分式练习计算练习题超全
分式练习计算练习试题(超全)
分式练习题一 填空题1.下列有理式中是分式的有 (1)-3x ;(2)y x ;(3)22732xy y x -;(4)-x 81;(5) 35+y ; (6)112--x x ;(7)-π-12m ; (8)5.023+m ; 2.(1)当a 时,分式321+-a a 有意义;(2)当_____时,分式4312-+x x 无意义; (3)当______时,分式68-x x 有意义;(4)当_______时,分式534-+x x 的值为1; (5)当______时,分式51+-x 的值为正;(6)当______时分式142+-x 的值为负. (7)分式36122--x x 有意义,则x (8)当x = 3时,分式b x a x +-无意义,则b ______ 3.(1)若分式0)1x )(3x (1|x |=-+-,则x 的值为_________________; (2)若分式33x x --的值为零,则x = ; (3)如果75)13(7)13(5=++a a 成立,则a 的取值范围是__________; (4)若)0(54≠=y y x ,则222y y x -的值等于________; (5)分式392--x x 当x __________时分式的值为零; (6)当x __________时分式xx 2121-+有意义; (7)当x=___时,分式22943x x x --+的值为0; (8)当x______时,分式11x x +-有意义; (10)当a=_______时,分式2232a a a -++ 的值为零; (11)当分式44x x --=-1时,则x__________;(12)若分式11x x -+的值为零,则x 的值为 (13)当x________时,1x x x -- 有意义. 4.①())0(,10 53≠=a axy xy a ②()1422=-+a a 。
5.约分:①=ba ab 2205__________,②=+--96922x x x __________。
分式运算50练(含详细解答)
,
.
解法二:
10
.
40. 化简后得 解析: 原式
,代入值后得 .
,
∵
,
∴
,
将
代入化简后的式子得:
.
41. . 解析:
原式
,
∵
,∴
,
根据题意,
,
∴
,
∴原式 .
42. . 解析: 原式
,
有
得,
,
代入上式得:原式
.
43.
11
化简后得: 解析: 原式
,代入值后得: .
,
把
代入
.
44. . 解析: 原式
∵
33. . 解析: 原式
.
∵
,
∴原式 .
34. . 解析: 原式
,
8
∵ ∴ ∴原式
, ,
.
35. . 解析: 原式
∵ ∴ ∴原式
. , . .
36. . 解析: 原式
∵
∴
∴原式
.
9
37. 解析: 原式
.
∵
,
∴
,
∴原式
.
38. . 解析:
,
∵
,
∴
,即
,
∴原式
.
39.
.
解析:
解法一:
原式
,
当 原式
时,
. .
.
12.
.
解析:
原式
.
13.
.
解析:
.
14.
.
解析:
. 15. .
3
解析:
原式
.
16.
.
分式练习题及答案
分式练习题及答案分式是数学中的一个重要概念,它在我们的日常生活中有着广泛的应用。
在学习分式的过程中,练习题是不可或缺的一部分。
通过练习题,我们可以巩固对分式的理解,提高解题能力。
本文将给大家介绍一些常见的分式练习题及其答案,希望对大家的学习有所帮助。
一、基础练习题1. 计算:$\frac{3}{4}+\frac{2}{5}$解答:首先找到两个分式的公共分母,这里是20。
然后将两个分式的分子相加,保持分母不变。
计算得到:$\frac{15}{20}+\frac{8}{20}=\frac{23}{20}$2. 计算:$\frac{5}{6}-\frac{1}{3}$解答:同样地,找到两个分式的公共分母,这里是6。
然后将两个分式的分子相减,保持分母不变。
计算得到:$\frac{5}{6}-\frac{2}{6}=\frac{3}{6}=\frac{1}{2}$3. 计算:$\frac{2}{3}\times\frac{3}{4}$解答:将两个分式的分子相乘,分母相乘,得到:$\frac{2}{3}\times\frac{3}{4}=\frac{6}{12}=\frac{1}{2}$4. 计算:$\frac{2}{3}\div\frac{5}{6}$解答:将除法转化为乘法,即将第二个分式的分子与分母互换位置,然后进行乘法运算。
得到:$\frac{2}{3}\div\frac{5}{6}=\frac{2}{3}\times\frac{6}{5}=\frac{12}{15}=\frac{4}{5}$二、应用练习题1. 甲、乙两个水管一起工作可以在3小时内将一个水池填满。
如果甲单独工作需要4小时,乙单独工作需要多少小时?解答:设乙单独工作需要x小时。
根据工作时间和工作效率的关系,可以得到以下分式:$\frac{1}{4}+\frac{1}{x}=\frac{1}{3}$。
将分式转化为方程,解方程得到:$x=12$。
分式练习计算练习题(超全)
(7) a 2m
a = mn ;(8) x y x y yx
;(9) a b 1 = b
;(6) ( 1 a 2 )3 a 4 = 2
;
21.(1)已知 1 1 5 ,则分式 2x 3xy 2 y 的值为_______
;
xy
x 2xy y
(2)已知 1 1 3 ,则分式 2x 3xy 2 y 的值为 ;
x 1
(8)当 x______时,分式 有意义;
x 1
a 2
(10)当 a=_______时,分式
的值为零;
a2 3a 2
x4
(11)当分式
=-1 时,则 x__________;
x4
..
x 1
(12)若分式
的值为零,则 x 的值为
x 1
x 1
(13)当 x________时,
1 12 23 3
b
b
.
..
55.(1)已知
x
1 x
4
,则
x4
x2 x2
1
.
