探索勾股定理PPT
合集下载
探索勾股定理(公开课课件)
数学领域中的应用
三角函数
勾股定理与三角函数密切相关, 它可以用于求解三角函数的值, 以及推导三角函数的性质和公式。
解析几何
在解析几何中,勾股定理可以用于 求解直线、圆和曲线的方程,以及 解决几何问题。
数论
勾股定理在数论中也有应用,例如 在证明一些数学定理和猜想时,勾 股定理可以提供重要的思路和方法。
公式表示
勾股定理的公式可以表示为 a² + b² = c²,其中a和b是直角三角形的两条直角 边,c是斜边。
勾股定理的重要性
01
几何学基础
勾股定理是几何学中的一个基础定理,它为解决与直角三角形相关的问
题提供了重要的工具。
02 03
实际应用
勾股定理在现实生活中有着广泛的应用,例如建筑、航海、航空等领域。 通过应用勾股定理,我们可以解决与直角三角形相关的问题,从而更好 地理解和设计各种实际结构。
数学发展史
勾股定理在数学发展史上具有重要地位。它的证明和推广对于数学的发 展起到了重要的推动作用,也激发了人们对数学研究的兴趣和热情。
02 勾股定理的起源与历史
CHAPTER
毕达哥拉斯学派
毕达哥拉斯学派是古希腊时期的一个重要哲学和数学学派, 他们发现了音乐、政治、宇宙和数学之间的联系,并提出了 “万物皆数”的哲学思想。
CHAPTER
勾股定理的逆定理
勾股定理的逆定理
如果一个三角形的三边满足勾股定理 ,则这个三角形是直角三角形。
逆定理的证明
假设三角形ABC的三边满足勾股定理, 即$a^2 + b^2 = c^2$,根据余弦定 理,有$cos C = frac{a^2 + b^2 c^2}{2ab} = 0$,因此角C是直角。
探索勾股定理(19张PPT)数学八年级上册
在公元前300年左右,著名的数学家希腊的欧几里得提出了一套简洁而准确的几何方法,以求证在给定直角三角形中已知两直角边与斜边,斜边与另外两条边的平方和的关系。
1637年,路易十四命令巴黎学院组织了一场盛大的比赛,将法国的贵族们集结起来解决了这道难题,当时获胜的人可以得到很丰厚的奖品。
有关于勾股定理的趣味历史
勾股定理的介绍
目录
什么是勾股定理
有关于勾股定理的趣味历史
用勾股定理解决实际问题
勾股定理的跨学科
勾股定理的验证推导
什么是勾股定理
什么是勾股定理
有关于勾股定理的趣味历史
有关于勾股定理的趣味历史
据说在古埃及文明中,他们建造金字塔时使用了“几何法则”来确定石块之间的距离和角度。这个神秘的几何法则据说与古代建筑物的外形有关系,可能就是指勾股定理。
折叠毕达哥拉斯定律
勾股定理的验证推导
任何一个学过代数或几何的人,都会听到毕达哥拉斯定理.这一著名的定理,在许多数学分支、建筑以及测量等方面,有着广泛的应用.古埃及人用他们对这个定理的知识来构造直角.他们把绳子按3,4和5单位间隔打结,然后把三段绳子拉直形成一个三角形.他们知道所得三角形最大边所对的角总是一个直角。毕达哥拉斯定理;给定一个直角三角形,则该直角三角形斜边的平方,等于同一直角三角形两直角边平方的和。反过来也是对的;如果一个三角形两边的平方和等于第三边的平方,则该三角形为直角三角形。
在语文课堂上的应用
在科学实验中的应用
用勾股定理解决实际问题
物理学中的应用
勾股定理在物理学中被广泛运用,可以用于建筑结构分析、机械设计以及其他类似问题的解决,同时也是桥梁设计的重要理论基础之一。
有不少现代的编程语言内置了计算器功能,提供了简便易用的库支持。而且在算法领域也能看到它的踪影,如分治算法、动态规划算法等
1637年,路易十四命令巴黎学院组织了一场盛大的比赛,将法国的贵族们集结起来解决了这道难题,当时获胜的人可以得到很丰厚的奖品。
有关于勾股定理的趣味历史
勾股定理的介绍
目录
什么是勾股定理
有关于勾股定理的趣味历史
用勾股定理解决实际问题
