一元一次不等式(组)的整数解问题(重难点培优)-2020-2021学年七年级数学下册(原卷版)

合集下载

2020-2021学年苏科版七年级数学上册第4章一元一次方程 章末培优训练卷(有答案)

2020-2021学年苏科版七年级数学上册第4章一元一次方程 章末培优训练卷(有答案)

2020-2021苏科版七年级数学上册第4章一元一次方程 章末培优训练卷一、选择题1、下列方程中,是一元一次方程的是( )A .3x +2y =0 B.x 4=1 C.2x -1=1 D .3x 2-5=x +2 2、下列方程中,解为x=1的是( )A .x ﹣1=﹣1B .﹣2x=C . x=﹣2D .2x ﹣1=13、下列等式变形错误的是( )A .由5x ﹣7y =2,得﹣2﹣7y =5xB .由6x ﹣3=x +4,得6x ﹣3=4+xC .由8﹣x =x ﹣5,得﹣x ﹣x =﹣5﹣8D .由x +9=3x ﹣1,得3x ﹣1=x +94、若关于x 的一元一次方程1﹣=的解是x=2,则a 的值是( )A .2B .﹣2C .1D .﹣15、解方程4x -2=3-x 的正确顺序是( )①合并同类项,得5x =5;②移项,得4x +x =3+2;③系数化为1,得x =1.A .①②③B .③②①C .②①③D .③①②6、若x =2是关于x 的一元一次方程ax ﹣2=b 的解,则3b ﹣6a +2的值是( )A .﹣8B .﹣4C .8D .47、已知关于x 的方程3243a x x x ⎡⎤⎛⎫--= ⎪⎢⎥⎝⎭⎣⎦和方程3151128x a x +--=有相同的解,则该方程的解是___ 8、图1是边长为30 cm 的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是________cm 3.9、疫情无情人有情,爱心捐款传真情.某校三个年级为疫情重灾区捐款,经统计,七年级捐款数占全校三个年级捐款总数的,八年级捐款数是全校三个年级捐款数的平均数,已知九年级捐款1964元,求其他两个年级的捐款数.若设七年级捐款数为x 元,则可列方程为( )A .x +x +1964=xB .x +x +1964=xC .x +x +1964=xD .x +x +1964=3x10、有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m+10=43m ﹣1;②;③;④40m+10=43m+1,其中正确的是( )A .①②B .②④C .②③D .③④ 二、填空题 11、若关于x 的方程32-m x ﹣3m +6=0是一元一次方程,则这个方程的解是12、代数式2a+1与1﹣a 互为相反数,则a=13、在有理数范围内定义运算“☆”,其规则是a ☆b =a3-b .若x ☆2与4☆x 的值相等,则x 的值是______ 14、小华同学在解方程5x ﹣1=( )x+3时,把“( )”处的数字看成了它的相反数,解得x=2,则该方程的正确解应为x=15、已知与互为倒数,则x 等于 16、一辆慢车从A 地开往300 km 外的B 地,同时,一辆快车从B 地开往A 地,已知慢车速度为40 km/h ,快车速度是慢车速度的1.5倍,它们出发 后两车相距100 km.17、某工艺品车间有20名工人,平均每人每天可制作12个大花瓶或10个小饰品,已知2个大花瓶与5个小饰品配成一套,则要安排 名工人制作大花瓶,才能使每天制作的大花瓶和小饰品刚好配套18、规定“△”是一种新的运算法则,满足:a △b =ab ﹣3b示例:4△(﹣3)=4×(﹣3)﹣3×(﹣3)=﹣12+9=3.若﹣3△(x +1)=1,则x =三、解答题19、解下列方程:(1)4x -3(20-x)=3; (2)3x -14-5x -76=1; (3)x 0.2-1=2x -0.80.3.20、甲、乙两人同时从A 地出发去B 地,甲骑自行车,速度为10km/h ,乙步行,速度为6km/h ,当甲到达B 地时,乙距B 地还有8km ,问:甲走了多少时间?A 、B 两地的距离是多少?21、甲、乙两家电器商场以同样的价格出售同样的电器,但各自推出的优惠方案不同,甲商场规定:凡超过4000元的电器,超出的金额按80%收取;乙商场规定:凡超过3000元的电器,超出的金额按90%收取,某顾客购买的电器价格是x (x >4000)元.(1)分别用含有x 的代数式表示在甲、乙两家商场购买电器所付的费用;(2)当x =6000时,该顾客应选择哪一家商场购买更优惠?说明理由.(3)当x 为何值时,在甲、乙两家商场购买所付的费用相同?22、学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.23、某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)甲 乙进价(元/件) 22 30售价(元/件) 29 40(1)该超市购进甲、乙两种商品各多少件?(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙商品是按原价打几折销售?2020-2021苏科版七年级数学上册第4章一元一次方程 章末培优训练卷(答案)一、选择题1、下列方程中,是一元一次方程的是(B )A .3x +2y =0 B.x 4=1 C.2x -1=1 D .3x 2-5=x +2 2、下列方程中,解为x=1的是( D )A .x ﹣1=﹣1B .﹣2x=C . x=﹣2D .2x ﹣1=13、下列等式变形错误的是( )A .由5x ﹣7y =2,得﹣2﹣7y =5xB .由6x ﹣3=x +4,得6x ﹣3=4+xC .由8﹣x =x ﹣5,得﹣x ﹣x =﹣5﹣8D .由x +9=3x ﹣1,得3x ﹣1=x +9解:∵5x ﹣7y =2,∴﹣2﹣7y =﹣5x ,∴选项A 符合题意;∵6x ﹣3=x +4,∴6x ﹣3=4+x ,∴选项B 不符合题意;∵8﹣x =x ﹣5,∴﹣x ﹣x =﹣5﹣8,∴选项C 不符合题意;∵x +9=3x ﹣1,∴3x ﹣1=x +9,∴选项D 不符合题意.故选:A .4、若关于x 的一元一次方程1﹣=的解是x=2,则a 的值是( ) A .2 B .﹣2 C .1D .﹣1 解:将x=2代入方程可得:1﹣=,解得:a=﹣2,故选:B .5、解方程4x -2=3-x 的正确顺序是( C )①合并同类项,得5x =5;②移项,得4x +x =3+2;③系数化为1,得x =1.A .①②③B .③②①C .②①③D .③①②6、若x =2是关于x 的一元一次方程ax ﹣2=b 的解,则3b ﹣6a +2的值是( )A .﹣8B .﹣4C .8D .4解:将x =2代入一元一次方程ax ﹣2=b 得2a ﹣b =2∵3b ﹣6a +2=3(b ﹣2a )+2∴﹣3(2a ﹣b )+2=﹣3×2+2=﹣4即3b ﹣6a +2=﹣4故选:B .7、已知关于x 的方程3243a x x x ⎡⎤⎛⎫--= ⎪⎢⎥⎝⎭⎣⎦和方程3151128x a x +--=有相同的解, 则该方程的解是___x=2827_________ 8、图1是边长为30 cm 的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是____1000____cm 3.9、疫情无情人有情,爱心捐款传真情.某校三个年级为疫情重灾区捐款,经统计,七年级捐款数占全校三个年级捐款总数的,八年级捐款数是全校三个年级捐款数的平均数,已知九年级捐款1964元,求其他两个年级的捐款数.若设七年级捐款数为x 元,则可列方程为( )A .x +x +1964=xB .x +x +1964=xC.x+x+1964=x D.x+x+1964=3x解:由题意可得,七年级捐款数为x元,则三个年级的总的捐款数为:x÷=x,故八年级的捐款为:,则x++1964=x,故选:A.10、有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m+10=43m﹣1;②;③;④40m+10=43m+1,其中正确的是(D)A.①②B.②④C.②③D.③④二、填空题11、若关于x的方程32mx﹣3m+6=0是一元一次方程,则这个方程的解是解:∵关于x的方程3x m﹣2﹣3m+6=0是一元一次方程,∴m﹣2=1,解得:m=3,此时方程为3x﹣9+6=0,解得:x=1,故答案为:x=112、代数式2a+1与1﹣a互为相反数,则a= ﹣213、在有理数范围内定义运算“☆”,其规则是a☆b=a3-b.若x☆2与4☆x的值相等,则x的值是__52____14、小华同学在解方程5x﹣1=()x+3时,把“()”处的数字看成了它的相反数,解得x=2,则该方程的正确解应为x=解:设()处的数字为a,根据题意,把x=2代入方程得:10﹣1=﹣a×2+3,解得:a=﹣3,∴“()”处的数字是﹣3,即:5x﹣1=﹣3x+3,解得:x=.故该方程的正确解应为x=.故答案为:.15、已知与互为倒数,则x等于解:根据题意得:•=1,去分母得:3(x﹣2)=24,即x﹣2=8,解得:x=10,故答案为:1016、一辆慢车从A地开往300 km外的B地,同时,一辆快车从B地开往A地,已知慢车速度为40 km/h,快车速度是慢车速度的1.5倍,它们出发2或4h 后两车相距100 km.17、某工艺品车间有20名工人,平均每人每天可制作12个大花瓶或10个小饰品,已知2个大花瓶与5个小饰品配成一套,则要安排 5名工人制作大花瓶,才能使每天制作的大花瓶和小饰品刚好配套18、规定“△”是一种新的运算法则,满足:a△b=ab﹣3b示例:4△(﹣3)=4×(﹣3)﹣3×(﹣3)=﹣12+9=3.若﹣3△(x+1)=1,则x=解:根据题中的新定义得:﹣3(x+1)﹣3(x+1)=1,去括号得:﹣3x﹣3﹣3x﹣3=1,移项合并得:﹣6x=7,解得:x=﹣,故答案为:﹣三、解答题19、解下列方程:(1)4x -3(20-x)=3; (2)3x -14-5x -76=1; (3)x 0.2-1=2x -0.80.3.解:(1)去括号,得4x -60+3x =3.移项,得4x +3x =3+60.合并同类项,得7x =63.方程两边同除以7,得x =9.(2)去分母,得3(3x -1)-2(5x -7)=1×12.去括号,得9x -3-10x +14=12.移项,得9x -10x =12+3-14.合并同类项,得-x =1.方程两边同除以-1,得x =-1.(3)方程变形,得10x 2-1=20x -83. 去分母,得15x -3=20x -8.移项,得15x -20x =-8+3.合并同类项,得-5x =-5.方程两边同除以-5,得x =1.20、甲、乙两人同时从A 地出发去B 地,甲骑自行车,速度为10km/h ,乙步行,速度为6km/h ,当甲到达B 地时,乙距B 地还有8km ,问:甲走了多少时间?A 、B 两地的距离是多少?解:设甲从A 地到达B 地走了x 小时,则甲走了10xkm,乙走了6xkm,根据题意可得,10x -6x =8 解得 x =2 则 10x =20(km )答:甲走了2小时,A 、B 两地的距离为20km21、甲、乙两家电器商场以同样的价格出售同样的电器,但各自推出的优惠方案不同,甲商场规定:凡超过4000元的电器,超出的金额按80%收取;乙商场规定:凡超过3000元的电器,超出的金额按90%收取,某顾客购买的电器价格是x (x >4000)元.(1)分别用含有x 的代数式表示在甲、乙两家商场购买电器所付的费用;(2)当x =6000时,该顾客应选择哪一家商场购买更优惠?说明理由.(3)当x 为何值时,在甲、乙两家商场购买所付的费用相同?解:(1)甲商场的费用为:4000+(x -4000)80%=0.8x +800(元);乙商场的费用为:3000+(x -3000)90%=0.9x +300(元).(2)当x =6000时,甲商场的费用为:0.8+800=5600(元);当x =6000时,乙商场的费用为:0.9+300=5700(元).由5600,所以在甲商场购买更优惠.(3)由题意得0.8x +800=0.9x +300,解得x =5000.答:当x 为5000元时,在甲、乙两家商场购买所付的费用相同.22、学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.解:(1)设每套课桌椅的成本为x 元,根据题意得:60×100﹣60x=72×(100﹣3)﹣72x ,解得:x=82.答:每套课桌椅的成本为82元.(2)60×(100﹣82)=1080(元).答:商店获得的利润为1080元.23、某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)甲乙进价(元/件)22 30售价(元/件)29 40(1)该超市购进甲、乙两种商品各多少件?(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙商品是按原价打几折销售?解:(1)设第一次购进甲种商品x件,则购进乙种商品(x+15)件,根据题意得:22x+30(x+15)=6000,解得:x=150,∴x+15=90.答:该超市第一次购进甲种商品150件、乙种商品90件.(2)(29﹣22)×150+(40﹣30)×90=1950(元).答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得利润1950元.(3)设第二次乙种商品是按原价打y折销售,根据题意得:(29﹣22)×150+(40×﹣30)×90×3=1950+180,解得:y=8.5.答:第二次乙商品是按原价打8.5折销售.。

人教版七年级数学下册期考重难点突破、典例剖析与精选练习:解一元一次不等式组(附答案与全解全析)

人教版七年级数学下册期考重难点突破、典例剖析与精选练习:解一元一次不等式组(附答案与全解全析)

人教版七年级数学下册期考重难点突破、典例剖析与精选练习:解一元一次不等式组知识网络重难突破知识点一解一元一次不等式组一元一次不等式组的解集:一般地,几个一元一次不等式解集的公共部分,叫做它们所组成的不等式组的解集。

不等式组解集的确定方法:【注意】1.在求不等式组的解集的过程中,通常是利用数轴来确定不等式组的解集。

2.利用数轴表示不等式组解集时,要把几个不等式的解集都表示出来,不能仅画公共部分。

解一元一次不等式组的一般步骤:1.求出不等式组中各不等式的解集2.将各不等式的解决在数轴上表示出来。

3.在数轴上找出各不等式解集的公共部分,这个公共部分就是不等式组的解集。

【考查题型汇总】考查题型一求不等式组的解集典例1(2019·洛阳市期中)已知关于x的不等式3x﹣m+1>0的最小整数解为2,则实数m的取值范围是()A.4≤m<7 B.4<m<7 C.4≤m≤7D.4<m≤7变式1-1(2020·和平县期中)不等式组20240xx+>⎧⎨-≤⎩的解集在数轴上表示正确的是()A.B.C.D.变式1-2(2020·沈阳市期中)下列四个不等式组中,解集在数轴上表示如图所示的是()A.23xx≥⎧⎨>-⎩B.23xx≤⎧⎨<-⎩C.23xx≥⎧⎨<-⎩D.23xx≤⎧⎨>-⎩变式1-3(2019·南通市期中)已知点P (1﹣a ,2a+6)在第四象限,则a 的取值范围是( ) A .a <﹣3B .﹣3<a <1C .a >﹣3D .a >1变式1-4(2019长沙市期中)已知三个非负数a 、b 、c 满足325,231,a b c a b c ++=+-=若37m a b c =+-,则m 的最小值为( ) A .111-B .57-C .78-D .-1考查题型二 解特殊不等式组典例2(2019·遂宁市期末)已知0≤a–b≤1且1≤a+b≤4,则a 的取值范围是( ) A .1≤a≤2B .2≤a≤3C .12≤a≤52D .32≤a≤52变式2-1(2018·许昌市期末)若关于x 的不等式组式020x a x b -≥⎧⎨-<⎩的整数解为x=1和x=2,则满足这个不等式组的整数a ,b 组成的有序数对(a ,b )共有( )对 A .0B .1C .3D .2变式2-2(2019·北京市期中)三角形的三个内角分别为x,y,z ,且x y z ≤≤,3z x =,则y 的取值范围是__________考查题型三 求一元一次不等式组的整数解 典例3(2018·泉州市期中)若关于x 的不等式0721x m x -<⎧⎨-≤⎩的整数解共有4个,则m 的取值范围是( )A .6<m <7B .6≤m <7C .6≤m ≤7D .6<m ≤7变式3-1(2019·泉州市期中)不等式组22314x x x -≥-⎧⎨->-⎩的最小整数解是( )A .-1B .0C .1D .2变式3-2(2019·温州市期中)已知4<m <5,则关于x 的不等式组0420x m x -<⎧⎨-<⎩的整数解共有( )A .1个B .2个C .3个D .4个变式3-3(2019·崇左市期中)不等式72x -+1<322x -的负整数解有( ) A .1个B .2个C .3个D .4个考查题型四 由一元一次不等式的解集求参数典例4(2019·苏州市期末)关于x 的不等式组0312(1)x m x x -<⎧⎨->+⎩无解,那么m 的取值范围为( )A .34m ≤<B .34m <≤C .3m <D .3m ≤变式4-1(2020·洛阳市期中)关于x 的不等式组314(1){x x x m->-<的解集为x <3,那么m 的取值范围为( )A .m=3B .m >3C .m <3D .m≥3变式4-2(2019·安陆市期末)若不等式组11324x xx m+⎧<-⎪⎨⎪<⎩无解,则m 的取值范围为( )A .2m ≤B .2m <C .2m ≥D .2m >变式4-3(2019·石家庄市期末)不等式组5511x x x m +<+⎧⎨->⎩的解集是x >1,则m 的取值范围是( )A .m ≥1B .m ≤1C .m ≥0D .m ≤0考查题型五 不等式组与方程组相结合的问题典例5(2019·南阳市期末)在关于x 、y 的方程组2728x y m x y m +=+⎧⎨+=-⎩中,未知数满足x ≥0,y >0,那么m 的取值范围在数轴上应表示为( ) A .B .C .D .变式5-1(2019·洛阳市期中)已知方程组21321x y mx y m+=+⎧⎨+=-⎩的解满足x+y<0,则( ).A .m >-1B .m >1C .m <-lD .m <1变式5-2(2019·安岳县期中)已知实数x ,y ,m x 2|3x y m |0+++=,且y 为负数,则m 的取值范围是( ) A .m >6B .m <6C .m >﹣6D .m <﹣6变式5-3(2019·合肥县期中)关于x ,y 的方程组32451x y m x y m +=+⎧⎨-=-⎩的解满足237x y +>,则m 的取值范围是( )A .14m <-B .0m <C .13m >D .7m >变式5-4(2018·合肥市期中)若关于x y 、 的二元一次方程组3131x y ax y +=+⎧⎨+=⎩ 的解满足505x y +< ,则a 的取值范围是( ). A .2018a >B .2018a <C .505a >D .505a <变式5-5(2018·重庆市期末)关于x 的方程2222x mx x++=--的解为正数,且关于y 的不等式组()222y my m m -≥⎧⎨-≤+⎩有解,则符合题意的整数m 有( )个. A .4B .5C .6D .7知识点二 列一元一次不等式(组)解应用题 列一元一次不等式(组)解应用题的一般步骤:(1)审:认真审题,分清已知量、未知量及其关系,找出题中不等关系,要抓住题设中的关键“字眼”,如“大于”“小于”“不小于”“不大于”“至少”“最多”等.(2)设:设出适当的未知数,并用含未知数的代数式表示出题目中涉及的量. (3)列:根据题中的不等关系,列出不等式. (4)解:解出所列不等式的解集. (5)验:检验答案是否符合题意. (6)答:写出答案.在以上步骤中,审题是基础,根据题意找出不等关系是关键,而根据不等关系列出不等式又是解题难点.以上过程可简单表述为: −−−→−−−→分析求解抽象检验问题不等式解答. 【考查题型汇总】考查题型六 列一元一次不等式组典例6(2019·安陆市期末)如果点P (2x +6,x -4)在平面直角坐标系的第四象限内,那么x 的取值范围在数轴上可表示为( ) A . B . C .D .变式6-1(2019·青岛市期末)如图,天平右盘中的每个砝码的质量都是1g ,则物体A 的质量m(g)的取值范围,在数轴上可表示为( )A.B.C.D.变式6-2(2019·成都市期中)若干个苹果分给x个小孩,如果每人分3个,那么余7个;如果每人分5个,那么最后一人分到的苹果不足5个,则x满足的不等式组为()A.0<(3x+7)﹣5(x﹣1)≤5B.0<(3x+7)﹣5(x﹣1)<5C.0≤(3x+7)﹣5(x﹣1)<5 D.0≤(3x+7)﹣5(x﹣1)≤5变式6-3(2018·深圳市期末)如果点P(x-4,x+3)在平面直角坐标系的第二象限内,那么x的取值范围在数轴上可表示为( )A.B.C.D.变式6-4(2020·深圳市期末)如图,按下面的程序进行运算.规定:程序运行到“判断结果是否大于”为一次运算.若运算进行了次停止,则的取值范围是()A.B.C.D.考查题型七用不等式组解决实际问题典例7(2019·石家庄市期末)“绿水青山就是金山银山”,为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?变式7-1(2020·渠县期末)在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元. (1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.变式7-2(2019·长沙市期中)今年义乌市准备争创全国卫生城市,某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?变式7-3(2019·佛山市期中)快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣.已知购买甲型机器人1台,乙型机器人2台,共需14万元;购买甲型机器人2台,乙型机器人3台,共需24万元.(1)求甲、乙两种型号的机器人每台的价格各是多少万元;(2)已知甲型和乙型机器人每台每小时分拣快递分别是1200件和1000件,该公司计划购买这两种型号的机器人共8台,总费用不超过41万元,并且使这8台机器人每小时分拣快递件数总和不少于8300件,则该公司有哪几种购买方案?哪个方案费用最低,最低费用是多少万元?巩固训练一、 选择题(共10小题)1.(2019·盐城市期末)关于x 的不等式组1x ax ⎧⎨⎩>>的解集为x >1,则a 的取值范围是( ) A .a≥1B .a >1C .a≤1D .a <12.(2020·德州市期中)已知点M (1﹣2m ,m ﹣1)关于x 轴的对称点在第一象限,则m 的取值范围在数轴上表示正确的是( ) A .B .C .D .3.(2019·泰安市期末)若关于x 的一元一次不等式组60x x a -<⎧⎨->⎩无解,则a 的取值范围是( )A .a ≥6B .a >6C .a ≤﹣6D .a <﹣64.(2019·邯郸市期末)不等式组1513x x -<⎧⎨+>⎩的整数解的个数是( )A .1个B .2个C .3个D .4个5.(2018·天水市期末)如果关于x 的一元一次不等式组的解集在数轴上的表示如图所示,那么该不等式组的解集为( )A .x≥﹣1B .x <2C .﹣1≤x≤2D .﹣1≤x<26.(2018·静宁县期末)若不等式组3<x≤a 的整数解恰有4个,则a 的取值范围是( ) A .a >7B .7<a <8C .7≤a <8D .7<a≤87.(2018·长沙市期末)不等式组121xx->⎧⎨>⎩的解集是()A.1<x<3 B.x>3 C.x>1 D.x<18.(2018·大连市期末)把不等式组的解集表示在数轴上,正确的是()A .B .C .D .9.(2017·无锡市期中)晓明家到学校的路程是3 500米,晓明每天早上7∶30离家步行去上学,在8∶10(含8∶10)至8∶20(含8∶20)之间到达学校。