。
2
bb
5a3b2 10c5
3x x
1
20.计算:(1) ÷ =_______;(2)
· =________;(3) ÷ =________;(4)x÷ ×
a 2a2
2c a3b4
x2 3x2
y
1
=________;(5)
a
÷
a2
=_______;(5) 21a 3b 2 3ab
y
a2 1 a2 a
无意义,则 b ______
100道分式解方程练习题
100道分式解方程练习题一、基础练习题1. 解方程:$\frac{x}{3} - 4 = 7$2. 解方程:$\frac{2}{5}y + 1 = 4$3. 解方程:$2 - \frac{3}{x} = 5$4. 解方程:$3x - \frac{1}{2} = 6$5. 解方程:$\frac{x}{4} + \frac{2}{3} = \frac{5}{6}$二、整数系数练习题6. 解方程:$\frac{3}{2}x - 1 = 2$7. 解方程:$2 - \frac{4}{3}x = -1$8. 解方程:$\frac{1}{4}x + \frac{2}{5} = \frac{3}{10}$9. 解方程:$3x - \frac{5}{2} = \frac{1}{2}$10. 解方程:$-2 - \frac{3}{4}x = -\frac{1}{2}$三、含有分数项的练习题11. 解方程:$\frac{1}{2}x - \frac{3}{4} = \frac{x}{3}$12. 解方程:$y + \frac{2y}{3} = \frac{5}{2}$13. 解方程:$2 - \frac{1}{x} = \frac{x}{2}$14. 解方程:$\frac{3}{x} - \frac{x}{2} = 1$15. 解方程:$3 - \frac{x}{2} = \frac{5}{6} - \frac{1}{3}x$四、复杂分式练习题16. 解方程:$\frac{x+1}{x} - \frac{1}{x+1} = \frac{1}{2}$17. 解方程:$\frac{2x-1}{x-1} - \frac{x+1}{x} = \frac{1}{3}$18. 解方程:$\frac{3}{2x-1} - \frac{x}{x+1} = \frac{1}{4}$19. 解方程:$\frac{2}{x+1} + \frac{1}{x-1} = 1$20. 解方程:$\frac{1}{2x} + \frac{1}{x+2} = \frac{5}{4}$五、含有根式的练习题21. 解方程:$2\sqrt{x} - 3 = 5$22. 解方程:$\frac{1}{\sqrt{x}} + 5 = 3$23. 解方程:$\sqrt{x+1} + \sqrt{x-2} = 5$24. 解方程:$\frac{6}{\sqrt{x}} - 4 = 2$25. 解方程:$\sqrt{x} - \frac{1}{\sqrt{x}} = 2$六、含有二次项的练习题26. 解方程:$x^2 - \frac{1}{4} = \frac{3}{2}$27. 解方程:$\frac{5x}{2} + 3x^2 = 7x$28. 解方程:$x^2 - 6x + 9 = 4$29. 解方程:$(2x-1)(x+\frac{1}{3}) = 0$30. 解方程:$x^2 - 4x + 4 = 0$七、混合练习题31. 解方程:$\frac{1}{2}x - \frac{3}{4} = \frac{x}{3}$32. 解方程:$y + \frac{2y}{3} = \frac{5}{2}$33. 解方程:$2 - \frac{1}{x} = \frac{x}{2}$34. 解方程:$\frac{3}{x} - \frac{x}{2} = 1$35. 解方程:$3 - \frac{x}{2} = \frac{5}{6} - \frac{1}{3}x$36. 解方程:$\frac{x+1}{x} - \frac{1}{x+1} = \frac{1}{2}$37. 解方程:$\frac{2x-1}{x-1} - \frac{x+1}{x} = \frac{1}{3}$38. 解方程:$\frac{3}{2x-1} - \frac{x}{x+1} = \frac{1}{4}$39. 解方程:$\frac{2}{x+1} + \frac{1}{x-1} = 1$40. 解方程:$\frac{1}{2x} + \frac{1}{x+2} = \frac{5}{4}$41. 解方程:$2\sqrt{x} - 3 = 5$42. 解方程:$\frac{1}{\sqrt{x}} + 5 = 3$43. 解方程:$\sqrt{x+1} + \sqrt{x-2} = 5$44. 解方程:$\frac{6}{\sqrt{x}} - 4 = 2$45. 解方程:$\sqrt{x} - \frac{1}{\sqrt{x}} = 2$46. 解方程:$x^2 - \frac{1}{4} = \frac{3}{2}$47. 解方程:$\frac{5x}{2} + 3x^2 = 7x$48. 解方程:$x^2 - 6x + 9 = 4$49. 解方程:$(2x-1)(x+\frac{1}{3}) = 0$50. 解方程:$x^2 - 4x + 4 = 0$以上是100道分式解方程的练习题,通过这些题目的练习,可以加深对分式解方程的理解和掌握。
初二分式练习题及答案
初二分式练习题及答案初二分式练习题及答案初二是学生们学习生涯中的一个重要阶段,也是他们逐渐进入高中阶段的过渡期。
为了帮助初二学生提高数学能力,下面将提供一些分式练习题及答案。
练习题一:1. 计算:$\frac{2}{3} + \frac{3}{4}$。
2. 计算:$\frac{5}{6} - \frac{1}{3}$。
3. 计算:$\frac{2}{5} \times \frac{3}{4}$。
4. 计算:$\frac{7}{8} \div \frac{2}{3}$。
5. 计算:$\frac{2}{3} + \frac{4}{5} - \frac{1}{2}$。
答案一:1. $\frac{17}{12}$2. $\frac{1}{2}$3. $\frac{3}{10}$4. $\frac{21}{16}$5. $\frac{11}{30}$练习题二:1. 计算:$\frac{3}{5} + \frac{2}{7}$。
2. 计算:$\frac{1}{2} - \frac{1}{4}$。
3. 计算:$\frac{2}{3} \times \frac{3}{4}$。
4. 计算:$\frac{5}{6} \div \frac{2}{3}$。
5. 计算:$\frac{1}{2} + \frac{3}{4} - \frac{1}{3}$。
