固体电子学 第四章 半导体中的载流子

合集下载

半导体纳米颗粒载流子的超快弛豫过程

半导体纳米颗粒载流子的超快弛豫过程

华南师范人学硕:}学位论文半导体纳米颗粒载流子的超快弛豫过程摘要半导体纳米材料具有大的非线性系数及超快的光学响应速度,使其有可能成为制作未来高速信息技术器件最理想的材料。

特别是其所具有的超快响应特性,有可能突破现有电子器件的响应速度限制,从而使信息处理的速度产生质的飞跃。

近年来,围绕着半导体纳米材料超快响应特性,学者们作了大量的实验和理论工作,对超快响应的机制作了深入的研究。

针对现有研究现状中存在的问题,本文对半导体纳米材料的超快响应特性作了一些理论的探讨,主要工作有:1.简单介绍了纳米材料的主要特性和物理理论,然后对常用的实验方法进行了说明。

2.建立了载流子弛豫过程的模型。

通过分析量子限制效应及表面效应,总结了半导体纳米颗粒的能级结构,结合载流子的弛豫特征,发现载流子的弛豫过程可用电子速率方程来描述。

3.运用数值模拟方法讨论了激发密度、表面态密度及俘获态电子的弛豫率对弛豫过程的影响。

讨论结果表明,激发密度的增大及表面态的减少都会导致表面态上电子的饱和,使导带上出现电子的积累,导带电子寿命增大;深俘获态电子的弛豫是影响材料响应速度的主要因素。

最后应用此模型对近红外泵浦探测实验的结果进行分析,表明模型可望在实验结果分析上得到应用。

关键词:半导体纳米颗粒;超快载流子弛豫;速率方程;泵浦探测华南师范人学硕一lj学位论义UltrafastrelaxationprocessofphotoexcitedchargecarriersinsemiconductornanoparticlesAbstractSemiconductornanomal:erialhas1argernonlineareffectandultrafastrespondedspeed,makeitthemostpotentialmaterialforthedevicesofhighspeedinformationprocessing.Especially,theultrafastrespondedspeedmakeithastheinformationpotentialtobreakthelimitedofelectronicdevices.makeultrafastprocessingbecomepossible.Recently,alotofwork,includingtheoryanalyzingandexperimentresearching,hasbeendonetorevealthemechanismofultrafastrespond.Thisthesispresentsometheorydiscussonultrafastresponse.1.Weintroducethemainpropertyandtheoryofthenanomaterialbriefly,andthananalysissomecommentexperimenttechnologyusedinultrafaststudy.2.Basiconthequantumrestricteffectandsurfaceeffecttheory,theelectronicstructureofsemiconductornanoparticleiSmodeled,andtheultrafastrelaxationprocessofphotoexcitedchargecarriersinsemiconductornanoparticlesisdescriptedbyrateequation.3.Then,severalparameters,thatwouldaffectthisprocess,arediscussed.Theresultshowsthat.withtheincreasingofexcitedintensityorthedecreasingofsurfacestatedensity,theelectronsaturationofthesurfacestatewouldcausestheelectronbuild.upofconductionstateandleadstoa10ngerlifetime;therelaxationofdeeptrappedelectronsisthemainlimitofresponsetimefornanoparticles.Atlast,thismodelisusedtoanalyzepump-probeexperiment,showingpotentialuseinexperimentalanalysis.Keywords:Semiconductornanoparticle;ultrafastcarrierrelaxation;rateequation;pump-probe华南师范大学硕十学位论文摘要…………………ABSTRACT……………第一章绪论fI[1lllllllIllllllll[IIY1767963目录……………………………………………………………………………..11.1纳米材料的物理理论……………………………………………………………………………lJ.J.J么锅-(Kubo)厘趁…………………………………………………………………2工J.2j孽子尼矿窟毛厘乒………………………………………………………………………………2J.I.4么弛玩璃《=应…………………………………………………………………………………………………………….41.1.s宏鞠量子碰道效应…………………………………………………………………5LL6房乏将蝴鸯矛黪妒裁应…………………………………………………………………,J.J.7刃·詹厥嗨易5邑痘……………………………………………………………………………………………………..61.2半导体纳米晶……………………………………………………………………………………61.3论文主要研究内容………………………………………………………………………………8第二章超快动力学实验方法92.1超短脉冲激光发展回顾…………………………………………………………………………92.1.J锸揪老器………………………………………………………………………….,,2.L2筠哦纭≯乒敬右…………………………………………………………………………….122.L3攒锗泼长:扬震………………………………………………………………………………门2.2瞬态吸收(泵浦一探测)………………………………………………………………………一132.3瞬态荧光…………………………………………………………………………………………152.2.1.龙兕亡黝Z连术…………………………………………………………………………………….Jjzzzy当学哀匆,了芘希……………………………………………………………………………J82.3四波混频技术…………………………………………………………………………………202.4z一扫描技术(Z--SCAN)…………………………………………………………………。

半导体中载流子的扩散

半导体中载流子的扩散

半导体中载流子的扩散一、引言半导体材料是当今电子技术的基础,它的特性在很大程度上决定了电子元器件的性能。

其中,载流子的扩散是半导体中最基本的物理过程之一。

本文将从半导体材料的基本概念入手,介绍载流子扩散现象及其影响因素。

二、半导体材料基本概念1. 半导体定义半导体是指在温度为常温时,其电阻率介于金属和非金属之间。

它具有不同于金属和非金属的特殊电学性质:在外加电场或光照作用下,其导电性能会发生变化。

2. 半导体掺杂为了改变半导体的电学性质,通常会进行掺杂处理。

掺杂是指向纯净半导体中加入一定量的杂质原子,以改变其晶格结构和电学特性。

掺杂分为n型和p型两种。

3. 能带结构能带结构是描述固体中能量分布情况的模型。

对于半导体而言,它包括价带和导带两个部分。

价带是指最高能级的电子轨道,它通常被填满;导带是指次高能级的电子轨道,它通常是空的。

半导体中的载流子就是在价带和导带之间跃迁而产生的。

三、载流子扩散现象1. 载流子扩散定义载流子扩散是指在半导体中,由于浓度差异或浓度梯度,使得自由电子或空穴向低浓度区域移动的过程。

这个过程是热力学平衡下自发进行的。

2. 扩散系数扩散系数(Diffusion Coefficient)是衡量载流子扩散速率的物理量。

它与温度、掺杂浓度等因素有关。

一般来说,掺杂浓度越高,扩散系数越大;温度越高,扩散系数越大。

3. 扩散方程载流子扩散可以用Fick定律描述:$$ J=-D\frac{\partial n}{\partial x} $$其中J为载流子密度,D为扩散系数,n为载流子浓度。