2020-2021学年七年级数学人教版下册《9.3一元一次不等式组的整数解》专题突破训练(附答案)

2020-2021学年七年级数学人教版下册《9.3一元一次不等式组的整数解》专题突破训练(附答案)

2021年度人教版七年级数学下册《9.3一元一次不等式组的整数解》专题突破训练(附答案)1.已知关于x的不等式组的整数解共有3个,且(a+2)x<1的解集为x>,则a可取()个整数.A.3B.2C.1D.02.若关于x的不等式组恰好只有2个整数解,则所有满足条件的整数a的值之和是()A.3 B.4C.6D.13.若关于x的不等式组的整数解仅有1,2,那么适合这个不等式组的整数a,b 组成的有序数对(a,b)共()个.A.3B.4C.5D.64.不等式组的最小整数解是()A.5B.0C.﹣1D.﹣25.已知关于x的不等式组的整数解共有6个,则a的取值范围是()A.﹣5<a<﹣4B.a<﹣4C.﹣5≤a<﹣4D.﹣5<a<6.求不等式组的最大整数解为()A.0B.﹣1C.1D.﹣27.当3≤5﹣3x<9时,不等式组的非负整数解为()A.3B.2C.1D.08.若关于x的不等式仅有四个整数解,则a的取值范围是()A.1≤a≤2B.1≤a<2C.1<a<2D.a<29.不等式组的整数解的个数为()A.2B.3C.4D.510.若关于x的一元一次不等式组的解集是x<﹣3,则m的取值范围是.11.已知关于x的不等式组的整数解有且只有2个,则m的取值范围是.12.不等式组的正整数解为.13.不等式组的最小整数解是.14.不等式组的负整数解是.15.不等式组的所有整数解的和是.16.把一批书分给小朋友,每人3本,则余8本;每人5本,则最后一个小朋友得到书且不足3本,这批书有本.17.已知关于x的不等式组的所有整数解的和为﹣9,m的取值范围是.18.不等式组的非负整数解的个数是.19.已知关于x的不等式组的整数解共有3个,则a的取值范围是.20.对于任意实数p、q,定义一种运算p※q=p﹣q+pq﹣2,等式的右边是通常的加减和乘法运算,例如:4※5=4﹣5+4×5﹣2=17.请根据上述定义解决问题:若关于x的不等式组有5个整数解,则m的取值范围是.21.若关于x的不等式组的所有整数解的和是15,则m的取值范围是.22.求关于x的不等式组的所有整数解之和.23.解不等式组:把解集在数轴上表示出来,并写出所有整数解.24.解不等式组:,并求出最小整数解与最大整数解的和.25.已知关于x的不等式组.(1)如果这个不等式组无解,求k的取值范围;(2)如果这个不等式组有解,求k的取值范围;(3)如果这个不等式组恰好有2021个整数解,求k的取值范围.26.解不等式组,并写出其所有的整数解.27.若关于x的不等式组有且只有四个整数解,求实数a的取值范围.参考答案1.解:解不等式组,解不等式①得x≥a+2,解不等式②得x<3,∵原不等式只有3个整数解∴这3个整数解分别为2,1,0﹣1<a+2≤0∴﹣3<a≤﹣2,∵(a+2)x<1的解集为x>,∴a+2<0,∴a<﹣2,∴满足所有条件的a的取值范围是﹣3<a<﹣2,∴a一个整数也取不到,故选:D.2.解:解不等式组得:<x<2,由关于x的不等式组恰好只有2个整数解,得到﹣1≤<0,即0≤a<4,满足条件的整数a的值为0、1、2、3,整数a的值之和是0+1+2+3=6,故选:C.3.解:,由①得:x≥,由②得:x≤,不等式组的解集为:≤x≤,∵整数解仅有1,2,,∴0<≤1,2≤<3,解得:0<a≤3,4≤b<6,∴a=1,2,3,b=4,5,∴整数a,b组成的有序数对(a,b)有(1,4),(2,4),(3,4),(1,5),(2,5),(3,5)共6个,故选:D.4.解:解不等式x+3>1,得:x>﹣2,解不等式x﹣1≤4,得:x≤5,故不等式组的解集为:﹣2<x≤5,则该不等式组的最小整数解为:﹣1,故选:C.5.解:不等式组整理得:,解得:a<x<,由不等式组的整数解共有6个,得到整数解为﹣4,﹣3,﹣2,﹣1,0,1,则a的范围为﹣5≤a<﹣4.故选:C.6.解:,解不等式①得:x<1,解不等式②得:x<﹣,∴不等式组的解集为x<﹣,则其最大整数解为﹣2,故选:D.7.解:由3≤5﹣3x<9解得,﹣<x≤,方程组,解①得:x<2,解②得x<4.则不等式组的解集是x<2.故非负整数解是0,故选:D.8.解:,解①得:x>a﹣1,解②得:x≤4,则不等式组的解集是:a﹣1<x≤4.不等式组有四个整数解,则是1,2,3,4.则0≤a﹣1<1.解得:1≤a<2.故选:B.9.解:,由①得:x>﹣1,由②得:x≤4,故不等式组的解集为:﹣1<x≤4,则不等式组的整数解为:0,1,2,3,4共5个,故选:D.10.解:解不等式2x﹣1>3x+2,得:x<﹣3,∵不等式组的解集是x<﹣3,∴m≥﹣3.故答案为m≥﹣3.11.解:由2x﹣1<4得x<,由x﹣m>0得x>m,则不等式组的解集是m<x<.不等式组有2个整数解,则整数解是1,2.则0≤m<1.故答案是:0≤m<1.12.解:,解①得x<2,解②得x≥﹣1,故不等式组的解集为﹣1≤x<2,故不等式组的正整数解为1.故答案为1.13.解:,解①得x>2,解②得x≥﹣1,则不等式的解集是x>2.则最小整数解是3.故答案为3.14.解:解不等式3x≤x+2得,x≤1,解不等式x+7>﹣4x﹣3得,x>﹣2,∴不等式组的解集为﹣2<x≤1,∴负整数解为﹣1,故答案为﹣1.15.解:,由①得:x≤3,由②得:x>1,∴1<x≤3,则所有整数解为2,3,之和为5,故答案为5.16.解:设共有x名小朋友,则共有(3x+8)本书,依题意得:,解得:5<x<6,又∵x为正整数,∴x=6,∴3x+8=26.故答案为:26.17.解:解不等式3x+m<0,得:x<﹣,∵x>﹣5,∴不等式组的解集为﹣5<x<﹣,∵不等式的所有整数解的和为﹣9,∴不等式组的整数解为﹣4、﹣3、﹣2或﹣4、﹣3、﹣2,﹣1,0,1,则﹣2<﹣≤﹣1或1<﹣≤2,解得3≤m<6或﹣6≤m<﹣3,故答案为:3≤m<6或﹣6≤m<﹣3.18.解:,解不等式①得:x>﹣2,解不等式②得x≤3,∴不等式组的解集为﹣2<x≤3,非负整数解为0,1,2,3共4个,故答案为4.19.解:不等式组整理得:,解得:a≤x≤2,由不等式组的整数解共有3个,得到整数解为0,1,2,则a的范围为﹣1<a≤0.故答案为:﹣1<a≤0.20.解:∵,∴,解不等式①得:x<4,解不等式②得:x≥,∴不等式组的解集是≤x<4,∵不等式组有5个整数解,∴﹣2<≤﹣1,解得:﹣6.5<m≤﹣4.5,故答案为:﹣6.5<m≤﹣4.5.21.解:解不等式组得:m<x≤6,∵所有整数解的和是15,15=6+5+4,∴x=6,5,4,因此不等式组的整数解为①6,5,4,或②6,5,4,3,2,1,0,﹣1,﹣2,﹣3,∴3≤m<4或﹣4≤m<﹣3;故答案为:3≤m<4或﹣4≤m<﹣3.22.解:,解不等式①得,x<3,解不等式②得,x≥1,所以,不等式组的解集是1≤x<3,所以,不等式组的整数解有1、2,它们的和为1+2=3.23.解:,解不等式①得x<3,解不等式②得x>﹣1,∴不等式组的解集为﹣1<x<3,数轴表示为:整数解为:0,1,2.24.解:,由①得:x≤8,由②得:x>﹣3,∴不等式组的解集为﹣3<x≤8,∴x的最小整数为﹣2,最大整数为8,∴x的最小整数解与最大整数解的和为6.25.解:(1)根据题意得:﹣1≥1﹣k,解得:k≥2.(2)根据题意得:﹣1<1﹣k,解得:k<2.(3)∵不等式恰好有2021个整数解,∴﹣1<x<2021,∴2020≤1﹣k<2021,解得:﹣2020<k≤﹣2019.26.解:,解不等式①得:x>﹣4,解不等式②得:x≤﹣1,所以不等式组的解集为:﹣4<x≤﹣1.∴不等式组的整数解有﹣3,﹣2,﹣1.27.解:,由不等式①,得x>2,由不等式②,得x<,∴该不等式组的解集是2<x<,∵关于x的不等式组有且只有四个整数解,∴6<≤7,解得,18<a≤21。

解一元一次不等式(组)(真题10道+模拟30道)-中考数学重难题型押题培优导练案【解析版】

解一元一次不等式(组)(真题10道+模拟30道)-中考数学重难题型押题培优导练案【解析版】

解一元一次不等式(组)(真题10道+模拟30道)【方法归纳】题型概述,方法小结,有的放矢1.解一元一次不等式(组)是近几年北京中考的第二道大题,属于基本计算找中的容易题,常见的考法有:解一元一次不等式、解一元一次不等式组、不等式或不等式组的整数解、在数轴上表示不等式或不等式组的解集.在平时要熟练掌握不等式或不等式组的解法步骤.2.根据不等式的性质解一元一次不等式,基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.以上步骤中,只有①去分母和⑤化系数为1可能用到性质3,即可能变不等号方向,其他都不会改变不等号方向.注意:符号“≥”和“≤”分别比“>”和“<”各多了一层相等的含义,它们是不等号与等号合写形式.3.一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.【典例剖析】典例精讲,方法提炼,精准提分【例1】(2021·北京·中考真题)解不等式组:{4x −5>x +13x−42<x【答案】2<x <4【解析】【分析】根据一元一次不等式组的解法可直接进行求解.【详解】解:{4x −5>x +1①3x−42<x② 由①可得:x >2,由②可得:x <4,∴原不等式组的解集为2<x <4.【点睛】本题主要考查一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解题的关键.【例2】(2022·北京·中考真题)解不等式组:{2+x >7−4x,x <4+x 2. 【答案】1<x <4【解析】【分析】分别解两个一元一次不等式,再求交集即可.【详解】解:{2+x >7−4x①x <4+x2②解不等式①得x >1,解不等式②得x <4,故所给不等式组的解集为:1<x <4.【点睛】本题考查解一元一次不等式组,属于基础题,正确计算是解题的关键.【真题再现】必刷真题,关注素养,把握核心1.(2013·北京·中考真题)解不等式组:{3x >x −2x+13>2x【答案】−1<x <15【解析】【分析】求出每个不等式的解集,再求出解集的公共部分即可.【详解】由3x >x −2解得,x >−1; 由x+13>2x 解得,x <15. ∴原不等式组的解集为:−1<x <15.【点睛】本题考查了解一元一次不等式组,求出不等式组中每一个不等式的解集是关键,常常利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).2.(2014·北京·中考真题)解不等式12x −1≤23x −12,并把它的解集在数轴上表示出来.【答案】x≥-3,数轴见解析.【解析】【分析】去分母得:3x -6≤4x -3,移项合并得x≥-3,正确在数轴上表示即可.【详解】解:3x -6≤4x -3∴x≥-3【点睛】本题考查解一元一次不等式.3.(2015·北京·中考真题)解不等式组:{4(x +1)≤7x +10x −5<x−83,并写出它的所有非负整数解. 【答案】不等式组的所有非负整数解为:0,1,2,3.【解析】【分析】先解不等式组求出x 的取值范围,然后找出符合范围的非负整数解.【详解】解:{4(x +1)≤7x +10①x −5<x−83 ② 由不等式①得:x ≥-2,由不等式②得:,x <72,∴不等式组的解集为:−2≤x <72,∴x 的非负整数解为:0,1,2,3.【点睛】 本题考查的是解一元一次不等式组及求一元一次不等式组的非负整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.4.(2016·北京·中考真题)解不等式组:{2x +5>3(x −1)4x >x+72. 【答案】1<x <8.【解析】【详解】试题分析:根据不等式性质分别求出每一个不等式的解集,再根据口诀:大小小大中间找可得不等式组的解集.试题解析:解不等式2x+5>3(x ﹣1),得:x <8,解不等式4x >x+72,得:x >1,∴不等式组的解集为:1<x <8.考点:解一元一次不等式组.5.(2017·北京·中考真题)解不等式组: {2(x +1)>5x −7x+103>2x . 【答案】x<2.【解析】【详解】试题分析 :由不等式性质分别求出每一个不等式的解集,找出它们的公共部分即可.试题解析:{2(x +1)>5x −7①x+103>2x② , 由①得:x<3,由②得:x<2,∴不等式组的解集为:x<2.6.(2018·北京·中考真题)解不等式组:{3(x +1)>x −1x+92>2x . 【答案】−2<x <3.【解析】【详解】分析:分别解不等式,找出解集的公共部分即可.详解:{3(x +1)>x −1①x+92>2x② 由①得,x >−2,由②得,x <3,∴不等式的解集为−2<x <3.点睛:考查解一元一次不等式组,比较容易,分别解不等式,找出解集的公共部分即可.7.(2019·北京·中考真题)解不等式组:{4(x −1)<x +2,x+73>x. 【答案】不等式组的解集为x <2.【解析】【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【详解】解:解不等式①得:4x −4<x +2,4x −x <4+2,3x <6,∴x <2解不等式②得:x +7>3x,x −3x >−7,−2x >−7,∴x <72∴不等式组的解集为x <2【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.(2020·北京·中考真题)解不等式组:{5x −3>2x 2x−13<x 2【答案】1<x <2【解析】【分析】分别解每一个不等式,然后即可得出解集.【详解】解:{5x −3>2x①2x−13<x 2② 解不等式①得:x >1,解不等式②得:x <2,∴此不等式组的解集为1<x <2.【点睛】本题考查了解一元一次不等式组,掌握不等式的解法是解题关键.【模拟精练】押题必刷,巅峰冲刺,提分培优一、解答题1.(2022·北京朝阳·二模)解不等式x −5<x−123,并写出它的所有非负整数解. 【答案】x <32,不等式的所有非负整数解为0,1【解析】【分析】去分母,移项、合并同类项,系数化为1即可,根据不等式的解集即可求得所有非负整数解.【详解】解:3(x −5)<x −12,3x −15<x −12,2x <3,x <32.∴原不等式的所有非负整数解为0,1.【点睛】本题考查了解一元一次不等式及求其非负整数解,正确求解不等式是解题的关键.2.(2022·北京东城·二模)解不等式6−4x ≥3x −8,并写出其正整数解.【答案】x ≤2,正整数解为1,2.【解析】【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数解即可.【详解】解:6−4x ≥3x −8,移项得:−4x −3x ≥−8−6,合并同类项得:−7x ≥−14,系数化为1得:x ≤2,∴不等式的正整数解为1,2.【点睛】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.3.(2022·北京平谷·二模)解不等式组:{5x +3>4x 6−x 2≥x .【解析】【分析】先分别求出两个不等式的解集,再找出它们的公共部分即为不等式组的解集.【详解】解:{5x +3>4x①6−x 2≥x② , 解不等式①得:x >−3,解不等式②得:x ≤2,则不等式组的解集为−3<x ≤2.【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解题关键.4.(2022·北京北京·二模)解不等式组:{5x +3>2x x−22<6−3x .【答案】−1<x <2【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:{5x +3>2x①x−22<6−3x② 解不等式①,得x >−1.解不等式②,得x <2.∴原不等式组的解集为−1<x <2.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.(2022·北京丰台·二模)解不等式组:{2x −3>x −23x−22<x +1 .