勾股定理的跨学科
勾股定理的验证推导
什么是勾股定理
什么是勾股定理
有关于勾股定理的趣味历史
有关于勾股定理的趣味历史
据说在古埃及文明中,他们建造金字塔时使用了“几何法则”来确定石块之间的距离和角度。这个神秘的几何法则据说与古代建筑物的外形有关系,可能就是指勾股定理。
折叠毕达哥拉斯定律
勾股定理的验证推导
任何一个学过代数或几何的人,都会听到毕达哥拉斯定理.这一著名的定理,在许多数学分支、建筑以及测量等方面,有着广泛的应用.古埃及人用他们对这个定理的知识来构造直角.他们把绳子按3,4和5单位间隔打结,然后把三段绳子拉直形成一个三角形.他们知道所得三角形最大边所对的角总是一个直角。毕达哥拉斯定理;给定一个直角三角形,则该直角三角形斜边的平方,等于同一直角三角形两直角边平方的和。反过来也是对的;如果一个三角形两边的平方和等于第三边的平方,则该三角形为直角三角形。
在语文课堂上的应用
在科学实验中的应用
用勾股定理解决实际问题
物理学中的应用
勾股定理在物理学中被广泛运用,可以用于建筑结构分析、机械设计以及其他类似问题的解决,同时也是桥梁设计的重要理论基础之一。
有不少现代的编程语言内置了计算器功能,提供了简便易用的库支持。而且在算法领域也能看到它的踪影,如分治算法、动态规划算法等
北师大版八年级数学上册《探索勾股定理》课件(24张PPT)
勾是6, 62=36, 勾是5,
股是8, 82=64, 股是12,
弦一定是10;
102=100
62+82=102
弦一定是13,
52=25, 122=144, 132=169 52+122=132 等等. 是不是所有的直角三角形都有这个性质呢?世界上许
多数学家,先后用不同方法证明了这个结论. 我国把它称 为勾股定理.
正方形C的面积是__1_8__ 个单位面积.
(图中每个小方格代表1个单位面积)
C A
B
S正方形C 4 1 33 2
=18个单位面积
把正方形C分割成若干 个直角边为整数的三角 形来求
(图中每个小方格代表1个单位面积)
C A
B
S正方形C
1 2
62
=18个单位面积
把正方形C看成边长为 6的正方形面积的一半
第一章 勾股定理
1 探索勾股定理
1.经历探索勾股定理及验证勾股定理的过程,了解勾股 定理的探究方法及其内在联系. 2.掌握勾股定理,并能运用勾股定理解决一些实际问题.
这是1955年希腊为纪念一个数学学派发行的邮票.
P
C
A
Q
R B
如图,小方格的边长为1.
正方形P 正方形Q 正方形R 的面积 的面积 的面积
2
通过本课时的学习,需要我们掌握: 勾股定理: 直角三角形两直角边的平方和等于斜边的平方,即
a2 b2 c2
没有智慧的头脑,就像没有蜡烛的灯笼.
•不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年4月12日星期二2022/4/122022/4/122022/4/12 •书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/122022/4/122022/4/124/12/2022 •正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/122022/4/12April 12, 2022 •书籍是屹立在时间的汪洋大海中的灯塔。
北师大版八年级数学上册1.1 第1课时 勾股定理的认识 课件(共23张PPT)
探究新知
1.在纸上画若干个直角三角形,分别测量它们的
三条边,看看三边长的平方之间有怎么样的关系?
c
a
b
直角三角形的两直角边的平方和等于斜边的平方,这就是
著名的“勾股定理”。
如果直角三角形的两条直角边为a、b,斜边为c,那么有
a2+b2=c2.