答案二:1. $\frac{29}{35}$2. $\frac{1}{4}$3. $\frac{1}{2}$4. $\frac{5}{4}$5. $\frac{7}{12}$练习题三:1. 计算:$\frac{4}{5} + \frac{3}{8}$。
2. 计算:$\frac{2}{3} - \frac{1}{6}$。
3. 计算:$\frac{1}{4} \times \frac{3}{5}$。
4. 计算:$\frac{5}{6} \div \frac{1}{2}$。
5. 计算:$\frac{2}{3} + \frac{1}{4} - \frac{1}{6}$。
分式的加减乘除试题
分式的加减乘除试题1. 加法试题:计算下列分式的和:a) $\frac{2}{3} + \frac{1}{6}$b) $\frac{4}{5} + \frac{3}{10}$c) $\frac{2}{7} + \frac{5}{14}$2. 减法试题:计算下列分式的差:a) $\frac{3}{4} - \frac{1}{2}$b) $\frac{2}{3} - \frac{1}{6}$c) $\frac{5}{8} - \frac{3}{16}$3. 乘法试题:计算下列分式的乘积:a) $\frac{2}{3} \cdot \frac{1}{4}$b) $\frac{3}{5} \cdot \frac{2}{7}$c) $\frac{5}{8} \cdot \frac{3}{10}$4. 除法试题:计算下列分式的商:a) $\frac{2}{3} \div \frac{1}{4}$b) $\frac{3}{5} \div \frac{2}{7}$c) $\frac{5}{8} \div \frac{3}{10}$解答:1. 加法试题:a) 计算 $\frac{2}{3} + \frac{1}{6}$:首先需要找到两个分式的公共分母,显然它们的公共分母是6。
所以可得:$\frac{2}{3} + \frac{1}{6} = \frac{4}{6} + \frac{1}{6} =\frac{5}{6}$b) 计算 $\frac{4}{5} + \frac{3}{10}$:需要将两个分式的分母转化为最小公倍数,最小公倍数为10。
得:$\frac{4}{5} + \frac{3}{10} = \frac{8}{10} + \frac{3}{10} =\frac{11}{10}$c) 计算 $\frac{2}{7} + \frac{5}{14}$:将两个分式的分母转化为最小公倍数,最小公倍数为14。
计算得:$\frac{2}{7} + \frac{5}{14} = \frac{4}{14} + \frac{5}{14} =\frac{9}{14}$2. 减法试题:a) 计算 $\frac{3}{4} - \frac{1}{2}$:先找到两个分式的公共分母,公共分母为4。
分式混合运算30道题
分式混合运算30道题一、基础型1. 计算:(1)/(x)+(2)/(x)这就好比你有1个小饼干,再加上2个同样的小饼干,不过这里的小饼干是(1)/(x)这种形状的哦。
那总共就是(1 + 2)/(x)=(3)/(x)。
2. 计算:(3)/(x - 1)-(1)/(x - 1)这里就像是你有3个某种特别的糖果((3)/(x - 1)),然后拿走1个同样的糖果((1)/(x - 1)),那还剩下(3-1)/(x - 1)=(2)/(x - 1)。
3. 计算:(2)/(x)×(x)/(4)你看啊,上面的x和下面的x就像两个好朋友见面可以抵消,然后就剩下(2)/(4)=(1)/(2)。
4. 计算:(4)/(x)÷(2)/(x)这就好比4个小怪兽((4)/(x))要分成每组2个小怪兽((2)/(x)),那能分成几组呢?答案就是4÷2 = 2,所以结果是2。
5. 计算:(1)/(x+1)+(1)/(x - 1)这里就像是把两种不同盒子(x + 1和x - 1)里的东西加起来。
先通分,变成(x - 1)/((x + 1)(x - 1))+(x + 1)/((x + 1)(x - 1))=(x - 1+x + 1)/((x + 1)(x - 1))=(2x)/((x + 1)(x - 1))。
6. 计算:(3)/(x^2)-(1)/(x)先把(1)/(x)变成(x)/(x^2),这样就可以相减啦。
就像把不同大小的积木变得一样大再比较。
结果就是(3 - x)/(x^2)。
7. 计算:(2)/(x^2+2x)+(1)/(x)先把x^2+2x分解成x(x + 2),然后把(1)/(x)变成(x+2)/(x(x + 2)),再和(2)/(x(x + 2))相加,得到(2+x + 2)/(x(x + 2))=(x+4)/(x(x + 2))。
8. 计算:(4)/(x - 2)-(8)/(x^2 - 4)把x^2 - 4分解成(x + 2)(x - 2),把(4)/(x - 2)变成(4(x + 2))/((x + 2)(x - 2)),然后相减就是(4(x + 2)-8)/((x + 2)(x - 2))=(4x+8 - 8)/((x + 2)(x - 2))=(4x)/((x + 2)(x - 2))。
小学生数学分式的练习题
小学生数学分式的练习题学习数学是小学生们全面发展的基础,而分式作为数学中的重要概念也是他们日常学习的一部分。
掌握分式的基本运算和解题方法对小学生们的数学学习非常重要。
本文将为小学生们提供一些关于分式练习题,帮助他们巩固分式的知识和应用能力。
一、简单分式练习题1.计算下列分式的值:(1) 3/4 + 1/6(2) 5/8 - 1/3(3) 2/5 × 3/4(4) 3/4 ÷ 2/52.将下列分数化为最简形式:(1) 6/8(2) 12/15(3) 18/24(4) 20/303.将下列混合数化为带分数:(1) 3 2/5(2) 5 1/3(3) 7 3/4(4) 9 1/2二、应用题1.小明买了一块蛋糕,吃了其中的2/5后,还剩下1/2。
小明最初买了多少块蛋糕?2.一个房间有7/9的空间被家具占据,还剩下6平方米没被利用。
这个房间的总面积是多少?3.小红一瓶果汁有4/5升,她要平均分给5个人喝,每个人可以喝多少升?三、综合练习题1.求下列各组分数的和,并将结果化为最简形式:(1) 4/15,1/3,2/5(2) 7/8,3/4,9/162.小明去超市买了6件衣服,其中2/3是同款不同色,3/8是同色不同款。
剩余的7件衣服都是不同款不同色。
问小明买了多少件衣服?3.小李去商店买了一包鱼片,共计1 2/3 磅。
他把鱼片分成5份,每份重量相等。