【解析】【分析】先求出每个不等式的解集,然后取公共部分即可得到答案.【详解】解:原不等式组为{2x −3>x −2①3x−22<x +1② , 由①得:x >1,由②得:x <4,所以原不等式组的解集为:1<x <4.【点睛】本题考查了解一元一次不等式组,解题的关键是熟练掌握解不等式6.(2022·北京密云·二模)解不等式组:{2x −1≤−x +2x−12<1+2x 3,并写出它的非负整数解.【答案】−5<x ≤1;非负整数解为:0,1【解析】【分析】首先解两个一元一次不等式,然后求两个不等式解集的公共部分,最后写出不等式组的整数解.【详解】解不等式2x -1≤-x +2,得,x ≤1, 解不等式x−12<1+2x3,得,x >-5,∴该不等式组的解集为-5<x ≤1,∴该不等式组的非负整数解是:0,1.【点睛】本题主要考查了解一元一次不等式组,解决问题的关键是熟练解答一元一次不等式和确定一元一次不等式组的解集,在一元一次不等式组解集里确定非负整数解.7.(2022·北京西城·二模)解不等式:5x−26<x2+1,并写出它的正整数解. 【答案】x =1,2,3,【解析】【分析】先解不等式,求出不等式解集,再根据解集,写出正整数解即可.【详解】 解:5x−26<x2+1, 5x -2<3x +6,5x -3x <6+2,2x <8,x <4,∵x 为正整数,∴x =1,2,3,【点睛】本题考查求不等式正整数解,熟练掌握解不等式是解题的关键.8.(2022·北京顺义·二模)解不等式组:{5x +2≥4x −1,x+14>x−32+1. 【答案】−3≤x <3【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】{5x +2≥4x −1①x +14>x −32+1② 解不等式①得:x ≥−3解不等式②得:x <3∴不等式的解集为:−3≤x <3【点睛】本题考查了解一元一次不等式组,正确掌握一元一次不等式解集确定方法是解题的关键.9.(2022·北京市十一学校模拟预测)解不等式组:{4(x +1)≥x +73x+24<x ,并将不等式组的解集在数轴上表示出来.【答案】x >2,见解析【解析】【分析】先解不等式组中的每一个不等式,再取其解集的公共部分即得不等式组的解集,然后即可在数轴上表示其解集.【详解】对不等式:{4(x +1)≥x +7①3x+24<x② 解不等式①得:x ≥1解不等式②得:x >2所以不等式的解集为:x >2【点睛】本题考查了一元一次不等式组的解法,属于基本题型,熟练掌握解一元一次不等式组的方法是解题的关键.10.(2022·北京海淀·二模)解不等式组:{5x −2>2x +4,x−12>x 3. 【答案】原不等式组的解集为x >3【解析】【分析】分别解不等式组中的两个不等式,再确定两个不等式解集的公共部分即可.【详解】解:原不等式组为{5x −2>2x +4,①x−12>x 3.② 解不等式①,得x >2.解不等式②,得x >3.∴ 原不等式组的解集为x >3.【点睛】本题考查的是不等式组的解法,掌握“解一元一次不等式组的步骤”是解本题的关键.11.(2022·北京东城·一模)解不等式组{x−32<1,2(x+1)≥x−1.【答案】−3≤x<5【解析】【分析】先分别求出不等式的解集,然后求出不等式组的解集即可.【详解】解:{x−32<12(x+1)≥x−1,解不等式x−32<1得,x<5;解不等式2(x+1)≥x−1得,x≥−3;∴不等式组的解集为−3≤x<5.【点睛】本题考查了解一元一次不等式组.解题的关键在于正确的计算.12.(2022·北京市十一学校二模)在平面直角坐标系xOy中,已知点P(1,2),Q(−2,2),函数y=mx.(1)当函数y=mx的图象经过点Q时,求m的值并画出直线y=-x-m.(2)若P,Q两点中恰有一个点的坐标(x,y)满足不等式组{y>mxy<−x−m(m<0),求m的取值范围.【答案】(1)m=-4,画图见解析(2)-3≤m<0或m≤-4【解析】【分析】(1)根据待定系数法,将Q点坐标代入y=mx即可求值,进而画出直线的图象;(2)不等式组表达含义为P、Q中的一点位于反比例函数图象上方,位于一次函数图象下方,根据m<0的条件,数形结合即可求出m的取值范围.(1)解:∵函数y=mx的图象经过点Q,∴m=-2×2=-4,一次函数的解析式为:y=-x+4,图象如下.(2)解:由题意知,P、Q中的一点位于反比例函数图象上方,位于一次函数图象下方,∵m<0,∴反比例函数经过二、四象限,故P点在反比例函数图象上方,∴存在两种情况,①Q在反比例函数图象上方,在一次函数图象下方,P在一次函数图象上或上方,即:{2>m−2 2<2−m−1−m≤2,解得:-3≤m<0;②Q在反比例函数图象上或下方,P在一次函数图象下方,即:{2≤m−2−1−m>2,解得:m≤-4;综上所述,m 的取值范围为:-3≤m <0或m ≤-4.【点睛】本题考查了待定系数法求反比例函数解析式,解决本题难点是分析出反比例函数、一次函数的图象与P 、Q 两点的位置关系,得到关于m 的不等式组.13.(2022·北京市十一学校二模)解不等式组:{x −3(x −1)≥11+3x 2>x −1 ,并把它的解集在数轴上表示出来. 【答案】−3<x ≤1,数轴见解析【解析】【分析】分别求出两个不等式的解集,即可求解.【详解】解:{x −3(x −1)≥1①1+3x2>x −1② ,解不等式①得:x ≤1,解不等式②得:x >−3,∴不等式组的解集为−3<x ≤1,把解集在数轴上表示出来,如下:【点睛】本题主要考查了解一元一次不等式组,熟练掌握解一元一次不等式组的方法是解题的关键.14.(2022·北京石景山·一模)解不等式组:{3(x +1)<x −1x+92>2x 并写出它的最大整数解.【答案】﹣3【解析】【分析】分别求出每一个不等式的解集,根据口诀同大取大;同小取小;大小小大中间找;大大小小找不到,确定不等式组的解集.【详解】{3(x +1)<x −1①x +92>2x② 由①得,x <﹣2,由②得,x <3,∴不等式组的解集为x <﹣2,最大的整数解是﹣3.【点睛】本题考查的是一元一次不等式组的整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.(2022·北京房山·二模)解不等式组:{3(x −1)<2x +1x−12≤x +2 . 【答案】−5≤x <4【解析】【分析】分别求出两不等式的解集,根据:“大小小大中间找”确定不等式组解集.【详解】解:{3(x −1)<2x +1①x−12≤x +2② 由①得3x −3<2x +1,即x <4由②得x −1≤2x +4,即x ≥−5∴不等式组的解集为:−5≤x <4【点睛】本题考查了解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集.16.(2022·北京平谷·一模)解不等式组:{x +2>2x 5x+32≥x .【答案】−1≤x <2【解析】【分析】先分别求出两个不等式的解集,然后求出不等式组的解集即可.【详解】解:{x+2>2x 5x+32≥x解不等式x+2>2x移项合并得−x>−2系数化为1得x<2∴不等式的解集为x<2;解不等式5x+32≥x去分母得5x+3≥2x移项合并得3x≥−3系数化为1得x≥−1∴不等式的解集为x≥−1;∴不等式组的解集为−1≤x<2.【点睛】本题考查了解一元一次不等式组.解题的关键在于正确的计算.17.(2022·北京·东直门中学模拟预测)解不等式组:{3x>x−2 x+13≥2x【答案】−1<x≤15【解析】【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【详解】解:{3x>x−2①x+13≥2x②,∵解不等式①得:x>-1,解不等式②得:x≤15,∴不等式组的解集是−1<x≤15.【点睛】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.18.(2022·北京市第一六一中学分校一模)解不等式组{x+2(−2x)≥-4 3+5x2>x−1【答案】−53<x≤2【解析】【分析】按照解一元一次不等式的方法分别求出各不等式的解,进而得到不等式组的解集.【详解】解:{x+2(1−2x)≥−4⋯①3+5x2>x−1⋯②由①式去括号,得:x+2−4x≥−4移项、合并同类项,得:x≤2由②式去分母,得:3+5x>2x−2移项、合并同类项,得:x>−53所以不等式组的解集为:−53<x≤2.【点睛】本题考查解一元一次不等式组,熟练掌握相关知识是解题的关键.19.(2022·北京房山·一模)解不等式组:{x-2≤1 x+15<x−1【答案】32<x≤3【解析】【分析】先求得每个不等式的解集,后根据口诀确定不等式组的解集.【详解】解:{x-2≤1①x+15<x−1②由①得:x≤3,由②得:x>32,∴不等式组的解集为32<x≤3.【点睛】本题考查了一元一次不等式组的解法,熟练掌握解不等式组的基本步骤是解题的关键.20.(2022·北京朝阳·一模)解不等式组:{x −3(x −2)≥4x −1<1+2x 3【答案】不等式组的解集为x ≤1【解析】【分析】先根据不等式的基本性质分别解两个不等式,再确定不等式组的解集即可.【详解】{x −3(x −2)≥4①x −1<1+2x 3② 解①得x ≤1解②得x <4所以,不等式组的解集为x ≤1.【点睛】本题考查了解不等式组,根据不等式的基本性质解不等式是解题的关键.21.(2022·北京顺义·一模)解不等式组{2(x +1)≤5x +82x −5<x−12,并写出它的所有整数解. 【答案】-2≤x <3,它的整数解为-2、-1、0、1、2.【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:{2(x +1)≤5x +82x −5<x−12由第一个不等式得2x +2≤5x +8,解得x ≥-2,由第二个得4x -10<x -1解得x <3∴不等式组的解集为-2≤x <3,它的整数解为-2、-1、0、1、2.【点睛】本题考查解一元一次不等式组,求符合条件的整数解.正确掌握一元一次不等式解集确定方法是解题的关键.22.(2022·北京西城·一模)解不等式组{5x +1>3(x −1)8x+29>x :【答案】−2<x <2【解析】【分析】分别求出两个不等式的解集,即可求解.【详解】解:{5x +1>3(x −1)①8x+29>x② , 解不等式①得:x >−2,解不等式②得:x <2,∴不等式组的解集为−2<x <2.【点睛】本题主要考查了解一元一次不等式组,熟练掌握解不等式组解集的口诀:同大取大,同小取小大小小大中间找,大大小小找不到(无解)是解题的关键.23.(2022·北京通州·一模)解不等式组{3x −1>x +14x−53≤x【答案】1<x ≤5【解析】【分析】先分别解出两个不等式,再确定不等式组解集即可.【详解】{3x −1>x +1①4x −53≤x② 解①得x >1解②得x ≤5所以,不等式组的解集为1<x ≤5.【点睛】本题考查了一元一次不等式组的解法,熟练掌握解题步骤是解题的关键.24.(2022·北京海淀·一模)解不等式组:{4(x −1)<3x,5x+32>x. 【答案】−1<x <4【解析】【分析】先求出各不等式的解集,再求其公共解集即可.【详解】解:解不等式4(x −1)<3x ,得:x <4, 解不等式5x+32>x ,得:x >−1,所以原不等式组的解集是−1<x <4.【点睛】本题主要考查了解一元一次不等式组,熟练掌握解不等式组的基本步骤是解题的关键.25.(2022·北京市第五中学分校模拟预测)解不等式组:{4(x +1)≥x +73x+24<x . 【答案】x >2【解析】【分析】分别求出两个不等式的解集,即可得到不等式组的解集.【详解】解:{4(x +1)≥x +7①3x+24<x②解不等式①得:x ≥1,解不等式②得:x >2,所以不等式组的解集为:x >2.【点睛】本题考查了解一元一次不等式组,熟练掌握一元一次不等式的解法是解题的关键.26.(2022·北京市三帆中学模拟预测)解不等式组{2x−7<3(1−x)43x+3≥1−23x,并写出它的非负整数解.【答案】−1≤x<2,0和1【解析】【分析】首先解每一个不等式,再求不等式组的解集,据此即可解答.【详解】解:{2x−7<3(1−x)①43x+3≥1−23x②由①解得x<2由②解得x≥−1故不等式组的解集为−1≤x<2所以,它的非负整数解有:0和1.【点睛】本题考查了一元一次不等式组的解法及整数解问题,熟练掌握和运用一元一次不等式组的解法及求整数解的方法是解决本题的关键.27.(2022·北京十一学校一分校模拟预测)在平面直角坐标系xOy中,一次函数y=−x+b经过点(0,2).(1)求这个一次函数的解析式:(2)当x<4时,对于x的每一个值,函数y=−x+b的值与函数y=kx−k的值之和都大于0,求k的取值范围.【答案】(1)y=−x+2(2)23≤k<1【解析】【分析】(1)根据待定系数法求解即可;(2)根据题意解不等式组即可.(1)解:∵一次函数y=−x+b经过点(0,2)∴2=b ,∴这个一次函数的解析式为y =−x +2.(2)由y =kx −k =k (x −1)则y =kx −k 过定点(1,0),依题意,kx −k −x +2>0的解集为x <4∴ x <k−2k−1,且k −1<0 ∴k−2k−1≤4,且k <1∴k −2≥4(k −1)即k −2≥4k −4−3k ≥−2当k <0时,k ≤23,则k <0当0≤k <1时,k ≥23,则23≤k <1 综上所述,23≤k <1【点睛】本题考查了待定系数法求一次函数解析式,解不等式组,理解题意是解题的关键.28.(2022·北京昌平·模拟预测)解不等式组{2x +7<3x −1x−25≥0 ,并把解集在数轴上表示出来. 【答案】x >8,作图见解析【解析】【分析】先分别计算不等式,然后求解集,将解集在数轴上表示出来即可.【详解】解:{2x +7<3x −1①x−25≥0②解不等式①得x >8,解不等式②得x ≥2,∴不等式组的解集为x >8,在数轴上表示如图所示:【点睛】本题考查了求不等式组的解集,在数轴上表示解集.解题的关键在于正确的计算.29.(2022·北京朝阳·模拟预测)解下列不等式,并把解在数轴上表示出来.(1)5x﹣5<2(2+x);(2)4x−13−x>1;(3)32>x2−2x−38;(4)x(x+4)≤(x+1)2+9.【答案】(1)x>3,数轴见解析(2)x>4,数轴见解析(3)x≤4.5,数轴见解析(4)x≤5,数轴见解析【解析】【分析】(1)根据去括号、移项、合并同类项和系数化为1即可求出不等式的解集;(2)根据去分母、移项、合并同类项和系数化为1即可求出不等式的解集.(3)根据去分母、去括号、移项、合并同类项和系数化为1即可求出不等式的解集.(4)去括号、移项、合并同类项和系数化为1即可求出不等式的解集.(1)解:5x﹣5<2(2+x)去括号得,5x﹣5<4+2x,移项得,5x﹣2x>4+5,合并同类项,3x>9,∴x>3.在数轴上表示此不等式的解集如下:(2)解:4x−13−x>1去分母,得4x﹣1﹣3x>3,移项,得4x﹣3x>3+1,合并同类项,得x>4,∴x>4.在数轴上表示此不等式的解集如下:(3)解:32>x2−2x−38去分母,得12≥4x﹣(2x﹣3),去括号,得12≥4x﹣2x+3,移项,得﹣4x+2x≥3﹣12,合并同类项,得﹣2x≥﹣9,∴x≤4.5.在数轴上表示此不等式的解集如下:(4)解:x(x+4)≤(x+1)2+9去括号,得x2+4x≤x2+2x+1+9,移项,得x2﹣x2+4x﹣2x≤1+9,合并同类项,得2x≤10,∴x≤5.在数轴上表示此不等式的解集如下:【点睛】本题考查了解一元一次不等式,能正确运用不等式的基本性质进行计算是解此题的关键.30.(2022·北京·二模)解不等式组:{3(x −1)≥2x −5,①2x <x+32,②并写出它的所有整数解. 【答案】−2≤x <1;−2,−1,0【解析】【分析】分别解不等式①,②,进而求得不等式组的解集,根据不等式组的解集写出所有整数解即可.【详解】{3(x −1)≥2x −5,①2x <x +32,② 解不等式①得:x ≥−2解不等式②得:x <1∴不等式组的解集为:−2≤x <1它的所有整数解为:−2,−1,0【点睛】 本题考查了解一元一次不等式组,求不等式组的整数解,正确的计算是解题的关键.。