数学小知识
我国古代称直角三角形的较短的直角边为勾,较长的直角
求 的长.
解:因为 ⊥ ,
所以 ∠ = ∠ = 90∘ .
在 Rt △ 中, 2 = 2 − 2 = 102 − 82 = 36 ,
所以 = 6 .
设 = = ,则 = − 6 .
在 Rt △ 中, 2 = 2 + 2 ,
所以 △ =
1
2
1
2
⋅ = × 25 × 12 = 150 .
6. 如图,直线 上有三个正方形 , , .若 , 的面积分别
为 5 和 11 ,则 的面积为( C )
A. 4
B. 6
C. 16
D. 55
7. 如图,在 △ 中, = , = 10 , ⊥ ,垂足为 , = 8 .
(2) 已知 = 12 , = 16 ,求 .
【解】在 Rt △ 中, ∠ = 90∘ , = 12 , = 16 ,
所以 2 = 2 + 2 = 122 + 162 = 400 .
所以 = 20 .
例2 如图,在 △ 中, ⊥ 于点 ,且 + = 32 ,
因为 ∠ = 90∘ ,所以 2 + 2 = 2 .
探索勾股定理ppt课件
A的面积 B的面积 C的面积
左图 4
9
A a cC b
B
C
A ac b
B
右图 16
9
25
(1)正方形A、B、C的面积间 有什么关系?
SA+SB=SC. a2+b2=c2
(2)正方形A、B、C与中间的 直角三角形有什么关系?
结论2 以直角三角形两直角 边为边长的小正方形的面积 的和,等于以斜边为边长的 正方形的面积.
自主探究 任务一:探索勾股定理的内容
(指向目标一)
1.观察右图:(时间2分钟)
填表(每个小正方形的面积为单位1)
A的面积 B的面积 C的面积
左图 9
9
18
右图 4
4
8
(1)正方形A、B、C的面积间 有什么关系?
SA+SB=SC.
(2)正方形A、B、C与中间的 等腰直角三角形有什么关系?
SA+SB=SC.
当高AD在△ABC外部时,如图②. 同理可得 BD=16,CD=9. ∴BC=BD-CD=7, ∴△ABC的周长为7+20+15=42. 综上所述,△ABC的周长为42或60.
方法总结 题中未给出图形,作高构造直角三角形时, 易漏掉钝角三角形的情况.如在本例题中,易只考虑 高AD在△ABC内的情形,忽视高AD在△ABC外的情形.
弦 勾
股
我国古代把直角三角形中 的直角边称为 , 的直角 边称为 , 称为 ,“勾股 定理”因此而得名.
巩固训练(2分钟)
1.钢索的长度?
?
10m
8m
6m
评价标准:独立完成为优秀,同桌互助为及格。
评价标准:2题全对为优秀,1题全对为及格
合作促学 任务二:熟练运用勾股定理进
左图 4
9
A a cC b
B
C
A ac b
B
右图 16
9
25
(1)正方形A、B、C的面积间 有什么关系?
SA+SB=SC. a2+b2=c2
(2)正方形A、B、C与中间的 直角三角形有什么关系?
结论2 以直角三角形两直角 边为边长的小正方形的面积 的和,等于以斜边为边长的 正方形的面积.
自主探究 任务一:探索勾股定理的内容
(指向目标一)
1.观察右图:(时间2分钟)
填表(每个小正方形的面积为单位1)
A的面积 B的面积 C的面积
左图 9
9
18
右图 4
4
8
(1)正方形A、B、C的面积间 有什么关系?
SA+SB=SC.
(2)正方形A、B、C与中间的 等腰直角三角形有什么关系?
SA+SB=SC.
当高AD在△ABC外部时,如图②. 同理可得 BD=16,CD=9. ∴BC=BD-CD=7, ∴△ABC的周长为7+20+15=42. 综上所述,△ABC的周长为42或60.