每份鱼片有多重?四、解决问题1.甲、乙两个饮料瓶中的液体比例为3/4:2/3,如果将两个瓶中的液体混合在一起,比例变为多少?2.一个学生购买了一张29/35磅的巧克力蛋糕,他打算把蛋糕切成相等的小块,每小块重量为3/7磅。
这张蛋糕可以切成多少小块?3.小明和小华合伙用2 1/2小时完成了一件工作,若小明单独完成这项工作需要4小时,那么小华单独完成这项工作需要多长时间?以上就是一些关于小学生数学分式的练习题,希望对小学生们的数学学习有所帮助。
通过大量的练习,小学生们可以巩固自己的分式知识,提高解题能力,为进一步学习更复杂的数学知识打下坚实的基础。
初中分式及分式方程100道计算题
初中分式及分式方程100道计算题分式及分式方程计算题练1.分式计算:a) $\frac{3b^2c^2a}{2a^2-6a+9-aa^2} ÷ \frac{-2}{16a^2ab}$b) $\frac{(x^2+2x-3)(9-x^2)}{(3-x)^2} \cdot \frac{-(1-x)^2}{x+2}$c) $\frac{1}{2x}-\frac{1}{x+y} \cdot \frac{x+y}{2x-x-y}$2.$\frac{4-b^2}{2+b^3a-9} \div \frac{4x-x^2+x}{x+3} \cdot \frac{-6}{3-x}$3.$\frac{y+1}{y-2} \div \frac{y^2-4y+3}{y-5}$4.$\frac{x-y}{x^2-y^2} \cdot \frac{1}{1-\frac{x-3y}{x^2-6xy+9y^2}}$5.$\frac{3b^2}{16a} \div \frac{bc}{2a^2} \cdot \frac{-2a}{b}$6.$\frac{x}{x-2} - \frac{x}{x+2} \div \frac{4x}{x+2}$7.$\frac{a^2-2a+1}{a-1} \cdot \frac{-a+2}{a+1}$8.$\frac{xy-x^2}{x-y} \div \frac{x}{y}$9.$\frac{10}{x-x^2} \cdot \frac{x+2}{2-x}$10.$\frac{x}{x-2} - \frac{x}{x+2} \div \frac{4x}{x+2}$11.$\frac{xy-x^2}{x-y} \cdot \frac{1}{xy}$12.$(x+y) \cdot \frac{x-1}{x+1}$13.$\frac{1}{x(1-\frac{1}{x})}+\frac{x^2-1}{x^2-1}$14.$\frac{a+3}{a-1} - \frac{a-3}{a+1} \cdot \frac{1}{a-1}$15.$\frac{2b}{a-b} \cdot \frac{a}{a-b} + \frac{a+b}{a-b}$16.$\frac{1}{2x-1} - \frac{1}{x-2} \cdot \frac{5}{x-2}$17.$\frac{x^2y}{324} \div \frac{-y(x-1)}{xz} \cdot \frac{-x}{yz}$18.$\frac{a+3}{a-1} - \frac{a-3}{a+1} \cdot \frac{1}{a-1}$19.$\frac{2b}{a-b} \cdot \frac{a}{a-b} + \frac{a+b}{a-b}$20.$\frac{1}{2x-1} - \frac{1}{x-2} \cdot \frac{5}{x-2}$21.$\frac{3b^2}{16a} \div \frac{bc}{2a^2} \cdot \frac{-2a}{b}$22.$\frac{4-b^2}{2+b^3a-9} \div \frac{4x-x^2+x}{x+3}\cdot \frac{-6}{3-x}$23.$\frac{y+1}{y-2} \div \frac{y^2-4y+3}{y-5}$24.$\frac{x-y}{x^2-y^2} \cdot \frac{1}{1-\frac{x-3y}{x^2-6xy+9y^2}}$25.$\frac{3b^2c^2a}{2a^2-6a+9-aa^2} ÷ \frac{-2}{16a^2ab}$26.$\frac{10}{x-x^2} \cdot \frac{x+2}{2-x}$27.$\frac{x}{x-3} \cdot \frac{x^2-4}{x^2} \div (1-\frac{1}{x} - \frac{1}{x-1})$28.$\frac{a+3}{a^2-1} - \frac{a-1}{a+1} + 1$29.$\frac{2b^2}{16a} \div \frac{bc}{2a^2} \cdot \frac{-2a}{b}$30.$\frac{a-b}{a+b}$31.$\frac{1}{1+x} - \frac{1-x^2}{x+1}$32.$\frac{3x}{x^3-2x} - \frac{x+2}{x^2-4}$33.$\frac{x(1-\frac{1}{x})}{x+1} + \frac{x^2-1}{x-1}$34.$\frac{3x}{x^2-4} - \frac{x+2}{x^2-4}$35.$\frac{3-x}{x-2} \div (\frac{x+2}{x-2}-\frac{5}{x-2})$36.$\frac{1}{x} + \frac{1}{y} \div \frac{x-y}{x^2-y^2}$37.$\frac{2(x+1)}{x^2-xx-2x+1} \cdot \frac{x-y}{2}$38.$\frac{1}{x} - \frac{1}{x^2-1} + \frac{1}{x^2-1} \cdot \frac{x}{x+1}$39.$\frac{1}{2x-1} - \frac{1}{x-2} \cdot \frac{5}{x-2}$2.解方程⑴ $\frac{3x-2}{5x}=\frac{4x-4}{x^2-2x}$将分式化简得到 $3(x-2)(x+1)=(4x-4)5$化简后得到 $3x^2-7x-6=0$,解得 $x=3$ 或 $x=-\frac{2}{3}$。
分式方程计算题100道
