系统论控制论和信息论共42页文档
控制论、信息论和系统科学的发展
一、控制论的概念和历史发展控制论是一种研究动态系统如何被控制或如何产生稳定行为的学科。
它的概念最早可以追溯到17世纪的牛顿力学,当时对于机械系统的建模和控制已经开始出现。
然而,控制论的现代形式则可以追溯到20世纪40年代和50年代,以美国的数学家诺伯特·维纳和俄罗斯的捷尔盖·普利格奥金为代表的一些学者开始系统地研究动态系统的控制问题。
二、信息论的概念和历史发展信息论是一种研究信息传输和处理的学科,它最早由克劳德·香农在20世纪40年代提出。
香农的信息论主要是研究在通信过程中如何最大限度地减少由于噪声和干扰引起的信息损失。
信息论的概念得到了广泛的应用,在无线通信、数据压缩、加密等领域都有重要的作用。
三、系统科学的概念和历史发展系统科学是一种综合性的学科,它是在20世纪中期,随着控制论和信息论的发展而逐渐形成的。
系统科学致力于研究和描述复杂的动态系统,这种系统可以是自然界的生态系统、社会系统,也可以是人工构建的工程系统。
系统科学融合了数学、物理学、生物学、社会学等多个学科的知识,致力于建立系统的数学模型,揭示系统中的规律和特性。
四、控制论、信息论和系统科学的发展在过去的几十年里,控制论、信息论和系统科学都取得了显著的进展。
随着计算机技术的发展,控制论的方法不仅在工程领域得到了广泛的应用,还开始在生物学、社会科学等领域展现出了强大的影响力。
信息论的概念也得到了进一步的扩展,传感器网络、大数据处理等新兴领域都得益于信息论的相关理论。
而系统科学的研究也在全球范围内得到了广泛的关注,因为越来越多的现实问题需要综合性的分析和解决方案。
五、未来的发展趋势未来,控制论、信息论和系统科学将继续发展,其中一些可能的发展趋势包括:一是在人工智能、机器学习等领域的应用将得到进一步的加强,控制论和信息论的方法会成为这些领域的核心内容。
二是系统科学将更多地与可持续发展、环境保护等领域相结合,为解决全球性的复杂问题提供更多新的思路和方法。
系统论、控制论和信息论对于现代科学技术发展以及社会生活的意义
系统论、控制论和信息论对于现代科学技术发展以及社会生活的意义下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、系统论的意义。
系统理论
教学也是一个系统,这个系统中包括了教育过程中所要涉及的几个要素: 教学也是一个系统,这个系统中包括了教育过程中所要涉及的几个要素: 教师、学生、教学信息、教学条件等 该系统的功能就是培养人才。 教师、学生、教学信息、教学条件等,该系统的功能就是培养人才。
一、基本概念 二、系统科学的三个基本原理 三、系统方法
一、基本概念
系统:是由两个以上相互作用、相互依赖(具有一定结构) 系统:是由两个以上相互作用、相互依赖(具有一定结构)的要素组成 的具有特定功能的有机整体。 的具有特定功能的有机整体。 构成系统必须具备的三个基本条件: 构成系统必须具备的三个基本条件:
二、系统科学的三个基本原理 反馈原理:只有通过信息反馈,才可能实现有效地控制,从而达到目的; 反馈原理:只有通过信息反馈,才可能实现有效地控制,从而达到目的; 没有信息反馈的系统,要实现有效地控制, 没有信息反馈的系统,要实现有效地控制,从而达到预期的目的是不可 能的。 能的。 有序原理:只有开放、有涨落、远离平衡态,才可能走向有序; 有序原理:只有开放、有涨落、远离平衡态,才可能走向有序;没有开 放、没有涨落、处于平衡态的系统,要走向有序是不可能的。系统开放 没有涨落、处于平衡态的系统,要走向有序是不可能的。 即与外界有物质、能量、信息的交换,是必要条件; 涨落” 即与外界有物质、能量、信息的交换,是必要条件;“涨落”指对系统 稳定状态的偏离,是实际存在的一切系统的固有特征; 稳定状态的偏离,是实际存在的一切系统的固有特征;而系统只有远离 平衡态,才可能形成新的稳定的有序结构。 平衡态,才可能形成新的稳定的有序结构。 整体原理:只有通过相互联系形成整体结构才能发挥整体功能;没有整 整体原理:只有通过相互联系形成整体结构才能发挥整体功能; 体联系,没有整体结构,要使系统发挥整体功能是不可能的。 体联系,没有整体结构,要使系统发挥整体功能是不可能的。一低频系 统作为整体有内部结构和系统的“边界”组成, 统作为整体有内部结构和系统的“边界”组成,任何系统的整体功能 等于各个部分功能的总和“ “E整”等于各个部分功能的总和“∑E部”加上各部分相互联系形成结 构珠功能的总和“ 公式表示为: ∑E部 ∑E联 构珠功能的总和“∑E联”。公式表示为: E整= ∑E部+ ∑E联