9.4一元一次不等式组-2020-2021学年人教版七年级数学下册专题复习提升训练(机构)

9.4一元一次不等式组-2020-2021学年人教版七年级数学下册专题复习提升训练(机构)

专题复习提升训练卷9.4一元一次不等式组-20-21人教版七年级数学下册一、选择题1、不等式组⎪⎩⎪⎨⎧≥+>-)2(,125)1(,12x x 中,不等式①和②的解集在数轴上表示正确的是( ) A .B .C .D .2、关于x 的不等式x ﹣a ≥1.若x =1是不等式的解,x =﹣1不是不等式的解,则a 的范围为( ) A .﹣2≤a ≤0 B .﹣2<a <0 C .﹣2≤a <0 D .﹣2<a ≤03、若不等式组⎩⎨⎧<>a x x 1无解,则a 的取值范围是( ) A .a >1 B .a ≥1 C .a <1 D .a ≤14、如果点P (3m ,m +3)在第三象限,那么m 的取值范围是( )A .m <0B .m <﹣3C .﹣3<m <0D .m <35、若关于x 的不等式3x +a ≤2只有2个正整数解,则a 的取值范围为( )A .﹣7<a <﹣4B .﹣7≤a ≤﹣4C .﹣7≤a <﹣4D .﹣7<a ≤﹣4 6、若不等式组7331x x x m +>-⎧⎨-<⎩的解集为x <5,则m 的取值范围为( ) A .m <4 B .m≤4 C .m≥4 D .m >47、已知13ax b ≤+<的解集为23x ≤<,则()113a x b ≤-+<的解集为( )A .23x ≤<B .23x <≤C .21x -≤<-D .21x -<≤-8、小明网购了一本《好玩的数学》,同学们想知道书的价格,小明让他们猜.甲说:“至少12元.”乙说“至多10元.”丙说“至多8元.”小明说:“你们三个人都说错了.”则这本书的价格x (元)所在的范围为( )A .8<x <10B .9<x <11C .8<x <12D .10<x <129、对于三个数字a ,b ,c ,用max {a ,b ,c }表示这三个数中最大数,例如max {﹣2,﹣1,0}=0,max {﹣2,﹣1,a }=⎩⎨⎧<--≥)1(,1)1(,a a a .如果max {3,8﹣2x ,2x ﹣5}=3,则x 的取值范围是( ) A .32≤x ≤29 B .25≤x ≤4 C .32<x <29 D .25<x <4 10、“垃圾分类做得好,明天生活会更好”,学校需要购买分类垃圾桶10个,放在校园的公共区域,市场上有A 型和B 型两种分类垃圾桶,A 型分类垃圾桶350元/个,B 型分类垃圾桶400元/个,总费用不超过3650元,则不同的购买方式有( )A .2种B .3种C .4种D .5种11、对一个实数x 按如图所示的程序进行操作,规定:程序运行从“输入一个实数x ”到“判断结果是否大于190?”为一次操作,如果操作恰好进行两次就停止了,那么x 的取值范围是( )A .228≤<xB .228<≤xC .864x <≤D .2264x <≤ 二、填空题12、若不等式组⎩⎨⎧>-<-002a x x 有解,则a 的取值范围是 . 13、若关于x 的不等式组100x x a ->⎧⎨-<⎩无解,则a 的取值范围是__________. 14、不等式组2{x x a >>的解集为x >2,则a 的取值范围是_____________.15、若点B (7a +14,a ﹣3)在第四象限,则a 的取值范围是 .16、已知关于x ,y 的方程组2315x y k x y k -=⎧⎨+=-⎩的解满足不等式﹣3≤x +y ≤1,则实数k 的取值范围为______ 17、若不等式组01x a x a ->⎧⎨-<⎩的解集中的任何一个x 的值均不在2≤x ≤5的范围内,则a 的取值范围为________. 18、现规定一种新的运算:m #n =4m ﹣3n .例如:3#2=4×3﹣3×2.若x 满足x #43<0,且x #(﹣4)≥0,则x 的取值范围是_________.19、对于有理数m ,我们规定[]m 表示不大于m 的最大整数,例如:[1,2]1=,[3]3=,[ 2.5]3-=-, 若2[]53x +=-,则整数x 的取值是__________. 20、一个三角形的两边长分别是3和7,且第三边长为奇数,这样的三角形的周长最大值是___________,最小值是___________.三、解答题21、解下列不等式或不等式组(1)2151123x x ---> (2)45323213x x x -<+⎧⎪-⎨≥⎪⎩22、解不等式组:()22332143x x x x ⎧+<+⎪⎨->-⎪⎩,并求出最大整数解.23、已知方程组⎩⎨⎧+=---=+a y x a y x 317的解x 为非正数,y 为负数. (1)求a 的取值范围;(2)化简|a ﹣3|+|a +2|;(3)在a 的取值范围中,当a 为何整数时,不等式2ax +x >2a +1的解为x <1?24、已知关于x 的不等式组⎩⎨⎧-≤->k x x 11. (1)如果这个不等式组无解,求k 的取值范围;(2)如果这个不等式组有解,求k 的取值范围;(3)如果这个不等式组恰好有2017个整数解,求k 的取值范围.25、一群女生住x间宿舍,每间住4人,剩下18人无房住,每间住6人,有一间宿舍住不满,但有学生住.(1)用含x的代数式表示女生人数.(2)根据题意,列出关于x的不等式组,并求不等式组的解集.(3)根据(2)的结论,问一共可能有多少间宿舍,多少名女生?26、某商家欲购进甲、乙两种抗疫用品共180件,其进价和售价如表:(1)若商家计划销售完这批抗疫用品后能获利1240元,问甲、乙两种用品应分别购进多少件?(请用二元一次方程组求解)(2)若商家计划投入资金少于5040元,且销售完这批抗疫用品后获利不少于1314元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.27、为降低空气污染,公交公司决定全部更换节能环保的燃气公交车.计划购买A型和B型两种公交车共10辆,其中每台的价格,年均载客量如表:若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元(1)求购买每辆A型公交车和每辆B型公交车分别多少万元?(2)如果该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车年均载客总和不少于680万人次,有哪几种购车方案?请你设计一个方案,使得购车总费用最少.专题复习提升训练卷9.4一元一次不等式组-20-21人教版七年级数学下册(解析)一、选择题1、不等式组⎪⎩⎪⎨⎧≥+>-)2(,125)1(,12x x 中,不等式①和②的解集在数轴上表示正确的是( ) A . B .C . D.【解答】解:解不等式①,得:x <1,解不等式②,得:x ≥﹣3,则不等式组的解集为﹣3≤x <1,将两不等式解集表示在数轴上如下:故选:C .2、关于x 的不等式x ﹣a ≥1.若x =1是不等式的解,x =﹣1不是不等式的解,则a 的范围为( ) A .﹣2≤a ≤0 B .﹣2<a <0 C .﹣2≤a <0 D .﹣2<a ≤0【分析】根据x =1是不等式x ﹣a ≥1的解,且x =﹣1不是这个不等式的解,列出不等式,求出解集,即可解答.【解析】∵x =1是不等式x ﹣a ≥1的解,∴1﹣a ≥1,解得:a ≤0,∵x =﹣1不是这个不等式的解,∴﹣1﹣a <1,解得:a >﹣2,∴﹣2<a ≤0,故选:D .3、若不等式组⎩⎨⎧<>a x x 1无解,则a 的取值范围是( ) A .a >1 B .a ≥1 C .a <1 D .a ≤1【分析】根据不等式组⎩⎨⎧<>a x x 1无解,即两个不等式的解集无公共部分,进而得到a 的取值范围是a ≤1, 【解析】:∵不等式组⎩⎨⎧<>a x x 1无解,∴a 的取值范围是a ≤1, 故选:D .4、如果点P (3m ,m +3)在第三象限,那么m 的取值范围是( )A .m <0B .m <﹣3C .﹣3<m <0D .m <3 【解答】解:根据题意得:,解①得m <0,解②得m <﹣3.则不等式组的解集是m <﹣3.故选:B .5、若关于x 的不等式3x +a ≤2只有2个正整数解,则a 的取值范围为( )A .﹣7<a <﹣4B .﹣7≤a ≤﹣4C .﹣7≤a <﹣4D .﹣7<a ≤﹣4【分析】先解不等式得出x ≤32a -,根据不等式只有2个正整数解知其正整数解为1和2,据此得出2≤32a -<3,解之可得答案. 【解析】∵3x +a ≤2,∴3x ≤2﹣a ,则x ≤32a -, ∵不等式只有2个正整数解,∴不等式的正整数解为1、2,则2≤32a -<3, 解得:﹣7<a ≤﹣4, 故选:D .6、若不等式组7331x x x m+>-⎧⎨-<⎩的解集为x <5,则m 的取值范围为( ) A .m <4B .m≤4C .m≥4D .m >4 【答案】C【分析】先求出每个不等式的解集,根据已知得出关于m 的不等式,求出不等式的解集即可.【详解】解:7331x x x m +>-⎧⎨-<⎩①②∵解不等式①得:x <5,解不等式②得:x <m +1,又∵不等式组7331x x x m+>-⎧⎨-<⎩的解集为x <5, ∴m +1≥5, 解得:m≥4,故选:C .7、已知13ax b ≤+<的解集为23x ≤<,则()113a x b ≤-+<的解集为( )A .23x ≤<B .23x <≤C .21x -≤<-D .21x -<≤-【答案】D【分析】令1-x=y ,则13ay b ≤+<,根据题干可知:23y ≤<,从而得出x 的取值范围. 【详解】令1-x=y ,则13ay b ≤+<∵13ax b ≤+<的解集为23x ≤<∴13ay b ≤+<的解集为:23y ≤<∴213x ≤-<解得:21x -<≤-故选:D .8、小明网购了一本《好玩的数学》,同学们想知道书的价格,小明让他们猜.甲说:“至少12元.”乙说“至多10元.”丙说“至多8元.”小明说:“你们三个人都说错了.”则这本书的价格x (元)所在的范围为( )A .8<x <10B .9<x <11C .8<x <12D .10<x <12【分析】根据题意得出不等式组解答即可.【解析】:根据题意可得:⎪⎩⎪⎨⎧≤≤≥81012x x x ,∵三个人都说错了,∴这本书的价格x (元)所在的范围为10<x <12.故选:D .9、对于三个数字a ,b ,c ,用max {a ,b ,c }表示这三个数中最大数,例如max {﹣2,﹣1,0}=0,max {﹣2,﹣1,a }=⎩⎨⎧<--≥)1(,1)1(,a a a .如果max {3,8﹣2x ,2x ﹣5}=3,则x 的取值范围是( ) A .32≤x ≤29 B .25≤x ≤4 C .32<x <29 D .25<x <4 【解答】解:∵max {3,8﹣2x ,2x ﹣5}=3,则,∴x 的取值范围为:≤x ≤4,故选:B .10、“垃圾分类做得好,明天生活会更好”,学校需要购买分类垃圾桶10个,放在校园的公共区域,市场上有A 型和B 型两种分类垃圾桶,A 型分类垃圾桶350元/个,B 型分类垃圾桶400元/个,总费用不超过3650元,则不同的购买方式有( )A .2种B .3种C .4种D .5种【答案】C【分析】设购买A 型分类垃圾桶x 个,则购买B 型垃圾桶(10-x ),然后根据题意列出不等式组,确定不等式组整数解的个数即可.【详解】解:设购买A 型分类垃圾桶x 个,则购买B 型垃圾桶(10-x )个, 由题意得:()35040010365010x x x ⎧+-≤⎨≤⎩,解得710x ≤≤,则x 可取7、8、9、10,即有四种不同的购买方式.故选:C .11、对一个实数x 按如图所示的程序进行操作,规定:程序运行从“输入一个实数x ”到“判断结果是否大于190?”为一次操作,如果操作恰好进行两次就停止了,那么x 的取值范围是( )A .228≤<xB .228<≤xC .864x <≤D .2264x <≤【答案】D 【分析】根据“操作恰好进行两次就停止了”可得第一次运行的结果小于等于190,第二次运行的结果大于190,由此建立不等式组,再解不等式组即可得.【详解】由题意得:()321903322190x x -≤⎧⎪⎨-->⎪⎩①②, 解不等式①得:64x ≤,解不等式②得:22x >,则不等式组的解集为2264x <≤,故选:D .二、填空题12、若不等式组⎩⎨⎧>-<-002a x x 有解,则a 的取值范围是 . 【分析】先把a 当作已知条件得出不等式的解集,再根据不等式组有解集得出a 的取值范围即可.【解析】:由①得,x <2, 由②得x >a ,∵不等式组有解集,∴a <x <2,∴a <2.故答案为:a <2.13、若关于x 的不等式组100x x a ->⎧⎨-<⎩无解,则a 的取值范围是__________. 【答案】1a ≤【分析】将不等式组解出来,根据不等式组100x x a ->⎧⎨-<⎩无解,求出a 的取值范围. 【详解】解:解100x x a ->⎧⎨-<⎩得1x x a >⎧⎨<⎩, ∵100x x a ->⎧⎨-<⎩无解,∴a ≤1.故答案为:a≤1.14、不等式组2{x x a >>的解集为x >2,则a 的取值范围是_____________.【答案】a≤2【分析】根据求一元一次不等式组解集的口诀,即可得到关于a 的不等式,解出即可.【详解】由题意得a≤2.15、若点B (7a +14,a ﹣3)在第四象限,则a 的取值范围是 .【解答】解:∵点B (7a +14,a ﹣3)在第四象限,∴,解不等式①,得:a >﹣2,解不等式②,得:a <3,则不等式组的解集为﹣2<a <3,故答案为:﹣2<a <3.16、已知关于x ,y 的方程组2315x y k x y k-=⎧⎨+=-⎩的解满足不等式﹣3≤x +y ≤1,则实数k 的取值范围为______ 【答案】1733k -≤≤ 【分析】根据关于x ,y 的方程组2315x y k x y k -=⎧⎨+=-⎩可得132k x y -+=,然后代入不等式﹣3≤x +y ≤1进行求解即可. 【详解】解:由关于x ,y 的方程组2315x y k x y k -=⎧⎨+=-⎩①②可①+②得:2213x y k +=-,则有132k x y -+=, 代入不等式﹣3≤x +y ≤1得:13312k --≤≤,解得:1733k -≤≤; 故答案为1733k -≤≤.17、若不等式组1x ax a->⎧⎨-<⎩的解集中的任何一个x的值均不在2≤x≤5的范围内,则a的取值范围为________.【答案】a≤1或a≥5【分析】解不等式组1x ax a->⎧⎨-<⎩,求出x的范围,根据任何一个x的值均不在2≤x≤5范围内列出不等式,解不等式得到答案.【详解】解:不等式组1x ax a->⎧⎨-<⎩的解集为:a<x<a+1,∵任何一个x的值均不在2≤x≤5范围内,∴x<2或x>5,∴a+1≤2或a≥5,解得,a≤1或a≥5,∴a的取值范围是:a≤1或a≥5,故答案为:a≤1或a≥5.18、现规定一种新的运算:m#n=4m﹣3n.例如:3#2=4×3﹣3×2.若x满足x#43<0,且x#(﹣4)≥0,则x的取值范围是_________.【答案】﹣3≤x<1【分析】先根据题意列出关于x的不等式组,再分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】根据题意,得:4430343(4)0xx⎧-⨯<⎪⎨⎪-⨯-⎩①②,解不等式①,得:x<1,解不等式②,得:x≥﹣3,则不等式组的解集为﹣3≤x<1,故答案为:﹣3≤x <1.19、对于有理数m ,我们规定[]m 表示不大于m 的最大整数,例如:[1,2]1=,[3]3=,[ 2.5]3-=-, 若2[]53x +=-,则整数x 的取值是__________. 【答案】-17,-16,-15.【分析】根据[x]表示不大于x 的最大整数,列出不等式组,再求出不等式组的解集即可.【详解】∵[x]表示不大于x 的最大整数,∴-5≤23x +<-5+1,解得-17≤x <-14. ∵x 是整数,∴x 取-17,-16,-15.故答案为:-17,-16,-15.20、一个三角形的两边长分别是3和7,且第三边长为奇数,这样的三角形的周长最大值是___________,最小值是___________.【答案】19 15【分析】记三角形的第三边为c ,先根据三角形的三边关系确定c 的取值范围,进而可得三角形第三边的最大值与最小值,进一步即可求出答案.【详解】解:记三角形的第三边为c ,则7-3<c <7+3,即4<c <10,因为第三边长为奇数,所以三角形第三边长的最大值是9,最小值是5,所以三角形的周长最大值是3+7+9=19;最小值是3+7+5=15;故答案为:19,15.三、解答题21、解下列不等式或不等式组(1)2151123x x ---> (2)45323213x x x -<+⎧⎪-⎨≥⎪⎩ 【答案】(1)74x <-;(2)573x ≤< 【分析】(1)去分母、去括号、移项、合并同类项、化系数为1即可求解(2)先分别求出两个不等式的解,再求其公共解即可【详解】解:(1)去分母得:()()3212516x x --->去括号得:631026x x --+>移项得:610632x x ->+-合并同类项得:47x ->化系数为1得:74x <- ∴原不等式得解为74x <-(2)由4532x x -<+得:7x < 由3213x -≥得:323x -≥ 解得:53x ≥ 由上可得不等式组的解为:573x ≤<22、解不等式组:()22332143x x x x ⎧+<+⎪⎨->-⎪⎩,并求出最大整数解. 【答案】16x <<,5【分析】先求出每个不等式的解集,再求出不等式组的解集,即可得出答案.【详解】解:()22332143x x x x ⎧+<+⎪⎪⎨-⎪>-⎪⎩①②, 由①得:1x >,由②得:6x <,所以不等式组的解集为:16x <<,最大整数解为:523、已知方程组⎩⎨⎧+=---=+ay x a y x 317的解x 为非正数,y 为负数. (1)求a 的取值范围;(2)化简|a ﹣3|+|a +2|;(3)在a 的取值范围中,当a 为何整数时,不等式2ax +x >2a +1的解为x <1?【解答】解:(1)∵①+②得:2x =﹣6+2a ,x =﹣3+a ,①﹣②得:2y =﹣8﹣4a ,y =﹣4﹣2a ,∵方程组的解x 为非正数,y 为负数, ∴﹣3+a ≤0且﹣4﹣2a <0,解得:﹣2<a ≤3;(2)∵﹣2<a ≤3,∴|a ﹣3|+|a +2|=3﹣a +a +2=5;(3)2ax +x >2a +1,(2a +1)x >2a +1,∵不等式的解为x <1∴2a +1<0,∴a <﹣,∵﹣2<a ≤3,a 为整数,∴a 的值是﹣1,∴当a 为﹣1时,不等式2ax +x >2a +1的解为x <1.24、已知关于x 的不等式组⎩⎨⎧-≤->k x x 11. (1)如果这个不等式组无解,求k 的取值范围;(2)如果这个不等式组有解,求k 的取值范围;(3)如果这个不等式组恰好有2017个整数解,求k 的取值范围.【分析】(1)根据不等式组无解即可得到关于k 的不等式,即可求得k 的范围;(2)根据不等式组有解即可得到关于k 的不等式,即可求得k 的范围;(3)首先根据不等式恰好有2013个整数解求出不等式组的解集为﹣1<x <2017,再确定2016≤1﹣k <2017,然后解不等式即可.【解析】:(1)根据题意得:﹣1≥1﹣k ,解得:k ≥2.(2)根据题意得:﹣1<1﹣k ,解得:k <2.(3)∵不等式恰好有2017个整数解,∴﹣1<x <2017,∴2016≤1﹣k <2017,解得:﹣2016<k ≤﹣2015.25、一群女生住x 间宿舍,每间住4人,剩下18人无房住,每间住6人,有一间宿舍住不满,但有学生住.(1)用含x 的代数式表示女生人数.(2)根据题意,列出关于x 的不等式组,并求不等式组的解集.(3)根据(2)的结论,问一共可能有多少间宿舍,多少名女生?【答案】(1)()418+x 人;(2)912x <<;(3)可能10间宿舍,女生58人,或者11间宿舍女生62人【分析】(1)根据题意直接列代数式,用含x 的代数式表示女生人数即可;(2)根据题意列出关于x 的不等式组,并根据解一元一次不等式组的方法求解即可;(3)根据(2)的结论可以得出10x =或11x =,并代入女生人数418x +即可求出答案.【详解】解:(1)由题意可得女生人数为:(418x +)人.(2)依题意可得41864186(1)x x x x +<⎧⎨+>-⎩,解得:912x <<. (3)由(2)知912x <<,∵x 为正整数,∴10x =或11x =,10x =时,女生人数为41858x +=(人),11x =时,女生人数为41862x +=(人),∴可能有10间宿舍,女生58人,或者11间宿舍,女生62人.26、某商家欲购进甲、乙两种抗疫用品共180件,其进价和售价如表:(1)若商家计划销售完这批抗疫用品后能获利1240元,问甲、乙两种用品应分别购进多少件?(请用二元一次方程组求解)(2)若商家计划投入资金少于5040元,且销售完这批抗疫用品后获利不少于1314元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.【答案】(1)甲种商品购进100件,乙种商品购进80件;(2)方案一:甲种商品购进61件,乙种商品购进119件.方案二:甲种商品购进62件,乙种商品购进118件.方案三:甲种商品购进63件,乙种商品购进117件.获利最大的是方案一:甲种商品购进61件,乙种商品购进119件.【分析】(1)等量关系为:甲件数+乙件数=180;甲总利润+乙总利润=1240.(2)设出所需未知数,甲进价×甲数量+乙进价×乙数量<5040;甲总利润+乙总利润≥1314.【详解】解:(1)(1)设甲种商品应购进x件,乙种商品应购进y件.根据题意得:180681240x yx y+=⎧⎨+=⎩.解得:10080xy=⎧⎨=⎩.答:甲种商品购进100件,乙种商品购进80件.(2)设甲种商品购进a件,则乙种商品购进(180)a-件.根据题意得1435(180)504068(180)1314a aa a+-<⎧⎨+-≥⎩解不等式组得6063a<.a为非负整数,a∴取61,62,63180a∴-相应取119,118,117方案一:甲种商品购进61件,乙种商品购进119件,此时利润为:66181191318⨯+⨯=元;方案二:甲种商品购进62件,乙种商品购进118件,此时利润为:66281181316⨯+⨯=元;方案三:甲种商品购进63件,乙种商品购进117件,此时利润为:66281181314⨯+⨯=元;所以,有三种购货方案,其中获利最大的是方案一:甲种商品购进61件,乙种商品购进119件.27、为降低空气污染,公交公司决定全部更换节能环保的燃气公交车.计划购买A型和B型两种公交车共10辆,其中每台的价格,年均载客量如表:若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元(1)求购买每辆A型公交车和每辆B型公交车分别多少万元?(2)如果该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车年均载客总和不少于680万人次,有哪几种购车方案?请你设计一个方案,使得购车总费用最少.【答案】(1)购买每辆A型公交车100万元,购买每辆B型公交车150万元;(2)购买A型公交车8辆时,购车的总费用最小,为1100万元.【分析】(1)根据“购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B 型公交车1辆,共需350万元”列方程组求解可得;(2)设购买A型公交车x辆,则购买B型公交车(10-x)辆,根据“总费用不超过1200万元、年均载客总和不少于680万人次”求得x的范围,设购车的总费用为W,列出W关于x的函数解析式,利用一次函数的性质求解可得.【解析】(1)根据题意,得:24002350a ba b+=⎧⎨+=⎩,解得:100150ab=⎧⎨=⎩,答:购买每辆A型公交车100万元,购买每辆B型公交车150万元;(2)设购买A型公交车x辆,则购买B型公交车(10−x)辆,根据题意得:100150(10)120060100(10)680x xx x+-≤⎧⎨+-≥⎩,解得:68x≤≤,设购车的总费用为W,则W=100x+150(10−x)=−50x+1500,∵W随x的增大而减小,∴当x=8时,W取得最小值,最小值为1100万元.。

不等式及不等式组中的整数解问题

不等式及不等式组中的整数解问题

不等式及不等式组中的整数解问题一、一元一次不等式中的整数问题例1.若关于x的不等式2x﹣a≤0只有2个正整数解,求a的取值范围解:解不等式2x﹣a≤0得:x≤a2,根据题意得:2≤a2<3,解得:4≤a<6练习1.如果不等式3x﹣m≤0的正整数解为1,2,3,则m的取值范围是()A.9≤m<12B.9<m<12C.m<12D.m≥9练习2.若关于x的不等式3x+a≤2只有2个正整数解,则a的取值范围为()A.﹣7<a<﹣4B.﹣7≤a≤﹣4C.﹣7≤a<﹣4D.﹣7<a≤﹣4练习3.关于x的不等式x﹣b>0恰有两个负整数解,则b的取值范围是()A.﹣3<b<﹣2B.﹣3<b≤﹣2C.﹣3≤b≤﹣2D.﹣3≤b<﹣2练习4.已知关于x的不等式3x﹣m+1>0的最小整数解为2,则实数m的取值范围是()A.4≤m<7B.4<m<7C.4≤m≤7D.4<m≤7练习 5.在不等式x﹣8>3x﹣5+a解集中有3个正整数,则a的取值范围是.练习6.已知关于x的不等式x+m≤1的只有三个正整数解,那么m的取值范围是.练习7.已知关于x的不等式3x+m﹣4<0的最大整数解为﹣2,m的取值范围是.练习8.若关于x的不等式x≥a的负整数解是﹣1,﹣2,﹣3,则实数a满足的条件是.二、一元一次不等式组中的整数问题例2.关于x的不等式组恰有四个整数解,求m的取值范围.解:在中,解不等式①可得x>m,解不等式②可得x≤3,由题意可知原不等式组有解,根据题意得:原不等式组的解集为m<x≤3,因为该不等式组恰好有四个整数解,所以整数解为0,1,2,3,所以﹣1≤m<0练习1.已知关于x的不等式组有且只有1个整数解,则a的取值范围是()A.a>0B.0≤a<1C.0<a≤1D.a≤1练习2.关于x的不等式组恰好只有四个整数解,则a的取值范围()A.a<3B.2<a≤3C.2≤a<3D.2<a<3练习3.不等式组有3个整数解,则a的取值范围是()A.﹣6≤a<﹣5B.﹣6<a≤﹣5C.﹣6<a<﹣5D.﹣6≤a≤﹣5练习4.已知关于x的不等式组仅有三个整数解,则a的取值范围是()A.≤a<1B.≤a≤1C.<a≤1D.a<1练习5.若不等式组恰有两个整数解,则m的取值范围是()A.﹣1≤m<0B.﹣1<m≤0C.﹣1≤m≤0D.﹣1<m<0练习6.若关于x的不等式组有且只有3个整数解,则a的取值范围是()A.0≤a≤2B.0≤a<2C.0<a≤2D.0<a<2练习7.关于x的不等式组的整数解共有3个,则a的取值范围是.练习8.已知关于x的不等式组的整数解有且只有2个,则m的取值范围是.练习9.已知关于x的不等式组的所有整数解的和为7,则a的取值范围是.练习10.若关于x的不等式组的所有整数解的和是﹣9,则m的取值范围是.练习11.关于x的不等式组有且只有三个整数解,则a的最大值是三、不等式和方程中含有参数问题例3.已知:关于x、y的方程组的解为非负数.(1)求a的取值范围;(2)在a的取值范围内,a为何整数时,使得2ax+3x<2a+3解集为x>1.练习1.若关于x,y的方程组的解满足x﹣y>﹣,则m的最小整数解为.练习2.若关于x、y的方程组的解满足x+y≤6,则k的取值范围是.练习3.若关于x、y的二元一次方程组的解满足x+y<1,则a的取值范围为练习4.已知m,n是实数,且|m|+2=7,若P(|m|,)是2x﹣3y=s的一点,求s的最大值与最小值的和.练习5.(1)在关于x,y的二元一次方程组中,x>1,y<0,求a的取值范围.(2)已知x﹣2y=4,且x>8,y<4,求3x+2y的取值范围.四、不等式组中有解和无解问题例4.不等式组的解集是x>1,则m的取值范围是()A.m≥1B.m≤1C.m≥0D.m≤0练习1.已知关于x的不等式组有解,则a的取值不可能是()A.0B.1C.2D.﹣2练习2.若关于x的不等式组无解,则a的取值范围是()A.a≤﹣3B.a<﹣3C.a>3D.a≥3练习3.若关于x的不等式组无解,则m的取值范围是()A.m>4B.m<4C.m≥4D.m≤4练习4.若不等式组无解,则a的取值范围是.练习5.已知不等式组无解,则a的取值范围是.练习6.若不等式组的解集为x>3,则a的取值范围是.练习7.若关于x的一元一次不等式组有解,则m的取值范围为.练习8.已知关于x的不等式组的解集为﹣1≤x≤2,则n+m=.五、课后练习1.对x,y,z定义一种新运算F,规定:F(x,y,z)=ax+by+cz,其中a,b,c 为非负数.(1)当c=0时,F(1,﹣1,3)=1,F(3,1,﹣2)=7,求a,b的值;(2)在(1)的基础上,若关于m的不等式组恰有3个整数解,求k的取值范围;2.已知m,n为非负整数,且,若P(,|n|)是方程2x+y=8的一点,求2m﹣n的平方根.。

2020-2021初中数学方程与不等式之不等式与不等式组技巧及练习题附答案解析(2)

2020-2021初中数学方程与不等式之不等式与不等式组技巧及练习题附答案解析(2)