方法总结 题中未给出图形,作高构造直角三角形时, 易漏掉钝角三角形的情况.如在本例题中,易只考虑 高AD在△ABC内的情形,忽视高AD在△ABC外的情形.
弦 勾
股
我国古代把直角三角形中 的直角边称为 , 的直角 边称为 , 称为 ,“勾股 定理”因此而得名.
巩固训练(2分钟)
1.钢索的长度?
?
10m
8m
6m
评价标准:独立完成为优秀,同桌互助为及格。
评价标准:2题全对为优秀,1题全对为及格
合作促学 任务二:熟练运用勾股定理进
《探索勾股定理》勾股定理PPT5 图文
无论什么,我仍心怀感激,或许你我只 是在人 生的烟 雨小巷 里,水 榭楼亭 旁一场 花的邂 逅,一 场流水 的情缘 。谢谢 你,曾 经来过 我的世 界,不 惊,不 扰!
如若有缘,总会有那么一个人,即便跋 山涉水 ,历经 千辛万 苦,也 会向你 奔赴而 来;如若 有缘, 总会有 那么一 个人, 即便拨 开万千 人群, 拨开姹 紫嫣红 ,也会 站在光 阴的廊 桥上, 没有早 一步, 没有晚 一步, 只为在 最美的 季节里 ,与你 相遇相 知,与 你在时 光的铜 镜里勾 勒成一 个完 美的圆 。
如图,过 A 点画一直线 AL
使其垂直于 DE, 并交 DE
于 L,交 BC 于 M。通过证
明△BCF≌△BDA,利用三
角形面积与长方形面积的关
系,得到正方形ABFG与矩
形BDLM等积,同理正方形
ACKH与 矩形MLEC也等积,
于是推得
AB2 AC 2 BC 2
第三种类型:以刘徽的“青朱出入图”为代表,证明不需用
时光就是这么不经用,很快自己做了母 亲,我 才深深 的知道 ,这样 的爱, 不带任 何附加 条件, 不因万 物毁灭 而更改 。只想 守护血 浓于水 的旧时 光,即 便峥嵘 岁月将 容颜划 伤,相 信一切 都是最 好的安 排。那 时的时 光无限 温柔, 当清水 载着陈 旧的往 事,站 在时光 这头, 看时光 那头, 一切变 得分明 。执笔 书写, 旧时光 的春去 秋来, 欢喜也 好,忧 伤也好 ,时间 窖藏, 流光曼 卷里所 有的宠 爱,疼 惜,活 色生香 的脑海 存在。
是的,折枝的命运阻挡不了。人世一生 ,不堪 论,年 华将晚 易失去 ,听几 首歌, 描几次 眉,便 老去。 无论天 空怎样 阴霾, 总会有 几缕阳 光,总 会有几 丝暗香 ,温暖 着身心 ,滋养 着心灵 。就让 旧年花 落深掩 岁月, 把心事 写就在 素笺, 红尘一 梦云烟 过,把 眉间清 愁交付 给流年 散去的 烟山寒 色,当 冰雪消 融,自 然春暖 花开, 拈一朵 花浅笑 嫣然。
浙教版八级数学上册27 探索勾股定理 课件(共23张PPT)
x 2
1
17
15
b
初中数学
应用知y识=回0 归生活
2、直角三角形中两条直角边之比为3:4,且 斜边为10cm,求(1)两直角边的长;(2)斜 边上的高线长.