关于系统论,控制论和信息论的哲学思考
关于系统论,控制论和信息论的哲学思考
在哲学层面上,这三个分支提供了一种新的思考方式,即以系统为中心的思维方式。
这种思维方式突破了传统的机械式思考,强调整个系统的整体性和相互作用。
在系统论中,系统被视为一个整体,而非由独立的部分组成。
它强调整个系统的相互关系和相互作用,而非单个部分的特性。
控制论则以系统的自动控制为研究对象,从整体的角度来控制系统的行为。
信息论则关注于信息的传递和处理,强调信息的重要性和对系统的影响。
这三个分支在哲学上的思考方式是相通的,都将系统整体性作为核心,注重相互作用和信息交流。
它们提供了一种思考方式,有助于我们更好地理解世界的运作,并寻找解决方案。
然而,这种思考方式也存在着一些局限性。
系统论、控制论和信息论只能处理相对简单的系统,而对于复杂的系统,可能需要更加综合的方法。
此外,这种思考方式也难以与传统的机械式思维相融合,需要我们不断进行思维上的转变和创新。
总之,系统论、控制论和信息论的哲学思考方式提供了一种新的思维工具,有助于我们更好地理解和解决现实世界中的问题。
同时,我们也需要不断地创新和完善这种思考方式,以适应不断变化的世界。
- 1 -。
系统论、控制论和信息论
系统论、控制论和信息论信息社会被广泛认为是继农业社会、工业社会之后的第三次伟大的科技革命与社会变革,系统论、控制论和信息论成为信息社会最为基础的理论体系。
20世纪40年代,由于自然科学、工程技术、社会科学和思维科学的相互渗透与交融汇流,产生了具有高度抽象性和广泛综合性的系统论、控制论和信息论。
1、系统论General System Theory系统论是研究系统的模式、性能、行为和规律的一门科学。
它为人们认识各种系统的组成、结构、性能、行为和发展规律提供了一般方法论的指导。
系统论的创始人是美籍奥地利理论生物学家和哲学家路德维格·贝塔朗菲。
系统是由若干相互联系的基本要素构成的,它是具有确定的特性和功能的有机整体。
如太阳系是由太阳及其围绕它运转的行星(金星、地球、火星、木星等等)和卫星构成的。
同时太阳系这个"整体"又是它所属的"更大整体"--银河系的一个组成部分。
世界上的具体系统是纷繁复杂的,必须按照一定的标准,将千差万别的系统分门别类,以便分析、研究和管理,如:教育系统、医疗卫生系统、宇航系统、通讯系统等等。
如果系统与外界或它所处的外部环境有物质、能量和信息的交流,那么这个系统就是一个开放系统,否则就是一个封闭系统。
开放系统具有很强的生命力,它可能促进经济实力的迅速增长,使落后地区尽早走上现代化。
2、控制论Control Theory人们研究和认识系统的目的之一,就在于有效地控制和管理系统。
控制论则为人们对系统的管理和控制提供了一般方法论的指导,它是数学、自动控制、电子技术、数理逻辑、生物科学等学科和技术相互渗透而形成的综合性科学。
控制论的思想渊源可以追溯到遥远的古代。
但是,控制论作为一个相对独立的科学学科的形成却起始于本世纪20~30年代,而1948年美国数学家维纳出版了《控制论》一书,标志着控制论的正式诞生。
几十年来,控制论在纵深方向得到了很大发展,已应用到人类社会各个领域,如经济控制论、社会控制论和人口控制论等。
智能控制基础共42页文档
智能控制的类型
智能控制系统一般包括 分级递阶控制系统 专家控制系统 神经控制系统 模糊控制系统 遗传算法系统 集成或者(复合)混合控制:几种方法和机制
往往结合在一起,用于一个实际的智能控制系 统或装置,从而建立起混合或集成的智能控制 系统。
分级递阶控制系统