2020-2021初中数学方程与不等式之不等式与不等式组技巧及练习题附答案解析(2)一、选择题1.不等式组14112x x -≤⎧⎪⎨+<⎪⎩解集在数轴上表示正确的是( ) A . B .C .D .【答案】C【解析】【分析】分别解出两个一元一次不等式,再把得到的解根据原则(大于向右,小于向左,包括端点用实心,不包括端点用空心)分别在数轴上表示出来,再取两个解相交部分即可得到这个不等式组的解集. 【详解】解:对不等式14x -≤移项,即可得到不等式14x -≤的解集为3x ≥-,对不等式112x +<,先去分母得到12x +<,即解集为1x <, 把这两个解集在数轴上画出来,再取公共部分, 即:31x -≤<,解集在数轴上表示应为C.故选C.【点睛】本题主要考查了数轴和一元一次不等组及其解法,先求出不等式组的解集,然后根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则将不等式组的解集在数轴上表示出来,再比较即得到答案.2.如果不等式(2)25a x a ->-的解集是4x <,则不等式251a y ->的解集是( ).A .52y < B .25y < C .52y > D .25y > 【答案】B【解析】【分析】根据不等式的性质得出20a -<,2542a a -=-,解得32a =,则2a=3,再解不等式251a y ->即可. 【详解】解:∵不等式(a-2)x >2a-5的解集是x <4,∴20a -<,∴2542a a -=-, 解得32a =, ∴2a=3, ∴不等式2a-5y >1整理为351y ->,解得:25y <. 故选:B .【点睛】本题考查了含字母系数的不等式的解法,有一定难度,注意不等式两边同乘以(或除以)同一个负数,不等号的方向改变.3.已知关于x 的不等式组的解集在数轴上表示如图,则b a 的值为( )A .﹣16B .C .﹣8D . 【答案】B【解析】【分析】求出x 的取值范围,再求出a 、b 的值,即可求出答案.【详解】由不等式组, 解得.故原不等式组的解集为1-bx -a , 由图形可知-3x 2,故, 解得,则b a =. 故答案选B .【点睛】本题考查的知识点是在数轴上表示不等式的解集,解题的关键是熟练的掌握在数轴上表示不等式的解集.4.若关于x 的不等式0521x m x -<⎧⎨-≤⎩,整数解共有2个,则m 的取值范围是( ) A .3m 4<<B .3m 4<≤C .3m 4≤≤D .3m 4≤<【答案】B【解析】【分析】首先解不等式组,利用m 表示出不等式组的解集,然后根据不等式组有2个整数解,即可确定整数解,进而求得m 的范围.【详解】 解:0521x m x -<⎧⎨-≤⎩L L ①②, 解①得x m <,解②得2x ≥.则不等式组的解集是2x m ≤<.Q 不等式组有2个整数解,∴整数解是2,3.则34m <≤.故选B .【点睛】本题考查了不等式组的整数解,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.5.已知关于x 的不等式组3211230x x x a --⎧≤-⎪⎨⎪-<⎩恰有3个整数解,则a 的取值范围为( ) A .12a <≤B .12a <<C .12a ≤<D .12a ≤≤【答案】A【解析】【分析】先根据一元一次不等式组解出x 的取值范围,再根据不等式组只有三个整数解,求出实数a 的取值范围即可.【详解】3211230x x x a --⎧≤-⎪⎨⎪-<⎩①②, 解不等式①得:x≥-1,解不等式②得:x<a ,∵不等式组3211230x x x a --⎧≤-⎪⎨⎪-<⎩有解, ∴-1≤x<a ,∵不等式组只有三个整数解,∴不等式的整数解为:-1、0、1,∴1<a≤2,故选:A【点睛】本题考查一元一次不等式组的整数解,解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.6.若x y >,则下列各式正确的是( )A .0x y -<B .11x y -<-C .34x y +>+D .xm ym >【答案】B【解析】【分析】根据不等式的基本性质解答即可.【详解】由x >y 可得:x-y >0,1-x <1-y ,x+3>y+3,故选:B .【点睛】此题考查不等式的性质,熟练运用不等式的性质是解题的关键.7.若关于x 的不等式组无解,且关于y 的分式方程有非正整数解,则符合条件的所有整数k 的值之和为( )A .﹣7B .﹣12C .﹣20D .﹣34【答案】B【解析】【分析】先根据不等式组无解解出k 的取值范围,再解分式方程得y =,根据方程有解和非正整数解进行综合考虑k 的取值,最后把这几个数相加即可.【详解】 ∵不等式组无解,∴10+2k >2+k ,解得k >﹣8. 解分式方程,两边同时乘(y +3),得 ky ﹣6=2(y +3)﹣4y ,解得y =. 因为分式方程有解,∴≠﹣3,即k +2≠﹣4,解得k ≠﹣6. 又∵分式方程的解是非正整数解,∴k +2=﹣1,﹣2,﹣3,﹣6,﹣12.解得k =﹣3,﹣4,﹣5,﹣8,﹣14.又∵k >﹣8,∴k =﹣3,﹣4,﹣5.则﹣3﹣4﹣5=﹣12.故选:B .【点睛】本题主要考查解不等式组、解分式方程的方法,解决此题的关键是理解不等式组无解的意义,以及分式方程有解的情况.8.运行程序如图所示,规定:从“输入一个值”到”结果是否“为一次程序操作.如果程序操作进行了三次才停止,那么x 的取值范围是( )A .11x ≥B .1123x ≤≤C .1123x <≤D .23x ≤【答案】C【解析】【分析】根据运算程序,前两次运算结果小于等于95,第三次运算结果大于95列出不等式组,然后求解即可.【详解】 解依题意得:()()219522119522211195x x x ⎧+≤⎪⎪++≤⎨⎪⎡⎤+++>⎪⎣⎦⎩①②③ 解不等式①得,x≤47,解不等式②得,x≤23,解不等式③得,x>11,所以,x的取值范围是11<x≤23.故选:C.【点睛】本题考查了一元一次不等式组的应用,读懂题目信息,理解运输程序并列出不等式组是解题的关键.9.已知三个实数a,b,c满足a﹣2b+c<0,a+2b+c=0,则()A.b>0,b2﹣ac≤0B.b<0,b2﹣ac≤0C.b>0,b2﹣ac≥0D.b<0,b2﹣ac≥0【答案】C【解析】【分析】根据a﹣2b+c<0,a+2b+c=0,可以得到b与a、c的关系,从而可以判断b的正负和b2﹣ac的正负情况.【详解】∵a﹣2b+c<0,a+2b+c=0,∴a+c=﹣2b,∴a﹣2b+c=(a+c)﹣2b=﹣4b<0,∴b>0,∴b2﹣ac=222222a c a ac cac+++⎛⎫-=⎪⎝⎭=222242a ac c a c-+-⎛⎫= ⎪⎝⎭…,即b>0,b2﹣ac≥0,故选:C.【点睛】此题考查不等式的性质以及因式分解的应用,解题的关键是明确题意,判断出b和b2-ac 的正负情况.10.不等式组222xx>⎧⎨-≥-⎩的解集在数轴上表示为( )A.B.C.D.【答案】C【解析】【分析】先解不等式组,然后根据不等式组的解集判断即可.【详解】222x x ①②>⎧⎨-≥-⎩由①,得x >1,由②,得x ≤2,∴不等式组的解集为1<x ≤2,故选C .【点睛】本题考查了不等式的解集,熟练掌握解不等式组是解题的关键.11.已知不等式组2010x x -⎧⎨+≥⎩<,其解集在数轴上表示正确的是( ) A .B .C .D .【答案】D【解析】【分析】分别解不等式组中的每一个不等式,确定出各不等式解集的公共部分,进而在数轴上表示出来即可.【详解】2010x x -⎧⎨+≥⎩<①②, 解①得:x<2,解②得:x≥-1,故不等式组的解集为:-1≤x<2,故解集在数轴上表示为:.故选D.【点睛】本题考查了解一元一次不等式组,正确掌握解题方法以及解集的确定方法“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题的关键.12.关于x 的不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,则a 的取值范围是( )A .3a <B .23a <≤C .23a ≤<D .23a <<【答案】C【解析】【分析】 此题可先根据一元一次不等式组解出x 的取值范围,再根据不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,求出实数a 的取值范围.【详解】解:由不等式113x -≤,可得:x ≤4, 由不等式a ﹣x <2,可得:x >a ﹣2, 由以上可得不等式组的解集为:a ﹣2<x ≤4,因为不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,所以可得:0≤a ﹣2<1,解得:2≤a <3,故选C .【点睛】本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.根据原不等式组恰有4个整数解列出关于a 的不等式是解答本题的关键.13.不等式组2131x x +≥-⎧⎨<⎩的解集在数轴上表示正确的是( ) A .B .C .D .【答案】D【解析】【分析】分别求出各不等式的解集,并在数轴上表示出来,找出符合条件的选项即可.【详解】解不等式2x+1≥﹣3得:x≥﹣2,不等式组的解集为﹣2≤x<1,不等式组的解集在数轴上表示如图:故选:D.【点睛】本题考查了在数轴上表示一元一次不等式组的解集及解一元一次不等式组,熟知“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则是解答本题的关键.14.如果关于x的分式方程有负数解,且关于y的不等式组无解,则符合条件的所有整数a的和为()A.﹣2 B.0 C.1 D.3【答案】B【解析】【分析】解关于y的不等式组,结合解集无解,确定a的范围,再由分式方程有负数解,且a为整数,即可确定符合条件的所有整数a的值,最后求所有符合条件的值之和即可.【详解】由关于y的不等式组,可整理得∵该不等式组解集无解,∴2a+4≥﹣2即a≥﹣3又∵得x=而关于x的分式方程有负数解∴a﹣4<0∴a<4于是﹣3≤a<4,且a为整数∴a =﹣3、﹣2、﹣1、0、1、2、3则符合条件的所有整数a 的和为0.故选B .【点睛】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,再在解集中求特殊解,了解求特殊解的方法是解决本题的关键.15.如果,0a b c ><,那么下列不等式成立的是( )A .a c b +>B .a c b c +>-C .11ac bc ->-D .()()11a c b c -<- 【答案】D【解析】【分析】根据不等式的性质即可求出答案.【详解】解:∵0c <,∴11c -<-,∵a b >,∴()()11a c b c -<-,故选:D .【点睛】本题考查不等式的性质,解题的关键是熟练运用不等式的性质,本题属于中等题型.16.已知实数(0)a a >,b ,c 满足0a b c ++<,20a b +=,则下列判断正确的是( ).A .c a <,24b ac >B .c a <,24b ac <C .c a >,24b ac >D .c a >,24b ac <【答案】A【解析】【分析】由20a b +=,可得2,b a =- 代入0a b c ++<可得答案,再由2b a =-得到224,b a =利用已证明的基本不等式c a <,利用不等式的基本性质可得答案.【详解】解:20,a b +=Q 2,b a ∴=- 224,b a =0,a b c ++Q <20,a a c ∴-+<,c a ∴<0,a Q > 40,a ∴>244,a ac ∴>24.b ac ∴>故选A .【点睛】本题考查的是不等式的基本性质,掌握不等式的基本性质是解题关键.17.不等式组213312x x +⎧⎨+≥-⎩<的解集在数轴上表示正确的是( ) A .B .C .D .【答案】A【解析】【分析】先求出不等式组的解集,再在数轴上表示出来即可.【详解】 213312x x +⎧⎨+≥-⎩<①② ∵解不等式①得:x <1,解不等式②得:x≥-1,∴不等式组的解集为-1≤x <1, 在数轴上表示为:,故选A .【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.18.若不等式组1,1x x m <⎧⎨>-⎩恰有两个整数解,则m 的取值范围是( ) A .10m -≤< B .10m -<≤ C .10m -≤≤ D .10m -<<【答案】A【解析】∵不等式组11x x m <⎧⎨>-⎩有解, ∴不等式组的解集为m-1<x<1,∵不等式组11x x m <⎧⎨>-⎩恰有两个整数解, ∴-2≤m-1<-1,解得10m -≤<,故选A.19.一元一次不等式组2(3)40113x x x +-⎧⎪+⎨>-⎪⎩…的最大整数解是( ) A .1-B .0C .1D .2【答案】C【解析】【分析】解出两个不等式的解,再求出两个不等式的解集,即可求出最大整数解;【详解】 ()2340113x x x ⎧+-⎪⎨+>-⎪⎩①②… 由①得到:2x+6-4≥0,∴x ≥-1,由②得到:x+1>3x-3,∴x <2,∴-1≤x <2,∴最大整数解是1,故选C .【点睛】本题考查一元一次不等式组的整数解,解题的关键是熟练掌握解不等式组的方法,属于中考常考题型.20.不等式组53643x x x +>⎧⎨+>-⎩的整数解的个数是( ) A .2B .3C .4D .5【答案】C【解析】【分析】先分别求出每一个不等式的解集,然后确定出不等式组的解集,最后确定整数解的个数即可.【详解】53643x x x +>⎧⎨+>-⎩①②, 由①得:x>-2,由②得:x<3,所以不等式组的解集为:-2<x<3,整数解为-1,0,1,2,共4个,故选C .【点睛】本题考查了一元一次不等式组的整数解,熟练掌握解一元一次不等式组的方法以及解集的确定方法是解题的关键.解集的确定方法:同大取大,同小取小,大小小大中间找,大大小小无解了.。

2020-2021初中数学方程与不等式之不等式与不等式组技巧及练习题含答案(2)

2020-2021初中数学方程与不等式之不等式与不等式组技巧及练习题含答案(2)

2020-2021初中数学方程与不等式之不等式与不等式组技巧及练习题含答案(2) 一、选择题1.关于x的不等式组x15x322x2x a3><+⎧-⎪⎪⎨+⎪+⎪⎩只有4个整数解,则a的取值范围是()A.145a3-≤≤-B.145a3-≤<-C.145a3-<≤-D.145a3-<<-【答案】C【解析】【分析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【详解】解:不等式组的解集是2-3a<x<21,因为不等式组只有4个整数解,则这4个解是20,19,18,17.所以可以得到16≤2-3a<17,解得-5<a≤-143.故选:C.【点睛】此题考查解不等式组,正确解出不等式组的解集,正确确定2-3a的范围,是解决本题的关键.2.不等式组30240xx-≥⎧⎨+>⎩的解集在数轴上表示正确的是()A.B.C.D.【答案】D【解析】【分析】【详解】解:30240xx-≥⎧⎨+>⎩①②,解不等式①得,x≤3解不等式②得,x>﹣2在数轴上表示为:.故选D .【点睛】本题考查在数轴上表示不等式组的解集.3.若关于x ,y 的方程组3,25x y m x y m -=+⎧⎨+=⎩的解满足x >y >0,则m 的取值范围是( ). A .m >2B .m >-3C .-3<m <2D .m <3或m >2 【答案】A【解析】【分析】先解方程组用含m 的代数式表示出x 、y 的值,再根据x >y >0列不等式组求解即可.【详解】解325x y m x y m-=+⎧⎨+=⎩,得 212x m y m =+⎧⎨=-⎩. ∵x >y >0,∴21220m m m +>-⎧⎨->⎩, 解之得m >2.故选A.【点睛】本题考查了二元一次方程组及一元一次不等式组的应用,用含m 的代数式表示出x 、y 的值是解答本题的关键.4.不等式的解集在数轴上表示正确的是( )A .B .C .D .【答案】C【解析】【分析】 先解不等式,根据解集确定数轴的正确表示方法.【详解】解:不等式2x+1>-3,移项,得2x >-1-3,合并,得2x >-4,化系数为1,得x >-2.故选C .【点睛】本题考查解一元一次不等式,注意不等式的性质的应用.5.若关于x 的不等式mx ﹣n >0的解集是x <13,则关于x 的不等式(m+n )x >n ﹣m 的解集是( ) A .x <﹣12B .x >﹣12C .x <12D .x >12 【答案】A【解析】【分析】 根据不等式mx ﹣n >0的解集是x <13,则0m <,0n <,3m n =,即可求出不等式的解集.【详解】 解:∵关于x 的不等式mx ﹣n >0的解集是x <13, ∴0m <,0n <,3m n =,∴0m n +<,解不等式()m n x n m >-+, ∴n m x m n -<+, ∴3132n m n n x m n n n --<==-++; 故选:A.【点睛】本题考查了解一元一次不等式,以及不等式的性质,解题的关键是熟练掌握解不等式的方法和步骤.6.关于x ,y 的方程组32451x y m x y m +=+⎧⎨-=-⎩的解满足237x y +>,则m 的取值范围是( ) A .14m <-B .0m <C .13m >D .7m > 【答案】C【解析】【分析】 通过二元一次方程组进行变形可得到关于2x+3y 与含m 的式子之间的关系,进一步求出m的取值范围.【详解】 32451x y m x y m +=+⎧⎨-=-⎩①② ①-②,得2x+3y=3m+6∵2x+3y>7∴3m+6>7∴m>13【点睛】此题考查含参数的二元一次方程,重点是将二元一次方程组进行灵活变形,得到与其他已知条件相联系的隐藏关系,进而解题.7.下列不等式的变形正确的是( )A .若,am bm >则a b >B .若22am bm >,则a b >C .若,a b >则22am bm >D .若a b >且0,ab >则11a b> 【答案】B【解析】【分析】根据不等式的性质,对每个选项进行判断,即可得到答案.【详解】解:当0m <时,若am bm >,则a b <,故A 错误;若22am bm >,则a b >,故B 正确;当=0m 时,22=am bm ,故C 错误;若0a b >>,则11a b<,故D 错误; 故选:B .【点睛】 本题考查了不等式的性质,解题的关键是熟练掌握不等式的性质进行判断.8.若关于x 的不等式(-1) 1m x m <-的解集为1x >,则m 的取值范围是( ) A .1m >B .1m <C .1m ≠D .1m =【答案】B【解析】【分析】根据不等式的基本性质3,两边都除以m-1后得到x >1,可知m-1<0,解之可得.【详解】∵不等式(m-1)x <m-1的解集为x >1,∴m-1<0,即m <1,故选:B .【点睛】此题考查不等式的解集,熟练掌握不等式的基本性质是解题的关键.9.已知三个实数a ,b ,c 满足a ﹣2b +c <0,a +2b +c =0,则( )A .b >0,b 2﹣ac ≤0B .b <0,b 2﹣ac ≤0C .b >0,b 2﹣ac ≥0D .b <0,b 2﹣ac ≥0 【答案】C【解析】【分析】根据a ﹣2b +c <0,a +2b +c =0,可以得到b 与a 、c 的关系,从而可以判断b 的正负和b 2﹣ac 的正负情况.【详解】∵a ﹣2b +c <0,a +2b +c =0,∴a +c =﹣2b ,∴a ﹣2b +c =(a +c )﹣2b =﹣4b <0,∴b >0,∴b 2﹣ac =222222a c a ac c ac +++⎛⎫-= ⎪⎝⎭=2222042a ac c a c -+-⎛⎫= ⎪⎝⎭…, 即b >0,b 2﹣ac ≥0,故选:C .【点睛】 此题考查不等式的性质以及因式分解的应用,解题的关键是明确题意,判断出b 和b 2-ac 的正负情况.10.不等式组29611x x x k +>+⎧⎨-<⎩的解集为2x <,则k 的取值范围为( ) A .1k >B .1k <C .1k ³D .1k ≤【答案】C【解析】【分析】首先将不等式组中的不等式的解集分别求出,根据题意得出关于k 的不等式,求出该不等式的解集即可.【详解】 解不等式组29611x x x k +>+⎧⎨-<⎩可得:21x x k <⎧⎨<+⎩, ∵该不等式组的解集为:2x <,∴12k +≥,∴1k ≥,故选:C.【点睛】本题主要考查了解一元一次不等式组的运用,熟练掌握相关方法是解题关键.11.若m >n ,则下列不等式正确的是( )A .m ﹣2<n ﹣2B .44m n >C .6m <6nD .﹣8m >﹣8n【答案】B【解析】【分析】将原不等式两边分别都减2、都除以4、都乘以6、都乘以﹣8,根据不等式得基本性质逐一判断即可得.【详解】A 、将m >n 两边都减2得:m ﹣2>n ﹣2,此选项错误;B 、将m >n 两边都除以4得:m n 44> ,此选项正确; C 、将m >n 两边都乘以6得:6m >6n ,此选项错误; D 、将m >n 两边都乘以﹣8,得:﹣8m <﹣8n ,此选项错误,故选B .【点睛】本题考查了不等式的性质,解题的关键是熟练掌握握不等式的基本性质,尤其是性质不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.12.不等式组213,1510 520x xx x-<⎧⎪++⎨-≥⎪⎩的解集在数轴上表示为()A.B.C.D.【答案】D【解析】【分析】分别解不等式求出不等式组的解集,由此得到答案.【详解】解213x x-<得x>-1,解151520x x++-≥得3x≤,∴不等式组的解集是13x-<≤,故选:D.【点睛】此题考查解不等式组,在数轴上表示不等式组的解集,正确解每个不等式是解题的关键. 13.关于x的不等式412x-≥-的正整数解有()A.0个B.1个C.3个D.4个【答案】C【解析】【分析】先解不等式求出解集,根据解集即可确定答案.【详解】解不等式412x-≥-得3x≤,∴该不等式的正整数解有:1、2、3,故选:C.【点睛】此题考查不等式的正整数解,正确解不等式是解题的关键.14.根据不等式的性质,下列变形正确的是()A.由a>b得ac2>bc2B.由ac2>bc2得a>bC.由–12a>2得a<2 D.由2x+1>x得x<–1【答案】B【解析】【分析】根据不等式的性质,逐一判定即可得出答案.【详解】解:A、a>b,c=0时,ac2=bc2,故A错误;B、不等式两边同时乘以或除以同一个正数,不等号的方向不变,故B正确;C、不等式两边同时乘以或除以同一个负数,不等号的方向改变,而且式子右边没乘以﹣2,故C错误;D、不等式两边同时加或减同一个整式,不等号的方向不变,故D错误.故选:B.【点睛】本题主要考查了不等式的性质,熟练应用不等式的性质进行推断是解题的关键.15.不等式组354xx≤⎧⎨+>⎩的最小整数解为()A.-1 B.0 C.1 D.2【答案】B【解析】【分析】首先解不等式组求得不等式组的解集,然后根据不等式组的整数解求最小值.【详解】解:354xx≤⎧⎨+>⎩①②解①得x≤3,解②得x>-1.则不等式组的解集是-1<x≤3.∴不等式组整数解是0,1,2,3,最小值是0.故选:B.【点睛】本题考查一元一次不等式组的整数解,确定x的范围是本题的关键.16.下列不等式变形正确的是()A .由a b >,得ac bc >B .由a b >,得2ax bc >C .由a b >,得ac bc <D .由a b >,得a c b c ->-【答案】D【解析】【分析】 根据不等式的基本性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变; ②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变; ③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.【详解】A . 若a b >,当c >0时才能得ac bc >,故错误;B . 若a b >,但2,x c 值不确定,不一定得2ax bc >,故错;C . 若a b >,但c 大小不确定,不一定得ac bc <,故错;D . 若a b >,则a c b c ->-,故正确.故选:D【点睛】此题主要考查了不等式的性质,关键是注意不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.17.不等式组0321x a x -<⎧⎨-≤-⎩的整数解共有3个,则a 的取值范围是( ) A .45a <<B .45a <≤C .45a ≤<D .45a ≤≤【答案】B【解析】【分析】分别求出不等式组中不等式的解集,利用取解集的方法表示出不等式组的解集,根据解集中整数解有3个,即可得到a 的范围.【详解】 0321x a x -<⎧⎨-≤-⎩①②, 由①解得:x <a ,由②解得:x≥2,故不等式组的解集为2≤x <a ,由不等式组的整数解有3个,得到整数解为2,3,4,则a 的范围为4<a≤5.故选:B .【点睛】此题考查了一元一次不等式组的整数解,表示出不等式组的解集,根据题意找出整数解是解本题的关键.18.下列不等式变形正确的是( )A .由a b >,得22a b -<-B .由a b >,得22a b -<-C .由a b >,得a b >D .由a b >,得22a b > 【答案】B【解析】【分析】根据不等式的基本性质结合特殊值法逐项判断即可.【详解】解:A 、由a >b ,不等式两边同时减去2可得a-2>b-2,故此选项错误;B 、由a >b ,不等式两边同时乘以-2可得-2a <-2b ,故此选项正确;C 、当a >b >0时,才有|a|>|b|;当0>a >b 时,有|a|<|b|,故此选项错误;D 、由a >b ,得a 2>b 2错误,例如:1>-2,有12<(-2)2,故此选项错误.故选:B .【点睛】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.19.若关于x 的不等式组324x a x a <+⎧⎨>-⎩无解,则a 的取值范围是( ) A .a≤﹣3B .a <﹣3C .a >3D .a≥3 【答案】A【解析】【分析】利用不等式组取解集的方法,根据不等式组无解求出a 的取值范围即可. 【详解】∵不等式组324x a x a <+⎧⎨>-⎩无解, ∴a ﹣4≥3a+2,解得:a≤﹣3,故选A .【点睛】本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法“同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.20.如果关于x 的不等式组232x a x a >+⎧⎨<-⎩无解,则a 的取值范围是( ) A .a <2B .a >2C .a≥2D .a ≤2 【答案】D【解析】【分析】由不等式组无解,利用不等式组取解集的方法确定出a的范围即可.【详解】∵不等式组232x ax a+⎧⎨-⎩><无解,∴a+2≥3a﹣2,解得:a≤2.故选D.【点睛】本题考查了不等式的解集,熟练掌握不等式组取解集的方法是解答本题的关键.。

