,∴BE =2CD.。

线段的垂直平行线与角平分线专题复习

线段的垂直平行线与角平分线专题复习

线段的垂直平行线与角平分线专题复习本文档将重点复线段的垂直平行线与角平分线的相关知识。

以下是考察这一专题的关键点:1. 垂直平行线:- 定义:两条直线垂直或平行的关系。

- 特点:垂直线的斜率相乘为-1;平行线的斜率相等。

- 判定方法:- 斜率判定法:比较两条直线的斜率。

- 截距判定法:比较两条直线的截距。

- 两组垂直线的特点:斜率之乘积为-1,截距之和为0。

2. 角平分线:- 定义:将一个角分成两个相等的角的直线。

- 特点:角平分线将角分成两个相等的角。

- 判定方法:- 角度判定法:两条角平分线互相垂直。

- 斜率判定法:两条角平分线的斜率的倒数相等。

3. 例题:以下例题旨在帮助你巩固对线段的垂直平行线与角平分线的理解:1. 两条直线的斜率分别为$k_1=2$和$k_2=-\frac{1}{2}$,判断它们的关系。

2. 有一个角,将其平分成两个相等的角。

该角的角度为$80^\circ$,求两个相等角的度数。

3. 给定两条直线的斜率,求它们的角平分线的斜率。

4. 答案:1. 两条直线的斜率分别为$k_1=2$和$k_2=-\frac{1}{2}$,根据斜率判定法可以判断它们为垂直关系。

2. 有一个角,将其平分成两个相等的角。

该角的角度为$80^\circ$,因为两个相等角角度相等,所以每个相等角的度数为$\frac{80^\circ}{2}=40^\circ$。

3. 给定两条直线的斜率$k_1$和$k_2$,根据斜率判定法,角平分线的斜率即为$\frac{\frac{k_1+k_2}{2}}{-1}$。

希望这份文档能够帮助你复习线段的垂直平行线与角平分线的专题。

如果还有其他问题,请随时提问。

角平分线四大模型总结+习题+解析(最全版)

角平分线四大模型总结+习题+解析(最全版)

⾓平分线四⼤模型总结+习题+解析(最全版)⾓平分线四⼤辅助线模型⾓平分线的性质为证明线段或⾓相等开辟了新的途径,同时也是全等三⾓形知识的延续,⼜为后⾯⾓平分线的判定定理的学习奠定了基础.涉及到⾓平分线的考点主要是性质、判定以及四⼤辅助线模型,在初⼆上期中、期末考试中都是经常考察的⽅向。