分级递阶智能控制是在自适应控制和 自组织控制基础上,由美国普渡大学 Saridis提出的智能控制理论。分级递阶 智 能 控 制 ( Hierarchical Intelligent Control) 主 要 由 三 个 控 制 级 组 成 , 按 智 能控制的高低分为组织级、协调级、执 行级,并且这三级遵循“伴随智能递降 精度递增”原则,其功能结构如下图所 示。
ERP( Enterprise Resource Planning ),企业资源计划
MES (manufacturing execution system),制造执行系统
SCADA (Supervisory Control and Data Acquisition)系统,全名为数据采集与监视控制系统 PLC( Programmable Logic Controller ),可编程控制器 RTU( Remote Terminal Unit )远程终端设备
应用传统控制理论进行控制必须提出并 遵循一些比较苛刻的线性化假设,而这 些假设在应用中往往与实际情况不相吻 合。
智能控制的研究对象
对于某些复杂的和饱含不确定性的控制 过程,根本无法用传统数学模型来表示, 即无法解决建模问题。
为了提高控制性能,传统控制系统可能 变得很复杂,从而增加了设备的投资, 减低了系统的可靠性。
智能控制的基本概念
定义四: 智能控制实际只是研究与模 拟人类智能活动及其控制与信息传 递过程的规律,研制具有仿人智能 的工程控制与信息处理系统的一个 新兴分支学科。
系统科学中的老三论 新三论
系统科学领域“老三论”、“新三论”一、引言老三论系统论、控制论和信息论是本世纪四十年代先后创立并获得迅猛发展的三门系统理论的分支学科。
虽然它们仅有半个世纪,但在系统科学领域中已是资深望重的元老,合称“老三论”。
人们摘取了这三论的英文名字的第一个字母,把它们称之为SCI论。
耗散结构论、协同论、突变论是本世纪七十年代以来陆续确立并获得极快进展的三门系统理论的分支学科。
它们虽然时间不长,却已是系统科学领域中年少有为的成员,故合称“新三论”,也称为DSC论。
二、“老三论”、“新三论”理论概述1、系统论、控制论和信息论系统论的创始人是美籍奥地利生物学家贝塔朗菲。
系统论要求把事物当作一个整体或系统来研究,并用数学模型去描述和确定系统的结构和行为。
所谓系统,即由相互作用和相互依赖的若干组成部分结合成的、具有特定功能的有机整体;而系统本身又是它所从属的一个更大系统的组成部分。
贝塔朗菲旗帜鲜明地提出了系统观点、动态观点和等级观点。
指出复杂事物功能远大于某组成因果链中各环节的简单总和,认为一切生命都处于积极运动状态,有机体作为一个系统能够保持动态稳定是系统向环境充分开放,获得物质、信息、能量交换的结果。
系统论强调整体与局部、局部与局部、系统本身与外部环境之间互为依存、相互影响和制约的关系,具有目的性、动态性、有序性三大基本特征。
控制论是著名美国数学家维纳(Wiener N)同他的合作者自觉地适应近代科学技术中不同门类相互渗透与相互融合的发展趋势而创始的。
它摆脱了牛顿经典力学和拉普拉斯机械决定论的束缚,使用新的统计理论研究系统运动状态、行为方式和变化趋势的各种可能性。
控制论是研究系统的状态、功能、行为方式及变动趋势,控制系统的稳定,揭示不同系统的共同的控制规律,使系统按预定目标运行的技术科学。
信息论是由美国数学家香农创立的,它是用概率论和数理统计方法,从量的方面来研究系统的信息如何获取、加工、处理、传输和控制的一门科学。
老三论
三论三论,即系统论、控制论、信息论,二十世纪四十年代末,随着科技的发展,各个科学研究领域的分支日益细化,但与此同时,各学科之间相互渗透的现象越来越明显。
适应这一趋势,系统论、控制论、信息论这三门边缘学科几乎同时产生。
它们的出现对科学技术和思维的发展起到了巨大的推动作用,为现代多门新学科的出现奠定了坚实的基础。
二十世纪四十年代末,随着科技的发展,各个科学研究领域的分支日益细化,但与此同时,各学科之间相互渗透的现象越来越明显。
适应这一趋势,系统论、控制论、信息论这三门边缘学科几乎同时产生。