专题5.3求解一元一次方程(1)-2021年七年级数学上册尖子生同步培优题库(教师版含解析)【北师大

专题5.3求解一元一次方程(1)-2021年七年级数学上册尖子生同步培优题库(教师版含解析)【北师大

2020-2021学年七年级数学上册尖子生同步培优题典【北师大版】专题5.3求解一元一次方程(1)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•慈利县期末)已知代数式2x﹣6与3+4x的值互为相反数,那么x的值等于()A.2B.−12C.﹣2D.12【分析】利用相反数的性质列出方程,求出方程的解即可得到x的值.【解析】根据题意得:2x﹣6+3+4x=0,移项合并得:6x=3,解得:x=1 2,故选:D.2.(2019秋•沭阳县期末)方程−12x−5=0的解为()A.﹣4B.﹣6C.﹣8D.﹣10【分析】方程移项后,把x系数化为1,即可求出解.【解析】方程移项得:−12x=5,解得:x=﹣10,故选:D.3.(2019秋•赣榆区期末)已知2a+3与5互为相反数,那么a的值是() A.1B.﹣3C.﹣4D.﹣1【分析】利用相反数性质列出方程,求出方程的解即可得到a的值.【解析】根据题意得:2a+3+5=0,移项合并得:2a=﹣8,解得:a=﹣4,故选:C.4.(2019秋•沈北新区期末)在解方程3x+5=﹣2x﹣1的过程中,移项正确的是()A.3x﹣2x=﹣1+5B.﹣3x﹣2x=5﹣1C.3x+2x=﹣1﹣5D.﹣3x﹣2x=﹣1﹣5【分析】移项是解方程的一个重要步骤,主要记住移项要变号.【解析】方程3x+5=﹣2x﹣1移项得:3x+2x=﹣1﹣5.故选:C.5.(2018秋•亭湖区校级期末)下列解方程的过程中,移项错误的是()A.方程2x+6=﹣3变形为2x=﹣3+6B.方程2x﹣6=﹣3变形为2x=﹣3+6C.方程3x=4﹣x变形为3x+x=4D.方程4﹣x=3x变形为x+3x=4【分析】利用等式的基本性质1求解可得.【解析】A.方程2x+6=﹣3变形为2x=﹣3﹣6,此选项错误;B.方程2x﹣6=﹣3变形为2x=﹣3+6,此选项正确;C.方程3x=4﹣x变形为3x+x=4,此选项正确;D.方程4﹣x=3x变形为x+3x=4,此选项正确;故选:A.6.(2019秋•辛集市期末)若代数式7﹣2x和5﹣x互为相反数,则x的值为()A.2B.﹣4C.4D.0【分析】首先根据:代数式7﹣2x和5﹣x互为相反数,可得:7﹣2x=﹣(5﹣x),然后根据解一元方程的方法,求出x的值为多少即可.【解析】根据题意,可得:7﹣2x=﹣(5﹣x),去括号,可得:7﹣2x=﹣5+x,移项,合并同类项,可得:﹣3x=﹣12,系数化为1,可得:x=4.故选:C.7.(2019秋•杭州期末)将连续的奇数1、3、5、7、9、,按一定规律排成如图:图中的T字框框住了四个数字,若将T字框上下左右移动,按同样的方式可框住另外的四个数.若将T字框上下左右移动,则框住的四个数的和不可能得到的数是()A.22B.70C.182D.206【分析】由题意,设T字框内处于中间且靠上方的数为2n﹣1,则框内该数左边的数为2n﹣3,右边的为2n+1,下面的数为2n﹣1+10,故T字框内四个数的和为:8n+6.【解析】由题意,设T字框内处于中间且靠上方的数为2n﹣1,则框内该数左边的数为2n﹣3,右边的为2n+1,下面的数为2n﹣1+10,∴T字框内四个数的和为:2n﹣3+2n﹣1+2n+1+2n﹣1+10=8n+6.故T字框内四个数的和为:8n+6.A、由题意,令框住的四个数的和为22,则有:8n+6=22,解得n=2.符合题意.故本选项不符合题意;B、由题意,令框住的四个数的和为70,则有:8n+6=70,解得n=8.符合题意.故本选项不符合题意;C、由题意,令框住的四个数的和为182,则有:8n+6=182,解得n=22.符合题意.故本选项不符合题意;D、由题意,令框住的四个数的和为206,则有:8n+6=206,解得n=25.由于数2n﹣1=49,排在数表的第5行的最右边,它不能处于T字框内中间且靠上方的数,所以不符合题意.故框住的四个数的和不能等于206.故本选项符合题意;故选:D.8.(2019秋•北仑区期末)右图是“大润发”超市中“飘柔”洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价为()A.22元B.23元C.24元D.26元【分析】设出洗发水的原价是x元,直接得出有关原价的一元一次方程,再进行求解.【解析】设洗发水的原价为x元,由题意得:0.8x=19.2,解得:x=24.故选:C.9.(2012•山西模拟)服装店同时销售两种商品,销售价都是100元,结果一种赔了20%,另一种赚了20%,那么在这次销售中,该服装店()A.总体上是赚了B.总体上是赔了C.总体上不赔不赚D.没法判断是赚了还是赔了【分析】由已知可分别列一元一次方程求出盈利和亏本商品的成本价,然后计算出赚或亏多少.盈利20%就是相当于成本价的1+20%,亏本20%就是相当于成本价的1﹣20%,由此可列方程求解.【解析】设盈利商品的成本价为x元,亏本的成本价为y元,根据题意得:(1+20%)x=100,(1﹣20%)y=100,解得:x≈83,y=125,100﹣83+(100﹣125)=﹣8,所以赔8元.故选:B.二、填空题(本大题共9小题,每小题3分,共27分)请把答案直接填写在横线上10.(2020•铜仁市)方程2x+10=0的解是x=﹣5.【分析】方程移项,把x系数化为1,即可求出解.【解析】方程2x+10=0,移项得:2x=﹣10,解得:x=﹣5.故答案为:x=﹣5.11.(2020•成都模拟)若n﹣2与n+4互为相反数,则n的值为﹣1.【分析】利用相反数的性质列出方程,求出方程的解即可得到n的值.【解析】根据题意得:n﹣2+n+4=0,移项合并得:2n=﹣2,解得:n=﹣1,故答案为:﹣1.12.(2019秋•丰台区期末)下面的框图表示了琳琳同学解方程6+3x=2x﹣1的流程:你认为琳琳同学在解这个方程的过程中从第一步开始出现问题,正确完成这一步的依据是等式的基本性质1.【分析】观察琳琳同学的过程,找出出现问题的步骤即可.【解析】我认为琳琳同学在解这个方程的过程中从第一步开始出现问题,正确完成这一步的依据是等式的基本性质1.故答案为:一;等式的基本性质113.(2019秋•武侯区期末)若m+1与﹣3互为相反数,则m的值为2.【分析】利用相反数性质列出方程,求出方程的解即可得到m的值.【解析】根据题意得:m+1﹣3=0,解得:m=2,故答案为:214.(2019秋•甘井子区期末)某工厂的产值连续增长,去年是前年的3倍,今年是去年的2倍,这三年的总产值为600万元.若前年的产值为x万元,则可列方程为x+3x+6x=600.【分析】可设前年的产值是x万元,根据题意可得去年的产值是3x万元,今年的产值是6x万元,根据等量关系:这三年的总产值为600万元,列出方程求解即可.【解析】设前年的产值是x万元,则去年的产值是2x万元,今年的产值是5x万元,依题意有x+3x+6x=600.故答案为:x+3x+6x=600.15.(2017秋•襄城区期末)用一根长60m的绳子围出一个长方形,使它的长是宽的1.5倍,那么这个长方形的长是18m.【分析】设长方形的宽为x米,则长方形的长为1.5x米.利用长方形的周长公式进行解答即可.【解析】设长方形的宽为x米,则长方形的长为1.5x米.根据题意,得2(x+1.5x)=60,解得,x=12.所以长为12×1.5=18(米).即:长方形的长是18米.故答案是:18.16.(2019秋•大名县期末)李阿姨存入银行2000元,定期一年,到期后扣除20%的利息税后得到本利和为2048元,则该种储蓄的年利率为3%.【分析】由年利率为x和扣除20%的利息税,可写出李阿姨存款一年后的本息和表达式,又因为题中已知本息和为2048,所以可列出一元一次方程.【解析】∵这种储蓄的年利率为x,∴一年到期后李阿姨的存款本息和为:2000(1+x),∵要扣除20%的利息税,∴本息和为:2000+2000x(1﹣20%),由题意可列出方程:2000+2000x(1﹣20%)=2048,将上述方程整理可得:2000(1+80%•x)=2048,解得x=3%.故答案是:3%.17.(2020•顺德区校级模拟)某学校需要购买一批电脑,有两种方案如下:方案1:到商家直接购买,每台需要7000元;方案2:学校买零部件组装,每台需要6000元,另外需要支付安装费等其它费用合计3000元.学校添置 3 台电脑时,两种方案的费用相同.【分析】设学校添置x 台电脑,根据“两种方案的费用相同”列出方程并解答.【解析】设学校添置x 台电脑,由题意,得7000x =6000x +3000,解得x =3,答:当学校添置3台电脑时,两种方案的费用相同;故答案是:3.18.(2019秋•道里区期末)几个人共同种一批树苗,如果每人种15棵,则剩下4棵树苗未种;如果每人种16棵树苗,则缺4棵树苗,则这批树苗共有 124 棵.【分析】由参与种树的人数为x 人,分别用“每人种15棵,则剩下4棵树苗未种;如果每人种16棵树苗,则缺4棵树苗”表示出树苗总棵树列方程即可.【解析】设参与种树的人数为x 人.则15x +4=16x ﹣4,x =8,这批树苗共15x +4=124.故答案是:124.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2020春•新蔡县期中)解下列方程.(1)2y +3=11﹣6y(2)23x ﹣1=12x +3 【分析】(1)方程移项合并,把y 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【解析】(1)移项合并得:8x =8,解得:y =1;(2)去分母得:4x ﹣6=3x +18,移项合并得:x =24.20.(2018秋•思明区校级期中)某工厂的产值连续增长,去年是前年的1.5倍,今年是去年的2倍,这三年总产值为550万元.前年的产值是多少?【分析】设前年的产值是x 万元,根据题意可得去年的产值是1.5x 万元,今年的产值是1.5x ×2=3x 万元,根据这三年的总产值为550万元,列出方程求解即可.【解析】设前年的产值是x万元,由题意得x+1.5x+1.5x×2=550,解得:x=100.答:前年的产值是100万元.21.(2019秋•弥勒市期末)把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.(1)这个班有多少学生?(2)这批图书共有多少本?【分析】(1)设这个班有x名学生.根据这个班人数一定,可得:3x+20=4x﹣25,解方程即可;(2)代入方程的左边或右边的代数式即可.【解析】(1)设这个班有x名学生.依题意有:3x+20=4x﹣25解得:x=45(2)3x+20=3×45+20=155答:这个班有45名学生,这批图书共有155本.22.(2018秋•洪山区期末)王芳和李丽同时采摘樱桃,王芳平均每小时采摘8kg,李丽平均每小时采摘7kg,采摘结束后王芳从她采摘的樱桃中取出0.25kg给了李丽,这时两人樱桃一样多,她们采摘用了多少时间?【分析】利用采摘结束后王芳从她采摘的樱桃中取出0.25kg给了李丽,这时两人樱桃一样多得出等式求出答案.【解析】设她们采摘用了x小时,根据题意可得:8x﹣0.25=7x+0.25,解得:x=0.5.答:她们采摘用了0.5小时.23.(2019秋•金凤区校级期中)观察下面三行数:﹣3,9,﹣27,81…①1,﹣3,9,﹣27…②﹣2,10,﹣26,82…③(1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)设x ,y ,z 分别为第①②③行的2012个数,求x +6y +z 的值.【分析】(1)观察可看出第一行的数分别是﹣3的1次方,二次方,三次方,四次方…且偶数项是正数,奇数项是负数,用式子表示规律为:(﹣3)n ;(2)观察②,③两行的数与第①行的联系,即可得出答案;(3)分别求得第①②③行的2012个数,得出x ,y ,z 代入求得答案即可.【解析】(1)∵﹣3,9,﹣27,81,﹣243,729…;∴第①行数是:(﹣3)1,(﹣3)2,(﹣3)3,(﹣3)4,…(﹣3)n ;(2)第②行数是第①行数相应的数乘−13即−13×(﹣3)n ,第③行数的比第①行的数大1即(﹣3)n +1.(3)∵x =32012,y =−13×32012×=﹣32011,z =32012+1,∴x +6y +z =32012+6×(﹣32011)+32012+1=1.24.(2019秋•麻城市期末)我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例:例:将0.7化为分数形式.由于0.7⋅=0.777…,设x =0.777…,……①则10x =7.777…,……②②﹣①得9x =7,解得x =79,于是得0.7⋅=79. 同理可得,0.3⋅=39=13,1.4⋅=1+0.4⋅=1+49=139. 根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示)(1)0.5= 59 ,5.8= 539 ;(2)将0.23化为分数形式,写出推导过程;(3)试比较0.9与1的大小:0.9 = 1(填“>”,“<”或“=”);【分析】(1)根据阅读材料的解答过程,类比可得;(2)根据阅读材料的解答过程,类比可得;(3)根据阅读材料的解答过程,类比可得0.9⋅=1,即可求解.【解析】(1)设x =0.5⋅=0.555…,①则10x =5.55555…,②②﹣①得9x =5,解得:x =59,设y =5.8⋅=5.88888…,①则10y =58.8888…,②∴9y =53,解得:y =539,故答案为:59,539, (2)设 x =0.2⋅3⋅=0.232323…①,则 100x =23.2323…②,②﹣①得 99x =23,解得 x =2399, ∴0.23=2399. (3)设a =0.9⋅=0.999…,则10a =9.999…,∴9a =9,∴a =1,∴0.9⋅=1,故答案为:=.。

综合解析华东师大版七年级数学下册第8章一元一次不等式重点解析试题

综合解析华东师大版七年级数学下册第8章一元一次不等式重点解析试题

七年级数学下册第8章一元一次不等式重点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列不是不等式5x-3<6的一个解的是()A.1 B.2 C.-1 D.-22、已知a>b,下列变形一定正确的是()A.3a<3b B.4+a>4﹣b C.ac2>bc2D.3+2a>3+2b3、关于x的方程3﹣2x=3(k﹣2)的解为非负整数,且关于x的不等式组2(1)323x xk xx--≤⎧⎪+⎨≥⎪⎩有解,则符合条件的整数k的值之和为()A.5 B.4 C.3 D.2 4、解集如图所示的不等式组为()A.12xx>-⎧⎨≤⎩B.12xx≥-⎧⎨>⎩C.12xx≤-⎧⎨<⎩D.12xx>-⎧⎨<⎩5、关于x的一元一次不等式64x x+≤的解集在数轴上表示为()A .B .C .D .6、用不等式表示“x 的5倍大于-7”的数量关系是( )A .5x <-7B .5x >-7C .x >7D .7x <57、下列说法正确的是( )A .x =3是2x +1>5的解B .x =3是2x +1>5的唯一解C .x =3不是2x +1>5的解D .x =3是2x +1>5的解集8、若a b >成立,则下列不等式成立的是( )A .a b ->-B .11a b -+>-+C .2121a b ->-D .22m a m b >9、不等式331x +>-的解集为( )A .13x >-B .13x > C .1x > D .43x >-10、已知关于x 的不等式组0521x a x -≥⎧⎨->⎩只有四个整数解,则实数a 的取值范围()A .﹣3≤a <﹣2B .﹣3≤a ≤﹣2C .﹣3<a ≤﹣2D .﹣3<a <﹣2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、用不等式表示“-x 的一半减去6所得的差不大于5”_____________.2、 “a 的25用不等式表示__________________.3、已知x 为不等式组()21211x x x -<⎧⎨-<+⎩的解,则31x x -+-的值为______.4、若不等式组12324x x x m--⎧<⎪⎨⎪<⎩无解,则m 的取值范围为__. 5、一般地,一个含有未知数的不等式的所有的解,组成这个______.求不等式的解集的过程叫______.三、解答题(5小题,每小题10分,共计50分)1、某班班主任对在某次考试中取得优异成绩的同学进行表彰.到商场购买了甲、乙两种文具作为奖品,若购买甲种文具12个,乙种文具18个,共花费420元;若购买甲种文具16个,乙种文具14个,共花费460元;(1)求购买一个甲种、一个乙种文具各需多少元?(2)班主任决定购买甲、乙两种文具共30个,如果班主任此次购买甲、乙两种文具的总费用不超过500元,求至多需要购买多少个甲种文具?2、根据不等式的基本性质,把下列不等式化成x >a 或x <a 的形式.(1)15x -<;(2)413x -≥; (3)1142x -+≥; (4)410x -<-.3、定义:点C 在线段AB 上,若点C 到线段AB 两个端点的距离成二倍关系时,则称点C 是线段AB 的闭二倍关联点.(1)如图,若点A 表示数-1,点B 表示的数5,下列各数-3,1,3所对应的点分别为1C ,2C ,3C ,则其中是线段AB 的闭二倍关联点的是 ;(2)若点A表示的数为-1,线段AB的闭二倍关联点C表示的数为2,则点B表示的数为;(3)点A表示的数为1,点C,D表示的数分别是4,7,点O为数轴原点,点B为线段CD上一点.设点M表示的数为m.若点M是线段AB的闭二倍关联点,求m的取值范围.4、某商品的进价是120元,标价为180元,但销量较小.为了促销,商场决定打折销售,为了保证利润率不低于20%,那么最多可以打几折出售此商品?5、利用不等式的性质解下列不等式,并在数轴上表示解集:(1)x-7>26(2)3x<2x+1-参考答案-一、单选题1、B【解析】略2、D【解析】【分析】根据不等式的基本性质逐项排查即可.【详解】解:A.在不等式的两边同时乘或除以同一个正数,不等号的方向不发生改变,这里应该是3a>3b,故A不正确,不符合题意;B.无法证明,故B选项不正确,不符合题意;C.当c=0时,不等式不成立,故C选项不正确,不符合题意;D .不等式的两边同时乘2再在不等式的两边同时3,不等式,成立,故D 选项正确,符合题意. 故选:D .【点睛】本题主要考查了不等式的性质,1.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变; 2.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;3.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变.3、A【解析】【分析】先求出方程的解与不等式组的解集,再根据题意相确定k 的取值范围即可.【详解】解:解方程3﹣2x =3(k ﹣2),得:932k x -=, 由题意得930k -,解得:3k ,解不等式2(1)3x x --,得:1x -, 解不等式23k x x +,得:x k , 不等式组有解,1k ∴-,则13k -,∴符合条件的整数k 的值的和为101235-++++=,故选A .【点睛】本题主要考查了一元一次方程的解、一元一次不等式组的整数解等知识点,明确题意、正确求解不等式成为解答本题的关键.4、A【解析】【分析】根据图象可得数轴所表示的不等式组的解集,然后依据不等式组解集的确定方法“同大取大,同小取小,小大大小中间找,大大小小无处找”,依次确定各选项的解集进行对比即可.【详解】解:根据图象可得,数轴所表示的不等式组的解集为:12x -<≤,A 选项解集为:12x -<≤,符合题意;B 选项解集为:2x >,不符合题意;C 选项解集为:1x ≤-,不符合题意;D 选项解集为:12x -<<,不符合题意;故选:A .【点睛】题目主要考查不等式组的解集在数轴上的表示及解集的确定,理解不等式组解集的确定方法是解题关键.5、B【解析】【分析】由题意根据解一元一次不等式基本步骤:移项、合并同类项,系数化为1求得不等式的解集,进而在数轴上表示即可得出答案.【详解】解:64x x +≤,移项得:46x x -≤-,合并得:36-≤-,xx≥,解得:2在数轴上表示为:故选:B.【点睛】本题考查解一元一次不等式,熟练掌握一元一次不等式解题步骤,移项、合并同类项、把x系数化为1是解题的关键.6、B【解析】【分析】根据题意用不等式表示出x的5倍大于-7,即可得到答案.【详解】解:由题意可得,x的5倍大于-7,用不等式表示为:5x>-7,故选:B.【点睛】本题考查由实际问题抽象出一元一次不等式,解答本题的关键是明确题意,列出相应的不等式.7、A【解析】略8、C【解析】【分析】根据不等式两边加或减某个数或式子,乘或除以同一个正数,不等号的方向不变;不等式两边乘或除以一个负数,不等号的方向改变解答.【详解】解:A、不等式a>b两边都乘-1,不等号的方向没有改变,不符合题意;B、不等式a>b两边都乘-1,不等号的方向没有改变,不符合题意;C、不等式a>b两边都乘2,不等号的方向不变,都减1,不等号的方向不变,符合题意;D、因为2m≥0,当2m=0时,不等式a>b两边都乘2m,不等式不成立,不符合题意;故选:C.【点睛】本题考查了不等式的基本性质.不等式两边同时乘以或除以同一个数或式子时,一定要注意不等号的方向是否改变.9、D【解析】【分析】首先根据一元一次不等式的一般步骤,对其移项,合并同类项,将系数化为1即可得出答案.【详解】331x+>-移项得:313x>--,合并同类项得:34x>-,将系数化为1得:43 x>-.故选:D.【点睛】本题考查了解一元一次不等式的知识,熟练掌握解不等式的一般步骤是解题的关键.10、C【解析】【分析】先求出不等式解组的解集为2a x ≤<,即可得到不等式组的4个整数解是:1、0、-1、-2,由此即可得到答案.【详解】解:0521x a x -≥⎧⎨->⎩①② 解不等式①得x a ≥;解不等式②得2x <;∵不等式组有解,∴不等式组的解集是2a x ≤<,∴不等式组只有4个整数解,∴不等式组的4个整数解是:1、0、-1、-2,∴32a -<≤-故选C .【点睛】本题主要考查了解一元一次不等式组,根据不等式组的整数解情况求参数,解题的关键在于能够熟练掌握解不等式组的方法.二、填空题1、652x --≤ 【解析】【分析】“-x 的一半减去6所得的差”表示为62x --,“不大于5”即小于等于5,进而得出不等式. 【详解】 解:由题意可得:652x --≤, 故答案为:652x --≤. 【点睛】 本题考查由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.2、25a【解析】【分析】根据题意表示出a 的25即可.【详解】解:由题意可得:a 的25可表示为25a .故填25-<a .【点睛】本题考查列一元一次不等式,掌握列一元一次不等式的基本方法成为解答本题的关键.3、2【解析】【分析】解不等式组得到x 的范围,再根据绝对值的性质化简.【详解】解:()21211x x x -<⎧⎪⎨-<+⎪⎩①②, 解不等式①得:1x >,解不等式②得:3x <,∴不等式组的解集为:13x <<, ∴31x x -+-=()()31x x --+-=31x x -++-=2故答案为:2.【点睛】本题考查了解不等式组,绝对值的性质,解题的关键是解不等式组得到x 的范围.4、1m ≤【解析】【分析】 先求出不等式1232x x --<的解集为4x >,再由不等式组无解,得到44m ≤,由此即可得到答案. 【详解】 解:12324x x x m --⎧<⎪⎨⎪<⎩解不等式1232x x --<,得:4x >, ∵不等式组无解,∴44m ≤,解得1m ,故答案为:1m .【点睛】本题主要考查了根据不等式组的解集情况求参数,解题的关键在于能够熟练掌握不等式组的解集的情况:大小小大中间找,大大小小找不到.5、 不等式的解集 解不等式【解析】略三、解答题1、 (1)甲种文具需要20元,一个乙种文具需要10元(2)20【解析】【分析】(1)设购买一个甲种文具需要x 元,一个乙种文具需要y 元,然后根据若购买甲种文具12个,乙种文具18个,共花费420元;若购买甲种文具16个,乙种文具14个,共花费460元,列出方程组求解即可;(2)设需要购买m 个甲种文具,则购买(30﹣m )个乙种文具,然后根据购买甲、乙两种文具的总费用不超过500元,列出不等式求解即可.(1)解:设购买一个甲种文具需要x 元,一个乙种文具需要y 元,依题意得:12184201614460x y x y +=⎧⎨+=⎩, 解得:2010x y =⎧⎨=⎩, 答:购买一个甲种文具需要20元,一个乙种文具需要10元.(2)解:设需要购买m 个甲种文具,则购买(30﹣m )个乙种文具,依题意得:20m +10(30﹣m )≤500,解得:m ≤20.答:至多需要购买20个甲种文具.【点睛】本题主要考查了二元一次方程组和一元一次不等式的实际应用,解题的关键在于能够准确理解题意列出式子求解.2、 (1)6x <(2)1≥x(3)6x ≤- (4)52x > 【解析】【分析】(1)根据不等式的性质1解答即可;(2)先根据不等式的性质1,再根据不等式的性质2解答;(3)先根据不等式的性质1,再根据不等式的性质3解答;(4)根据不等式的性质3解答即可;(1)解:15x -<,两边加上1得:1151x -+<+,解得:6x <;(2)解:413x -≥,两边加上1得:41131x -+≥+,即44x ,两边除以4得:1≥x ;(3) 解:1142x -+≥, 两边减去1得:111412x -+-≥-,即132x -≥, 两边除以12-得:6x ≤-;(4)解:410x -<-,两边除以4-得:52x >. 【点睛】本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.3、(1)2C 和3C ;(2)3.5或8;(3)25m ≤≤【解析】【分析】(1)首先点1C 不在线段AB 上,即点1C 不是线段AB 的闭二倍关联点;然后求出()2112AC =--=,2514BC =-=,得到222BC AC =,则点2C 线段AB 的闭二倍关联点,同理即可判断点3C 线段AB 的闭二倍关联点;(2)设点B 表示的数为x ,然后求出()213AC =--=,2BC x =-,再分当2AC BC =时,即()322x =-,当2BC AC =时,即26x -=,两种情况讨论求解即可;(3)设点B 表示的数为y ,先求出1AM m =-,BM y m =-,当2AM BM =时,即当2BM AM =时,即22y m m -=-,两种情况讨论求解即可.【详解】解:(1)∵点A 表示数-1,点B 表示的数5,点1C 表示的数为-3,∴点1C 不在线段AB 上,即点1C 不是线段AB 的闭二倍关联点;∵点A 表示数-1,点B 表示的数5,点2C 表示的数为1,∴()2112AC =--=,2514BC =-=,∴222BC AC =,∴点2C 线段AB 的闭二倍关联点,同理()3314AC =--=,3532BC =-=,∴332AC BC =,∴点3C 线段AB 的闭二倍关联点,故答案为:2C 和3C ;(2)设点B 表示的数为x ,∵点C 是线段AB 的闭二倍关联点,∴()213AC =--=,2BC x =-,当2AC BC =时,即()322x =-,解得 3.5x =;当2BC AC =时,即26x -=,解得8x =;故答案为:3.5或8;(3)设点B 表示的数为y ,∵点M 是线段AB 的闭二倍关联点,∴1AM m =-,BM y m =-,当2AM BM =时,即122m y m -=-, ∴312m y -=, ∵B 在线段CD 上,且C 、D 表示的数分别为4、7, ∴31472m -≤≤ ∴35m ≤≤;当2BM AM =时,即22y m m -=-,∴32y m =-,∵B 在线段CD 上,且C 、D 表示的数分别为4、7,∴4327m ≤-≤∴23m ≤≤;∴综上所述,25m ≤≤.【点睛】本题主要考查了用数轴表示有理数,数轴上两点的距离,解题的关键在于正确理解题意.4、最多可以打8折出售此商品【解析】【分析】由题意列一元一次不等式计算即可.【详解】设可以打x 折出售此商品,由题意有 180×10x 120≥120×20%, 整理得18x -120≥24,不等式的两边都加120,得18x ≥144,不等式的两边都除以18,得x ≥8.答:最多可以打8折出售此商品.【点睛】列一元一次不等式解应用题的一般步骤(1)审:认真审题,分清已知量、未知量及其关系,找出题中的不等关系,要抓住题中的关键词语;(2)设:设出适当的未知数;(3)列:根据题中的不等关系列出不等式(组);(4)解:解出所列的不等式(组)的解集;(5)答:检验是否符合题意,并写出答案.5、 (1)x >33,见解析(2)x <1,见解析【解析】【详解】(1)根据不等式的性质1,不等式两边加7,不等号的方向不变,所以:x -7+7>26+7,x >33.这个不等式的解集在数轴上的表示如图:(2)3x<2x+1;解:(2)根据不等式的性质1,不等式两边减2x,不等号的方向不变,所以:3x-2x<2x+1-2x,x<1.这个不等式的解集在数轴上的表示如图:。