⾓平分线性质:⾓平分线上的点到⾓两边的距离相等.⾓平分线判定:到⾓的两边距离相等的点在⾓的⾓平分线上.四⼤模型1、⾓平分线+平⾏线,等腰三⾓形必出现已知:OC平分∠AOB,CD∥OB交OA于D.则△ODC为等腰三⾓形,OD=CD.2、⾓平分线+两垂线,线等全等必出现已知:OC平分∠AOB.辅助线:过点C作CD⊥OA,CE⊥OB.则CD=CE,△ODC ≌△OEC.3、⾓平分线+⼀垂线,中点全等必出现已知:OC平分∠AOB,DC垂直OC于点C.辅助线:延长DC交OB于点E.则C是DE的中点,△ODC ≌△OEC.4、⾓平分线+截长补短线,对称全等必出现已知:OC平分∠AOB,截取OE=OD,连接CD、CE.则△ODC和△OCE关于OC对称,即△ODC ≌△OEC.【核⼼考点⼀】⾓平分线的性质与判定1.(2016?张家界模拟)如图,OP 平分MON ∠,PA ON ⊥于点A ,点Q 是射线OM 上⼀个动点,若3PA =,则PQ 的最⼩值为( )A B .2C .3D .2.(2016秋?抚宁县期末)如图,在ABC ?中,AD 是它的⾓平分线,8AB cm =,6AC cm =,则:(ABD ACD S S ??= )A .3:4B .4:3C .16:9D .9:163.(2017春?崇仁县校级⽉考)如图,在ABC ?中,90ACB ∠=?,BE 平分ABC ∠,DE AB ⊥于点D ,如果3AC cm =,那么AE DE +等于( )A .2cmB .3cmC .4cmD .5cm4.(2018春?⼤东区期中)如图,在Rt ABC ?中,90C ∠=?,BD 是⾓平分线,若CD m =,2AB n =,则ABD ?的⾯积是( )A .mnB .5mnC .7mnD .6mn5.(2019秋?樊城区期末)⼩明同学在学习了全等三⾓形的相关知识后发现,只⽤两把完全相同的长⽅形直尺就可以作出⼀个⾓的平分线.如图:⼀把直尺压住射线OB ,另⼀把直尺压住射线OA 并且与第⼀把直尺交于点P ,⼩明说:“射线OP 就是BOA ∠的⾓平分线.”他这样做的依据是( )A .⾓的内部到⾓的两边的距离相等的点在⾓的平分线上B .⾓平分线上的点到这个⾓两边的距离相等C .三⾓形三条⾓平分线的交点到三条边的距离相等D .以上均不正确6.(2019秋?梁平区期末)如图,若BD AE ⊥于B ,DC AF ⊥于C ,且DB DC =,40BAC ∠=?,130ADG ∠=?,则DGF ∠=.7.(2018春?开江县期末)如图,在Rt ABC ?中,90C ∠=?,以顶点A 为圆⼼,适当长为半径画弧,分别交AB 、AC 于点M 、N ,再分别以点M 、N 为圆⼼,⼤于12MN 的长为半径画弧,两弧交于点P ,射线AP 交边BC 于点D .下列说法错误的是( ) A .CAD BAD ∠=∠B .若2CD =,则点D 到AB 的距离为2C .若30B ∠=?,则CDA CAB ∠=∠D .2ABD ACD S S ??=8.(2014秋?西城区校级期中)如图,点E 是AOB ∠的平分线上⼀点,EC OA ⊥,ED OB ⊥,垂⾜分别是C ,D .下列结论中正确的有( )(1)ED EC =;(2)OD OC =;(3)ECD EDC ∠=∠;(4)EO 平分DEC ∠;(5)OE CD ⊥;(6)直线OE 是线段CD 的垂直平分线.A .3个B .4个C .5个D .6个9.(2019春?杜尔伯特县期末)如图:在ABC ?中,90C ∠=?,AD 是BAC ∠的平分线,DE AB ⊥于E ,F 在AC 上,BD DF =,证明:(1)CF EB =.(2)2AB AF EB =+.10.(2019秋?垦利区期中)如图,ABC⊥⊥且平分BC,DE AB中,AD平分BAC∠,DG BC于E,DF AC⊥于F.(1)判断BE与CF的数量关系,并说明理由;(2)如果8AB=,6AC=,求AE、BE的长.11.(2017秋?遂宁期末)某地区要在区域S内(即COD∠内部)建⼀个超市M,如图所⽰,按照要求,超市M到两个新建的居民⼩区A,B的距离相等,到两条公路OC,OD的距离也相等.这个超市应该建在何处?(要求:尺规作图,不写作法,保留作图痕迹)【核⼼考点⼆】⾓平分线+⾓两边垂线12.(2019秋?肥城市期末)如图,//AB CD ,BP 和CP 分别平分ABC ∠和DCB ∠,AD 过点P ,且与AB 垂直,垂⾜为A ,交CD 于D ,若8AD =,则点P 到BC 的距离是.13.(2015?湖州)如图,已知在ABC ?中,CD 是AB 边上的⾼线,BE 平分ABC ∠,交CD 于点E ,5BC =,2DE =,则BCE ?的⾯积等于( )A .10B .7C .5D .414.(2010秋?涵江区期末)如图所⽰,在Rt ABC ?中,90C ∠=?,BC AC =,AD 平分BAC ∠交BC 于D ,求证:AB AC CD =+.15.(2012秋?蓬江区校级期末)如图,已知90∠=∠=?,M是BC的中点,DM平分B C∠.求证:ADC(1)AM平分DAB∠;(2)DM AM⊥.16.(2016秋?西城区校级期中)已知:如图,12∠=∠,P为BN上的⼀点,PF BC⊥于F,=,PA PC(1)求证:180∠+∠=?;PCB BAP(2)线段BF、线段BC、线段AB之间有何数量关系?写出你的猜想及证明思路.【核⼼考点三】⾓平分线+垂线17.(2017秋?和平区校级⽉考)如图.在ABC ?中,BE 是⾓平分线,AD BE ⊥,垂⾜为D ,求证:21C ∠=∠+∠.18.(2013秋?昌平区期末)已知:如图,在ABC ?中,AD 平分BAC ∠,CD AD ⊥于点D ,DCB B ∠=∠,若10AC =,6AD=,求AB 的长.19.如图所⽰,ABC ?中,ACB ABC ∠>∠,AE 平分BAC ∠,CD AE ⊥于D ,求证:ACD B ∠>∠.20.已知:如图,在ABC ?中,3ABC C ∠=∠,12∠=∠,BE AE ⊥.求证:2AC AB BE -=.21.(2019秋?下陆区期中)如图,BD 是ABC ∠的⾓平分线,AD BD ⊥,垂⾜为D ,20DAC ∠=?,38C ∠=?,则BAD ∠=.22.(2019秋?曲⾩市校级⽉考)如图,在ABC ?中,AB AC =,90BAC ∠=?,BD 平分ABC ∠交AC 于D ,过C 作CE BD ⊥交BD 延长线于E .求证:12CE BD =.23.(2019?沂源县⼀模)(1)如图(a)所⽰,BD、CE分别是ABC的外⾓平分线,过点A作AD BD⊥,AE CE⊥,垂⾜分别为D、E,连接DE,求证:1() 2DE AB BC AC=++;(2)如图(b)所⽰,BD、CE分别是ABC的内⾓平分线,其他条件不变,DE与ABC三边有怎样的数量关系?并证明这个数量关系;(3)如图(c)所⽰,BD为ABC的内⾓平分线,CE为ABC的外⾓平分线,其他条件不变,DE与ABC三边⼜有怎样的数量关系?并证明这个数量关系.24.(2017秋?夏⾢县期中)如图,在ABC ?中,ABC ∠、ACB ∠的平分线相交于F ,过F 作//DE BC ,交AB 于D ,交AC 于E ,那么下列结论:①BDF ?、CEF ?都是等腰三⾓形;②DE DB CE =+;③AD DE AE AB AC ++=+;④BF CF =.正确的有.25.(2019秋?垦利区期末)如图,平⾏四边形ABCD 中,3AB cm =,5BC cm =;,BE 平分ABC ∠,交AD 于点E ,交CD 延长线于点F ,则DE DF +的长度为.26.(2010秋?海淀区期末)如图,BD 是ABC ?的⾓平分线,//DE BC ,DE 交AB 于E ,若AB BC =,则下列结论中错误的是( )A .BD AC ⊥B .A EDA ∠=∠C .2AD BC =D .BE ED =27.如图,若BD 、CD 分别平分ABC ∠和ACB ∠,过D 作//DE AB 交BC 于E ,作//DF AC 交BC 于F ,求证:BC 的长等于DEF ?的周长.28.(2018秋?邳州市期中)如图,在四边形ABCD中,对⾓线AC平分BAD >,∠,AB AD 下列结论正确的是()A.AB AD CB CD->-B.AB AD CB CD-=-C.AB AD CB CD-<-D.AB AD-与CB CD-的⼤⼩关系不确定29.(2012?⿇城市校级模拟)在ABC∠的外⾓平分线,P是AD上的任意中,AD是BAC⼀点,试⽐较PB PC+与AB AC+的⼤⼩,并说明理由.30.(2018秋?万州区期中)已知:如图,在四边形ABCD中,AC平分BAD ∠,CE AB⊥于=+.E,且180B D∠+∠=?,求证:AE AD BE31.(2017秋?海淀区期中)如图,已知AD是BAC∠=?,C=+,31的⾓平分线,AC AB BD 求B∠的度数.32.(2019秋?平⼭县期中)如图,90∠=?,OM平分AOB∠,将直⾓三⾓板的顶点PAOB在射线OM上移动,两直⾓边分别与OA、OB相交于点C、D,问PC与PD相等吗?试说明理由.33.(2016秋?丰宁县期中)如图,在ABC ?中,100A ∠=?,40ABC ∠=?,BD 是ABC ∠的平分线,延长BD ⾄E ,使DE AD =.求证:BC AB CE =+.34.(2018秋?丰城市期中)在ABC ?中,2ACB B ∠=∠,(1)如图1,当90C ∠=?,AD 为BAC ∠的⾓平分线时,在AB 上截取AE AC =,连接DE ,求证:AB AC CD =+;(2)如图2,当90C ∠≠?,AD 为BAC ∠的⾓平分线时,线段AB 、AC 、CD ⼜有怎样的数量关系?请直接写出你的结论,不需要证明;(3)如图3,当AD 为ABC ?的外⾓平分线时,线段AB 、AC 、CD ⼜有怎样的数量关系?请写出你的猜想,并说明理由.35.(2019春?利津县期末)如图,在ABC∠平分线,AD的垂直平分线分中,AD是BAC别交AB、BC延长线于F、E.求证:(1)EAD EDA∠=∠;(2)//DF AC;(3)EAC B∠=∠.36.(2014?西城区⼆模)在ABC>,AD平分BAC∠交BC于点∠为锐⾓,AB AC,BACD.(1)如图1,若ABC是等腰直⾓三⾓形,直接写出线段AC,CD,AB之间的数量关系;(2)BC的垂直平分线交AD延长线于点E,交BC于点F.①如图2,若60∠=?,判断AC,CE,AB之间有怎样的数量关系并加以证明;ABE②如图3,若AC AB+,求BAC∠的度数.⾓平分线四⼤辅助线模型--解析⼀.⾓平分线的性质与判定(共11⼩题)1.(2016?张家界模拟)如图,OP 平分MON ∠,PA ON ⊥于点A ,点Q 是射线OM 上⼀个动点,若3PA =,则PQ 的最⼩值为( )A B .2C .3D .【分析】⾸先过点P 作PB OM ⊥于B ,由OP 平分MON ∠,PA ON ⊥,3PA =,根据⾓平分线的性质,即可求得PB 的值,⼜由垂线段最短,可求得PQ 的最⼩值.【解答】解:过点P 作PB OM ⊥于B , OP 平分MON ∠,PA ON ⊥,3PA =,3PB PA ∴==,PQ ∴的最⼩值为3.故选:C .2.(2016秋?抚宁县期末)如图,在ABC ?中,AD 是它的⾓平分线,8AB cm =,6AC cm =,则:(ABD ACD S S ??= )A .3:4B .4:3C .16:9D .9:16【分析】利⽤⾓平分线的性质,可得出ABD ?的边AB 上的⾼与ACD ?的AC 上的⾼相等,估计三⾓形的⾯积公式,即可得出ABD ?与ACD ?的⾯积之⽐等于对应边之⽐.【解答】解:AD 是ABC ?的⾓平分线,∴设ABD ?的边AB 上的⾼与ACD ?的AC 上的⾼分别为1h ,2h ,12h h ∴=,ABD ∴?与ACD ?的⾯积之⽐:8:64:3AB AC ===,故选:B .3.(2017春?崇仁县校级⽉考)如图,在ABC ?中,90ACB ∠=?,BE 平分ABC ∠,DE AB ⊥于点D ,如果3AC cm =,那么AE DE +等于( )A .2cmB .3cmC .4cmD .5cm【分析】根据⾓平分线的性质得到ED EC =,计算即可.【解答】解:BE 平分ABC ∠,DE AB ⊥,90ACB ∠=?, ED EC ∴=,3AE DE AE EC AC cm ∴+=+==,故选:B .4.(2018春?⼤东区期中)如图,在Rt ABC ?中,90C ∠=?,BD 是⾓平分线,若CD m =,2AB n =,则ABD ?的⾯积是( )A .mnB .5mnC .7mnD .6mn【分析】过点D 作DE AB ⊥于E ,根据⾓平分线上的点到⾓的两边距离相等可得DE CD =,然后根据三⾓形的⾯积公式即可得到结论.【解答】解:如图,过点D 作DE AB ⊥于E ,BD 是ABC ∠的平分线,90C ∠=?,DE CD m ∴==,ABD ∴?的⾯积122n m mn =??=,故选:A.5.(2019秋?樊城区期末)⼩明同学在学习了全等三⾓形的相关知识后发现,只⽤两把完全相同的长⽅形直尺就可以作出⼀个⾓的平分线.如图:⼀把直尺压住射线OB,另⼀把直尺压住射线OA并且与第⼀把直尺交于点P,⼩明说:“射线OP就是BOA∠的⾓平分线.”他这样做的依据是()A.⾓的内部到⾓的两边的距离相等的点在⾓的平分线上B.⾓平分线上的点到这个⾓两边的距离相等C.三⾓形三条⾓平分线的交点到三条边的距离相等D.以上均不正确【分析】过两把直尺的交点C作CE AO=,再根据⾓⊥,CF BO⊥,根据题意可得CE CF的内部到⾓的两边的距离相等的点在这个⾓的平分线上可得OP平分AOB∠;【解答】解:(1)如图所⽰:过两把直尺的交点P作PE AO⊥,⊥,PF BO两把完全相同的长⽅形直尺,PE PF∴=,∠(⾓的内部到⾓的两边的距离相等的点在这个⾓的平分线上),OP∴平分AOB故选:A.。