四、影响因素1. 温度温度对半导体中载流子扩散速率有着重要影响。

随着温度升高,半导体材料中的原子振动加剧,扩散系数也会随之增大。

2. 掺杂浓度掺杂浓度越高,载流子扩散速率越快。

这是因为掺杂原子会产生电子或空穴,从而增加载流子密度。

3. 电场强度外加电场可以影响载流子的移动方向和速率。

当电场强度较小时,它对扩散速率的影响可以忽略不计;但当电场强度较大时,它会抑制或促进载流子扩散。

物理学中的半导体和导电性

物理学中的半导体和导电性

物理学中的半导体和导电性半导体和导电性是物理学中的重要概念,涉及到固体物理学、量子力学等多个领域。

本文将详细介绍半导体的基本性质、分类以及导电性的相关原理。

半导体的基本性质半导体是一种电导率介于导体和绝缘体之间的材料。

在晶体结构中,半导体的原子排列有序,形成了周期性的势场。

由于量子力学原理,半导体中的电子受到原子核和晶格振动的束缚,只能在一定的能量范围内运动。

这些电子被称为价带电子,而空余的能级称为导带。

在室温下,价带电子受到热激发,部分会跃迁到导带,留下相同数量的空穴。

半导体的分类根据半导体中价带电子和空穴的数量,可以将其分为两类:n型半导体和p型半导体。

在n型半导体中,价带电子数量多于空穴数量,因此电子是主要的载流子。

而在p型半导体中,空穴数量多于价带电子数量,空穴是主要的载流子。

此外,通过在n型和p型半导体之间形成PN结,可以实现半导体器件的制作。

导电性原理半导体的导电性主要取决于载流子的运动。

在应用外部电场的作用下,载流子会受到电场力的作用,发生迁移。

半导体中的载流子分为电子和空穴,它们在电场力作用下,分别向相反方向迁移。

这种现象称为漂移现象。

随着电场的增强,漂移电流也随之增大,从而实现了半导体材料的导电性。

半导体器件半导体器件是利用半导体的特殊性质制作的各种电子器件。

常见的半导体器件包括二极管、晶体管、集成电路等。

这些器件在电子设备中发挥着重要的作用,如整流、放大、开关等。

半导体和导电性是物理学中的重要概念。

本文从半导体的基本性质、分类、导电性原理以及半导体器件等方面进行了详细的介绍。

希望这篇文章能帮助您更好地理解半导体和导电性的相关知识。

## 例题1:解释n型和p型半导体中的载流子分别是什么?解题方法:回顾半导体的基本性质部分,n型半导体中的载流子是价带电子,而p型半导体中的载流子是空穴。

例题2:说明PN结的形成过程。

解题方法:结合半导体分类部分,描述n型和p型半导体接触时,由于载流子数量的差异,形成的PN结。

《半导体物理学》课程教学大纲

《半导体物理学》课程教学大纲

《半导体物理学》课程教案大纲一、课程说明(一)课程名称:《半导体物理学》所属专业:物理学(电子材料和器件工程方向)课程性质:专业课学分:学分(二)课程简介、目标与任务:《半导体物理学》是物理学专业(电子材料和器件工程方向)本科生的一门必修课程。

通过学习本课程,使学生掌握半导体物理学中的基本概念、基本理论和基本规律,培养学生分析和应用半导体各种物理效应解决实际问题的能力,同时为后继课程的学习奠定基础。

本课程的任务是从微观上解释发生在半导体中的宏观物理现象,研究并揭示微观机理;重点学习半导体中的电子状态及载流子的统计分布规律,学习半导体中载流子的输运理论及相关规律;学习载流子在输运过程中所发生的宏观物理现象;学习半导体的基本结构及其表面、界面问题。

(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接:本课程的先修课程包括热力学与统计物理学、量子力学和固体物理学,学生应掌握这些先修课程中必要的知识。

通过本课程的学习为后继《半导体器件》、《晶体管原理》等课程的学习奠定基础。

(四)教材与主要参考书:[]刘恩科,朱秉升,罗晋生. 半导体物理学(第版)[]. 北京:电子工业出版社. .[]黄昆,谢希德. 半导体物理学[]. 北京:科学出版社. .[]叶良修.半导体物理学(第版)[]. 上册. 北京:高等教育出版社. .[]. . , ( .), , , .二、课程内容与安排第一章半导体中的电子状态第一节半导体的晶格结构和结合性质第二节半导体中的电子状态和能带第三节半导体中电子的运动有效质量第四节本征半导体的导电机构空穴第五节回旋共振第六节硅和锗的能带结构第七节族化合物半导体的能带结构第八节族化合物半导体的能带结构第九节合金的能带第十节宽禁带半导体材料(一)教案方法与学时分配课堂讲授,大约学时。

限于学时,第节可不讲授,学生可自学。

(二)内容及基本要求本章将先修课程《固体物理学》中所学的晶体结构、单电子近似和能带的知识应用到半导体中,要求深入理解并重点掌握半导体中的电子状态(导带、价带、禁带及其宽度);掌握有效质量、空穴的概念以及硅和砷化镓的能带结构;了解回旋共振实验的目的、意义和原理。

半导体物理学中载流子的输运特性分析

半导体物理学中载流子的输运特性分析

半导体物理学中载流子的输运特性分析半导体物理学是研究半导体材料中电荷载流子的性质和运动的学科。

对于这些半导体材料电流输送特性的研究,对于现代电子设备和信息技术的发展起着至关重要的作用。

本文将探讨半导体物理学中载流子的输运特性分析。

一、载流子的定义和类型在半导体物理学中,载流子是指携带电荷的粒子,它们在半导体材料中负责电流的输送。

根据带电荷性质的不同,载流子分为正电荷的空穴和负电荷的电子。

空穴是电子跳出离子晶格位置后在其原处留下的带正电荷的空位,而电子则是负电荷的粒子。

二、载流子的产生和输运载流子的产生主要通过固体材料的激发过程来实现。

当外界施加电场、光照或温度变化等激励时,电子会从价带跃迁到导带形成电子-空穴对。

这些电子和空穴会受到电场力的作用向着电场方向运动,从而形成了电流。

在半导体中,电子由于能级差距小,其导电性能强于绝缘体材料。

三、载流子的输运特性在半导体材料中,载流子的输运特性决定了材料的电导率和电流的传输效率。

其中,电流主要通过两种方式传输:漂移和扩散。

1. 漂移:漂移是指由于外加电场的作用,携带电荷的载流子在晶体中受到电场力的驱动而移动。

漂移速度与电场强度成正比,与载流子迁移率成正比。

而载流子的迁移率受到材料中杂质、晶格缺陷等因素的影响。

因此,提高半导体材料的纯度和结晶度可以提高载流子的迁移率,进而提高电导率。

2. 扩散:扩散是指由于载流子浓度差异引起的材料中的载流子传输。

当载流子浓度不均匀时,通过自由运动的载流子将会发生扩散,以实现浓度均匀分布。

扩散速度与浓度梯度成正比,与扩散系数成正比。

扩散系数受到温度、材料的缺陷和掺杂等因素的影响。

四、载流子输运的限制因素在实际的半导体器件中,载流子的输运过程会受到一些因素的限制,主要包括散射、载流子密度限制和表面反射等。

1. 散射:散射是指载流子在晶体中与杂质、晶格缺陷或声子等相互作用后改变原始运动状态的过程。

散射会使得载流子的迁移率降低,影响载流子的输运效率。

半导体材料中的能带结构和载流子输运机制

半导体材料中的能带结构和载流子输运机制

半导体材料中的能带结构和载流子输运机制半导体材料在现代科技中扮演着至关重要的角色,广泛应用于电子器件、光电子器件等领域。

要理解半导体材料的性质和性能,我们需要研究半导体材料中的能带结构和载流子输运机制。

一、能带结构能带结构是描述物质中电子能级分布的一种模型。

对于半导体材料来说,能带结构由价带和导带组成。

1. 价带:价带是能量较低的带,其中填满了电子。

在固体中,原子间的电子交互作用使得原子能级分裂成离散的能带,在固体中表现为连续的能量带。

价带中的电子处于较稳定的状态,不易被激发到导带。

2. 导带:导带是能量较高的带,其中没有电子。

当外界能量作用于原子或者晶格时,电子可获得足够的能量从价带跃迁到导带。

导带中的电子具有较高的能量,容易参与导电过程。

半导体的能带结构与金属和绝缘体有所不同。

金属中,价带与导带重叠,使得电子能够自由移动,导电性能好;而绝缘体中,价带与导带之间存在较大的能隙,电子能量不足以跃迁到导带,因此其导电性能很差。

半导体的能带结构介于金属和绝缘体之间,存在较小的能隙,能够通过适当的能量激发将电子从价带跃迁到导带,从而实现电子的导电。

二、载流子输运机制载流子是指电子和空穴,它们是半导体材料中的导电粒子。

载流子的输运过程影响着半导体材料的导电性能。

1. 电子输运:电子由外界电场驱动,从一个位置向另一个位置移动。

在半导体中,电子的输运通常分为漂移和扩散两种情况。

漂移是指电场作用下,电子沿着电场方向移动,与杂质或晶格碰撞,导致速度减小;扩散是指电子在浓度梯度作用下,从高浓度区域向低浓度区域扩散。

电子输运的基本原理可以用经典电动力学和半导体物理学中的牛顿第二定律和欧姆定律描述。

2. 空穴输运:空穴是电子跃迁到导带中留下的一个“空位”,在半导体材料中的移动过程也被称为空穴的输运。

空穴的运动类似于正电荷的运动。

当外界电场作用于半导体材料时,空穴会受到电场力的驱动,从一个位置移动到另一个位置。

空穴的输运过程中,同样存在漂移和扩散两种情况。

固体电子器件SolidStateElectronicDevices

固体电子器件SolidStateElectronicDevices

加 工 液 晶 显 示器
多晶
在小区域内 完全有序
多 晶 硅 -太阳能电池
单晶
整个晶体中 排列有序
单 晶 硅 -电 子 器件
集成电路制造
2 晶体结构
( 1) 晶 体 的 共性
①均匀性; ④ 多 面 体 外 形;
②各向异性; ⑤对称性;
③熔点固定; ⑥衍射性。
2 晶体结构
(2)硅的结构和特性
+4 +4
锗 、 硅 和 砷 化镓能 带结构 的简约 布里渊 图示。
导体 < 10-3
半导体 10-3~109
绝缘体 >109
1绪论
(1)导电性