分式方程计算题100道题目一解方程:$\\frac{5}{x} + 3 = \\frac{10}{x}$解:将两边的分式通分,得到:$\\frac{5}{x} + 3 = \\frac{10}{x}$$\\frac{5x}{x} + \\frac{3x}{x} = \\frac{10}{x}$5+3x=10移项得到:3x=10−53x=5解得:$x = \\frac{5}{3}$题目二解方程:$\\frac{2}{x+3} + \\frac{1}{x-2} = \\frac{1}{x}$解:将两边的分式通分,得到:$\\frac{2}{x+3} + \\frac{1}{x-2} = \\frac{1}{x}$$\\frac{2(x-2)}{(x+3)(x-2)} + \\frac{1(x+3)}{(x+3)(x-2)} = \\frac{1}{x}$ $\\frac{2(x-2) + (x+3)}{(x+3)(x-2)} = \\frac{1}{x}$$\\frac{2x-4+x+3}{(x+3)(x-2)} = \\frac{1}{x}$$3x-1 = \\frac{x+3}{x}$将x的分母约去,得到:(3x−1)x=x+33x2−x=x+3移项得到:3x2−2x−3=0这是一个二次方程,可以使用求根公式求解,或经过配方法进行因式分解。
题目三解方程:$\\frac{4}{t+1} - \\frac{2}{t} = \\frac{1}{t^2+t}$解:将两边的分式通分,得到:$\\frac{4}{t+1} - \\frac{2}{t} = \\frac{1}{t^2+t}$$\\frac{4t}{(t+1)t} - \\frac{2(t+1)}{(t+1)t} = \\frac{1}{t^2+t}$$\\frac{4t - 2(t+1)}{(t+1)t} = \\frac{1}{t^2+t}$$\\frac{4t - 2t - 2}{(t+1)t} = \\frac{1}{t^2+t}$$\\frac{2t - 2}{(t+1)t} = \\frac{1}{t^2+t}$将分母约去,得到:(2t−2)(t2+t)=1(2t−2)(t2+t)−1=0将多项式进行展开和整理,得到:2t3+4t2−2t2−4t−2t+2−1=02t3+2t2−6t+1=0这是一个三次方程,可以使用求根公式求解,或通过因式分解进行求解。
史上最全分式练习题(各题型,含答案)
第十六章 分式16.1分式16.1.1从分数到分式一、 教学目标1. 了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件.2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件.三、课堂引入1.让学生填写P4[思考],学生自己依次填出:710,a s ,33200,sv .2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程.设江水的流速为x 千米/时.轮船顺流航行100千米所用的时间为v +20100小时,逆流航行60千米所用时间v-2060小时,所以v +20100=v-2060.3. 以上的式子v +20100,v -2060,a s ,sv ,有什么共同点?它们与分数有什么相同点和不同点?五、例题讲解P5例1. 当x 为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x 的取值范围.[提问]如果题目为:当x 为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m 为何值时,分式的值为0? (1) (2) (3) [分析] 分式的值为0时,必须同时..满足两个条件:○1分母不能为零;○2分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解.[答案] (1)m=0 (2)m=2 (3)m=1六、随堂练习1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x 2. 当x 取何值时,下列分式有意义?(1) (2) (3) 3. 当x 为何值时,分式的值为0? (1) (2) (3) 1-m m 32+-m m 112+-m m 4522--x x x x 235-+23+x x x 57+xx 3217-x x x --221七、课后练习1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?(1)甲每小时做x 个零件,则他8小时做零件 个,做80个零件需 小时.(2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时.(3)x 与y 的差于4的商是 .2.当x 取何值时,分式 无意义? 3. 当x 为何值时,分式的值为0? 八、答案:六、1.整式:9x+4, 209y +, 54-m 分式: x 7 , 238y y -,91-x 2.(1)x ≠-2 (2)x ≠ (3)x ≠±2 3.(1)x=-7 (2)x=0 (3)x=-1七、1.18x, ,a+b, ba s +,4y x -; 整式:8x, a+b, 4y x -; 分式:x 80, ba s + 2. X = 3. x=-1课后反思:16.1.2分式的基本性质一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形.x 802332xx x --212312-+x x二、重点、难点1.重点: 理解分式的基本性质.2.难点: 灵活应用分式的基本性质将分式变形.三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.四、课堂引入1.请同学们考虑: 与 相等吗? 与 相等吗?为什么?2.说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据? 3.提问分数的基本性质,让学生类比猜想出分式的基本性质.五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.a b 56--, y x3-, n m --2, n m 67--, yx 43---。
分式运算练习题及答案