辅助线添置方法专题以及垂直平分线和角平分线

辅助线添置方法专题以及垂直平分线和角平分线

学科教师辅导讲义21FD E CA B3、等角对等边4、等边三角形的每个内角都等于60º5、三个内角都相等的三角形是等边三角形6、有一个内角等于60º的 等腰三角形是等边三角形二.常见辅助线添置方法训练【例1】如图1,已知AB ∥CD ,求证:∠BED =∠B +∠D .A BEC 图1 D分析:题中有平行条件,由此联想到平行线的性质,想到它所对应的图形.经对照发现,图中没有截AB 、CD 的线,所以我们要添置辅助线.方法1:延长BE 交CD 于F ,如图2所示. 方法2:延长DE 交AB 于F ,如图3所示. 方法3:连结BD ,如图4所示.方法4:过E 点任作一线交AB 于M 、交CD 于N ,如图5所示.方法5:以EB 为一边在∠BED 内部作∠BEF =∠B ,或过E 点作EF ∥AB ,如图6所示.有些几何题目条件比较分散,条件与结论难于联系,这时往往需要巧妙地添置辅助线,将条件加以集中,便于利用.【例2】如图,等腰△ABC 中,取腰AC 上一点E ,取AB 的反向延长线上的一点D ,使AE=AD ,连结DE 交BC于F .求证:DF ⊥BC .分析:方法一:利用三角形内角和定理及推论 证法1:如图1,∵AB=AC ,AE=AD , ∴∠B=∠C ,∠D=∠1=∠2.∵∠DFC=∠B+∠D ,∠DFB=∠C+∠2, ∴∠DFC=∠DFB . ∴∠DFC=90°,即DF ⊥BC .【例7】如图,已知点P 到BE 、BD 、AC 的距离恰好相等,则点P 的位置:①在∠B 的平分线上;②在∠DAC 的平分线上;③在∠ECA 的平分线上;④恰是∠B ,∠DAC ,∠ECA 三条角平分线的交点,上述结论中,正确结论的个数有( )A .1个B .2个C .3个D .4个(例7图) (例8图)【例8】如图所示,O 为△ABC 的三条角平分线的交点,∠BOC=120°,则∠A=【例9】已知:如图所示,PA ,PC 分别是△ABC 外角∠MAC ,∠NCA 的平分线,它们交于P ,PD ⊥BM 于D ,PF ⊥BN 于F ,则BP 是∠MBN 的平分线吗?说明理由.7、轨迹轨迹:符合某些条件的所有点的集合。

(完整版)全等三角形经典题型——辅助线问题

(完整版)全等三角形经典题型——辅助线问题

全等三角形问题中常见的辅助线的作法(含答案) 总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,D C BAED F CB A利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