温 度 可 以 显 著改变 半导体 导电能 力;

微 量 杂 质 可 以显著 改变半 导体导 电能力 ;
➢ 光 照 、 磁 场 、电场 等外界 因素也 可显著 改变半 导体的 导电能 力; ➢ 电 子 和 空 穴 晶体结构
4 半 导 体 中 杂 质和 缺陷能 级 5 载流子
3 半 导 体 中 的 电子 状态
6 载流子的浓度
7 载流子的输运
1绪论
什么是半导体?
( 1) 导 电 性
➢ 电 阻 率 介 于 导体与 绝缘体 之间;
表 1 导体、半导体和绝缘体的电阻率范围
材料 电阻率ρ(Ωcm)
+4 +4
2 晶体结构
(3)晶向和晶面
2 晶体结构
(4) 硅片鉴别方法
[110]
第一篇 半导体物理基础
1绪 论 2 晶体结构
4 半 导 体 中 杂 质和 缺陷能 级 5 载流子
3 半 导 体 中 的 电子 状态
6 载流子的浓度

半导体物理载流子散射及其对迁移率的影响

半导体物理载流子散射及其对迁移率的影响

1016
1017
1018
1019
1020
多子和少子的区别:同一掺杂浓度下,p型Si中的电子比n 型Si中的电子有较高的迁移率, n型Si中的空穴也比p型Si 中的空穴迁移率高
3、综合考虑晶格振动和电离杂质散射的经验公式
n,p
0 n,p
L n,p 0n,p
1 ((ND
NA)
N ) n,p n,p
每种模式按原子位移与波的传播方向的关系分一纵二横
3)格波的色散关系 金刚石沿[110]方向传播的六支 格波的频率v与波矢q的关系
在振动频率方面,声学波 和光学波之间存在着显著的 区别。在长波范围内,声学 波的频率和波数成正比,所 以,长声学波可以近似认为 是弹性波,类似于在固体中 传播的声波。而长光学波的 频率近似是一个常数,基本 上与波数无关。
3、电子与声子的相互作用 1)散射过程中的能量守恒和准动量守恒 用电子与声子的相互作用来描述晶格振动对电子运动的 散射。用电子吸收或发射一个(或多个)声子来表示散 射过程中的能量守恒和准动量守恒。
2)电子-声子相互作用的选择性 • (1) 能量和动量的选择 • 长声学波声子能量较小,在能量变化不大的散射过程
附加周期势场而对电子产生散射
EC EV
∝ 散射几率
PS
16
3
2 c
k
Tmn*
2
h4u 2
v
T 3/2
(2) 离子性晶体中,长纵光学波引起正负电荷分布的改变, 产生局部的附加势场
(3) 谷内散射和谷间散射 长波声学声子的波矢较小、频率较低,电子在吸收或发射 这种声子的散射过程中,波矢变化很小,能量改变也小, 因而散射前后处在同一能谷之内,称为谷内散射。 谷间散射分等价谷间散射和不等价谷间散射两种,其共同 特点是散射前后载流子的准动量变化较大,因而吸收或发 射短波声子。由于等价谷间散射能量变化不大,散射过程 中会伴随发射长波光学声子。

半导体物理知识点及重点习题总结周裕鸿

半导体物理知识点及重点习题总结周裕鸿

基本概念题:第一章 半导体电子状态 1.1 半导体通常是指导电能力介于导体和绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体的小许多。

例: 1简述Si Ge ,GaAs 的晶格结构。

2什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说明之。

在一定温度下,价带电子获得足够的能量(≥Eg )被激发到导带成为导电电子的过程就是本征激发。

其结果是在半导体中出现成对的电子-空穴对。

如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。

对半导体的理解:半导体导体 半导体 绝缘体电导率ρ <310- 9310~10- 910> cm ∙Ω此外,半导体还有以下重要特性1、 温度可以显著改变半导体导电能力例如:纯硅(Si ) 若温度从 30C 变为C 20时,ρ增大一倍 2、 微量杂质含量可以显著改变半导体导电能力例如:若有100万硅掺入1个杂质(P . Be )此时纯度99.9999% ,室温(C27 300K )时,电阻率由214000Ω降至0.2Ω3、 光照可以明显改变半导体的导电能力例如:淀积在绝缘体基片上(衬底)上的硫化镉(CdS )薄膜,无光照时电阻(暗电阻)约为几十欧姆,光照时电阻约为几十千欧姆。

另外,磁场、电场等外界因素也可显著改变半导体的导电能力。

【补充材料】半导体中的自由电子状态和能态势场 → 孤立原子中的电子——原子核势场+其他电子势场下运动 ↘ 自由电子——恒定势场(设为0)↘ 半导体中的电子——严格周期性重复排列的原子之间运动 ⅰ.晶体中的薛定谔方程及其解的形势V(x)的单电子近似:假定电子是在①严格周期性排列②固定不动的原子核势场③其他大量电子的平均势场下运动。

↓ ↓(理想晶体) (忽略振动)意义:把研究晶体中电子状态的问题从原子核—电子的混合系统中分离出来,把众多电子相互牵制的复杂多电子问题近似成为对某一电子作用只是平均势场作用。

实验四 霍尔效应法测量半导体的载流子浓度、电导率和迁移

实验四 霍尔效应法测量半导体的载流子浓度、电导率和迁移

实验四霍尔效应法测量半导体的载流子浓度、电导率和迁移一、实验目的1.了解霍尔效应实验原理以及有关霍尔元件对材料要求的知识。

2.学习用“对称测量法”消除副效应的影响,测量并绘制试样的VH-IS和VH-IM 曲线。

3.确定试样的导电类型、载流子浓度以及迁移率。

二、实验原理置于磁场中的半导体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象是霍普斯金大学研究生霍尔于1879年发现的,后被称为霍尔效应。

随着半导体物理学的迅速发展,霍尔系数和电导率的测量已成为研究半导体材料的主要方法之一。

通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。

若能测量霍尔系数和电导率随温度变化的关系,还可以求出半导体材料的杂质电离能和材料的禁带宽度。

如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且随着电子技术的发展,利用该效应制成的霍尔器件,由于结构简单、频率响应宽(高达10GHz)、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制和信息处理等方面。

在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更广阔的应用前景。

了解这一富有实用性的实验,对日后的工作将有益处。

霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。

当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场。

对于图(1)(a)所示的N型半导体试样,若在X方向的电极D、E上通以电流Is,在Z方向加磁场B,试样中载流子(电子)将受洛仑兹力:(1)其中e为载流子(电子)电量,为载流子在电流方向上的平均定向漂移速率,B为磁感应强度。

(a)(b)图(1) 样品示意图无论载流子是正电荷还是负电荷,Fg的方向均沿Y方向,在此力的作用下,载流子发生便移,则在Y方向即试样A、A´电极两侧就开始聚积异号电荷而在试样A、A´两侧产生一个电位差VH,形成相应的附加电场E—霍尔电场,相应的电压VH称为霍尔电压,电极A、A´称为霍尔电极。