它们的出现对科学技术和思维的发展起到了巨大的推动作用,为现代多门新学科的出现奠定了坚实的基础。
一系统论(1)系统论的概念确切地说,系统论应当称为“一般系统论”,其创始人贝塔朗菲(L.Bertalanffy)是这样描述这一理论的:“一般系统论是一个逻辑----数学领域,它的任务是表述和推导适用于‘系统’的一般原理,不论其组成要素以及其相互关系或‘力’的种类如何”。
“在所有领域中所涉及的是关于系统的科学时,就出现不同领域的规律性形式上的一致和逻辑上的‘同一’”。
“…在严格的形式中,一般系统论具有公理性质。
”对于“一致”、“同一”等概念,贝塔朗菲是这样解释的:“…出现了进一步普遍化倾向。
在生物学以及在行为科学和社会科学中的很多现象已经应用数学表达式和模型了。
在不同领域中这些模型及其与异质同型的其他模式在结构上的类似性是显而易见的,正是这些有关秩序、组织、整体性、目的论等等最重要的问题…就是‘一般系统论’的观念。
”由此可见,一般系统论是一门跨学科的学说,它超然于具体学科之外,是概括各学科普遍具有的基本规律性的理论。
其目的是用一般系统论的成果指导具体学科的研究并通过开拓思维空间使具体科学的研究达到更高的层次,拓展到更广阔的领域,这正是系统论的精髓所在。
贝塔朗菲成立的“一般系统研究会”的最初纲领恰好体现了这一思想:“研究各个领域中概念法则和模型的同型性,并促进各领域之间有益的转换;尽量减少不同领域中重复性的理论工作;通过加强各专家之间的交流来促进科学的统一。
系统论 控制论 信息论
系统论控制论信息论系统论、控制论、信息论,简称“三论”。
三论是标志着人类现代文明历史进程中光辉里程碑。
高新科技的发展和创新都要求“三论”作理论基础进行指导,例如在航空航天、宇宙天体、原子核能源、军事兵器等,促使科研中庞大复杂的系统工程的目标实现,都离不开“三论”的指导。
我国著名科学家钱学森是创立所谓“中国三论”的学术带头人。
1.系统论的概念、特点:(1)概念:系统论是研究系统的一般模式,结构和规律的学问。
它研究各种系统的共同特征,用数学方法定量的描述其功能,寻求并确立适用于一切系统的原理,原则和数学模型,是具有逻辑和数学性质的一门科学。
(2)类型:系统论是多种多样的,可根据不同的原则和情况来划分系统的类型,按人类干预的情况可划分为自然系统和人工系统,按科学领域可分为自然系统、社会系统、思维系统(城市生态管理学涉及系统论的人工系统知识。
)(3)特点:系统论认为整体性、关联性、等级结构性、动态平衡性、时序性等是所有系统的共同基本特征,这些既是系统所具有的基本思想观点,也是系统方法的基本原则,表现了系统论不仅是反映客观规律的科学理论,且具有科学方法的含义。
城市生态管理的基本点就是将系统论的方法论引入到城市管理中,从而建立了城市生态管理的科学体系。
2.控制论控制论是研究各类系统的调节和控制规律的科学。
自从1948年诺伯特·维纳(Norbert Wiener)发表了著名的《控制论关于在动物和机器中控制和通信的科学》一书以来,控制论的思想和方法已经渗透到了几乎所有的自然科学和社会科学领域。
维纳把控制论看作是一门研究机器、生命社会中控制和通信的一般规律的科学,是研究动态系统在变化的环境条件下如何保持平衡状态或稳定状态的科学。
他特意创造“cybernetics”这个英语新词来命名这门科学。
“控制论”一词最初来源希腊文“mberuhhtz”,原意为“操舵术”,就是掌舵的方法和技术的意思。
在柏拉图(古希腊哲学家)的著作中,经常用它来表示管理人的艺术。
系统论、信息论,控制论
系统论、信息论,控制论系统论,信息论,控制论第一章系统论产生的历史概况第一节现代系统论的产生一、什么是系统论系统论是研究客观现实系统共同的特征、本质、原理和规律的科学。
它所概括的思想、理论、方法,普遍地适用于物理、生物、技术和社会系统。
系统论最明显的特征是具有新科学思想和方法论的意义,它主张从整体出发去研究系统与系统、系统与要素以及系统与环境之间的普遍联系。
它从揭示系统的整体规律上,为解决现代科学技术、社会和经济等方面的复杂问题,提供了新的理论武器。