角平分线辅助线专题练习

角平分线辅助线专题练习

角平分线专1、轴对称性:内容:角是一个轴对称图形,它的角平分线所在的直线是它的对称轴. 思路和方法:边角等根本结构:如图,2、角平分线的性质定理:注意两点⑴距离相等〔2〕一对全等三角形3、定义:带来角相等.4、补充性质:如图,在AABC中.AD平分NBAC,那么有AB: AC=BD:DC例题2:如图,在△ABC中,NA等于6(r.BE平分NABC.CD平分NACB求证:DH=EH例题3:如图1, BC>AB.BD平分NABC,且NA+/C=180O, 求证:AD=DC.:思路一:利用“角平分线的对称性〞来构造由于角是轴对称图形,角平分线是其对称轴,因此,题中假设有角平分线,一般可以利用其对称性来构成全等三角形.证法1:如图1,在BC上取BE = AB,连结DE,〈BD平分B耳佟1ZAB C, AZAB D = ZDBE, X BD=BD.AAABD^AEBD (SA S),,NA=NDBE,A D =D E,又NA+NC=1 8 0°, ZDE B+ZDEC=1 8 0°,,NC=NDEC.DE = DC,那么AD=DC. A n证法2:如图2,过A作BD的垂线分别交BC、81)于£、F, ?\连结DE,由BD平分NABC,易得4ABF/△ EBF,那么AB=B E, 1 / \BD 平分NABC,BD=BD, AAABD^AEB D(SAS ) , / \/ \,AD = ED, NBAD=NDEB.又NBAD+NC=1 8 0., B 图CZBED+ ZCED = 180°,A ZC= ZDEC,那么DE=DC, A AD=DC. g 说明:证法1,2,都可以看作将△ ABD沿角平分线BD折向BC而构成/'、、全等三角形的. / \证法3:如图3,延长BA至E,使BE=BC,连结DE, J\r)YBD 平分NABC,,NCBD=NDBE,又BD=BD, /•△CB D/aEBDA ZC=ZE, CADE,又NBA D+NC= 1 8 0(),NDAB + ND A E= 1 80°, \ AZE=ZDA E, DE=DA,那么AD=DC. R 图3C 说明:证法3是4CBD沿角平分线BD折向BA而构成全等三角形的.思路二:利用“角平分线的性质〞来构造由于角平分线上的点到角的两边的距离相等,所以根据这个性质,可以过角平分线上一点向角的两边作垂线而构成两个全等的直角三角形.证法4:如图4.从D分别作BC、BA的垂线,垂足为E、F,・.,BD平分NABC,,DE=DF,又NB AD+NC = 18O°, ZBAD+ZFAD=I 8 00, A ZFAD=Z CAFAD^AEC D〔AA S 〕,那么AD=DC.例题4:如图 5 ,在△血中, 求证:AC^CD= AB证实:在AB上截取AE二AC, 丁月〃平分NC45,,NC月氏NDAB, AD=AD, :.ACAD^AEAD9AZZ»E4=90O ,VZC=90°, AU5C,,N6=45°,,/年N BDE^X 5 °,密BE, :.AaCkg密AE+BE=AB,即AC+CI^A 13.例题5.己知:如图6,在Rt△月3.中,NG=9〔T ,沿过6点的一条直线班折会这个三角形,使.点与四边上的一点,重合,当N月满足什么条件时,点〃恰为力6中点?写出一个你认为适当的条件,并利用此条件证实 .为四中点.解:当N#30°时,点.恰为弱的中点・, Z C=90°〔〕,,N烟二6 0.〔直角三角形两锐角互余〕.又△外〔〕,,/第F/%后30°,且/£〃后NX9 0°〔全等三角形对应角相等〕,・・・N〃8斤N/〔等量代换〕.•・•用后月£〔等角对等边〕,又N 劫5=900 , 即及ZLHR,〃是月夕的中点〔三线合一〕.角平分线定理使用中的几种辅助线作法一、角平分线,构造三角形例题、如下图,在AA BC中,NAR C=3NC, AD是NBAC的平分线,BE_L AD于求证:3E」(AC-AB) 2证实:延长BE交AC于点F.由于角是轴对称图形,对称轴是角的平分线所在的直线, 所以A D为NBA C的对称轴,又由于BE_LA D于F,所以点B和点F关于AD对称,所以BE=FE=1B F.AB=AF,NABF=NAFB°2由于NABF+NFBC=NABC = 3NC,ZABF = ZAFB=ZFBC+ZC,所以ZFBC+ ZC+ZF B C=3 NC,所以NFBC=NC,所以FB=FC,所以BE=1 F C = L(AC-AF) =,(AC-AB), 2 2 2所以BE = g(AC — A8).二、一个点到角的一边的距离,过这个点作另一边的垂线段如下图,N1 = N2,P为BN上的一点,并且PD_LBC于D, AB+BC=2BDo求证:NBAP+NB C P = 180 °. 证实:经过点P作PE_LAB于点E.由于PE_L AB.PD_LBC, N1 = N2, 所以PE=PD,R t APBE 和RtZkPBC 中BP = BPPE = PD所以R t △PBETRt^PBC(HL),所以BE=BD Q由于AB+BC=2BD.BC = CD + BD,A B =B E-AE.所以AE=CDc由于PE_LAB.PD_L BC,所以NPEB = NPDB=9 0 0 .在AP AE 和RtZ^PCD 中PE = PDNPEB = ZPDCAE = DC所以APAEgR t APCD.所以NPCB=NEAP.j由于NBAP+NEAP= 180°,所以NBAP+NBCP=18O° °三、角平分线和其上面的一点,过这一点作角的两边的垂线段例题、如下图,在△ ABC中,PB、PC分别是NAB C的外角的平分线,求证:Z 1 =Z2证实:过点P作PE1AB于点E, P G ±AC于点G. PF±BC 于点F.由于P在NEBC的平分线上,PE_LAB. PH± BC,所以PE=PFo同理可证PF=PG0所以PG=PE.又PE_LAB.PGJ. AC,所以PA是NBAC的平分线,所以N1 = N2.与三角形的角平分线有关的结论的探究三角形的内角和等于18 0*三角形的外角等于和它不相邻的两个内角的和.应用以上定理和推论可以探究与三角形的角平分线有关的结论.从结论的探究过程中,希望同学们能从中得到有益的启示:在平时的数学学习中,要学会运用所学知识去探索新的结论,学会探究,从而不断地提升自己的数学发现与创新的水平,提升数学学习水平.探究一:在A48C中,NA, NB的平分线交于点P,试探究ZBPC与NA的关系?探究:由于NBPC在ABPC中,由三角形的内角和定理,有:NBPC = 180°-(ZPBC + ZPCB)而由B P, CP分别是NABC和NAC B的角平分线知:ZPBC=-ZABC, ZPCB=-ZACB2 2(\ \ 1所以ABPC = 180°- -ZABC +-ZACB = 180° -一(NA8C + ZACB) \ 2 2 7 2而在在A48C中,ZABC+ ZA = 180° - ZA所以/BPC = 180°--(180°-zS4)= 90°+-ZA2 2故有结论一:在中,NA, NB 的平分线交于点P,那么有N8PC=90°+L/A, 2探究二:在AA8C 中,BP 是NABC 的平分线,C P 是A ABC 的外角/ ACE 的平分线, 试探究:N BPC 与NA 的关系?探究:由CP 是△ A B C 的外角ZAC E 的平分线, 所以有:NBPC=NPCE-NBPC又BP 是NABC 的平分线,CP 是NAC E 的平线所以:NPBC=L Z ABC, ZPC E = -ZACE 22 所以 NBPC 二 2 2= -(ZACE-ZABC )=-ZA 2 2故有结论二:在AA8C 中,BP 是NABC 的平分线,CP 是AABC 的外角NACE 的平分线,探究三:在AA8C 中,BP, CP 分别是A ABC 的两个 外角的平分线,试探究:NBPC 与NA 的关系?探究:由于NBPC 在ABPC 中,由三角形的内角和定 理,有:NBPC = 180° -(ZPBC + ZPCB )由BP, CP 分别是A ABC 的两个外角的平分线,有:NP BC 二ZPCB=izBCF 2 2WZABC+ZCBE=18 0 °, ZAC B + ZBCF=1 8 0°,所以NA BC+ZCBE+ZACB+ZBC F=36 00所以NEBC+/FCB= 3 6 0°-(ZACB+ZABC) = 360° -(180° -zL4)= 180° + ZA所以 /BPC = 180° - l(ZEBC+ ZFCB) = 180°-1(180° + ZA )= 90(,-|zA故有结论三:在A48C 中,BP, CP 分别是A ABC 的两个外角的平分线,那么有 N8PC=900—L/A . 2线段垂直平分线的性质定理及其逆定理角平分线的性质定理及其逆定理水平测试一、选择题1.以下说法,错误的选项是(那么有:ABPC = -^A. 2AA.三角形任意两个角的平分线的交点到这个三角形的三边的距离都相等B.三角形任意两个角的平分线的交点必在第三个角的平分线上C.三角形两个角的平分线的交点到三角形的三个顶点的距离都相等D.三角形的任意两个角的平分线的交点都在三角形的内部2.假设一个三角形两边的垂直平分线的交点在第三边上,那么这个三角形是〔.〕3.如下图,在RtZXABC中,NAC8 = 90,3C的中垂线交斜边A3于.,A8 = 7.8, AAC = 3.9,那么图中有多少个角等于60.3〕A.2[ZB. 3 个C. 4 个.D. 5 个4.等腰△A8C两腰A8, AC的垂直平分线交于点.,以下各式不正确的选项是〔〕A. OA_L8CgB. OA平分N8AC*C. = O4 = 3C5.△A8C中,A8 = AC, A3的垂直平分线交AC于£〕,△A8C和△08.的周长分别是6 0 cm和38cm,那么△ ABC的腰长和底边的长分别是〔〕A. 24cm 和12cmB. 1 6 cm 和22cm C . 2 0cm 和16cm D . 22 cm 和16 cm6.将一张长方形纸片按如下图的方式折叠,BC, BD为折痕,那么NCBD的度数为〔〕A. 60°B. 75°C. 90°D. 9 5°7.假设△A8C三条角平分线的交点到三顶点的距离相等,那么该三角形一定为〔〕A.等腰三角形,但不一定是等边三角形.B.直角三角形.C.等腰直角三角形.D.等边三角形.8.如图,△ ABC中,AD为NBAC的平分线,DE±AB, DF±AC,E. F为垂足,在以下结论中:①AAD Eg4ADF;②^BDE乌ZkCDF ;③△ABDgZkACD;④AE=AF;⑤BE=CF:⑥BD二CD.其中正确结论的个数是〔〕A. UB.2<3oD. 49.产点在ZAO3的平分线上,NAO8 = 60 , OP = 10cm,那么P点到边OA , OB的距离分别是〔〕A. 5cm, 5>/3 cm B . 4cm, 5cm C. 5cm, 5cm D. 5 cm, 10 c m1 0.如图,Z^ABC中,/C=90〕BD平分NABC交AC于D, D E是AB的垂直平分线,DE二1B2 D,且DE=L5cm,那么AC等于〔〕A. 3cm°B・ 7. 5 c m C. 6cm D. 4. 5 cmC D二、填空题1.线段AB和它外一点P,假设P A=PB,那么点P在A B的;假设点P 在A B 的,那么PA=PB.2.如图,△ ABC中,E歹是A8的垂直平分线交于O, BF = 12 , C尸=3H那么AC =・A3. 如图,448c = 50" AO垂直平分线段8C于点.,NABC的平分线8石交AO于点E,连结EC,那么NAEC的度数是4.如下图,在△A3C中,NC = 90 , OE是A3的垂直平分线,AB = 2AC .3c = 18cm,那么CE的长度为,..5.在锐角三角形A8C中,NA = 60 , A3, AC两边的垂直平分线相交于点.,那么N3OC 的度数是.3.6.ZXA8C中,NC = 90 , AO平分N84C,交BC于D,假设DC = 7 ,那么.到A3的距离是•7.ZkA8C的三边长分别为3cm、4cm、5cm,假设.为△ 48C三内角平分线交点,那么点.到斜边AB的距离等于.8.如图,30平分NC8A, CO平分NAC3, MN〃8C,且过点O,假设A3 = 12, AC = 14,那么AAMN的周长是A9 .如图,3.是Z48C 的平分线,.七于E, S/版.=36m? , AB = 18cm >BC = 12cm,那么DE 的长是.1 0.如图,△ABC 中,ZC = 90 , AC = BC f AO 平分 N84c 交 BC 于.,DE LAB 于E,且AB = 10cm,那么△0E3的周长是“ »三、解做题1 .如下图,直线.4,表示两条相互交叉的公路.点何,N 表示两个蔬菜基地.现 要建立一个蔬菜批发「6场,要求它到两个基地的距离相等,并且到公路04,的距离相 等,请你作图说明此批发市场应建在什么地方?2 . 如图△ A8C 中,胡= 3C, N8 = 120°, A8的垂直平分线交AC 于.,求3 .用三角尺画角平分线:如图,NA0B 是一个任意角,在义M N 作0&0B 的垂线,交点为P,画射线0P,那么这条射线即%角平分 线.请解释这种做法的道理.你还能举出哪些作角平分线的方法, 并说明这种做法的道理.证:AO = ‘OC. 2 BA4.如下图,是△A3C的角平分线,.石_LA3,_L AC,垂足分别是E , F.求证:AO垂直平分族.四、探索题1 .如图,在△ABC中,N4 = 90 , AB = AC,是NA3C的平分线,请你猜测图中哪两条线段之和等于第三条线段,并证实你的猜测的正确性(证实你的猜测需要用题中所有的2.如下图,在等腰△ABC中,AB = AC, ZBAC = 120 .(1)请你作出两腰的垂直平分线.(2)假设A3边的垂直平分线与A8, 3c分别交于点.,E, AC边上的垂直平分线与AC, 8c分别相交于点G, F ,那么△4后是什么形状?你能证实吗?(3)连结.6, DG与BC有什么关系?