半导体器件中的电子输运与能带结构

半导体器件中的电子输运与能带结构

半导体器件中的电子输运与能带结构在现代电子技术中,半导体器件起着至关重要的作用。

从手机到计算机,从汽车到航空航天,几乎所有现代科技产品都离不开半导体器件。

而半导体器件的性能和行为受到电子输运和能带结构的影响。

本文将简要介绍半导体器件中的电子输运与能带结构,并探索其实际应用。

首先,我们来看看电子在半导体中的输运行为。

半导体材料内部存在两类载流子:电子和空穴。

当半导体材料受到外界电场的作用,载流子将在晶体中移动,形成电流。

这种电流称为载流子输运。

对于电子而言,它们的输运主要遵循两种机制:漂移和扩散。

漂移是指电子在晶体中受到电场力的作用而移动,而扩散是指电子通过热运动的方式从高浓度区域向低浓度区域移动。

这两种机制共同决定了电子在半导体中的输运行为。

而能带结构则是影响电子输运的关键因素之一。

在固体物理学中,能带是描绘电子能量的概念。

它以离散的能级形式存在,且在能带间存在能隙。

半导体的能隙相对较小,介于导体和绝缘体之间。

根据能带结构,可以将半导体分为两类:P型和N型。

P型半导体中掺入了少量的三价杂质元素,例如硼,导致电子数目较少,形成“空穴”。

N型半导体中则掺入了五价杂质元素,例如磷,导致电子数目增多。

这种杂质导致了半导体中的电荷载流子的不平衡,也影响了电子在半导体中的输运行为。

更深入地讲,当半导体形成p-n结时,电子和空穴将发生复杂的相互作用。

在p-n结的接触面上,电子会从N型区域流向P型区域,而空穴则从P型区域流向N型区域。

这种电子和空穴的再组合会产生电流,即使没有外界电场的作用。

这个现象被称为二极管效应,是现代电子学中最基本的元器件之一。

除了二极管外,半导体材料还可以用于制造场效应晶体管(FET)和电子元器件等复杂器件。

在FET中,电子输运的机制与二极管有所不同。

FET的基本结构包括源极、栅极和漏极。

通过在栅极上施加电场,可以控制源极和漏极之间的电流。

这种控制性能使得FET在集成电路设计和信号放大器中得到广泛应用。

激光原理-第四章 半导体激光器

激光原理-第四章  半导体激光器

第二节 激发与复合辐射

若掺杂原子比材料原子少一个电子,则附加能级接近 价带,其上的空穴很容易进入价带,使价带中出现大量 过剩空穴,这种材料称为p型材料,而杂质称为受主。
掺杂的净效果是在导带和价带中形成过剩的自由载流 子。 P掺杂三价元素(杂质),载流子主要是空穴,而杂 质称为受主 N掺杂5价元素(杂质),载流子主要是电子,而杂质 称为施主 p型材料和n型材料接触时形成pn结,

式中,kpn 为声子波矢,k pn 一般比k小1个量级左右。
初态与末态相应于k空间不同点的电子跃迁称为非 竖直跃迁或间接跃迁。在这种跃迁中,发射或吸收一 个光子的同时,必须伴随发射或吸收一个适当波数的 声子,以满足动量守恒,因而属于二级过程。其几率比 属于一级过程的纯光跃迁小得多,故不适合用于激光 发射。
E
导带 Eg
满带
半导体的能带
第一节半导体的能带结构和电子状态
二、半导体中的电子状态 用量子力学确定孤立原子的电子能量和运动状态是通过求解薛定 鄂方程实现的。然而,由于固体中所含原子数量极大,对每个电 子求解薛定鄂方程是根本不可能, 只能采取某种近似的方法:
其相应的能量本征值为
h2k 2 E V 2me
1.满带(排满电子)(价带) 2.价带(价电子能级分离后形成的能带,能带中一部分能级排 满电子) 3. 导带 (未排满电子的价带) 3.空带(未排电子) 空带也是导带 4.禁带(不能排电子)
第一节半导体的能带结构和电子状态




半导体材料Si和Ge为例,每个原子有4个价电子,在原子状态中s态 和p态各2个。 由轨道杂化重新组合的两个能带中各含2N 各状态,较低的一 个正好容纳4N 个价电子, 所有的电子排满了s轨道,只有当能带被电子部分填充时,外电场 才能使电子的运动状态发生改变而产生导电性。 这些材料低温下不导电,在温度较高时,部分电子从价带激发到导 带,表现出导电性。

《微电子学概论》-半导体物理学-半导体及其基本特性

《微电子学概论》-半导体物理学-半导体及其基本特性
且公式 np ni2 不成立
过剩载流子和电中性
平衡时
过剩载流子
电中性:
小注入条件
小注入条件:注入的非平衡载流子浓度 比平衡时的多数载流子浓度小的多
N型材料 P型材料
p n0 , n n0 n p0 , p p0
非平衡载流子寿命
▪ 假定光照产生 n和 ,如p 果光突然关闭, 和n 将随p时间逐渐衰减直至0,衰减的时间常数称为
半导体物理学
一.半导体中的电子状态 二.半导体中杂质和缺陷能级 三.半导体中载流子的统计分布 四.半导体的导电性 五.非平衡载流子 六.pn结 七.金属和半导体的接触 八.半导体表面与MIS结构
半导体的纯度和结构
▪ 纯度
➢ 极高,杂质<1013cm-3
▪ 结构
晶体结构
▪ 单胞
➢ 对于任何给定的晶体,可以用来形成其晶体结构的 最小单元
▪ 杂质处于两种状态:中性态和离化态。 当处于离化态时,施主杂质向导带提供 电子成为正电中心;受主杂质向价带提 供空穴成为负电中心。
ND ห้องสมุดไป่ตู้ A
▪ 半导体中同时存在施主和受主杂质, 且 ND N A 。
N型半导体
N型半导体
N A ND
▪ 半导体中同时存在施主和受主杂质, 且 N A ND 。
E hv
2k 2 E
2m0
半导体中电子的平均速度
▪ 在周期性势场内,电子的平均速度u可表示 为波包的群速度
u dv E hv u 1 dE
dk
dk
E(k) E(0) h 2k 2 2mn*
u
k mn*
自由电子的速度
▪ 微观粒子具有波粒二象性
p m0u
p2 E

半导体物理总结-讲义

半导体物理总结-讲义

n = NCe
− ( EC − E f ) kT
p = NV e
− ( E f − EV ) kT
其中
ni = NV N C e
− E g 2 kT
热平衡时
np = ni2
3.3.2 非本征费米能级
费米能级的变化 •随掺杂浓度在禁带中上下变化 •随施主杂质浓度增加费米能级向导带靠近电子数增加 •随受主杂质浓度增加费米能级向价带靠近空穴数增加 •随温度变化,费米能级表现出不同的变化趋势
存在半满的能带 电子占据能带或是 全满或是全空
第二章 半导体中的基本性质
§ 2.4 半导体的输运和导电机制
2.4.1 半导体中电子的状态 2.4.2 有效质量近似 2.4.3 半导体导电的能带论解释半导体的导电 2.4.4 半导体的导电载流子
有效质量近似及其意义 有效质量概括了晶体势场对电子运动的影响 2.4.1. 半导体中的导电载流子 半导体的导带和电子载流子 半导体的价带和空穴载流子
4.1.1 载流子的热运动和散射机制 4.1.2 电场作用下的定向漂移运动和漂移电流 4.1.3 半导体的电导和电阻率 4.1.4 载流子迁移率 4.1.5 载流子的速度饱和
§ 4.1 载流子的漂移运动和漂移电流
4.1.1 载流子的热运动(Thermal motion)和散射机制 在热平衡条件下,半导体中导带中的电子或价带中的空穴将 做随机的热运动。按照统计物理规律,其热能(Thermal Energy)~3/2kT,电子的动能满足:
晶体的结构通常与原子结合形成晶体时的结合方式有 关,本节将讨论固体结合形成晶体的结合方式和性质 2.2.1 固体的结合和化学键 2.2.2 Si原子结构和Si晶体的共价键结合 2.2.3 Si晶体的四面体结构