华东师大版七年级数学下第8章《一元一次不等式(组)》培优习题2解一元一次不等式(无)

华东师大版七年级数学下第8章《一元一次不等式(组)》培优习题2解一元一次不等式(无)

第 8 章《一元一次不等式(组)》培优习题2:解一元一次不等式考点汇编考点 1:一元一次不等式的定义例 1、以下各式中,是一元一次不等式的是()A、538B、 2x 11C、28 D 、x2x 18x3x2【同步练习】1、以下各式中,是一元一次不等式的是()A、548B、2x 1C、2x 5D、13x 0 x2、以下不等式中,属于一元一次不等式的是()A、4 1B、3x 2 4C、12D、 4x 3 2y 7 x例 2、已知2m4x|m|3 6 0 是关于 x 的一元一次不等式,则m 的值为()3A、 4B、4C、 3 D 、3【同步练习】1、若 m 1 x|m |20是关于 x 的一元一次不等式,则m________;2、若不等式 m 3 x|m2| 2 0 是关于 x 的一元一次不等式,则m 的值为.考点 2:一元一次不等式的解集例 3、关于x的不等式m 1 x m1的解集为x 1 ,那么m的取值范围是()A、m 1B、m 1C、m 0D、m 0【同步练习】1、已知关于 x 的不等式a 2 x 1的解集为 x1,则 a 的取值范围()a2A、a 2B、a 2C、a 2D、a 22、假如不等式 2 a x a 2 的解集为x1,则a一定满足的条件是()A、a 0B、a 2C、a 1D、a 1考点 3:解一元一次不等式例 3、解以下不等式,并把解集在数轴上表示出来:( 1)2 5x 8 2x( 2)x 513x 2 22【同步练习】1、解不等式1 2x11x,并把它的解集在数轴上表示出来;322、解不等式x 33x 21 ,并将解集在数轴上表示出来;233、解不等式:x1 x 1 1 ,并把解表示在数轴上。

3 3例 4、已知:关于 x 、 y 的方程组 3xy y 3a9的解为非负数。

x 5a7( 1)求 a 的取值范围;( 2)化简 | 2a 4 || a 1 |;( 3)在 a 的取值范围内, a 为什么整数时,使得 2ax 3x 2a 3 解集为 x 1【同步练习】1、已知关于 x , y 的方程组x y 3 的解满足不等式 xy 3 ,务实数 a 的取值范围;2x y6a2、已知关于 x , y 的方程组4x y 3my8 ,求 m 的取值范围;xy 7m 的解满足不等式 2 x53、若关于 x , y 的二元一次方程组3 x y 2m 1的解满足 x y 0 ,求 m 的取值范围;x 3 y 34、若关于 x 和 y 的二元一次方程组x 2 y 2,满足 x y 0 ,求 m 的取值范围;2x y3m12xy 5mx 、y 满足 x y 0 ,求 m 的取值范围。

一元一次不等式(组)培优训练(参数问题)

一元一次不等式(组)培优训练(参数问题)

一元一次不等式(组)培优训练(参数问题) 拔高级训练:1、已知关于x ,y 的二元一次方程组⎩⎨⎧-=++=-222323t y x t y x ,当A=x -2y 且-1<t ≤2,求A 的取值范围.2、若关于x ,y 的二元一次方程组⎩⎨⎧=++=+333y x a t y x 的解满足x+y<505,则a 的取值范围是( )A. a>2016B.a<2016C.a>505D.a<5053、已知关于x ,y 的方程组⎩⎨⎧-=++=+m y x m y x 12312的解x ,y 满足x+y1<1,且m 为正数,求m 的取值范围.4、已知关于x ,y 的方程组⎩⎨⎧-=-+=+34272a y x a y x . (1)若a=2,求方程组的解;(2)若方程组的解x ,y 满足x>y ,求a 的取值范围并化简110118+-+a a5、若关于x 的不等式组⎩⎨⎧≥-≥-0250x m x 有解,则m 的取值范围是?6、关于x 的不等式组⎩⎨⎧->-<-)1(2130x x m x 无解,那么m 的取值范围为( ) A. m ≤-1 B.m<-1 C.-1<m ≤0 D.-1≤m<07、(1)若不等于组⎩⎨⎧>≤<k x x 21无解,则k 的取值范围是( ) A.k ≤2 B.k<1 C.k ≥2 D.1≤k<2(2)已知关于x 的不等式组⎩⎨⎧>-≥-1250x a x 只有四个整数解,则实数a 的取值范围是________. (3)定义[]x 表示不大于x 的最大整数,即x 的整数部分,例如[]47.4=.①根据定义,[][][]______;4.1_____,2_____,=-==π②比较[][]1,,1,++x x x x 的大小关系,按照从小到大的顺序用不等号连接的结果为____________________________; ③解方程:412213+=⎥⎦⎤⎢⎣⎡-x x8、若整数使关于的x 方程x +2a=1的解为负数,且使关于x 的不等式组⎪⎩⎪⎨⎧+≥->--31210)(21x x a x 无解,则所有满足条件的整数a 的值之和是( )A.5B.7C.9D.109、关于x 、y 的方程组⎩⎨⎧+=+-=+ky x k y x 13233的解满足x+y>0,且关于x 的不等式组⎪⎩⎪⎨⎧≥+≤--x x k x x 323)1(2有解,则符合条件的整数k 的值的和为( )A.2B.3C.4D.510、已知关于x 的不等式组⎩⎨⎧<+>-13430x a x 有且只有3个整数解,则a 的取值范围是( ) A.a>-1 B.-1≤a<0 C.-1<a ≤0 D.a ≤0培优级训练:1、已知⎩⎨⎧+=+=+12242k y x k y x 且0<y -x<1,则k 的取值范围是( )A.211-<<-kB.210<<kC.10<<kD.121<<k 2、如果关于x 的不等式组⎩⎨⎧<->-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a ,b 的有序数对(a ,b )共有______个.3、阅读以下材料:对于三个数a,b,c ,用M{a ,b ,c}表示这个三个数中最小的数,例如:M{-1,2,3}=343321-=++;⎩⎨⎧->--≤=--=-)1(1)1(},2,1min{;1}3,2,1min{a a a a 解决下列问题:(1)填空:如果min{2,2x+2,4-2x}=2,则x 的取值范围为_________.(2)如果M{2,x+1,2x}=min{2,x+1,2x},求x.4、社会主义核心价值观"富强、民主、文明、和谐、自由、平等、公正、法治、爱国、敬业、诚信、友善"体现了社会主义核心价值理念.我们用"核心符号"[x]来表示不大于x 的最大整数(如[1.5]=1,[-1.5]=-2,我们把满足[x]=a (a 为常数)的x 取值范围叫做的核心范围)(如[x]=3的x 的核心范围为3≤x<4,[x]=-1的x 的核心范目-1≤ x<0).(1)请直接写出[2.6]的值和[x]=1的的核心范围;(2)己知关于x 的不等式⎩⎨⎧<->a x x ]2.1[有且只有两个整数解,写出这两个整数解并求出a 的取值范围.5、先阅读理解下面的例题,再按要求解答下列问题:例题:对于(x -2)(x -4)>0,这类不等式我们可以通过下面的解题思路来分析:由有理数的乘法法则"两数相乘,同号得正",可得①⎩⎨⎧<->-0402x x ,②⎩⎨⎧<-<-0402x x .从而将陌生的高次不等式化为学过的一元一次不等式年解不等式组,分别去解两个不等式组即可求得原不等式的解集,即:解不等式组①得x>4,解不等式组②得x<2,所以(x -2)(x -4)>0的解集为x>4或x<2.请利用上述解题思想解决下面的问题:(1)请直接写出(x -2)(x -4)<0的解集;(2)对于0>nm ,请根据除法法则化为我们学过的不等式(组); (3)求不等式013>-+x x 的解集.6、先阅读理解下面的例题,再按要求解答下列问题:例题:解一元二次不等式x ²-4>0.解:∵x ²-4=(x +2)(x -2),∴x ²-4>0可化为(x +2)(x -2)>0.由有理数的乘法法则"两数相乘,同号得正",得①⎩⎨⎧>->+0202x x ,②⎩⎨⎧<-<+0202x x 解不等式组①,得x >2,解不等式组②,得x<-2.∴x ²-4>0的解集为x >2或x<-2,即一元二次不等式x ²-4>0的解集为x >2或x<-2.(1)一元二次不等式x ²-16>0的解集为______________.(2)分式不等式031>--x x 的解集为______________.课堂检测:1、已知关于x 、y 的方程组⎩⎨⎧=++=-ay x a y x 523的解满足x>y>0,求a 的取值范围.2、已知a>1,则a x x a -=-2)2(2中x 的取值范围是多少?3、若关于x 不等式组⎩⎨⎧≥-≥-0035m x x 有实数解,则实数m 的取值范围是( )A.35≤m B.35<m C.35>m D.35≥m4、若关于x 的不等式组⎩⎨⎧+≥++≤)1(341m x m x 无解,则m 的取值范围是__________.5、已知关于x 的不等式a ≤x<b 的整数解为7,8,9,10.当a 、b 为实数时,a 、b 的取值范围分别为________、__________.。

2021学年苏科版七年级数学下册《第11章一元一次不等式》经典好题培优训练(附答案)

2021学年苏科版七年级数学下册《第11章一元一次不等式》经典好题培优训练(附答案)