(4)假设ZX7 = 5cm,试求的周长.答案:一、1 D; 2 C; 3D: 4D; 5D: 6C;7D;8 B ;9C; 10D.二、1 .垂直平分线上;垂直平分线上;2. 15; 3. 115°; 4. 12cm; 5. 120 ; 6. 7 ; 7.112c m;8. 26: 9. —cm ; 10. 10cm .三、L解:分别作ZAOB的平分线OC和线段MN的垂直平分线DE,那么射线OC与直线DE的交点、P即为批发巾场应建的地方.2.证实:连接8..A3的垂直平分线交AC于•••QA = O3又BA = BC, N8 = 120 , ZA = ZC = 30 ••• ZA = ZABD = 30 , /DBC = 90RtZXOBC中,有8.= !..,A AD = -DC.2 23.解:30M=ON, 0P=0P, A RtAOMP^RtAONP〔HL〕 , AZM0P=ZN0P,,射线OP是ZAOB 的平分线.4.证实:♦・♦4〕是△ABC的角平分线,DE-LAB,.产_LAC,二.七=./〔角平分线上的点到角的两边距离相等〕.••• NDEF = /DFE 〔等角对等边〕.: NAEZ〕 = NAEO = 90 〔垂直定义〕,••• ZAEF = ZAFE〔等角的余角相等〕.AE = AF〔等角对等边〕•••A,.在族的中垂线上〔和一条线段两个端点距离相等的点,在这条线段的垂直平分线上〕.即AO是七厂的中垂线.四、1 .解:猜测结论:A8 + A£> = 8C,过.作.E_L3C于E.•••3.平分ZA8C, ZA = 90 , :.AD = DE.:.Z\ABD 94EBD,, AB = BE.•.・ AB = AC, :. ZC = 45、:.DE = EC.:.AD = EC. AB + AD = BC.2.解:〔1〕如下图.(2)△AE/是等边三角形.证实:•・• AB = AC , ABAC = 120 , J ZB = ZC = 30 .•・• DE垂直平分线AB, :.EB = EA,:./BAE = /B = 30 , ••• AAEF = 60 .同理可证NAEE = 60.•♦•△AE尸是等边三角形.⑶由于点D、G分别是AB、AC的中点,所以DG是中位线,那么0G =L B C.2〔4〕*:AE = BE, AF = FC f的周长为:AE+EF + AF = BE+EF + FC = BC.又••♦8C = 2ZX7 = 10cm.,八4£月的周长为10cm.选做题1. AiABC中,ZB = 22.5J , ZC = 60 , A3的垂直平分线交8.于.,交AB于F, BD = 60, AE_L3C于心求反?的长.解:连结AO.月是A8的垂直平分线,••• AD = BD = 672 〔线段垂直平分线上的点到线段两个端点的距离相等〕•\ Nl = NB = 22.5 〔等边对等角〕••• N2 = N1 + N8 = 45"••• Z3 = 90 - Z2 = 90 -45° = 45 ,,Z2 = N3••• A七二.石〔等角对等边〕9:DE2+AE2=AD2〔勾股定理〕2AE2 = 〔6yj2〕29:.AE = 6.在R t/\ACE中,ZC = 60,•二Z4 = 30•♦.AC = 2CE〔30所对的直角边等于斜边的一半〕9: AC2-EC2 =AE2〔勾股定理〕A 〔2CE〕2一CE2 = AE2,•二3CE2 = AE2,:.CE2=\l y:.CE = 2y/3.2 .如图,NA = 90.. AD//BC. P 是AB的中点,P 1〕平分NADC.求证:CP平分NDCB.证实:过点P作P E _L D C,垂足于E, ,N3 = N4 = NA = 90°,•••PD平分NADC, A Z1 = Z2,,PA = PE,•・・P为AB的中点,、:• PA = PB, PE = PB,•: AD // BC, ZA = 90° ,•・・P点在NDCB的平分线上.,CP 平分NDCB.3. CE, 3尸分别是锐角三角形ABC的NAC8, NA8C的平分线,AFL3F于尸,AELC石于E,试说明:(1) EF//BC ; (2) EF = -(AB + AC-BC).提示:由于8/是角平分线,且A所,所以延长A尸交8c于N,那么有△A8V是等腰三角形,从而尸是AN的中点,且A3 = 8N,同理E是AW的中点,且AC = CM,所以EF 〃 BC,且EF = L 〔BN + CM - CB〕 = L 〔AB + AC - BC〕.2 2备用题1.如果三角形内的一点到三边的距离相等,那么这点是〔〕CA.是三条边中垂线的交点B.是三角形三条边的中线的交点C.是三角形三个内角平分线的交点D.是三角形三条边上的高的交点2.如图,ZXABC中,NC AB=120° , AB, AC的垂直平分线分别交BC于点E、F,那么NEAF等于3.如果△ABC的边3c的垂直平分线经过顶点A,与3c相交于点.,且A8 = 2AQ,那么△A8C中必有一个内角的度数为〔〕DA. 45、B. 60 *C. 90 oD. 1204 .如图,RtZkACB, NC = 90 , AO平分NC43, 于E,那么以下结论中不正确的是〔〕BA. BD+ED = BCB. DE 平分NADBC. A.平分NEOCA D. ED + AC>AD5.等腰三角形内有一点P到底边的两端点距离相等,那么连结顶点和P的直线一定把底边.垂直平分5 .如图,在Rt^ABC中,N8 = 90>,石.垂直平分AC交AC于点.,交BC于息E,已知N£AB:4AC = 2:5,求NC 的度数.解:设ZE48=2A-,那么々AC = 5x, :.ZC = ZEAC = 3x.而NC + N8AC = 90 , A5x + 3x = 90 , x = 11.25\ ZC = 33.75?6 .如下图,AO是N84c的平分线,DE±AB于E,.尸_L AC于尸,且80 = 8. 求证:BE = CF.证实:♦「A.是N84C的平分线,.石_LA3, DF A.AC ,.七=.尸.(角平分线上的点到这个角两边的距离相等)又•/ BD = CD y:. RtADBE • RtADCF(HL):.BE = CF.7.如图,在△A8C中,NC = 90 ,点.是斜边A8的中点,AB = 2BC, DE±AB交47于£求证:8E平分乙43c.E证实:是A8的中点,2•/ AB = 2BC, /. BC = -AB, :.BD = BC .2又,? DE .LAB, ZC = 90,, ZC = ZBDE = 90 ,又BE = BE, :・RtABDEMRtABCE(HL), :.NDBE = /EBC, :・BE斗分/ABC.角平分线性质定理之应用三角形的角平分线是三角形的主要线段之一,它在几何的计算或证实中,起着“桥梁〞的作用.那么如何利用三角形的角平分线解题呢?下而举例说明.一、由角平分线的性质联想两线段相等例1如图1, AB>AC, NA的平分线与BC的垂直平分线相交于D,自D作DE_LAB, DFJ_AC,垂足分别为E, F.求证:BE=CF.证实连结DB, DC.•••D在NA的平分线上,,DE=DF.••• D在BC的垂直平分线上,.・.BD=DC.又NBED=/CFD=90° ,/.RtABDE^ R tACD F , ABE=CF.二、由角平分线的轴对称性构造全等三角形例2 如图2,BC>AB, BD平分NABC,且A D二DC 求证:ZA+ZC= 1 8 0° .图1证实延长BA至F,使BF=BC.由BD平分NABC在△ F B D 与ZkCBD 中,BF=B C ZABD=Z C BD BD= B D AAFBD^ACBD,A ZC=Z F , DF=CD=AD, NF=DAF, .-.ZA + ZC=ZBAD+ZDAF=180° . 三、过角平分线上一点作一边的平行线,构成等腰三角形例3 :如图3, NABC的平分线BF与NACB的平分线CF相交于点F,过F作DE 〃BC,交AB 于D,交AC于E,求证:BD+CERE.证实:TBF是N ABC的平分线AZDBF=ZCBF 又•.•DE〃BC 万.\ZDFB=ZCBF,NDBF=NDFB,BD二FD,同理C E= F E.ABDrC E=DF+FE=DE四、实际生活中的应用例4如图4,有三条公路I>.两两相交,要选择一地点建一座加油站,是加油站到三条公路的距离相等,应如何选择建加油站的地址?这样的位置有几种选择?解析:分别作△ A 两内角的平分线,它们相交于一点,根据角图4 性质知,这个点到三条公路的距离相等:或者分别作△ A8C相邻两外角的平分线,它们的交点到三条公路的距离也相等,这样点共有三个,所以建加油站的位置共有4种选择.角平分线携“截长补短〞显精彩角的平分线具有其特有的性质,这一性质在许多问题里都有着广泛的应用.而“截长补短法〞又是解决这一类问题的一种特殊方法,利用此种方法常可使思路豁然开朗.请看几例. 例1 如图1-1,月〃〃5C,点6在线段也上,4ADF4CDE, 4DCF4 E CB.求证:CD=AD+BC.分析:结论是CD=AD-BC y可考虑用“截长补短法〞中的“截长〞,即在.〃上截取C5, 只要再证£代期即可,这就转化为证实两线段相等的问题,从而到达简化问题的目的.证实:在⑦上截取.尸二6G如图1一2在△尸CE与△屈为中,CF = CB•ZFCE = ZBCECE = CEJXFCMXBCE (SAS) , AZ2=Z1.又,:AD〃BC, :.ZADC+ZBCI^ 1 80 °,,/〃口+N C 〃品9 0° , AZ2+Z3 = 9 0° , Z 1 +Z4=9 0° , AZ3 = Z4.在与△山店中,ZFDE=ZADEDE = DEN3 = N4:AFD厘AADEgSA) , :.DF^DA,•/ CD= D F+ CF, :. CH2 BC.图1-1 B图1-2例2,如图2-1, N1 = N2,尸为民V 上一点,且尸于点〃/夕+/U2放求证:/8“斗N5C 尸=1800.分析:证两个角的和是180°,可把它们移到一起,让它们是邻补角, 后4因而此题适用“补短〞进行全等三角形的构造.证实:过点尸作PE 垂直B A 的延长线于点瓦如图2-2• ••/1 = /2,且产〃,BC,:・PE=PD,在 RtXB P E 与 RtABPD 中,PE = PDBP=BP:.RtABP 的 RtABPDim, :・BFBD.• : A 历B C=2BD, :. AB+ B D+g B 步% ;.A 济DC=BE 即 DC= B&AB =AS.在了亡△ APE 与RtXCP 〃中,PE=PD• ZPEA = ZPDCAE=DC:.RtXAP 厘Rt4CPD0&,:.N/MFN PCD又♦: NBA 用NR1£=18O° , ;♦/8AP+NBC 尸=180°例3己知:如图3-1,在△嫉中,NO2N6, Z1=Z2.求证:冷力C+ CD.分析:从结论分析,“截长〞或“补短〞都可实现问题的转化,即延 长月.至£使.48 或在月月上截取止 证实:方法一(补短法)延长力.到左 使〃RCE,那么=NC£〃 /.』ACB=24E,• :乙AC B 之4 B, :. Z5= Z F,在 4ABDW4AED 中,21 = Z2• NB = NEAD=AD:.XABDQXAED (AAS) , :.AB=AE.又 A E=AC+C 匹AC+DC, :. AB^AC^r DC. 方法二〔截长法〕在四上截取AF^A C,如图3- 3在与△?! C,中, AF = AC< Zl = Z2AD=AD:AAF 哈△ACD(SAS ) , :.DF=DC, N /尸氏N / CD. 又•: 4ACB= 2/B,:・/FD 斤4B, :.FD= FB.即证实N6c AN BD图3-2<: AB = AF〞 B=AHFD, :. A&^A&CD.上述两种方法在实际应用中,时常是互为补充,但应结合具体题目恰中选择适宜思路进行分析.让掌握学生掌握好“截长补短法〞对于更好的理解数学中的化归思想有较大的帮助.角平分线问题中的一题多解如图1 所示,在△ ABC 中,/C=2NB./ 1 =Z 2 o求证:AB=AC+C D o证法一:截取法.就是在较长的线段中截取一段与求加法运算的两条线段中的一条相等, 然后证实另一段等于加法运算的另一条线段.如图2所示,在AB上截取AE=AC,连结DE.在aAED和4ACD中AE = AC<Z1 = Z2AD = AD所以△AEDgAACD.所以ED=CD, Z3=ZC<,图2由于N3=NB+N4,NC=2NB,所以NB=N4,所以BE=DE0所以AB=AE+BE=AC+DE=AC+C D.证法二、补短法.就是在较短的一条线段的根底上通过延长在截取的方法将求和的两条线段连结在一起.本种方法是延长AC,再在延长线上截取CF=CD O如图3所示,延长AC到点F,使CF=CD,连结DF.由于C F=CD,所以N3 = NF,由于NACB=N3+NF, 所以NACB=2NF0 又由于NACB=2 NB, 所以NB=NF,在4ABD和4AFD中Z1 = Z2<NB ="AD = AD所以△ABDTZkA FD,所以AB=AF.由于AF=AC+CF=AC+CD,所以AB= A C+CDo第三种方法:也是属于补短法,本种方法是延长DC,再在延长线上截取CM=AC.证实:延长DC,在DC的延长线上截取CM=AC,连结AM.由于由于CM=CA,所以N3=NM.由于NAC B = N3 +NM, 所以NACB=2 NM=2N3,又由于N ACB=2NB,所以NB = NM=N3,所以AB=AM.由于N4=NB + N1,N D AM=N2+N3,N 1=Z2所以N4=NDAM,所以AM= DM=DC+CM=DC + AC,所以AB = DC+AC0练习:如图5所示,在AABC中,BC边的垂直平分线DF交△ B A C的外角平分线AD于点D.F为垂足.DE_L AB 于E,并且AB>AC,求证:BE-AC=AEo提示:可以将减法运算转化为加法运算,然后利用“截长〞或者“补短〞法解决问题,。