半导体物理

半导体物理

禁带 允带 禁带
内层电子共有化运动弱,能级分裂小,能带 窄,外层电子共有化运动强,能级分裂厉害,能 带宽。

如果考虑2P能级3度简并
3度简并 …
P
3N个能级 3N个状态
S
非简并 …
N个能级 N个状态
N个孤立原子
N个原子组成晶体
晶体的能带与孤立原子的能级并非一一对应
4N 6N
6N
2N 4N
2N
晶格常数
4. 有效质量的意义
(1)能带顶附近 m
(2)
* n
* 0, 导带底附近 mn 0
d 2 E -1 * mn ( 2) dk
内层电子 能带窄,
外层电子
能带宽,
m
* 大 n

(3) 意义:它概况了半导体内部势场的作用,可不涉及内部 势场而直接用牛顿第二定律解决半导体中电子有外力 时的运动规律。

2
2
* 能带顶,E ( k ) E (0),mn 0

能带极值附近m ~ k的关系
* n
m
第 一 布 区 边 界
* n
第 一 布 区 边 界
k
例:

某一维晶体的电子能带为
E(k ) E0 1 0.1cos(ka) 0.3sin(ka)

其中E0=3eV,晶格常数a=5х10-11m。 求: 能带宽度; 能带底和能带顶的有效质量。
半导体物理学
Semiconductor Physics
李竞春
电子科技大学 电子科技大学
微电子固体电子学院 微电子固体电子学院
课程任务
阐述半导体物理的基础理论和半导体的主 要性质,以适应后续专业课程的学习。

半导体高中物理

半导体高中物理

半导体高中物理
半导体物理是研究半导体材料的性质、结构及其在电子器件中的应用的一门学科。

它是物理学、化学和材料科学的交叉领域,对于现代电子技术的发展具有重要意义。

半导体物理的主要内容包括:
1. 半导体的基本概念:半导体是一种介于导体(如金属)和绝缘体(如玻璃、橡胶)之间的材料,其电导率介于两者之间。

半导体的导电性能受温度、杂质等因素的影响较大。

2. 半导体的能带结构:半导体中的电子能量分布在不同的能带中,主要有价带、导带和禁带。

价带中的电子受到束缚,不能自由移动;导带中的电子可以自由移动,参与导电过程。

禁带是价带和导带之间的能量间隔,决定了半导体的导电类型(n型或p型)。

3. 载流子:半导体中的电子和空穴都可以作为载流子参与导电过程。

n型半导体中的多数载流子是电子,p型半导体中的多数载流子是空穴。

4. 掺杂:通过向半导体中添加杂质元素,可以改变其导电类型和导电性能。

n型半导体中加入五价元素(如磷),p型半导体中加入三价元素(如硼)。

5. p-n结:将n型半导体和p型半导体结合形成的结构称为p-n结。

p-n结具有单向导电性,即在正向偏置下电阻很小,电流可以顺利通过;在反向偏置下电阻很大,电流几乎不流动。

p-n结是许多半导体器件的基础。

6. 二极管:利用p-n结的特性制成的电子器件。

二极管具有整流、稳压等功能,广泛应用于电路中。

7. 晶体管:利用p-n结和多层半导体结构制成的电子器件。

晶体管具有放大和开关功能,是现代电子设备的核心元件。

半导体物理学名词解释

半导体物理学名词解释

半导体物理学名词解释1、直接复合:电子在导带与价带间直接跃迁而引起非平衡载流子的复合。

2、间接复合:指的是非平衡载流子通过复合中心的复合。

3、俄歇复合:载流子从高能级向低能级跃迁发生电子-空穴复合时,把多余的能量传给另一个载流子,使这个载流子被激发到能量更高的能级上去,当它重新跃迁回到低能级时,多余的能量常以声子的形式放出,这种复合称为俄歇复合,显然这是一种非辐射复合。

4、施主杂质:V族杂质在硅、锗中电离时,能够施放电子而产生导电电子并形成正电中心,称它们为施主杂质或n型杂质。

5、受主杂质:Ⅲ族杂质在硅、锗中能够接受电子而产生导电空穴,并形成负点中心,所以称它们为受主杂质或p型杂质。

6、多数载流子:半导体材料中有电子和空穴两种载流子。

在N 型半导体中,电子是多数载流子, 空穴是少数载流子。

在P型半导体中,空穴是多数载流子,电子是少数载流子。

7、能谷间散射:8、本征半导体:本征半导体就是没有杂质和缺陷的半导体。

9、准费米能级:半导体中的非平衡载流子,可以认为它们都处于准平衡状态(即导带所有的电子和价带所有的空穴分别处于准平衡状态)。

对于处于准平衡状态的非平衡载流子,可以近似地引入与Fermi能级相类似的物理量——准Fermi能级来分析其统计分布;当然,采用准Fermi能级这个概念,是一种近似,但确是一种较好的近似。

基于这种近似,对于导带中的非平衡电子,即可引入电子的准Fermi能级;对于价带中的非平衡空穴,即可引入空穴的准Fermi能级。

10、禁带:能带结构中能态密度为零的能量区间。

11、价带:半导体或绝缘体中,在绝对零度下能被电子沾满的最高能带。

12、导带:导带是自由电子形成的能量空间,即固体结构内自由运动的电子所具有的能量范围。

13、束缚激子:等电子陷阱俘获载流子后成为带电中心,这一中心由于库仑作用又能俘获另一种带电符号相反的载流子从而成为定域激子,称为束缚激子。

14、浅能级杂质:在半导体中、其价电子受到束缚较弱的那些杂质原子,往往就是能够提供载流子(电子或空穴)的施主、受主杂质,它们在半导体中形成的能级都比较靠近价带顶或导带底,因此称其为浅能级杂质。