5 3、利用作直角三角形,在数轴上表示点
初中数学
应用知y识=回0 归生活
4、如图:是一个长方形零件图,根据所给的尺寸 求两孔中心A、B之间的距离
数学思想,并体会数形结合和特殊到一般的思想方法,培养学生的观 察力、抽象概括能力、创造想象能力以及科学探究问题的能力
情感目标:
(1)通过实践、猜想、拼图、证明等操作使学生深刻感受 数学知识的发生发展过程。 (2)介绍我国古代在勾股定理研究方面取得的成就,激发学生的爱 国情感
初中数学
教学重y=点0 和难点
证明结y论=得0 到定理
a bc
b ca
ac b
cb a
动动手 初中数学
证明结y论=得0 到定理
a
bc
面积c
a
a
面积 ( ab2)
c
面积4•1a 2
b
S大正 S 方 4个形 三 S 角 小形 正方形
( ab2)-4•1ab c2 即a2+b2=c2
2
初中数学
证明结y论=得0 到定理 勾股定理
如果直角三角形两直角边分别为a、b, 斜边为c,那么
定理在生产、生活中也有很大的用途。
初中数学
教学y目=标0
知识目标:
教 (1)知道勾股定理的由来,初步理解割补拼接的面积证法。 材 (2)掌握勾股定理,通过动手实践理解勾股定理的证明过程
(3) 能利用勾股定理进行简单的几何计算
分 能力目标: 析 在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验 证”的
探索勾股定理ppt课件
度的一般步
边还是斜边或两种均有可能;
骤
(3)利用勾股定理进行计算
续表
1.1 探索勾股定理
返回目录
归纳总结
考
点
利用勾股定理解决实际问题的关键是利用数形结合思想
清
单 将实际问题转化成数学问题,建立直角三角形模型,再利用
解
读 勾股定理来解决.
1.1 探索勾股定理
返回目录
对点典例剖析
考
点
典例3 如图是一个长方形的大门,小强拿着一根竹竿要
方
法
)
技 100 和 36,则以 AD 为直径的半圆的面积是 (
巧
A. 4π
B. 8π
点
拨
C. 12π
D. 16π
1.1 探索勾股定理
返回目录
方
[解析] 因为在 Rt△ABD 中,∠ADB=90°,AB2=100,
法
技 BD2=36,所以 AD2=100-36=64,所以 AD=8,
巧
点
所以以 AD 为直径的半圆的面积是 π×( AD)2=8π.
行分类讨论.
1.1 探索勾股定理
返回目录
方 ■方法:利用勾股定理解决面积问题
法
如图,由直角三角形的三边向外作正方形、半圆或等边
技
巧 三角形,则有 S =S +S (S ,S ,S 分别代表三个图形的
1
2
3
1
2
3
点
拨 面积,其中 S1 代表以斜边为一边的图形的面积).
1.1 探索勾股定理
返回目录
例 如图,正方形 ABGF 和正方形 CDBE 的面积分别是
1.1 探索勾股定理
● 考点清单解读
边还是斜边或两种均有可能;
骤
(3)利用勾股定理进行计算
续表
1.1 探索勾股定理
返回目录
归纳总结
考
点
利用勾股定理解决实际问题的关键是利用数形结合思想
清
单 将实际问题转化成数学问题,建立直角三角形模型,再利用
解
读 勾股定理来解决.
1.1 探索勾股定理
返回目录
对点典例剖析
考
点
典例3 如图是一个长方形的大门,小强拿着一根竹竿要
方
法
)
技 100 和 36,则以 AD 为直径的半圆的面积是 (
巧
A. 4π
B. 8π
点
拨
C. 12π
D. 16π
1.1 探索勾股定理
返回目录
方
[解析] 因为在 Rt△ABD 中,∠ADB=90°,AB2=100,
法
技 BD2=36,所以 AD2=100-36=64,所以 AD=8,
巧
点
所以以 AD 为直径的半圆的面积是 π×( AD)2=8π.
行分类讨论.
1.1 探索勾股定理
返回目录
方 ■方法:利用勾股定理解决面积问题
法
如图,由直角三角形的三边向外作正方形、半圆或等边
技
巧 三角形,则有 S =S +S (S ,S ,S 分别代表三个图形的
1
2
3
1
2
3
点
拨 面积,其中 S1 代表以斜边为一边的图形的面积).