(完整版)全等三角形问题中常见的8种辅助线的作法(有答案解析)

(完整版)全等三角形问题中常见的8种辅助线的作法(有答案解析)

全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

专题05 角平分线与垂直平分线(知识点串讲)(解析版)

专题05 角平分线与垂直平分线(知识点串讲)(解析版)

专题05 角平分线与垂直平分线知识网络重难突破一、角平分线的性质角的平分线的性质:角的平分线上的点到角两边的距离相等.注意:三角形的三条角平分线交于一点,到三边的距离相等.典例1.(2021·广东八年级期中)如图,点P是ABC内一点,PD⊥BC,PE⊥AC,PF⊥AB,且PD PE PF==,则点P是()A.ABC三边垂直平分线的交点B.ABC三条角平分线的交点C.ABC三条高所在直线的交点D.ABC三条中线的交点【答案】B【分析】连接PA、PB、PC,根据角平分线的性质可知:角平分线上的点到角两边的距离相等,进而即可得到答案.【解析】解:连接PA、PB、PC.∵PD =PF ,∴PB 是∠ABC 的角平分线,同理PA 、PC 分别是∠BAC ,∠ACB 的角平分线,故P 是△ABC 角平分线交点,故选:B .【点睛】本题考查了角平分线的判定定理,能熟记角平分线判定定理是解此题的关键,注意:在角的内部,到角的两边距离相等的点在角的平分线上;角平分线上的点到角两边的距离相等.典例2.(2021·重庆江北区·巴川中学校七年级期末)如图,在△ABC 中,AC =5,AB =7,AD 平分∠BAC ,DE ⊥AC ,DE =2,则△ABC 的面积为( )A .14B .12C .10D .7【答案】B 【分析】过点D 作DF ⊥AB 于点F ,利用角平分线的性质得出2DE DF ==,将ABC 的面积表示为,ABD ADC 面积之和,分别以AB 为底,DF 为高,AC 为底,DE 为高,计算面积即可求得.【解析】过点D 作DF ⊥AB 于点F ,∵AD 平分∠BAC ,DE ⊥AC ,DF ⊥AB ,∴2DF DE ==,∴ABC ABD ACD S S S =+ 1122AB DF AC DE =+ 11725222=⨯⨯+⨯⨯ 7512=+=,故选:B .【点睛】本题考查角平分线的性质,角平分线上的点到角两边的距离相等,熟记性质作出辅助线是解题关键.二. 角平分线的判定角平分线的判定:角的内部到角两边距离相等的点在角的平分线上,通常连接角的顶点和该点就能得到角平分线.典例1.如图,ABC ∠的平分线与ACB ∠的外角平分线相交于点D ,连接AD .求证:AD 是BAC ∠的外角平分线.【答案】见解析.【分析】作DE BA ⊥交BA 的延长线于E ,DF AC ⊥于F ,DG BH ⊥于G ,根据角平分线上的点到角两边的距离相等得到DE DG =,DF DG =,继而根据角平分线的判定解题.【解析】证明:作DE BA ⊥交BA 的延长线于E ,DF AC ⊥于F ,DG BH ⊥于G ,DB 平分ABC ∠、DC 平分ACH ∠,DE DG ∴=,DF DG =,DE DF ∴=,又DE BA ⊥,DF AC ⊥,AD ∴是BAC ∠的外角平分线.【点睛】本题考查角平分线的判定与性质,是重要考点,难度较易,掌握相关知识是解题关键.三、角平分线的尺规作图角平分线的作法:①以点O 为圆心,适当长为半径画弧,交OA 于点C, 交OB 于点D ;②分别以C ,D 为圆心,大于的长为半径画弧,两弧在∠AOB 的内部交于点E ;③画射线OE ,射线OE 即为∠AOB 的平分线.注意:(2)中画弧时,半径一定要大于的长,否则两弧没有交点.典例1.(2021·宁夏石嘴山市·八年级期末)如图,在Rt ABC ∆中,90C ∠=︒,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若15AB =,ABD ∆的面积是30,则CD 的长为__________【答案】4【分析】过点D 作AB 的垂线交AB 于点E ,根据角平分线的性质可得CD DH =,再根据三角形的面积即可求出DH ,从而求出结论.【解析】解:如图,过点D 作AB 的垂线交AB 于点E ,由题意可得:AD 平分BAC ∠,∵DH AB ⊥,90C ∠=︒∴CD DH =,∵15AB =,ABD △的面积为30, ∴1302AB DH ⨯⨯=,即115302DH ⨯⨯=, ∴4DH =,∴4CD =,故答案为:4.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.典例2.(2021·山东青岛市·八年级期末)已知:如图,∠ABC 及边BC 上一点D .求作:点P ,使点P 在∠ABC 内部,点P 到∠ABC 两边的距离相等,且P 到D 点的距离最短.【答案】见解析【分析】利用基本作图,先作∠ABC 的平分线,再过D 点作角平分线的垂线得到P 点.【解析】解:如图,点P 为所作.【点睛】本题考查了作图-基本作图,熟练掌握基本作图(作已知角的角平分线;过一点作直线的垂线)是解决问题的关键.也考查了角平分线的性质和垂线段最短.四. 垂直平分线的性质1. 定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.2. 性质:线段垂直平分线上的点到线段两端点的距离相等.3. 三角形的三边的垂直平分线交于一点,该点到三个定点的距离相等典例1.(2021·四川八年级期末)如图,有A、B、C三个居民点,现要选址建一个新冠疫苗接种点方便居民接种疫苗,要求接种点到三个居民点的距离相等,接种点应建在()A.ABC的三条中线的交点处B.ABC三边的垂直平分线的交点处C.ABC三条角平分线的交点处D.ABC三条高所在直线的交点处【答案】B【分析】根据垂直平分线的性质判断即可.【解析】解:根据线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等.则接种点应建在△ABC三条边的垂直平分线的交点处.故选:B.【点睛】本题主要考查线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等;此题是一道实际应用题,做题时,可分别考虑,先满足到两个居民点的距离相等,再满足到另两个居民点的距离相等,交点即可得到.典例2.(2021·浙江八年级期末)如图,在ABC 中,,AB AC m AB ==的垂直平分线交AC 于G ,BC n =,则的BGC 周长是( )A .2mB .m n +C .m n -D .2n【答案】B 【分析】根据垂直平分线的性质得AG =BG ,AD =BD ,则利用等线段代换得到△BGC 的周长.【解析】解:∵DG 垂直平分AB ,∴AG =BG ,AD =BD ,∴△BGC 的周长=BG +CG +BC =AG +CG +BC =AC +BC =m +n ,故选B .【点睛】本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等.五. 垂直平分线的判定垂直平分线的判定:与一条线段两个端点距离相等的点在这条线段的垂直平分线上,通常要找到这样的两个点,根据“两点确定一条直线”来判定这条直线是已知直线的垂直平分线。