固体与半导体习题答案

固体与半导体习题答案

固体与半导体习题答案固体物理是研究固体物质的物理性质及其与物质结构的关系的学科。

在固体物理中,半导体是一类特殊的材料,它们在电子设备中扮演着极其重要的角色。

半导体的导电性介于导体和绝缘体之间,可以通过掺杂、温度变化等手段来调节其导电性。

习题1:解释什么是半导体,以及它们与绝缘体和导体的区别。

半导体是一类材料,其导电性介于导体和绝缘体之间。

在室温下,半导体的电阻率比绝缘体小,但比金属导体大。

半导体的导电性可以通过改变其化学组成或物理条件(如温度、光照等)来调节。

与绝缘体相比,半导体允许一定量的电荷通过,而导体则允许大量电荷自由流动。

习题2:解释PN结的工作原理。

PN结是由P型半导体和N型半导体组成的结构。

P型半导体含有多余的空穴,而N型半导体含有多余的自由电子。

当P型和N型半导体接触时,它们之间的界面形成一个耗尽区,其中自由电子和空穴复合,导致耗尽区的电荷减少。

这个耗尽区阻止了更多的电子和空穴从各自的半导体区域移动到对方区域,从而形成了一个内建电场。

当外加电压时,这个电场可以被增强或削弱,从而控制电流的流动。

习题3:解释肖特基势垒(SB)和欧姆接触。

肖特基势垒是一种金属与半导体之间的接触,它表现出整流特性,即允许电流单向流动。

当金属与N型半导体接触时,金属的费米能级通常高于半导体的费米能级,导致电子从半导体流向金属,形成势垒。

这种势垒阻碍了电子的反向流动,使得电流只能单向流动。

欧姆接触则是一种金属与半导体之间的接触,它不表现出整流特性,即允许电流双向流动。

在欧姆接触中,金属与半导体的费米能级相互对齐,使得电子可以自由地在金属和半导体之间流动。

习题4:解释载流子浓度对半导体导电性的影响。

在半导体中,导电性主要由载流子(电子和空穴)的浓度决定。

载流子的浓度越高,半导体的导电性越好。

通过掺杂,可以增加半导体中的载流子浓度。

例如,向硅中掺入磷(P)可以增加自由电子的浓度,从而提高硅的导电性,形成N型半导体。

固体电子学 第四章 半导体中的载流子

固体电子学 第四章 半导体中的载流子
Ge和Si的晶体结构与金刚石相似。每个原子的最近邻有四 个原子,组成正四面体最外层有四个价电子,恰好与最近邻 原子形成四个共价键。
n 型半导体
Si Si Si Si Si
Si Si P
空带
ED:施主电离能
施主能级 Eg
满带
掺入施主杂质后,半导体中电子浓度增加,n>p,半导体的导电性 以电子导电为主,故称为N型半导体。施主杂质又被称为N型杂质。
第四章 半导体中的载流子
计算机、数码相机、手机等 公交卡、银行卡、电话卡等
热敏器件、太阳能电池、激光器、各 种照明器件、显示器件、图像器件等
二极管、三极管等基本电子器件
半导体材料(Si、Ge)
§4.1 本征半导体与杂质半导体
• 极低温下,半导体能带为全 满或全空。 • 室温下,少量电子跃迁,导 电。
在绝对零度时: E<EF时,f(E)=1; E>EF时,f(E)=0; E=EF时,f(E)发生突变。 在温度很低时:
表示在费米能级,被电子填充的几 率和不被电子填充的几率是相等的。
波尔兹曼(Boltzmann)分布函数
当E-EF》kBT时,
EEF
e kB0T 1
所以 fF (E)
1 e EEF
提供给电子大于禁带宽度能量的任何物理作用都会引起电 子跃迁。
n代表导带电子浓度;p代表价带空穴浓度。
对于本征激发满足: n=p
价带顶附近的电子热激发到导带底所需的能量最低,因此 这是最易发生的本征激发过程。
认为导带中的电子处在导带底附近,价带中的空穴处在价 带顶附近。
4.1.2 杂质半导体
•向导带提供电子的杂质称为施主; •能接受电子并向价带提供空穴的杂质称为受主; •含有杂质原子的半导体称为杂质半导体; •由于掺杂引起禁带中出现的能级,称为杂质能级;