系统论的思想渊源是辩证法,它强调从事物普通联系和发展变化中研究事物。
现代系统论不仅从哲学角度提出了有关系统的基本思想而且通过科学的、精确的数学方法,定量地描述系统机制及其发展变化过程。
所以,系统论的原理及方法具有普通的适用性。
二、系统论思想的产生过程一般系统论创始人是美籍奥地利生物学家贝塔朗菲(L.V.Bertalanffy,1901--1972),系统论作为一门科学,产生于本世纪20--30年代。
贝塔朗菲创立系统论是有—个历史过程的,他是生物学家,他的系统论思想的形成与当时的生物学界的学术争论以及他本人亲自参加这场讨论有关。
在生物学史上,一直存在着机械论与活力论之争。
机械论在生物学中表现为一种简化论和机械决定论,他们用分析方法把生物简化为物理的和化学的问题,纯粹用物理的、机械的和化学的原因来说明一切生命的生理现象和心理过程,即一种原因产生一种结果,反之亦然。
法国18世纪唯物论学者拉·梅特立是机械论最典型的代表人物之一。
他的主要著作《人是机器》就是把人这种高级生物看成是一架机器,人就是出各种零件组成的机器。
活力论则认为在生物体内部存在着一种特殊的“活力”,它支配着整个生命过程,活力论者断言:“在有机界与无机界之间隔着一道不可逾越的鸿沟;因为有机界是由一种支配着生物体内全部物理化学过程的、有一定目的的超物质的(超自然的)力量所产生的”。
德国的杜里舒是新活力论的代表,他分别用半个和两个完整的海胆做实验,结果都能生产出一个正常的海胆来。
系统论的概念和主要类型
系统论的概念和主要类型
系统论是研究系统的一般模式、结构和规律的学问,它研究各种系统的共同特征,用数学方法定量地描述其功能,寻求并确立适用于一切系统的原理、原则和数学模型,是具有逻辑和数学性质的一门科学。
系统论的主要类型包括:
1. 一般系统论:这是系统论的基础理论,研究系统的一般原理和方法,包括系统的定义、分类、特征、结构、功能、行为等。
2. 控制论:这是研究系统的控制和调节的理论,主要关注系统的稳定性、适应性和可控性。
3. 信息论:这是研究信息的传输、处理和利用的理论,主要关注系统的信息传递和处理。
4. 系统工程:这是应用系统论的方法和技术来解决实际问题的学科,主要关注系统的设计、开发、实施和管理。
5. 耗散结构理论:这是研究开放系统的自组织和演化的理论,主要关注系统在远离平衡态时的行为和特征。
6. 协同学:这是研究系统各部分之间的协同作用和相互关系的理论,主要关注系统的整体性行为和协同效应。
这些类型相互关联,相互补充,共同构成了系统论的学科体系。
系统论的研究方法和成果已经在许多领域得到了广泛应用,如工程、管理、社会科学、自然科学等。
系统论,控制论,信息论
一般系统论亚里斯多德早就说过“整体大于部分之和”。
因此对系统的研究可以说从古代就已经开始了。
作为现代系统论的基本思想最初产生于本世纪20年代初由奥地利生物学家贝朗塔菲提出的,只不过它一开始被作为"机体生物学",这是生物学中的有机论概念,强调生命现象是不能用机械论观点来揭示其规律的,而只能把它看作一个整体或系统来加以考察。
1968年,贝朗塔菲发表了一般系统论的代表著作《一般系统理论――基础发展与应用》。
现在系统思想形成了一股重要的思潮,日益发挥重大而深远的影响。
一、系统1、系统的含义及其分类系统论的内涵和外延理论界现在说法不一。
人们现在把系统论作为介于哲学和具体科学之间的横断科学来对待。
它被用作比具体学科更一般化的科学理论加以研究,但又不同于哲学。
现代系统论具有可否证性、抽象性、数理性特点。
贝塔朗菲把一般系统概念定义为"系统是处于一定相互关系中的与环境发生关系的各组成成分的总体"。
或:系统——由两个或两个以上的要素组成的具有整体功能和综合行为的统一集合体钱学森把极其复杂的研究对象称为系统。
系统的属性:⑴系统的整体性:即非加和性。
系统不是各部分的简单组合,而有统一性,各组成部分或各层次的充分协调和连接,提高系统的有序性和整体的运行效果。
例如:①钢筋混凝土结构的强度就大于钢筋、水泥、沙石的强度之和。