线段的垂直平分线、角平分线经典习题及答案

线段的垂直平分线、角平分线经典习题及答案

线段的垂直平分线、角平分线经典习题及答案由于A、B都在CD的垂直平分线上,所以直线AB是CD的垂直平分线。

证毕。

例4:解:连接EF,由于AB=AC,所以∠BAC=60°,∴∠DEG=30°,∠GFC=60°,又因为DE⊥AB,FG⊥AC,所以DEGF是一个菱形,且DG=GF=7.5cm,所以EG=2DGsin30°=7.5cm。

例5:证明:因为BD=BC,所以∠XXX∠CBD,又因为BE⊥CD,CF⊥BD,所以∠BEC=∠BCF,所以BE平分∠XXX,CF平分∠CBD,又因为∠XXX∠CBD,所以BE和CF都平分∠BCD,即BE垂直平分CD。

证毕。

例6:证明:连接OF,OE,MN,∵MN∥BC,∴∠EOF=∠ACB,又∠XXX∠EOM+∠MOF,∠XXX∠EOM+∠EOF,∴∠MOF=∠ACB-∠EOF,又因为EF是AC的角平分线,∴∠XXX∠EAF,又因为EF是AC的外角平分线,∴∠XXX∠XXX,∴∠MOF=∠ACB-∠XXX,又因为OE⊥AC,OF⊥AC,所以OE=OF,证毕。

例7:证明:连接AD,因为AD是∠A的平分线,所以∠EAD=∠FAD,又因为BD=BC,所以∠XXX∠DCB,又因为AD⊥DE,所以∠EDB=90°-∠XXX,又因为DF⊥CF,所以∠XXX°-∠DCB,所以∠EDB=∠XXX,又因为∠EAD=∠FAD,所以三角形ADE与三角形ADF全等,所以DE=DF,又因为BE⊥DE,CF⊥DF,所以BE=DEsin∠EDB=DFsin∠FDC=CF,证毕。

例4:根据题意,作AH垂直BC于点H,可以得到HC 的长度为15/2.由于△ABC是等腰三角形,所以∠ACB=∠ABC=30°。

根据正弦定理,可以求得AC的长度为5√3.由于F是AC的中点,所以FC的长度为5/2√3.根据勾股定理,可以得到CG和BE的长度都为5.因此,EG的长度也为5.例5:由于DE垂直于AB,而∠ACB=90°,所以∠BDE=∠ACB=90°。

专题06 全等模型-角平分线模型(解析版)

专题06 全等模型-角平分线模型(解析版)

专题06全等模型-角平分线模型角平分线在中考数学中都占据着重要的地位,角平分线常作为压轴题中的常考知识点,需要掌握其各类模型及相应的辅助线作法,且辅助线是大部分学生学习几何内容中的弱点,本专题就角平分线的几类全等模型作相应的总结,需学生反复掌握。

模型1.角平分线垂两边(角平分线+外垂直)【模型解读与图示】条件:如图1,OC 为AOB ∠的角平分线、CA OA ⊥于点A 时,过点C 作CA OB ⊥.结论:CA CB =、OAC ∆≌OBC ∆.图1图2常见模型1(直角三角形型)条件:如图2,在ABC ∆中,90C ∠=︒,AD 为CAB ∠的角平分线,过点D 作DE AB ⊥.结论:DC DE =、DAC ∆≌DAE ∆.(当ABC ∆是等腰直角三角形时,还有AB AC CD =+.)图3常见模型2(邻等对补型)条件:如图3,OC 是∠COB 的角平分线,AC =BC ,过点C 作CD ⊥O A 、CE ⊥OB 。

结论:①180BOA ACB ∠+∠=︒;②AD BE =;③2OA OB AD =+.例1.(2022·北京·中考真题)如图,在ABC ∆中,AD 平分,.BAC DE AB ∠⊥若2,1,AC DE ==则ACD S ∆=____.【答案】1【分析】作DF AC ⊥于点F ,由角平分线的性质推出1DF DE ==,再利用三角形面积公式求解即可.【详解】解:如图,作DF AC ⊥于点F ,∵AD 平分BAC ∠,DE AB ⊥,DF AC ⊥,∴1DF DE ==,∴1121122ACD S AC DF ∆=⋅=⨯⨯=.故答案为:1.【点睛】本题考查角平分线的性质,通过作辅助线求出三角形ACD 中AC 边的高是解题的关键.例2.(2022·山东泰安·中考真题)如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC 的平分线BP 交于点P ,若∠BPC =40°,则∠CAP =()A .40°B .45°C .50°D .60°【答案】C 【分析】根据外角与内角性质得出∠BAC 的度数,再利用角平分线的性质以及直角三角形全等的判定,得出∠CAP =∠FAP ,即可得出答案.【详解】解:延长BA ,作PN ⊥BD ,PF ⊥BA ,PM ⊥AC ,设∠PCD =x °,∵CP 平分∠ACD ,∴∠ACP =∠PCD =x °,PM =PN ,∵BP 平分∠ABC ,∴∠ABP =∠PBC ,PF =PN ,∴PF =PM ,∵∠BPC =40°,∴∠ABP =∠PBC =∠PCD ﹣∠BPC =(x ﹣40)°,∴∠BAC=∠ACD﹣∠ABC=2x°﹣(x°﹣40°)﹣(x°﹣40°)=80°,∴∠CAF=100°,在Rt△PFA和Rt△PMA中,{PA PA PM PF==,∴Rt△PFA≌Rt△PMA(HL),∴∠FAP=∠PAC=50°.故选C.【点睛】本题考查了角平分线的性质以及三角形外角的性质和直角三角全等的判定等知识,根据角平分线的性质得出PM=PN=PF是解题的关键.例3.(2023·山东·七年级专题练习)如图,∠D=∠C=90°,点E是DC的中点,AE平分∠DAB,∠DEA =28°,求∠ABE的大小.【答案】28°【分析】过点E作EF⊥AB于F,根据角平分线上的点到角的两边距离相等可得DE=EF,根据线段中点的定义可得DE=CE,然后求出CE=EF,再根据到角的两边距离相等的点在角的平分线上证明即可得出BE平分∠ABC,即可求得∠ABE的度数.【详解】如图,过点E作EF⊥AB于F,∵∠D=∠C=90°,AE平分∠DAB,∴DE=EF,∵E是DC的中点,∴DE=CE,∴CE=EF,又∵∠C=90°,∴点E在∠ABC的平分线上,∴BE平分∠ABC,又∵AD∥BC,∴∠ABC+∠BAD=180°,∴∠AEB=90°,(1)填空:角平分线的性质定理:角平分线上的点到.符号语言:∵如图1,OP 为COD ∠上的平分线,且,∴.(2)解答:已知:如图2,60AOB ∠=︒,OP 为AOB ∠的平分线,以点P 为顶点的CPD ∠与角的两边相交于点C 、D ,且120CPD ∠=︒.求证:PC PD =.(3)作图:根据以上种情况,再次寻找其它情况,点P P 为AOB ∠的平分线上的点,请你用尺规作图作PE OA ⊥于E ,作PF OB ⊥于F ,90PEC PFD PEO PFO ∴∠=∠=∠=∠=︒,OP 平分AOB ∠,PE PF ∴=,在四边形EOFP 中,60AOB ∠=︒,90PEO PFO ∠=∠=︒,36060290120EPF ∴∠=︒-︒-⨯︒=︒,120CPD ∠=︒ ,CPD EPF ∴∠=∠,CPD EPD EPF EPD ∴∠-∠=∠-∠,CPE DPF ∴∠=∠,PEC PFD ∴≅ (ASA )PC PD ∴=;(3)证明:如图2,作射线PC ,交OA 于C ,作PCN AOB ∠=∠,反向延长NP ,交OB 于D ,则PC PD =;,(4)解:如图3,当ODP ∠和OCP ∠互补时,PC PD =,理由如下:作PE OA ⊥于E ,作PF OB ⊥于F ,90PEC PFD PEO PFO ∴∠=∠=∠=∠=︒,OP 平分AOB ∠,PE PF ∴=,在四边形EOFP 中,90PEO PFO ∠=∠=︒,360290180EPF AOB ∴∠+∠=︒-⨯︒=︒,180CPD AOB ∠+∠=︒ ,CPD EPF ∴∠=∠,CPD EPD EPF EPD ∴∠-∠=∠-∠,CPE DPF ∴∠=∠,PEC PFD ∴≅ (ASA)PC PD ∴=.【点睛】本题考查全等三角形的判定,角平分线的性质等知识,解决问题的关键是熟练掌握有关基础知识.模型2.角平分线垂中间(角平分线+内垂直)【模型解读与图示】条件:如图1,OC 为AOB ∠的角平分线,AB OC ⊥,结论:△AOC ≌△BOC ,OAB ∆是等腰三角形、OC 是三线合一等。