固体物理与半导体知识点归纳整理

固体物理与半导体知识点归纳整理

固体物理与半导体物理符号定义:E C 导带底的能量 E V 导带底的能量 N C 导带的有效状态密度 N V 价带的有效状态密度 n 0导带的电子浓度 p 0价带的电子浓度 n i 本征载流子浓度 E g =E C —E V 禁带宽度 E i 本征费米能级 EF 费米能级 E n F 电子准费米能级 E p F 空穴准费米能级 N D 施主浓度 N A 受主浓度n D 施主能级上的电子浓度 p A 受主能级上的空穴浓度 E D 施主能级 E A 受主能级 n +D 电离施主浓度 p -A 电离受主浓度 半导体基本概念:满带:整个能带中所有能态都被电子填满?空带:整个能带中完全没有电子填充;如有电子由于某种原因进入空带,也具有导电性,所以空带也称导带?导带:整个能带中只有部分能态被电子填充?价带:由价电子能级分裂而成的能带;绝缘体?半导体的价带是满带? 禁带:能带之间的能量间隙,没有允许的电子能态? 1?什么是布拉菲格子答:如果晶体由一种原子组成,且基元中仅包含一个原子,则形成的晶格叫做布拉菲格子? 2?布拉菲格子与晶体结构之间的关系 答:布拉菲格子+基元=晶体结构? 3、什么是复式格子复式格子是怎么构成答:复式格子是基元含有两个或两个以上原子的晶格(可是同类?异类);复式格子由两个或多个相同的布拉菲格子以确定的方位套购而成? 4、厡胞和晶胞是怎样选取的它们各自有什么特点答:厡胞选取方法:体积最小的周期性(以基矢为棱边围成)的平行六面体,选取方法不唯一,但它们体积相等,都是最小的重复单元?特点:(1)只考虑周期性,体积最小的重复单元;(2)格点在顶角上,内部和面上没有格点;(3)每个原胞只含一个格点?(4)体积:).(321a a a⨯=Ω ;(5)原胞反映了晶格的周期性,各原胞中等价点的物理量相同?晶胞选取方法:考虑到晶格的重复性,而且还要考虑晶体的对称性,选取晶格重复单元? 特点:(1)既考虑了周期性又考虑了对称性 所选取的重复单元?(体积不一定最小) ;(2)体心或面心上可能有格点;(3)包含格点不止一个;(4)基矢用c b a,,表示? 5、如何在复式格子中找到布拉菲格子复式格子是如何选取厡胞和晶胞的 答:复式格子中找到布拉菲格子方法:将周围相同的原子找出? 6、金刚石结构是怎样构成的答:两个由碳原子组成的面心立方沿立方体体对角线位移1/4套购而成? 7、氯化钠?氯化铯的布拉菲格子是什么结构答:氯化钠布拉菲格子是面心立方;氯化铯的布拉菲格子是简单立方? 8、密堆积有几种密积结构它们是布拉菲格子还是复式格子答:密堆积有两种密积结构;密积六方是复式格子,密积立方是布拉菲格子? 9?8种独立的基本对称操作是什么答:8种独立的基本对称操作:464321S C C C C C 、、、、、、、I σ10?7大晶系是什么 答:7大晶系是:立方?四方?六方?三方?正交?单斜?三斜? 11、怎样确定晶列指数和晶面指数答:晶列指数确定:以某个格点为原点,以c b a、、为厡胞的3个基矢?则晶格中任一各点的位矢可以表示为:c p b n a m R l'+'+'=,将p n m '''、、化为互质的整数m?n?p,求的晶列指数[mn p],晶列指数可正?可负?可为零?晶面指数确定:(1)找出晶面在三基矢方向的截距;(2)化截距的倒数之比为互质整数之比;(3)(h 1h 2h 3)晶面指数 ?12、通过原点的晶面如何求出其晶面指数答:晶面指数是指格点分布在一系列相互平行的平面上-晶面,故将原点的晶面沿法线方向平移一段距离,找出晶面在三基矢方向的截距,化截距的倒数之比为互质整数之比,(h 1h 2h 3)晶面指数 ?13、晶面指数与晶面在三坐标轴上的截距之间的关系 答:倒数关系? 14、倒格子的定义正倒格子之间的关系答:倒格子的定义:周期分布点子所组成的格子,描述晶体结构周期性的另一种类型的格子?倒格子基矢的定义:设晶格(正格子)厡胞的基矢为321a a a、、,则对应的倒格子厡胞基矢为321b b b 、、?则ji j i a b ij j i ≠=⎩⎨⎧==当当022.ππδ正倒格子之间的关系:(1)原胞体积之间的关系Ω=Ω/)2(3*π;(2)倒格矢与一族平行晶面之间的关系; (3)正格矢与倒格矢的点积为2π的整数倍; (4)正倒格子互为傅里叶变换?15、一维单原子晶格的色散关系色散关系周期性的物理意义答:一维单原子晶格的色散关系:)21sin(max qa ωω=色散关系周期性的物理意义:)21sin(max qa ωω=的一个基本周期为a q a //ππ≤<-,那么周期之外的点q'可以用基本周期在内的一个点q 来等效即是:...212±±=+=',n an q q π16?一维双原子晶格的色散关系答:一维双原子色散关系:)2cos(2)[(M 222qa Mm m M m M m++±+=±βω17?同一厡胞内两种原子有什么振动特点答:同一厡胞内两种原子振动特点:(1)声学波的振动:同一原胞内相邻的两种原子倾向于沿同一方向振动?长波极限:原胞中两种原子的位相?振幅完全一致,长声学波反映的是原胞质心的振动;短波极限:轻原子不振动,重原子振动 ?(2)光学波的振动:同一原胞内相邻的两种原子作反方向振动?长波极限:原胞内不同原子振动位相相反,长光学波反映的是原胞质心不动;短波极限:重原子不振动,轻原子振动? 18?晶格振动的格波数?格波支数及总格波数是如何确定的答:波矢数(q 的取值数)=原胞数N;格波支数=原胞内原子的自由度数3n ;总格波数=晶体内原子的总自由度数3Nn?19?声子这个概念是怎样引出的它是怎样描述晶格振动的答:声子概念由来:独立的简谐振子的振动来表述格波的独立模式? 声子描述晶格振动:(1)声子是能量携带者,一个声子具有能量为l ω ;(2)l ω 中的l 从1→3Nn,l 不同表示不同种类的声子,共有3Nn 种声子;(3)l n 为声子数,表明能量为l ω 的声子有l n 个;(4)频率为l ω的格波能量变化了l l n ω ,这一过程产生了l n 个能量为l ω 的声子; (5)声子是玻色子,遵循玻色统计?11/-=TK l B en ω20?驻波边界条件与行波边界条件下的状态密度分别怎么表示 答:驻波边界条件状态密度:一维:1)L (-π 二维:2)L (-π 三维:3)L (-π行波边界条件状态密度: 一维:1)L 2(-π 二维:2)L 2(-π 三维:3)L2(-π 21?一维?二维?三维晶格的能级密度如何求出答:一维晶格的能级密度:驻波:dE dk /)L (21-π行波:dE dk /)L 2(21-π 其中:mk 2E 22 =二维晶格的能级密度:驻波:dE kdk /2)L (22ππ•-行波:dE kdk /2)L 2(22ππ•-三维晶格的能级密度:驻波:dE dk k /4)L(223ππ•-行波:dE dk k /4)L 2(223ππ•-22?在什么情况下电子的费米统计可用玻尔兹曼分布来描述答:在T K E E B F >>-电子的费米统计可用玻尔兹曼分布来描述;在T K E E B F >>-空穴的费米统计可用玻尔兹曼分布来描述? 23?布洛赫定理的内容是什么答:布洛赫定理的内容:在周期性势场中运动的电的波函数子是布洛赫波函数,等于周期性函数)(r u k 与自由平面波因子相乘,即)R ()(),.ex p()()(e K K K K r u r u r ik r u r +==ψ布洛赫波函数函数的周期性与势场周期性相同?u(x)表示电子在原胞中的运动; r ik e .电子在晶体中共有化运动?24?禁带出现的位置和禁带宽度与什么有关答:禁带出现的位置与晶体结构有关;禁带宽度与周期势场有关? 25?每个能带能容纳的电子数与什么有关答:每个能带能容纳的电子数为2N,与厡胞数有关? 26、如何运用紧束缚近似出的能量公式答:紧束缚近似出的能量公式:∑---=mm k ).ex p(E E 0ργα找出近邻原子的个数m,以某一个原子为原点,求出矢量,带入能量公式便可得到晶体中电子的能量?27、布洛赫电子的速度和有效质量公式 答:布洛赫电子的速度公式:kEv k E v k ∂∂=∇= 1)(1一维情况下:;有效质量公式:z y x j i k k mk mji ji x,,,E1)(E122,1*221*=∂∂∂=∂∂=-- 三维:一维:28、有效质量为负值的含义答:有效质量为负值的含义:有效质量概括了晶体内部势场的作用,外力作用不足以补偿内部势场的作用时,电子的真实动量是下降的?29、绝缘体?半导体?导体的能带结构即电子填充情况有什么不同呢答:电子填充情况及能带结构不同:绝缘体最高能带电子填满,导体最高能带电子未填满,半导体最高能带电子填满能带?导体中一定存在电子未填满的带,绝缘体?半导体的能带只有满带和空带?绝缘体的能带与价带相互独立,禁带较宽;半导体能带与价带相互独立,禁带较窄,一般在2eV 以下;导体价电子是奇数的金属,导带是半满的,价电子是偶数的碱土金属,能带交迭,禁带消失? 31?空穴的定义和性质?答:空穴定义:满带(价带)中的空状态;性质:空穴具有正有效质量,空穴具有正电荷,空穴的速度等于该状态有电子时其电子的速度,空穴的能量是向下增加的,位于满带顶附近? 32?半导体呈本征型的条件答:半导体呈本征型的条件:高纯?无缺陷的半导体或在高温时的杂质半导体? 33、什么是非简并半导体什么是简并半导体答:非简并半导体:服从玻尔兹曼分布的半导体? 简并半导体:服从费米分布的半导体? 34、N 型和P 型半导体在平衡状态下的载流子浓度公式答:载流子浓度公式:)ex p()ex p(00TK E E N p TK E E N n B VF V B Fc c --=--= 热平衡状态下的非简并半导体的判据式:n 0p 0=n 2i35、非简并半导体的费米能级随温度和杂质浓度的变化答:讨论n 型半导体:电中性条件:n 0=n +D +p 0 (1)低温弱电离区:电中性条件:n 0=n +D)2ln()2(2CD B D C F N NT K E E E ++=在温度T 一定范围内,E F 随温度增大而增大,当温度上升到N C =(N D /2)e -3/2=时,E F 随温度增大而减小?(2)强电离区(饱和电离区):电中性条件:n 0=N D)ln(CDB C F N N T K E E +=在温度T 一定时,N D 越大,E F 就越向导带方向靠近,而在N D 一定时,温度越高,E F 就越向本征费米能级E i 方向靠近?