②拿破仑说数量小时较多数法国人不敌少数马克留木人,数量大时较少法国人可以战胜较多数马克留木人③没有凡高弟弟凡高就出不了成果;没有赫歇尔妹妹则赫歇尔不能成为伟大的天文学家;没有阿贝尔的老师就没有阿贝尔;没有孟母就没有孟子;没有伽罗华之母就没有伽罗华④人们常说"三个臭皮匠等于一个诸葛亮"⑤反面例子如上网、吸毒、赌博等。
⑥"三个和尚没水吃",其原因是他们的能量消耗在内耗上。
⑵系统的相关性:系统中相互关联的部分或部件形成"部件集","集"中各部分的特性和行为相互制约和相互影响,这种相关性确定了系统的性质和形态。
系统论、控制论和信息论简介
1推荐系统论、控制论和信息论简介现代科学技术的发展在高度分化的基础上,有着高度综合的特点,一方面向深度发展,科学研究的对象越来越专一,科学分类越来越精细,新领域、新科学、新专业不断产生;另一方面,各科学之间又相互渗透、相互交叉和相互移植而使得科学技术日趋整体化和综合化。
系统论、控制论和信息论就是科学技术整体化,综合化的产物,这是二十世纪自然科学取得的重大成就之一,它是具有综合特性的横向科学,它沟通了自然科学和社会的联系,改变了科学发展的图景和人们的思维方式,并以其特有的新颖的思路,为科学研究提供了崭新的方法,扩大了人们研究问题的广度和深度,实现了人类认识史上由定性到定量认识物质之间各种关系的新飞跃,极大地提高了人类认识世界、改造世界的能力。
因为系统论、控制论、信息论在科学体系结构中的横向科学的特殊地位,就决定了它在丰富和发展辩证唯物主义哲学方面、在促进科学技术的发展方面、在解决一切复杂的科学、技术、经济和社会问题等方面,有着其他科学不可替代的重要作用。
系统论、控制论和信息论是三门科学,是现代科学前沿的新兴“软”科学群,它们各有不同的出发点和内容,但它们是在同一历史背景下,从不同侧面研究同一个问题而产生的,其手段也有很多共同之处。
与其他基础科学不同,研究的对象既不是客观世界中哪一种结构,也不是物质的某种运动形态,而是从横向综合的角度,研究物质运动的规律,从而揭示世界各种互不相同的事物在某些方面的内在联系和本质特性,三者各成体系,但都应用系统、控制、信息的基本概念、基本思想,互相交叉、互相借鉴,协同发展。
系统论是把要研究和处理的对象看成由一些相互联系、相互作用的若干因素组成的系统,研究系统就是寻求利用信息实现最优系统的途径。
显然任何系统都离不开信息,因此研究系统就必须研究反映系统与环境、系统与子系统之间的联系的不可缺少的要素信息。
一个系统信息量的大小,反映系统的组织化、复杂化度的高低。
而系统的运行又离不开控制,对系统的控制同样离不开信息。
控制论、系统论、信息论
控制论、系统论、信息论控制论是研究动物(包括人类)和机器内部的控制与通信的一般规律的学科,着重于研究过程中的数学关系。
综合研究各类系统的控制、信息交换、反馈调节的科学,是跨及人类工程学、控制工程学、通讯工程学、计算机工程学、一般生理学、神经生理学、心理学、数学、逻辑学、社会学等众多学科的交叉学科。
概述编辑1834 年,著名的法国物理学家安培写了一篇论述科学哲理的文章,他进行科学分类时,把管理国家的科学称为“控制论”,他把希腊文译成法“Cybernetigue”。
在这个意义下,“控制论”一词被编入19 世纪许多著名词典中。
维纳发明“控制论”这个词正是受了安培等人的启发。
在控制论中,“控制”的定义是:为了“改善”某个或某些受控对象的功能或发展,需要获得并使用信息,以这种信息为基础而选出的、于该对象上的作用,就叫作控制。
由此可见,控制的基础是信息,一切信息传递都是为了控制,进而任何控制又都有赖于信息反馈来实现。
信息反馈是控制论的一个极其重要的概念。
通俗地说,信息反馈就是指由控制系统把信息输送出去,又把其作用结果返送回来,并对信息的再输出发生影响,起到制约的作用,以达到预定的目的。
主要特征编辑第一个特征要有一个预定的稳定状态或平衡状态。
例如在上述的速度控制系统中,速度的给定值就是预定的稳定状态。
第二个特征从外部环境到系统内部有一种信息的传递。
例如,在速度控制系统中,转速的变化引起的离心力的变化,就是一种从外部传递到系统内部的信息。
第三个特征这种系统具有一种专门设计用来校正行动的装置。