分式运算练习题及答案一、基础练习题1. 化简下列分式,并求最大公约数:a) $\frac{8}{20}$;b) $\frac{18}{30}$;c) $\frac{36}{48}$;d) $\frac{64}{96}$.2. 按照要求变换下列分式:a) $\frac{2}{3}$,变为分母为12的分式;b) $\frac{5}{8}$,变为分母为40的分式;c) $\frac{9}{5}$,变为分母为15的分式;d) $\frac{7}{12}$,变为分母为36的分式.3. 计算下列分式的值:a) $\frac{5}{8} \div \frac{3}{4}$;b) $\frac{7}{12} \times \frac{5}{6}$;c) $\frac{2}{3} + \frac{1}{6}$;d) $\frac{2}{5} - \frac{1}{10}$.4. 根据下列分式的大小关系,填入">"、"<"或"=":a) $\frac{3}{4}\_\_\_\_\_\_\_ \frac{2}{3}$;b) $\frac{4}{7}\_\_\_\_\_\_\_ \frac{12}{21}$;c) $\frac{5}{8}\_\_\_\_\_\_\_ \frac{10}{16}$;d) $\frac{7}{9}\_\_\_\_\_\_\_ \frac{63}{81}$.二、提高练习题1. 计算下列分式的值,并将结果化简为最简形式:a) $\frac{1}{2} + \frac{3}{8}$;b) $\frac{4}{5} - \frac{2}{3}$;c) $\frac{3}{4} \times \frac{5}{6}$;d) $\frac{2}{3} \div \frac{4}{9}$.2. 若$\frac{2}{n} = \frac{4}{15}$,求$n$的值.3. 解方程:$\frac{3}{x+2} - \frac{2}{x-1} = \frac{5}{x}$.4. 若$\frac{1}{a} + \frac{1}{b} = \frac{2}{5}$,求$\frac{a+b}{a-b}$的值.三、挑战练习题1. 根据已知条件,填写下列分式的值:a) 若$\frac{a}{3} = \frac{5}{6}$,求$\frac{2a}{5}$的值;b) 若$\frac{3}{b} = \frac{24}{36}$,求$\frac{2}{3b}$的值;c) 若$\frac{p}{2} = \frac{3}{5}$,求$\frac{5p}{4}$的值;2. 解方程:$\frac{x+3}{3} - \frac{x+1}{2} = \frac{5}{6}$.3. 某校全校学生人数的$\frac{1}{3}$是男生,男生中$\frac{5}{9}$参加了篮球比赛,篮球比赛男生人数占全校学生人数的$\frac{1}{4}$,求全校学生人数和男生人数各是多少?四、答案一、基础练习题1.a) $\frac{8}{20} = \frac{2}{5}$,最大公约数为2;b) $\frac{18}{30} = \frac{3}{5}$,最大公约数为3;c) $\frac{36}{48} = \frac{3}{4}$,最大公约数为12;d) $\frac{64}{96} = \frac{2}{3}$,最大公约数为32.2.a) $\frac{2}{3} = \frac{8}{12}$;b) $\frac{5}{8} = \frac{25}{40}$;c) $\frac{9}{5} = \frac{27}{15}$;d) $\frac{7}{12} = \frac{21}{36}$.3.a) $\frac{5}{8} \div \frac{3}{4} = \frac{5}{8} \times \frac{4}{3} = \frac{20}{24} = \frac{5}{6}$;b) $\frac{7}{12} \times \frac{5}{6} = \frac{35}{72}$;c) $\frac{2}{3} + \frac{1}{6} = \frac{4}{6} = \frac{2}{3}$;d) $\frac{2}{5} - \frac{1}{10} = \frac{4}{10} - \frac{1}{10} =\frac{3}{10}$.4.a) $\frac{3}{4} > \frac{2}{3}$;b) $\frac{4}{7} < \frac{12}{21}$;c) $\frac{5}{8} = \frac{10}{16}$;d) $\frac{7}{9} = \frac{63}{81}$.二、提高练习题1.a) $\frac{1}{2} + \frac{3}{8} = \frac{4}{8} + \frac{3}{8} =\frac{7}{8}$;b) $\frac{4}{5} - \frac{2}{3} = \frac{12}{15} - \frac{10}{15} =\frac{2}{15}$;c) $\frac{3}{4} \times \frac{5}{6} = \frac{15}{24} = \frac{5}{8}$;d) $\frac{2}{3} \div \frac{4}{9} = \frac{2}{3} \times \frac{9}{4} = \frac{6}{12} = \frac{1}{2}$.2. 若$\frac{2}{n} = \frac{4}{15}$,则$n = \frac{15}{4} = \frac{15}{4} = \frac{15}{2} = 7.5$.3.首先将方程的等式两边乘以$x(x-1)(x+2)$,得到:$3(x-1)(x+2) - 2(x+2) = 5x(x-1)$;展开并整理得:$3x^2 - 3 + 6x - 2x - 4 = 5x^2 - 5x$;继续整理得:$2x^2 - 3x - 7 = 0$;使用因式分解或者求根公式,解得:$x = -1$ 或 $x = \frac{7}{2}$.4. 若$\frac{1}{a} + \frac{1}{b} = \frac{2}{5}$,则 $\frac{a+b}{a-b} = \frac{\frac{a}{b} + 1}{\frac{a}{b} - 1} =\frac{\frac{2}{5b}}{\frac{4}{5b}} = \frac{2}{4} = \frac{1}{2}$.三、挑战练习题1.a) 若$\frac{a}{3} = \frac{5}{6}$,则 $a = \frac{5}{6} \times 3 =\frac{5}{2}$,故$\frac{2a}{5} = \frac{2 \times \frac{5}{2}}{5} =\frac{5}{5} = 1$;b) 若$\frac{3}{b} = \frac{24}{36}$,则 $b = \frac{36}{24} \times 3 = \frac{3}{2}$,故$\frac{2}{3b} = \frac{2}{3 \times \frac{3}{2}} =\frac{2}{9}$;c) 若$\frac{p}{2} = \frac{3}{5}$,则 $p = \frac{3}{5} \times 2 =\frac{6}{5}$,故$\frac{5p}{4} = \frac{5 \times \frac{6}{5}}{4} =\frac{6}{4} = \frac{3}{2}$.2.将$\frac{x+3}{3} - \frac{x+1}{2} = \frac{5}{6}$通分得到$\frac{2(x+3)}{6} - \frac{3(x+1)}{6} = \frac{5}{6}$,化简得到 $\frac{2x + 6 - 3x - 3}{6} = \frac{5}{6}$,继续整理得到 $x = 2$.3. 设全校学生人数为$x$人,男生人数为$\frac{1}{3} \cdot x$人,参加篮球比赛的男生人数为$\frac{5}{9} \cdot \frac{1}{3} \cdot x$人。