(3)高温电离区:电中性条件:n 0=N D +p 0 E i =E F (呈本征态)36?半导体在室温下全部电离下的电中性条件答:n 型:n 0=N D ;p 型:p 0=N A37、由于简并半导体形成的杂质能带,能带结构有什么变化呢答:杂质电离能变小,禁带宽度变窄? 38、散射的原因是什么答:散射的原因:周期势场遭到破坏?(原子的热振动;杂质原子和缺陷的存在) 39、载流子的迁移率和电导率的公式答:迁移率公式:**pp p nnn mq m q τμτμ==空穴电子电导率的公式:n 型半导体n n nq μσ= p 型半导体:p p pq μσ= 电子?空穴点同时导电p n pq nq μμσ+= 本征半导体)(p n i i q n μμσ+= 40、什么是准费米能级答:准费米能级是导带和价带的局部费米能级?统一的费米能级是热平衡状态的标志? 41、多子的准费米能级偏离平衡费米能级与少子的偏离有什么不同答:多数载流子的准费米能级偏离平衡费米能级不多,少数载流子的准费米能级偏离平衡费米能级显着? 42、爱因斯坦关系式答:爱因斯坦关系式:qTK B n n=μD q T K B p p =μD 43?什么是P —N 结的空间电荷区自建场是怎样建立起来的答:P —N 结的空间电荷区:在n 型区和p 型交界面的两侧形成了带正?负电荷的区域? 自建场:空间电荷区中的正负电荷形成电场,电场方向由n 区指向p 区? 44、雪崩击穿和隧道击穿的机理?答:雪崩击穿的机理:碰撞电离使载流子浓度急剧增加的效应导致载流子倍增效应,使势垒区单位时间内产生大量载流子,致使反向电流速度增大,从而发生p-n 结击穿?雪崩击穿除与电场有关,还与势垒区宽度有关?一般掺杂以雪崩击穿为主?隧道击穿的机理:当电场E 大到或隧道长度短到一定程度时,将使p 区价带中大量的电子通过隧道效应穿过势垒到达n 区导带中去,使反向电流急剧增大,于是p-n 结发生隧道击穿?隧道击穿主要取决于外场?重掺杂以隧道击穿为主? 45?平衡P —N 结和非平衡P —N 结的能带图 46?什么是功函数什么是电子亲和能答:功函数:电子从费米能级到真空能级所需的最小能量电子亲和能:半导体导带底的电子逸出体外所需要的最低能量,即C E -=0E X ? 47?金属—半导体接触的四种类型答48?金属—半导体整流接触特性的定性解释答:金半接触的整流作用:无外场:半-金电子=金-半电子,阻挡层无净电流? 正偏:金正半负 半-金电子>金-半电子,I 随V 变化反偏:金负半正 半-金电子<金-半电子,金属中势垒高且不变,I 随V 不变 49?在考虑表面态的情况下,怎样形成欧姆接触答:用高掺杂的半导体和金属接触在半导体上形成欧姆接触?其他知识点:1?费米能级的物理意义:(1)决定各个能级上电子统计分布的参量;(2)直观反映了电子填充能级的水平?2?产生非平衡载流子的方法:(1)电注入;(2)光注入3?最有效的复合中心位于禁带中线附近的深能级4?非平衡载流子的扩散原因:在载流子浓度不均匀条件下,有无规则的热运动引起?5?漂移电流是多子的主要电流形式,扩散电流是少子的主要电流形式?6?p-n结载流子的扩散是由于两区费米能级不一致所引起的;平衡p-n结,具有统一的费米能级?7?P-n结的单向导电性是因为势垒的存在?与自建厂反向,势垒高度降低,势垒宽度变窄,载流子的正向偏压下p-n结的特性:正向电压Vf扩散运动大于漂移运动?与自建厂同向,势垒区加宽,势垒高度增高,载流子的漂反向偏压下p-n结的特性:正向电压Vr移运动大于扩散运动?8?势垒电容:势垒区的空间电荷数量随外加电压的变化所产生的电容效应(发生在势垒区)扩散电容:扩散区的电荷数量随外加电压的变化所产生的电容效应?(发生在扩散区)反偏时:势垒电容为主,扩散电容很小;正偏时:既有势垒电容,也有扩散电容;9? 纯净表面:没有杂质吸附层和氧化层的理想表面实际表面:与体内晶体结构不同的原子层表面能级:表面存在而产生的附加电子能级,对应的电子能态为表面态?表面态:(1)从能带角度,当晶体存在表面,在垂直表面方向成了半无限周期势场?(2)从化学键角度,表面是原子周期排列终止的地方?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ge和Si的晶体结构与金刚石相似。每个原子的最近邻有四 个原子,组成正四面体最外层有四个价电子,恰好与最近邻 原子形成四个共价键。
n 型半导体
Si Si Si Si Si
Si Si P
空带
ED:施主电离能
施主能级 Eg
满带
掺入施主杂质后,半导体中电子浓度增加,n>p,半导体的导电性 以电子导电为主,故称为N型半导体。施主杂质又被称为N型杂质。
Ec )1/2
dE
E EF
e kBT 1
导带电子浓度为:
n
dn
4
2mn* h2
3/ 2
ECT Ec
(E Ec )1/2 dE
E EF
e kB 1
其中ECT为导带顶。
n
4
2mn* h2
3/2
eEF
/ kBT
ECT EC
eE /kBT
(E
Ec
)1/ 2
dE
作积分变换,将积分上限推至无穷大:
第四章 半导体中的载流子
计算机、数码相机、手机等 公交卡、银行卡、电话卡等
热敏器件、太阳能电池、激光器、各 种照明器件、显示器件、图像器件等
二极管、三极管等基本电子器件
半导体材料(Si、Ge)
§4.1 本征半导体与杂质半导体
• 极低温下,半导体能带为全 满或全空。 • 室温下,少量电子跃迁,导 电。
EEF kB0T
1 e kB0T
因此
EE F
f B (E) e kB0T 波尔兹曼分布函数
费米分布函数或玻尔兹曼函数本身并不给出某一能量的电子数,只给出某 一能态被电子占据的概率。
为了确定某一能量的电子数,必须知道该能量处的能态数:
定义单位体积,单位能量间隔的量子态数(即状态密度)为g(E)。 则在能带中能量E与E+dE之间的能量间隔dE内的量子态数为g(E)dE。 此能量范围内的电子数为:
引入修正: 1.考虑晶格的周期性,用有效质量m*代替惯性质量m0。 2.考虑介质极化的影响,用介质的介电常数代替真空介电常数。
杂质电离能可写为:
E
m* m0
EH
2 r
其中, EH m0e4 (802h2 ) 13.6eV 为氢原子的基态
电离能; r 为母体的相对介电常数。
这一数值与实验结果一致。
例如,Si中P的浓度大于B的浓度,则表现为N型半导体。
杂质补偿作用:半导体中同时存在施主杂质和受主杂质, 施主和受主之间相互抵消的作用。
常温下,半导体的导电性质主要取决于掺杂水平; 高温下,本征激发占主导地位。N≈P。
杂质提供的载流子数基本不变,而本征激发的载流子 浓度迅速增加。
§4.2 半导体中的载流子浓度
n
4
2mn* h2
3/ 2
e( EF
EC
) / kBT
(kBT
)3/2
0
ex x1/2dx
电子……多(数载流)子;空穴……少(数载流)子。
P型半导体
Si Si Si Si
Si
Si
+ B
Si
空带
受主能级
Eg
满带
Ea:受主电离能
在掺受主的半导体中,由于受主电离,p>n,空穴导电占优势,故
称为P型半导体。受主杂质也被称为P型杂质。
电子……少(数载流)子;空穴……多(数载流)子。
4.1.3 杂质电离能与杂质补偿
提供给电子大于禁带宽度能量的任何物理作用都会引起电 子跃迁。
n代表导带电子浓度;p代表价带空穴浓度。
对于本征激发满足: n=p
价带顶附近的电子热激发到导带底所需的能量最低,因此 这是最易发生的本征激发过程。
认为导带中的电子处在导带底附近,价带中的空穴处在价 带顶附近。
4.1.2 杂质半导体
•向导带提供电子的杂质称为施主; •能接受电子并向价带提供空穴的杂质称为受主; •含有杂质原子的半导体称为杂质半导体; •由于掺杂引起禁带中出现的能级,称为杂质能级;
晶体中存在杂质时,在禁带中出现的能级: 由于杂质替代母体晶体原子后改变了晶体的局部势场,使一部分 电子能级从许可带中分离出来。
例如,ND个施主的存在使得导带中有ND个能级下移到ED处; NA个受主的存在则使得NA个能级从价带上移至EA处。
杂质能级是因为破坏了晶格的周期性引起的。
类氢模型
晶体中掺入与基质原子只差一个价电子的杂质原子并形成替位式 杂质时,其影响可看作是在周期性结构的均匀背景下叠加了一个“原 子”,这个原子只有一个正电荷和一个负电荷,与氢相似,可借用氢 原子能级公式处理。
在绝对零度时: E<EF时,f(E)=1; E>EF时,f(E)=0; E=EF时,f(E)发生突变。 在温度很低时:
表示在费米能级,被电子填充的几 率和不被电子填充的几率是相等的。
波尔兹曼(Boltzmann)分布函数
当E-EF》kBT时,
Eቤተ መጻሕፍቲ ባይዱF
e kB0T 1
所以 fF (E)
1 e EEF
dn=g(E)f(E)dE
4.2.2 平衡态下的导带电子浓度和价带空穴浓度
设导带具有球形等能面,导带能带结构可表示为:
2k 2 E Ec 2mn*
则量子态密度:
g(E)
4
2mn* h2
3/ 2
(E
Ec )1/2
由dn=g(E)f(E)dE可得:
dn 4
2mn* h2
3/2
(E
载流子的浓度与温度及掺杂情况密切相关。
4.2.1费米分布函数
固体能带是由大量的、不连续的能级组成的。每一量子态都对应于一 定的能级。在热平衡下,能量为E的状态被电子占据的几率为:
fn E
1
EEF
电子的费米分布函数
1 e kB0T
电子遵循费米-狄拉克(Fermi-Dirac)统计分布规律。
kB0为波尔兹曼常数
杂质具有施主或受主的性质,在禁带中引入杂质能级。 •浅能级:电离能很小,距能带边缘(导带底或价带顶)很 近的杂质能级。 •深能级:电离能较大,距能带边缘较远,而比价接近禁带 中央。
除去杂质原子外,其他晶格结构上的缺陷也可以引进禁 带中的能级。
杂质补偿
一块半导体中同时存在两种类型的杂质,这时半导体的 类型主要取决于掺杂浓度高的杂质。
• 电阻率为10-4到10-7Ω ·m • 电阻率对纯度依赖极为敏感。
4.1.1 本征半导体
本征半导体:不存在任何杂质,没有缺陷(原子在空间排 列遵循严格的周期性)的理想半导体。
本征半导体中的载流子:从满带激发到导带的电子、满带 中留下的空穴。
本征激发:(热激发)在一定温度下,由于热运动起伏, 一部分价电子获得足够能量,越过禁带,跃迁至导带。价电 子获得能量直接跃迁至导带的过程称为本征激发。
相关文档
最新文档