例如速度控制系统中通过调速器旋转杆张开的角度控制蒸汽机的进汽阀门升降装置。
第四个特征这种系统为了在不断变化的环境中维持自身的稳定,内部都具有自动调节的机制,换言之,控制系统都是一种动态系统。
管理应用编辑从控制系统的主要特征出发来考察管理系统,可以得出这样的论:管理系统是一种典型的控制系统。
管理系统中的控制过程在本质上与工程的、生物的系统是一样的,都是通过信息反馈来揭示成效与标准之间的差,并采取纠正措施,使系统稳定在预定的目标状态上的。
系统论、控制论和信息论在《稳态与环境》模块教学中的应用
、
教 学 实 践
人体 作为一 个复杂 的有机 体 , 能 保 持 它 的 组 织 化 、有 序 化 。维 持 相 对 的 稳 定 状 态 ,在 于 不 断 接 受 内 外环 境的刺激 ( 信息 ) ,进 行 调 节
3 . 有 效 提 升 生 物 课 程 人 文 精
虑” 。动 物 和 人 体 生 命 活 动 的 调 节
包 括 神 经 系 统 的 调 节 、体 液 的 调 节 和 免 疫 调 节 。是 相 对 独 立 的 调 节 方
细胞膜 ( 核 )第 三 信 使 ( 包 括
C A MP和 G A M P )一 最 后 落 实 控 制 物质代谢 的酶 。此种相互 控制链 ,
定 。 人 体 的信 息 量 远 比 一般 自动 化 机 器 大 得 多 。 神 经 系 统 作 为 第 一 信
使一 通 过 内 分 泌 系 统第 二信 使 一 到
还 必 须 研 究 各 部 分 的 相 互 作 用 ,应
把 生 物 作 为 一 个 整 体 或 系 统 来 考
关 知识 有 机 的结 合 起 来 。
激 素 可 以 独 立 完 成 的 。也 就 是 说 . 各 种 植 物 激 素 的 调 节 作 用 不 是 孤立 的 ,它 们 之 间 的 相互 影 响 正是 植 物 整 体 性 和 稳 态 维 持 的 表 现 。 生命 系 统 和 环 境也 是 相 互作 用 的 .生 物会 影 响 环 境 ,环 境 的 改 变 也 会 对 生 物
信息论、控制论、系统论
信息论、控制论、系统论
信息论、控制论、系统论是现代科学领域中的重要分支。
信息论研究信息的传递、储存、压缩以及信息的度量,从而使得我们能够更好地理解信息在通讯、计算机科学、统计学等领域中的应用。
控制论则关注于如何设计控制系统来实现所需的目标,例如自动驾驶汽车、机器人等。
系统论则是研究复杂系统的行为和互动,从而能够更好地掌握和管理这些系统。
这三个领域有着非常紧密的联系和互动,信息、控制和系统的相互作用和影响是非常重要的。
例如,控制系统需要使用信息作为输入,通过算法和控制律来控制系统的行为;而系统论则研究在不同环境下系统的行为和互动,并提供了控制系统的设计和优化的基础。
因此,信息论、控制论和系统论在现代科学和工程中都具有广泛的应用,包括通信、计算机科学、自动控制、机器人、生态学、社会系统等领域。
它们的发展也为我们提供了更好的方法和工具来处理和解决复杂的问题。
- 1 -。
系统论控制论和信息论
控制论
• 人们研究和认识系统的目的之一, 就在于有效地控制和管理系统。控 制论则为人们对系统的管理和控制 提供了一般方法论的指导,它是数 学、自动控制、电子技术、数理逻 辑、生物科学等学科和技术相互渗 透而形成的综合性科学。
控制论在科学上的两点重要贡献
第一,给出一种新的研究方法,使对复 杂系统的研究成为可能
系统论
• 系统是指相互联系、相互作用并具有 一定整体功能和整体目的的诸要素的பைடு நூலகம்有机综合体
• 系统论是研究系统的一般模式、结构 和规律的一门学科,主要研究各种系 统的共同特征,用数学方法定量地描 述其功能,寻求确立适用于一切系统 的原理、原则和数学模型等具有逻辑 和数学性质的基本理论问题
一般系统论的基本观点
的一种理论 第一,给出一种新的研究方法,使对复杂系统的研究成为可能 控制论则为人们对系统的管理和控制提供了一般方法论的指导,它是数学、自动控制、电子技术、数理逻辑、生物科学等学科和技术
描述系统的概念,因而可以 相互渗透而形成的综合性科学。