1.1 探索勾股定理
返回目录
例 如图,正方形 ABGF 和正方形 CDBE 的面积分别是
1.1 探索勾股定理
● 考点清单解读
浙教版数学八上2.7探索勾股定理(1) 课件(共23张PPT)
C
A
A
a
图1
a
C
B
图2
合作学习
大正方形的面积:c²
小正方形面积:(b-a)²
阴影部分面积:4× ab
1
2
它们之间的关系是: c 4 ab (b a )
2
2
化简得: a2+b2=c2
直角三角形三边有下面的关系:
直角三角形两条直角边的平方和等于斜边的平方
讲解新知
勾股定理: 直角形三角形两条直角边的平方和等于斜边的平方.
2.勾股定理
3.勾股定理的应用
等,则E站应建在距A站______km处.
10
即时演练
解:∵C、D两村到E站距离相等,∴CE=DE,
在Rt△DAE和Rt△CBE中,DE2=AD2+AE2,CE2=BE2+BC2,
∴AD2+AE2=BE2+BC2.
设AE为x,则BE=25-x,
将BC=10,DA=15代入关系式为x2+152=(25-x)2+102,
A
∴AB=130(mm)
答:两孔中心A,B之间的距离
90
B
C
40
为130mm
160
即时演练
m
铁路上A、B两站(视为直线上两点)相距25km,C、D为
两村庄(视为两个点),DA⊥AB于A,CB⊥AB于B(如
图),已知DA=15km,CB=10km,现在要在铁路AB上建
设一个土特产品收购站E,使得C、D两村到E站的距离相
∴S△ABC= ×BC×AC=6,
∴AC=4(cm).
∵BC2+AC2=AB2,
探索勾股定理ppt课件
星人联系的信号.
欣赏下面一幅美丽的图案,仔细观察,你能发现这 幅图中的奥秘吗?带着疑问我们来一步认识
做一做 观察正方形瓷砖铺成的地面. (1)正方形P的面积是 1 平方厘米; (2)正方形Q的面积是 1 平方厘米;
AR P
CQ B
(3)正方形R的面积是 2 平方厘米.
左图 4
9
13
右图 16
9
25
分析表中数据,你发现了什么?
A的面积
左图
4
右图 16
B的面积 9 9
C的面积 13 25
结论 以直角三角形两直角边为边长的小 正方形的面积的和,等于以斜边为边长 的正方形的面积.
总结归纳
勾股定理
直角三角形两直角边的平方和等于斜边的 平方.
几何语言 ∵在Rt△ABC中 ,∠C=90°, ∴.AC2+BC2=AB2 (勾股定理)
五、分层作业 课后思考
基础训练:1、小明的妈妈买了一部29in的电 视机。小明量了电视机的屏幕后,发现屏幕只 有58cm长和46cm宽,他觉得一定是销售员搞错 了。你同意他的想法吗?你能解释这是为什么 吗?
2、求下列图中未知数x,y的值
提高训练:1.今有池方一丈,葭生其中央,出水一 尺.引葭赴岸,适与岸齐.问水深、葭长各几何?译: 有一个一丈大小的池子,中央长有芦苇,高出水面 一尺长.把芦苇拽向岸边,刚好与到岸.请问水有多 深,芦苇有多高?
小男孩又问道:“如果两条直角边分别为5和7,那么这个直角 三角形的斜边长又是多少?”伽菲尔德不加思索地回答到:“ 那斜边的平方一定等于5的平方加上7的平方。”小男孩又说道 :“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无 法解释了,心理很不是滋味。于是伽菲尔德不再散步,立即回 家,潜心探讨小男孩给他留下的难题。他经过反复的思考与演 算,终于弄清楚了其中的道理,并给出了简洁的证明方法。 1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了 他对勾股定理的这一证法。1881年,伽菲尔德就任美国第二十 任总统后来,人们为了纪念他对勾股定理直观、简捷、易懂、 明了的证明,就把这一证法称为“总统。”证法。
欣赏下面一幅美丽的图案,仔细观察,你能发现这 幅图中的奥秘吗?带着疑问我们来一步认识
做一做 观察正方形瓷砖铺成的地面. (1)正方形P的面积是 1 平方厘米; (2)正方形Q的面积是 1 平方厘米;
AR P
CQ B
(3)正方形R的面积是 2 平方厘米.