分式与分式方程练习题
分式与分式方程练习题一、基础练习1. 计算下列分式的值:(a) $\frac{3}{5} + \frac{2}{5}$(b) $\frac{5}{6} - \frac{1}{3}$(c) $\frac{2}{3} \times \frac{4}{5}$(d) $\frac{7}{8} \div \frac{4}{9}$2. 将下列分数化为最简形式:(a) $\frac{9}{12}$(b) $\frac{18}{30}$(c) $\frac{24}{36}$(d) $\frac{16}{48}$3. 求下列分式的整数部分和分数部分:(a) $\frac{15}{4}$(b) $\frac{8}{3}$(c) $\frac{23}{5}$(d) $\frac{17}{6}$4. 求下列分式的倒数:(a) $\frac{4}{9}$(b) $\frac{5}{12}$(c) $\frac{7}{5}$(d) $\frac{9}{10}$5. 求下列分式的平方:(a) $\left( \frac{2}{5} \right)^2$(b) $\left( \frac{3}{4} \right)^2$(c) $\left( \frac{5}{6} \right)^2$(d) $\left( \frac{7}{8} \right)^2$二、方程练习1. 解下列分式方程:(a) $\frac{x}{3} - \frac{1}{2} = \frac{x}{4}$(b) $\frac{2}{x} + \frac{3}{4} = \frac{1}{2}$(c) $\frac{x}{6} + \frac{x-1}{3} = \frac{3}{2}$(d) $\frac{x}{5} - \frac{2x-1}{4} = \frac{x}{3} - 2$2. 解下列分式方程组:(a) $\frac{1}{x} + \frac{1}{y} = \frac{3}{4}$$\frac{1}{x} - \frac{1}{y} = \frac{1}{8}$ (b) $\frac{x+1}{2} + \frac{y-1}{3} = 1$$\frac{x-2}{4} - \frac{y+2}{2} = 2$三、应用练习1. 小明花了$\frac{3}{8}$小时的时间在写作业上,又花了$\frac{5}{12}$小时的时间在看电视上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式练习题一 填空题1.下列有理式中是分式的有 (1)-3x ;(2)y x ;(3)22732xy y x -;(4)-x 81;(5) 35+y ; (6)112--x x ;(7)-π-12m ; (8)5.023+m ; 2.(1)当a 时,分式321+-a a 有意义;(2)当_____时,分式4312-+x x 无意义; (3)当______时,分式68-x x 有意义;(4)当_______时,分式534-+x x 的值为1; (5)当______时,分式51+-x 的值为正;(6)当______时分式142+-x 的值为负. (7)分式36122--x x 有意义,则x (8)当x = 3时,分式b x a x +-无意义,则b ______ 3.(1)若分式0)1x )(3x (1|x |=-+-,则x 的值为_________________; (2)若分式33x x --的值为零,则x = ; (3)如果75)13(7)13(5=++a a 成立,则a 的取值范围是__________; (4)若)0(54≠=y y x ,则222y y x -的值等于________; (5)分式392--x x 当x __________时分式的值为零; (6)当x __________时分式xx 2121-+有意义; (7)当x=___时,分式22943x x x --+的值为0; (8)当x______时,分式11x x +-有意义; (10)当a=_______时,分式2232a a a -++ 的值为零; (11)当分式44x x --=-1时,则x__________;(12)若分式11x x -+的值为零,则x 的值为 (13)当x________时,1x x x -- 有意义. 4.①())0(,10 53≠=a axy xy a ②()1422=-+a a 。
5.约分:①=ba ab 2205__________,②=+--96922x x x __________。
6.化简分式xx ---112的结果是________. 7.将分式的分子与分母中各项系数化为整数,则b a b a 213231++=__________. 8.不改变分式的值,使分式的首项分子与分式本身都不含“-”号:2a b a b ---=________;(2)2a b a b----=___________. 9.不改变分式的值,把分式0.420.51x x +- 中分子、分母各项系数化成整数为________. 10.分式2241b a 与cab x 36的最简公分母是__________. 11. 将ba 1,1,31通分后,它们分别是_________, _________,________. 12. 分式acb b ac c b a 107,23,5422的最简公分母是_________,通分时,这三个分式的分子分母依次乘以________, _______, ____________.13.分式b a a 233-、222ab b -与3385bca c -的最简公分母是 。
14.分式2x y xy +,23y x ,26x y xy -的最简公分母为 ; 15.1x 2x 11x 222++-和的公分母是 ; 16.化简x xx x 2-+的结果为 ; 17.约分:22222b a b ab a -+-= 。
18.若分式44422++-m m m 的值为0,则=m 。
19.计算:012)2006(5)21()1(π-÷-+--= 。