耗散结构理论:主要讨论一个系统从混沌向有序转化的机理、条件和规律,是研究耗散结构的性质及其形成、稳定和演化规律的一门 学科 控制论则为人们对系统的管理和控制提供了一般方法论的指导,它是数学、自动控制、电子技术、数理逻辑、生物科学等学科和技术
使它们相互促进。 律以及如何最优地解决信息的获取、变换、存储、处理等问题,其任务是解决电子通信技术的编码和对抗等问题,从而提高通信系统
的传输效率和可靠性
协同理论:研究远离平衡态的开放系统,在保证与外界有物质、能量和信息交换的条件下,系统能自发地产生一定的有序结构和功能 的一种理论 通过它们所具有的共同语言,把一门学科上的发现和成果用到另一门学科上去,使它们相互促进。 几十年来,控制论在纵深方向得到了很大发展,已应用到人类社会各个领域,如经济控制论、社会控制论和人口控制论等。 控制论是一门实用性很强的边缘学科,其一般原理和方法在技术、经济、社会等许多领域都有广泛的应用,形成了多门边缘学科。
控制论、信息论和系统论(课件)页PPT文档
控制论
四、控制论的产生和发展的过程
我国著名科学家钱学森运用控制论思想和方法,首创了工 程控制论,他于1954年写的《工程控制论》一书,是工程控制 论的奠基性著作。1954年,英国生物学家艾什比出版了《大脑 设计》,首创了生物控制论。以后,神经控制论、经济控制论 以至社会控制论等学科都相继问世。
控制论
四、控制论的产生和发展的过程 1946年在纽约召开了一个包括心理学家、解剖学家、人类
学家、经济学家在内的学术讨论会,集中讨论反馈问题。维纳 总结了这些会议的思想和讨论的成果,把既是机器又是动物中 的控制和通讯理论的整个领域叫做“控制论”。
1948年,维纳出版了《控制论》一书,宣告控制论作为一 门独立学科正式诞生。
他特别强调系统的开放性,指出系统要同周围环境有能量 和物质交换,并把协调、秩序、目的性等概念用于有机体,对 生命现象作出进一步解释。这样,贝塔朗菲把系统方法上升到 理论高度,从而创立了普通系统论。
系统论
一、贝塔朗菲创立系统论的传奇
1954年,他同经济学家保尔丁、生物学家拉波波特以及生 理学家杰勒德等人一起创办了“一般系统学会”(后改名为 “一般系统研究会”)。
1947年至194导多年的系统论思想。
1948年,贝塔朗菲出版了《生命问题》一书,对一般系统 论进行概括论述,并描述了系统思想在哲学史上的发展,导致 一般系统论的正式问世。
系统论
一、贝塔朗菲创立系统论的传奇 贝塔朗菲系统论的观点: (1)系统观点。一切有机体都是一个整体——系统。 (2)动态观点。一切生命活动本身都处于积极的活动状态,活 的东西的基本特征是组织。 (3)等级观点,有机体都是按严格的等级组织起来的。
二、信息论的发展 人们早在古代的实践活动中,就已经在不断地获取信息、
系统论控制论和信息论
第17页,共44页。
3、系统方法
系统论思想观点,也是系统方法的根本 原那么,具有科学方法论的含义,这正是系 统论这门科学的特点。贝塔朗菲对此曾作过 说明,英语System Approach直译为系统方 法,也可译成系统论,因为它既可代表概念 、观点、模型,又可表示数学方法。系统方 法应用于工程产生了系统工程。
封闭系统:没有物质的交换,但有能量和信息的交换。 如密闭罐中的物体。
孤立系统:那么没有任何交换。理论和实践证明它是退 化系统。
第16页,共44页。
按系统的规模分:小型系统、中型系统、大型
系统和巨型系统。
按学科领域分:自然系统、社会系统和思维 系统。
按状态划分:有静态系统和动态系统。还有平 衡系统、非平衡系统、近平衡系统、远平衡 系统等等。 还有:实体系统和抽象(概念)系统;宏观系 统、微观系统。
⑶同一构造可能有多种功能。如一付中药可能有多 种疗效。
第12页,共44页。
环境适应性
一个系统和包围该系统的环境之间通常都有 物质、能量和信息的交换,外界环境的变化会 引起系统特性的改变,相应地引起系统内各局 部相互关系和功能的变化。为了保特和恢复系 统原有特性,系统必须具有对环境的适应能力 ,例如反响系统、自适应系统和自学习系统等 。不同的系统适应环境的能力是不同的,但也 不是非常高级的系统才有适应能力。