左图 4
9
13
右图 16
9
25
分析表中数据,你发现了什么?
A的面积
左图
4
右图 16
B的面积 9 9
C的面积 13 25
结论 以直角三角形两直角边为边长的小 正方形的面积的和,等于以斜边为边长 的正方形的面积.
总结归纳
勾股定理
直角三角形两直角边的平方和等于斜边的 平方.
几何语言 ∵在Rt△ABC中 ,∠C=90°, ∴.AC2+BC2=AB2 (勾股定理)
五、分层作业 课后思考
基础训练:1、小明的妈妈买了一部29in的电 视机。小明量了电视机的屏幕后,发现屏幕只 有58cm长和46cm宽,他觉得一定是销售员搞错 了。你同意他的想法吗?你能解释这是为什么 吗?
2、求下列图中未知数x,y的值
提高训练:1.今有池方一丈,葭生其中央,出水一 尺.引葭赴岸,适与岸齐.问水深、葭长各几何?译: 有一个一丈大小的池子,中央长有芦苇,高出水面 一尺长.把芦苇拽向岸边,刚好与到岸.请问水有多 深,芦苇有多高?
小男孩又问道:“如果两条直角边分别为5和7,那么这个直角 三角形的斜边长又是多少?”伽菲尔德不加思索地回答到:“ 那斜边的平方一定等于5的平方加上7的平方。”小男孩又说道 :“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无 法解释了,心理很不是滋味。于是伽菲尔德不再散步,立即回 家,潜心探讨小男孩给他留下的难题。他经过反复的思考与演 算,终于弄清楚了其中的道理,并给出了简洁的证明方法。 1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了 他对勾股定理的这一证法。1881年,伽菲尔德就任美国第二十 任总统后来,人们为了纪念他对勾股定理直观、简捷、易懂、 明了的证明,就把这一证法称为“总统。”证法。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
侦查员在距离东西向 公路400米出侦察,发现一 辆敌方汽车在公路上疾驶, C 公路 B 大赶快拿出红测距仪,测的
400m 500m
汽车与他相距400m,10s后, 汽车与他相距500m,你能帮小 王计算敌方汽车的速度吗? A
1. 100, 10 2.0.7m
3. 我们通常所说的29英寸
或74厘米的电视机,是指 其荧屏对角线的长度
因为 582 462 5480
又因为荧屏对角线大约为74厘米 所以售货员没错
742 5476
重要的 思想方 法及数 学思想
定理内容
勾股 定理
从特殊 到一般、 数形结 合思想
定理运用
探索勾股定理
• 1、体验勾股定理的探索过程并理解 勾股定理反映的直角三角形三边之 间的数量关系
• 2、会初步运用勾股定理进行简单的 计算和实际运用。
勾股定理
如果直角三角形两直角边分别为a,b,斜边为c,那么
a2 b2 c2
a
c
b
即 直角三角形两直角边的平方和等
于斜边的平方
勾
弦
在西方又称毕达
400m 500m
汽车与他相距400m,10s后, 汽车与他相距500m,你能帮小 王计算敌方汽车的速度吗? A
1. 100, 10 2.0.7m
3. 我们通常所说的29英寸
或74厘米的电视机,是指 其荧屏对角线的长度
因为 582 462 5480
又因为荧屏对角线大约为74厘米 所以售货员没错
742 5476
重要的 思想方 法及数 学思想
定理内容
勾股 定理
从特殊 到一般、 数形结 合思想
定理运用
探索勾股定理
• 1、体验勾股定理的探索过程并理解 勾股定理反映的直角三角形三边之 间的数量关系
• 2、会初步运用勾股定理进行简单的 计算和实际运用。
勾股定理
如果直角三角形两直角边分别为a,b,斜边为c,那么
a2 b2 c2
a
c
b
即 直角三角形两直角边的平方和等
于斜边的平方
勾
弦
在西方又称毕达