20.计算:(1)b a ÷22b a =_______;(2)3252a b c ·53410c a b =________;(3)23x x ÷23x x=________;(4)x ÷1y ×1y =________;(5)21a a -÷22a a a -=_______;(5)=÷-ab 3b a 2123 ;(6)432a )a 21(÷= (7)÷m 2a =n m a +;(8)=-+-x y y y x x ;(9)b1b a ⋅÷= ; 21.(1)已知115x y +=,则分式2322x xy y x xy y -+++的值为_______ ; (2)已知113x y -=,则分式2322x xy y x xy y+---的值为 ; (3)已知bab 2a b ab 3a ,2b 1a 1+++-=+则=____________. (4)已知x-y=4xy ,则2322x xy y x xy y +---的值为 22.计算:201()( 3.14)3π--+-= ; 23.若0(2)1a +=,则a 必须满足的条件是 ;24.(1)某林场原计划在一定期限内固沙造林240公顷,实际每天固沙造林的面积比原计划多4公顷,结果提前5天完成任务。
设原计划每天固沙造林x 公顷,根据题意列出方程为 。
(2)从甲地到乙地全长S 千米,某人步行从甲地到乙地t 小时可以到达,现为了提前半小时到达,则每小时应多走 千米(结果化为最简形式)(3)某农场原计划用m 天完成A 公顷的播种任务,如果要提前a 天结束,那么平均每天比原计划要多播种_________公顷.(4)一艘船顺流航行n 千米用了m 小时,如果逆流航速是顺流航速的qp ,那么这艘船逆流航行t 小时走了__________千米.(5)某项工作,甲单独做需a 天完成,在甲做了c 天(a c <)后,剩下的工作由乙单独完成还需b 天,若开始就由甲乙共同合做,则完成这项任务需_________天.(6)A 地在河的上游,B 地在河的下游,若船从A 地开往B 地的速度为a 千米/时,从B 地返回A 地的速度为b 千米/时,则在A,B 两地间往返一次的平均速度为___________千米/时.(用a ,b 的式子表示)(7)甲、乙两人分别从两地同时出发,若相向而行,则a 小时相遇;若同向而行,则b 小时甲追上乙.那么甲的速度是乙的速度的_______倍.(8)一项工程,甲单独做x 小时完成,乙单独做y 小时完成,则两人一起完成这项工程需要__________小时。
(9)某工厂库存原材料x 吨,原计划每天用a 吨,若现在每天少用b 吨,则可以多用天。
(10)甲、乙两人组成一队参加踢毽子比赛,甲踢m 次用时间1t (s ),乙在2t (s )内踢n 次,现在二人同时踢毽子,共N 次,所用的时间是T (s ),则T 是________.25.瑞士中学教师巴尔末成功地从光谱数据9162536,,,,5122132中得到巴尔末公式,从而打开了光谱奥秘的大门,请你按这种规律写出第七个数据是 .26.若记 221x y x =+ =f(x),并且f(1)表示当x=1时y 的值,即f(1)=2211211=+;f(12)表示当x=12时y 的值,即f(12)=221()12151()2=+;……那么f(1)+f(2)+f(12)+f(3)+f(13)+…+f(n)+f(1n)= (用含n 的代数式表示)27.若-1,则x+x -1=__________. 28.(1)已知31=+x x ,则_________122=+xx (2)已知=+=+22a1a ,3a 1a 则_______________; (3)若=+=-22121xx x x 则 29.计算1201(1)5(2004)2π-⎛⎫-+-÷- ⎪⎝⎭的结果是_________. 30.已知u=121s s t -- (u ≠0),则t=___________. 31.用科学记数法表示:12.5毫克=________吨. 32.当x 时,分式x x --23的值为负数. 33.计算(x+y)·2222x y x y y x+-- =____________. 34.计算:()()12211--+-n n =______________(n 为整数) 35.计算:()____________221=--- 36.化简:()))((2211---+-+y x y x yx =______________ 37.已知:57,37==n m ,则=-n m 27________________.38.已知:9432827321=⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛--x x , 则x=_____________ 39.用科学记数法表示﹣0.0003097= 。
(保留两个有效数字)40.2003年10月15日,航天英雄杨利伟乘坐 “神舟五号”载人飞船,于9时9分50秒准确进入预定轨道,开始巡天飞行,飞船绕地球飞行了十四圈后,返回舱与推进舱于16日5时59分分离,结束巡天飞行,飞船共用了20小时49分10秒,巡天飞行了约5106⨯千米,则 “神舟五号”飞船巡天飞行的平均速度约为_____________千米/秒(精确到0.1).41.人类的遗传物质就是DNA,人类的DNA 是很长的链,最短的22号染色体也长达3000000个核苷酸,这个数用科学记数法表示是___________.42.计算()()___________1031032125=⨯÷⨯--.43.自从扫描隧道显微镜发明后,世界上便诞生了一门新学科,这就是“纳米技术”,已知52个纳米的长度为0.000000052米,用科学记数法表示这个数为__________.44.已知at v v +=0(a 不为零),则t = .45.关于x 的方程a mx = ()0≠m 的解为 .46.当x= 时,分式2x x x-的值为0. 47.已知222222M xy y x y x y x y x y--=+--+,则M= . 48.不改变分式的值,使分子、分母首项为正,则 x y x y-+--= . 49.化简:22ax ay x y +-= . 50.已知11x -有意义,且2111A x x =--成立,则x 的值不等于 . 51.计算:223.9y xy x-= . 52.李明计划在一定日期内读完200页的一本书,读了5天后改变了计划,每天多读5页,结果提前一天读完,求他原计划平均每天读几页书.解题方案:设李明原计划平均每天读书x 页,用含x 的代数式表示:(1)李明原计划读完这本书需用 天;(2)改变计划时,已读了 页,还剩 页;(3)读了5天后,每天多读5页,读完剩余部分还需 天;(4)根据问题中的相等关系,列出相应方程 .53.一根蜡烛在凸透镜下成一实像,物距u ,像距v 和凸透镜的焦距f 满足关系式:111u v f +=.若f=6厘米v=8厘米,则物距u= 厘米.54.已知22334422,33,44,112233⨯=+⨯=+⨯=+若1010a a b b⨯=+(a 、b 都是整数),则a+b 的最小值是 .55.(1)已知14x x+=,则2421x x x =++ . (2)若=++=-1,31242x x x x x 则__________。