线段的垂直平分线与角平分线专题

线段的垂直平分线与角平分线专题

线段的垂直平分线与角平分线知识要点详解1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.定理的数学表示:如图1,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若点C 在直线m 上,则AC =BC.定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称. 2、线段垂直平分线性质定理的逆定理 (1)线段垂直平分线的逆定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.定理的数学表示:如图2,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若AC =BC ,则点C 在直线m 上.定理的作用:证明一个点在某线段的垂直平分线上.例1 如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于( ) A .6cm B .8cm C .10cm D .12cm变式练习:已知:1)如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点 E ,如果△EBC 的周长是24cm ,那么BC=2) 如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点E,如果BC=8cm ,那么△EBC 的周长是3) 如图,AB=AC,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果∠A=28 度,那么∠EBC 是:例2、如图8,已知AD 是△ABC 的BC 边上的高,且∠C =2∠B ,求证:BD =AC +CD.图1图2B变式练习:1、如图,在△ABC 中,AB =AC ,∠A =120°,AB 的垂直平分线MN 分别交BC 、AB 于点M 、N . 求证:CM =2BM .2、 如图7,在△ABC 中,AC =23,AB 的垂直平分线交AB 于点D ,交BC 于点E ,△ACE 的周长为50,求BC 边的长.知识要点详解4、角平分线的性质定理:角平分线的性质定理:角平分线上的点到这个角的两边的距离相等. 定理的数学表示:如图4,已知OE 是∠AOB 的平分线,F 是OE 上一点,若CF ⊥OA 于点C ,DF ⊥OB 于点D ,则CF =DF.定理的作用:①证明两条线段相等;②用于几何作图问题; 角是一个轴对称图形,它的对称轴是角平分线所在的直线 5、角平分线性质定理的逆定理:角平分线性质定理的逆定理:在角的内部,且到角的两边距离相等的点在这个角的角平分线上.定理的数学表示:如图5,已知点P 在∠AOB 的内部,且PC ⊥OA 于C ,PD ⊥OB 于D ,若PC =PD ,则点P 在∠AOB 的平分线上.定理的作用:用于证明两个角相等或证明一条射线是一个角的角平分线 注意角平分线的性质定理与逆定理的区别和联系.例1、 已知:如图,点B 、C 在∠A 的两边上,且AB=AC ,P 为∠A 内一点,PB=PC , PE ⊥AB ,PF ⊥AC ,垂足分别是E 、F 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

角平分线垂直平分线及辅助线专题
1在ABC V 中,90C ∠=°,AD 是CAB ∠的平分线,DE AB ⊥于E ,且4BE cm =,5BD cm =则,BC =_______
2.如图,已知,AC BC AD ⊥平分,BAC DE AB ∠⊥,下列结论正确的是( )
A BD+ED=BC
B DE 平分ADB ∠
C DA 平分EDC ∠
D D
E AC AD +>
3.如图ABC V 中,90C ∠=°,AD 平分BAC ∠,交BC 于D ,若10,6BC BD ==,则点D 到AB 的距离是
4.如图所示,ABC V 中,90C ∠=°,,AC BC AD =平分CAB ∠,交BC 与点D ,DE AB ⊥垂足与E ,且6AB cm =,则DEB V 的周长为____
5.在ABC V 中,90ACB ∠=°,4,3AC BC ==,AD 平分CAB ∠,交BC 于点D ,若
DE AB
⊥,垂足为E ,求BDE V 的周长
于F,垂足为N,求EAF
的度数
10.
中,和分别是边AB和的垂直平分线,,则的周长
V V
=8
ABC DE FG AC BC EAG
11.ABC
V中,AB边的垂直平分线交BC于E,垂足为M,AC边的垂直平分线交BC于F,垂足为N,
BC=12,求EAF
V的周长
12.在ABC
,,AB的垂直平分线,与边V中,AB=AC DE
BC所在的直线相交所成锐角为50°,
ABC B
V的底角的大小为

13.在ABC
,°,

V中,AB=AC A=50
AB的垂直平分线DE交AC于
点D,垂足为E,则DBC
∠的度数是
14.如
图,在
ABC BC=8AB AB D AC
V中,,的垂直平分线交于点,交边于点
cm
,BCE
V的周长等于18cm,则AC
的长等于______
15.如图,
ABC AB=AC DE AB AB=8BC=436
V中,,是的垂直平分线,,,°,则

∠______BDC
DBC=
V的周长为_____
16.如图,AEB=AFC=90
∠∠°,交于点,,求证:平分

CF BE D BD=CD AD BAC
17.如图,CE AB
⊥于点,E BD AC
⊥于点D,BD与CE交
与点O,且BO=CO,求证O在BAC
∠的角平分线上
18.如图
所示,已知,,
CD AB BE AC
⊥⊥垂足分别为D和E,BE CD
交与点O,且AO平分BAC
∠,那么图中的全等三角
形共有____
19.如图所示,40ABC A ∠=V 中,°,点O 是ABC ACB ∠∠与平分线的交点,则BOC ∠的度数为_____
20.在,ABC E ABC ACB ∠∠V 中,是的角平分线的交点,,DE BC D ⊥垂足是,
ABC V 的周长为
16, 1.5
ED =求
ABC
V 的面积 21.如
图,ABC
V 的
三边
AB BC CA 的长分别为20,30,40,其中三条角平分线将ABD V 分为三个三角形,则::ABO
BCO CAO S S S V V V 等于
______ [垂直平分线]
22在ABC AD V 中,是BC 边上的高,E 为AB 上一点,DG 垂直平分CE ,DC=BE 求证2ABC BCE ∠=∠ 23
如图,
ABC D BC DE BC
⊥V 中,是边上的中点,交
BAC E
∠的平分线于,EF AB ⊥交AB 于点F ,EG AC ⊥交AC 于
点G,求证:BF=CG
[角平分线,截取相等线段]
24.在ABC
V中,AB=2AC,AD
平分,,
BAC AD BD CD AC
求证:
∠=⊥
25.在2,
V中,平分,求
ABC C B AD BAC AB AC CD
∠=∠∠-=
26如图,AB//CD,BE平
分ABC
∠,CE平分BCD
∠,点
E在AD上,求证:
BC=AB+CD
[角平分线+垂直平分线构造等腰三角形] 27.在ABC V 中,90BAC ∠=°,AB=AC ,BE 平分,ABC ∠与AC 交与D ,,CE BE ⊥求证12CE BD =
28.已知AD 平
分,BAC BD AD ∠⊥于D ,DE//AC ,36BAD ∠=°,求BDE ∠ 29.如图,,BAD DAC AB AC CD AD D ∠=∠>⊥于,H 是BC 中点,求证:1()2
DH AB AC =-
30如图AB=AC,90
∠=°AD为ABC CE BE
BAC
的平分线,求
∠⊥
证2
=
BD CE
31.已知,53
V中,,,D是BC中点,AE是
==
ABC AB AC
⊥于E,连接DE,求DE ∠的平分线,且CE AE
BAC
[角平分线,向两边作垂直] 32.如图,已知AB〉AD,
,,180BAC FAC CD BC ADC B ∠=∠=∠+∠=求证:°
33.如图,在90ABC A ∠=V 中,°,AB=AC ,ABD CBD ∠=∠求证:BC=AB+AD
34.已知ABC V 的角平分线BM CN 相交于点P ,求证:BAC ∠的平分线也过点P
35.如图,在正方形ABCD 中,E 为CD 的中点,F 为BC 上的点,EAF DAE ∠=∠求:AF=AD+CF
[角平分线+平行线]
36.如图,BC 〉BA ,BD 平分ABC ∠,且AD=CD ,求证180A C ∠+∠=°
37.如图,AB 〉AC ,
,CAD BAD AB AC BD CD ∠=∠->-求证。

相关文档
最新文档