2021学年苏科版七年级数学下册《第11章一元一次不等式》经典好题培优训练(附答案)1.已知x>y,xy<0,a为任意有理数,下列式子一定正确的是()A.﹣x>﹣y B.a2x>a2y C.﹣x+a<﹣y+a D.x>﹣y2.某单位为某中学捐赠了一批新桌椅.学校组织七年级300名学生搬桌椅,规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为()A.80B.120C.160D.2003.下列用数轴表示不等式组的解集正确的是()A.B.C.D.4.若不等式x≤m的解都是不等式x≤2的解,则m的取值范围是()A.m≤2B.m≥2C.m<2D.m>25.如果关于x的不等式ax<﹣a的解集为x>﹣1,那么a的取值范围是()A.a<0B.a>0C.a<1D.a>16.若关于x的不等式组的解集为x≥2,则m的取值范围是()A.m≥﹣2B.m≤2C.m<2D.m=27.已知关于x的不等式2x﹣m<1﹣x的正整数解是1,2,3,则m的取值范围是()A.3<m≤4B.3≤m<4C.8<m≤11D.8≤m<118.若整数a使关于x的不等式组至少有4个整数解,且使关于x,y的方程组的解为正整数,那么所有满足条件的整数a的值的和是()A.﹣3B.﹣4C.﹣10D.﹣149.若关于x,y的方程组的解满足x>y,则m的取值范围是()A.m<1B.m<2C.m<3D.m<410.已知x<y,则﹣2x﹣3﹣2y﹣3.(填“>”、“<”或“=”)11.甲种蔬菜保鲜的适宜温度(单位:℃)是1≤t≤5,乙种蔬菜保鲜的适宜温度是3≤t≤8,将这两种蔬菜放在一起同时保鲜,则保鲜的适宜温度t(单位:℃)的范围是.12.若关于x的不等式组有解,则m的取值范围是.13.不等式组的解集为.14.若关于x的不等式组的整数解只有2个,则m的取值范围为.15.关于x的不等式组的解集为﹣1≤x<4,则(a+1)(b﹣1)的值为.16.已知a+b=4,若﹣2≤b≤﹣1,则a的取值范围是.17.若关于x的不等式ax﹣b>0的解集为x<,则关于x的不等式(a+b)x>a﹣b的解集为.18.不等式组的整数解的和是.19.一个多于200人且少于300人的旅行团队准备外出旅游,旅行团队向某汽车运输公司租用可以乘坐30人、乘坐45人的两种客车若干辆,其中大型客车辆数要多于中型客车辆数.按照预定的租车方案,如果大型客车都坐满,中型客车有一辆就会空出少于一半的座位,但是汽车运输公司发过来的车辆,车型与对应的辆数刚好搞反了,这样就有5个人没有座位可坐.这个旅游团一共有个人.20.如果关于x的不等式2x+3m>0恰有3个非正整数解,求m的取值范围.21.一瓶饮料净重360g,瓶上标有“蛋白质含量≥0.5%”,设该瓶饮料中蛋白质的含量为xg,则x g.22.解下列不等式(组)并在数轴上表示:(1)﹣4>﹣;(2).23.解不等式组,并求出它的整数解的和.24.已知关于x,y的二元一次方程组的解是一对正数.(1)求a的取值范围;(2)化简:|a+4|﹣|a|+|2a+3|.25.某超市销售甲、乙两种商品,9月份该超市同时一次购进甲、乙两种商品共100件,购进甲种商品用去300元,购进乙种商品用去1200元.(1)若购进甲、乙两种商品的进价相同,求两种商品的数量分别是多少;(2)由于商品受到市民欢迎,超市10月份决定再次购进甲、乙两种商品共100件,但甲、乙两种商品进价在原基础上分别降20%,涨20%,甲种商品售价20元,乙种商品售价36元,若这次全部售出甲、乙两种商品后获得的总利润不少于1200元,该超市最少购进甲种商品多少件?26.某学校组织175人参加社会实践活动.已知35座的客车租金为每辆320元,55座的客车租金为每辆400元.(1)若学校单独租用这两种车辆,则各需多少元钱?(2)若学校同时和用这两种客车共4辆(可以坐不满),而且要比单独租用一种车辆节省租金.请你帮助该学校选择一种最节省的租车方案.27.为实现区域教育均衡发展,某市计划对A、B两类薄弱学校全部进行改造.根据预算,共需资金2000万元.改造一所A类学校和两所B类学校共需资金210万元;改造两所A 类学校和一所B类学校共需资金180万元.(1)改造一所A类学校和一所B类学校所需的资金分别是多少万元?(2)若该市的A类学校不超过8所,则B类学校至少有多少所?(3)市教育局计划今年对该市A、B两类学校共10所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过490万元;地方财政投入的改造资金不少于200万元,其中地方财政投入到A、B两类学校的改造资金分别为每所15万元和25万元.请你通过计算求出有几种改造方案?参考答案1.解:∵x>y且xy<0,∴x>0,y<0,∴A、﹣x<﹣y,故本选项不符合题意;B、当a=0时,a2x=a2y,即a2x>a2y错误,故本选项不符合题意;C、∵x>y,∴﹣x<﹣y,∴﹣x+a<﹣y+a,故本选项符合题意;D、根据题意不能判断x和﹣y的大小,故本选项不符合题意;故选:C.2.解:设可搬桌椅x套,即桌子x把,椅子x把,则搬桌子需2x人,搬椅子需人,根据题意,得2x+≤300,解得x≤120.答:最多可搬桌椅120套.故选:B.3.解:A、不等式组的解集为x≥2,故本选项不合题意;B、不等式组的解集为x<1,故本选项不合题意;C、不等式组的解集为1<x≤2,故本选项符合题意;D、不等式组的解集为1≤x<2,故本选项不合题意;故选:C.4.解:∵不等式x≤m的解都是不等式x≤2的解,∴m≤2.故选:A.5.解:∵不等式ax<﹣a的解集为x>﹣1,∴a<0,故选:A.6.解:,解x﹣m>0,得:x>m,解5﹣2x≤1,得:x≥2,∵不等式组的解集是x≥2,∴m<2,故选:C.7.解:2x﹣m<1﹣x,移项得2x+x<m+1,系数化为1,得:x<,∵不等式的正整数解为1,2,3,∴3<≤4,解得:8<m≤11.故选:C.8.解:,不等式组整理得:,由不等式组至少有4个整数解,得到a+2<﹣1,解得:a<﹣3,解方程组,得,∵关于x,y的方程组的解为正整数,∴a﹣2=﹣6或﹣12,解得a=﹣4或a=﹣10,∴所有满足条件的整数a的值的和是﹣14.故选:D.9.解:方程组的解为:,∵关于x,y的方程组的解满足x>y,∴>,解得:m<4.故选:D.10.解:∵x<y,∴﹣2x>﹣2y,∴﹣2x﹣3>﹣2y﹣3.故答案为:>.11.解:根据题意可知解得3≤t≤5.故答案为:3≤t≤5.12.解:不等式组有解,则4<x<m,解得m>4.故答案为:m>4.13.解:,由①得:x>﹣3,由②得:x≤2.故不等式组的解集为﹣3<x≤2.故答案为:﹣3<x≤2.14.解:不等式组解得:m<x≤﹣0.5,由不等式组的整数解只有2个,得到整数解为﹣2,﹣1,则m的范围为﹣3≤m<﹣2.故答案为:﹣3≤m<﹣2.15.解:,解①得x≥a,解②得x<3﹣b,因为不等式组的解集为﹣1≤x<4,所以a=﹣1,3﹣b=4,解得a=﹣1,b=﹣1,所以(a+1)(b﹣1)=(﹣1+1)(﹣1﹣1)=0.故答案为:0.16.解:由a+b=4得b=4﹣a,∵﹣2≤b≤﹣1,∴﹣2≤4﹣a≤﹣1,∴5≤a≤6.故答案为:5≤a≤6.17.解:∵不等式ax﹣b>0的解集为x<,∴=,即a=3b且a<0,则b<0∴不等式(a+b)x>a﹣b整理为4bx>2b,∴x<.故答案为:x<.18.解:,解2﹣x≥x﹣2得x≤2,解3x﹣1>﹣4得x>﹣1,故不等式组的解集为﹣1<x≤2,则不等式组的整数解为0,1,2,和为0+1+2=3.故答案为:3.19.解:设原来准备中型客车x辆,大型客车y辆,依题意有30x+45y﹣(45x+30y+5)<30÷2,解得y﹣x<,∵车辆数为整数,并且y>x,∴y﹣x=1,又由题意得200<45x+30y+5<300,∴200<45x+30(x+1)+5<300,解得<x<,∵车辆数为整数,∴x=3,∴y=4,所以一共有45×3+30×4+5=260(人).故这个旅游团一共有260个人.故答案为:260.20.解:2x+3m>0,2x>﹣3m,x>﹣,∵关于x的不等式2x+3m>0恰有3个非正整数解,∴﹣3≤﹣<﹣2,∴<m≤2.故答案为:<m≤2.21.解:由题意可得,x≥360×0.5%=1.8,故答案为:≥1.8.22.解:(1)不等式两边同乘以6得:2(2x﹣1)﹣24>﹣3(x+4),解得:x>2,在数轴上表示为:(2),解不等式①得:x<﹣1,解不等式②得:x>﹣11,∴解集为:﹣11<x<﹣1,在数轴上表示为:23.解:解不等式组得:﹣<x<,则不等式组的整数解为﹣2、﹣1、0、1、2、3,∴整数解的和为﹣2﹣1+0+1+2+3=3.24.解:(1),①+②得2x=2a+8,解得x=a+4,代入①得y=﹣2a﹣3.故方程组的解为:,∵x>0,y>0,∴,解得:﹣4<a<﹣1.5;(2)由(1)得:a+4>0,a<0,2a+3<0,∴原式=a+4﹣(﹣a)+(﹣2a﹣3)=a+4+a﹣2a﹣3=1.25.解:(1)设购进甲种商品x件,由题意得,=,解得:x=20,经检验:x=20是原分式方程的解,且符合题意,则100﹣x=80.答:购进甲种商品20件,乙种商品80件;(2)设超市购进甲种商品y件,由(1)可得:甲、乙商品的进价为300÷20=15(元),由题意得,[20﹣15(1﹣20%)]y+[36﹣15(1+20%)](100﹣y)≥1200,解得y≤60,∵y为整数,∴y的最大整数值为60.答:该超市最多购进甲种商品60件.26.解:(1)∵175÷35=5(辆),∴单独租用35座客车需5辆,租金为320×5=1600(元),∵175÷55=3辆,∴单独租55座客车需4辆,租金为400×4=1600(元).答:学校单独租用这两种车辆,则各需1600元,1600元钱;(2)设租用35座客车x辆,则55座客车(4﹣x)辆,由题意得,35x+55(4﹣x)≥175,解得:x≤2,因为35座客车租金便宜,所以当x取最大整数2时租车最合适,答:租用35座客车2辆,租用55座客车2辆最节省.27.解:(1)设改造一所A类学校所需的资金是a万元,改造一所B类学校所需的资金是b 万元,由题意得:,解得:.答:改造一所A类学校所需的资金是50万元,改造一所B类学校所需的资金是80万元;(2)设该市A类学校有m所,B类学校有n所,由题意得:50m+80n=2000,m=﹣n+40,∵A类学校不超过8所,∴﹣n+40≤8,∴n≥20.答:B类学校至少有20所;(3)设今年改造A类学校x所,则改造B类学校为(10﹣x)所,依题意得:,解得:3≤x≤5,∵x取整数,∴x=3,4,5.答:共有3种方案。

七年级数学第21讲一元一次不等式组的应用培优讲义试题

七年级数学第21讲一元一次不等式组的应用培优讲义试题

第21讲 一元一次不等式〔组〕的应用制卷人:打自企; 成别使; 而都那。

审核人:众闪壹; 春壹阑; 各厅……日期:2022年二月八日。

考点·方法·破译1.进一步稳固一元一次不等式和一元一次不等式组的解法及它们的解集的意义,并会简单运用•2.会列不等式或者不等式组解决一些典型的实际问题•经典·考题·赏析【例1】当x 取何有理数时,代数式3221--x 的值不大于1? 【解法指导】从题目中找出不等关系来,并依此列出不等式,解此不等式即可求出此题所求“不大于〞,即是小于或者等于,类似的还有“不超过〞、“不多于〞、“顶多为〞,另外,“不少于〞、“不低于〞、“至少为〞等,即为“大于或者等于〞•解:依题意得 12123x --≤ 去分母,得 3-2(x -2)≤6去括号,得 3-2x +4≤6合并同类项,得 -2x ≤6-3-4即 -2x ≤-1系数化为1,得 12x ≥∴ 当x 取值不小于12时,3221--x 的值不大于1• 【变式题组】01.假如2(1)3x --的值是非正数,那么x 的取值范围是〔 〕 A .x ≤-1 B .x ≥-1 C .x ≥1 D .x ≤102.当x 取何值时,代数式2x -5的值:⑴大于0? ⑵等于0? ⑶不大于-3?03.假设代数式1132x x +--的值不小于16x -的值,求正整数x 的值• 【例2】〔〕某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x 元;下午他又买了20斤,价格为每斤y 元•他以每斤2x y +元的价格卖完后,结果发现自己赔了钱,其原因是〔 〕 A .x <y B .x >y C .x ≤y D .x ≥y【解法指导】假设要比拟两个有理数a 和b 的大小,有一种方法就是判断a -b 的值的正负:假设a -b =0,那么a =b ;假设a -b <0,那么a <b ,反之亦然•用这种方法比拟两数大小,称之为作差比拟法•此题本质就是比拟30x +20y 与502x y +⋅的大小的问题,所谓“赔了钱〞,就是进价3020502x y x y ++<⋅,也就是30205002x y x y ++-⋅<变形可得x >y ,应选B • 【变式题组】01.假如2213x x --比23-大,那么x 的取值范围是〔 〕 A .x >1 B .x <1 C .x ≤1 D .x ≠102.试比拟两个代数式322x x x +-与31x -的大小•03.假设代数式2321x x -+比231x x +-大,求x 的取值范围•【例3】某校餐厅方案购置12张餐桌和一批餐椅,从甲、乙两商场理解到统一餐桌每张均为200元,餐椅报价每把均为50元•甲商场称:每购置一张餐桌赠餐椅;乙商场称:所有的餐桌、餐椅均按报价的八五折销售,那么什么情况下到甲商场购置更优惠?什么情况下到乙商场购置更优惠?【解法指导】餐椅的购置数量是个变量,到哪个商场购置更优惠,取决于餐椅的数量多少•把餐椅数量设为x 把,到甲、乙两商场购置所需费用分别设为y 甲、y 乙,它们分别用含x 的式子表示,再比拟y 甲、y 乙的大小即可,在求y 甲是,应注意x 减去12后,在乘以50,即y 甲=200×12+50(x -12);同理y 乙=(200×12+50x )×85%•解:设方案购置x 把餐椅,到甲、乙两商场购置所需费用分别为y 甲元、y 乙元•根据题意,得:y甲=200×12+50(x-12),即y甲=1800+50x,y乙=(200×12+50x)×85%,即8520402y x=+乙•①当y甲<y乙时,85 18005020402x x+<+,解这个不等式,得x<32•即当购置的餐椅少于32把时,到甲商场购置更优惠•②当y甲>y乙时,85 18005020402x x+>+,解这个不等式,得x>32•即当购置的餐椅多于32把时,到乙商场购置更优惠•③当y甲=y乙时,85 18005020402x x+=+,解这个不等式,得x=32•即当购置的餐椅等于32把时,到两家商场购置均可•【变式题组】•请问,用那种缴费方式比拟适宜?02.某单位方案在新年期间组织员工到某地旅游,参加旅游的人数估计为10~25人,甲、乙两家旅行社的效劳质量一样,且报价都是每人200元•经协商,甲旅行社表示可以给予每位游客七五折优惠;乙旅行社表示可以免去一位游客的旅游费用,其余游客八折优惠,该单位选择哪一家旅行社支付的旅游费用较少?03.〔〕某蔬菜加工厂承当出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱•供给这种纸箱有两种方案可供选择:方案一:从纸箱厂定制购置,每个纸箱价格为4元;•⑴假设需要这种规格的纸箱x个,请用含x的代数式表示购置纸箱的费用y1〔元〕和蔬菜加工厂自己加工制作纸箱的费用y 2〔元〕;⑵假设你是决策者,你认为应该选择哪种方案?并说明理由•【例4】〔〕为了美化校园环境,建立绿色校园,某准备对校园中30亩空地进展绿化•绿化采用种植草皮与种植树木两种方式,要求种植草皮与种植树木的面积都不少于10亩,并且种植草皮面积不少于种植树木面积的32,那么种植草皮的最小面积是多少? 【解法指导】应用题中,要充分挖掘题目中所蕴含的不等关系,一个也不能遗漏,否那么就会出错•注意到题中表示不等关系的关键词语“不少于〞,这是列不等式的根据•显然,此题中有三个不等式关系:①种植草皮与种植树木的面积都不少于10亩;②种植草皮面积不少于种植树木面积的32,根据这三个不等关系可以求出种植草皮的面积的范围•解:设种植草皮的面积为x 亩,那么种植树木的面积为(30-x )亩, 那么有1030103(30)2x x x x -⎧⎪⎪⎨⎪⎪-⎩≥≥≥,解得18≤x ≤20•故x 的最小值为18•答:种植草皮的最小面积为18亩•【变式题组】01.2021年某厂制定某种产品的年度消费方案,现有如下数据供参考:⑴消费此产品的现有工人为400人;⑵每名工人的年工时约计2200小时;⑶预测2021年的销售量在10万箱到17万箱之间;⑷每箱需用工4小时,需用料10千克;⑸目前村料1000吨,2021年还需用料1400吨,到2021年底可补充原料2000吨•试根据以上数据确定2021年可能消费的产量,并根据产量确定工人人数•02.某公司在下一年度方案消费出一种新型环保冰箱,下面是公司各部门提出的数据信息;HY :明年消费工人不多于80人,每人每年工作时间是2400h 计算;营销部:预测明年年销量至少为10000台;技术部:消费1台电冰箱平均用12个工时,每台机器需要安装5个某种主要部件;供给部:今年年终库存主要部件1000件,明年能采购到这种主要部件80000件•根据上述信息,下一年度消费新型冰箱数量应该在什么范围内?【例5】〔襄樊〕“六一〞儿童节前夕,某消防官兵理解到汶川地震灾区一帐篷小学的小朋友喜欢奥运福娃,就特意购置了一些送给这个小学的小朋友作为节日礼物•假如每班分10套,那么余5套;假如前面的班级每个班分13套,那么最后一个班虽然分得有福娃,但缺乏4套•问:该小学有多少个班级?奥运福娃一共有多少套?【解法指导】抓住题中的关键词“虽然分有福娃,但缺乏4套〞来建立不等式组,这是此题的关键所在•解:设该小学有x 个班,那么奥运福娃一共有(10x +5)套,根据题意,得10513(1)410513(1)x x x x +<-+⎧⎨+>-⎩①②解①得x >143,解②得x <6• 因为x 只能取正整数,所以x =5,此时10x +5=55•答:该小学有5个班级,奥运福娃一共有55套•【变式题组】01.幼儿园有玩具假设干份,分给小朋友,假如每个小朋友分3件,难么还剩59件;假如每个小朋友分5件,那么最后一个小朋友还少几件,这个幼儿园有多少玩具?有多少个小朋友?02.某校为了奖励在数学竞赛中获奖的学生,买了假设干本课外读物准备送给他们•假设每名学生送3本,那么还余8本;假设前面每名学生送5本,那么最后一名学生得到的课外读物缺乏3本•设该校买了m 本课外读物,有x 名学生获奖,请你解答以下问题•⑴用含x 的代数式表示m ;⑵求出该校的获奖人数及所买的课外读物的本数•【例6】某工厂现有甲种原料360千克,乙种原料290千克,现方案用这两种原料消费A 、B 两种产品一共50件,消费一件A 产品需要甲种原料9千克,乙种原料3千克;消费一件B 产品,需要甲种原料4千克,乙种原料10千克,那么工厂安排A 、B 两种产品的消费件数,有哪几种方案?请你设计出来•【解法指导】此为典型的材料供给类设计方案的应用题,题中的不等关系不很明显,但经过认真分析,结合生活实际仍可挖掘出题中所蕴含的不等关系,即消费所使用的甲种原料总量不得超过360千克,乙原料总量不得超过290千克,据此可以列出两个一元一次不等式,从而组成一元一次不等式组•此类题的不等关系不非常显眼,开掘不等关系是解决此类题之关键所在•解:设安排消费A 种产品x 件,那么消费B 种产品(50-x )件•根据题意,得36029094(50)310(50)x x x x +-⎧⎨+-⎩≤≤,解这个不等式组,得30≤x ≤32• 因为x 需要取整数,所以x 可以取30、31、32,对应50-x 应取20、19、18•故可设计三种方案:A 种产品30件,B 种产品20件;A 种产品31件,B 种产品19件;A 种产品32件,B 种产品18件•【变式题组】01.〔〕近期以来,大蒜和绿豆的场价格离奇攀升,网民戏称“蒜你狠〞、“豆你玩〞•以绿豆为例,5月上旬某绿豆的场价已达16元/千克•政府决定采取价格临时干预措施,调进绿豆以平抑场价格•经场调研预测,该每调进100吨绿豆,场价格就下降1元/千克•为了既能平抑绿豆的场价格,又要保护豆农的消费积极性,绿豆的场价格控制在8元/千克到10元/千克之间〔含8元/千克和10元/千克〕•问调进绿豆的吨数应在什么范围内为宜?02.〔〕迎接亚运,美化,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A 、B 两种园艺找些一共50个摆放在迎宾大道两侧•搭配一个A 种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B 种造型需甲种花卉50盆,乙种花卉90盆•⑴某校九年级⑴班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来;⑵假设搭配一个A 种造型的本钱是800元,搭配一个B 种造型的本钱是960元,试说明⑴中哪种发案本钱最低?最低本钱是多少元?03.〔〕某校初三年级春游,现有36座和42座两种客车供选择租用,假设只租用36座客车假设干辆,那么正好坐满;假设只租用42座客车,那么能少租一辆,且有一辆车没有坐满,但超过30人;36座客车每辆租金400元,42座客车每辆租金440元•⑴该校初三年级一共有多少人参加春游?⑵请你帮该校设计一种最钱..的租车方案• 【例7】〔第17届竞赛题〕假如关于x 的不等式组0607x n x m -<-⎧⎨⎩≥的整数解仅为1,2,3,那么合适这个不等式组的整数对(m ,n )一共有( )对A .49B .42C .36D .13【解法指导】此题属于“由不等式的解集中包含的整数解来确定字母系数的值〞这类题,此类题首先根据不等式组的解集包含哪些整数来确定每个边界点的范围,据此求出符合条件的字母系数的值• 解:由此不等式组得到其解集是76x m n <≤• ∵此解集中仅含有整数1,2,3•∴107m <≤,即70m <≤,且436n <≤ 即2418n <≤ 故m =1,2,3,4,5,6,7,n =19,20,21,22,23,24故符合此不等式组的整数对(m ,n )一共有6×7=42对,即此题选B •【变式题组】01.〔赛题〕:关于x 的不等式组302x a b x -≥⎧⎪⎨<⎪⎩的整数杰有且仅有4个:-1,0,1,2,那么合适这个不等式组的所有可能的整数对(a ,b )一共有多少个?演练稳固 反应进步01.用不等式表示:⑴x 与2的和小于5________________;⑵a 与b 的差是非负数_________________•02.假设x <y ,那么x -y ______y -2;5-x _______5-y ;a 2x _______a 2y ;-x 3_____-y 5; x (a 2+1)______ y (a 2+1)•03.不等式组12305x x +>-⎧⎨⎩≤的解集是___________,其整数解是__________• 04.关于x 的不等式组0320x a x ->⎧⎨->⎩的整数解一共有6个,那么a 的取值范围是 •05.:三角形的两边为3和4,那么第三边a 的取值范围是_________________•06.假设不等式(a -5)x >1的解集是x >1a -5,那么a 的取值范围是__________________• 07.假如不等式组737x x x n +<-⎧⎨>⎩的解集是x >7,那么n 的取值范围是〔 〕 A .n ≥7 B .n ≤ C .n =7 D .n <708.假设abcd >0,a +b +c +d >0,那么a 、b 、c 、d 中负数的个数至少有〔 〕A .1个B .2个C .3个D .4个09.假如2(1)3x--是非正数,那么x的取值范围是〔〕A.x≤1 B.x≥1 C.x≥1 D.x≤110.:关于x的不等式组152x ax->-⎧⎨⎩≥无解,那么a的取值范围是〔〕A.a>3 B.a≥3 C.0<a<3 D.a≤311.〔〕甲、乙两家超以一样的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超累计购置商品超过300元之后,超出局部按原价8折优惠;在乙超累计购置商品超过200元后,超出局部按原价8.5折优惠,设顾客预计累计购物x元〔x>300〕•⑴请用含x的代数式分别表示顾客在两家超购物所需费用;⑵试比拟顾客到哪家超购物更优惠?说明你的理由•12.七⑵班一共有50名学生,教师安排每人制作一件A型或者B型的陶艺品,现有甲种制作材料36kg,乙种制作材料29kg,制作A、B两种型号的陶艺品用料情况如下表:⑴设制作B型陶艺品x件,求x的取值范围;⑵请你根据现有的材料分别写出七⑵班制作A型和B型陶艺品的件数•13.〔〕某校准备组织290名学生进展野外考察活动,行李一共有100件,方案租用甲、乙两种型号的汽车一共8辆,经理解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李•⑴设租用甲种汽车x辆,请你帮助设计所有可能的租车方案;⑵假如甲、乙两种汽车每辆的租车费用分别为2000元、1800元,那么请你帮助选择哪一种租车方案更节费用•14.〔〕响应“家电下乡〞的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购置三种电冰箱的总金额不超过132000元•甲、乙、丙三种电冰箱的出厂价格分别为1200元/台、1600元/台、2000元/台•⑴至少购进乙种电冰箱多少台?⑵假设要求甲种电冰箱的台数不超过丙种电冰箱的台数,那么有哪些购置方案?15.〔〕某组织340名师生进展长途考察活动,带有行李170件,方案租用甲、乙两种型号的汽车10辆•经理解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李•⑴请你帮助设计所有可行的租车方案;⑵假如甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最•培优晋级奥赛检测01.假如不等式组809x bx a-<-⎧⎨⎩≥的整数解仅为1,2,3,那么合适这三个不等式组的整数a、b的有序数对(a,b)一共有〔〕对•A.17 B.64 C.72 D.8102.〔全国数学竞赛题〕设a、b、c的平均数为M,a与b的平均数为N,N与C的平均数为P,假设a>b>c,那么M与P的大小关系是〔〕A.M=P B.M>P C.M<P D.不确定的03.〔第18届竞赛题〕a1、a2、…、a2021都是正数,假如M=(a1+a2+…+a2021)(a2+a2+…+a2021),N=(a1+a2+…+a2021)( a2+a2+…+a2021),那么M、N的大小关系是〔〕A.M>N B.M=N C.MN D.不确定的04.〔“希望杯〞邀请赛试题〕设23ama+=+,12ana+=+,1apa=+,假设a<-3,那么〔〕A.m<n<p B. n<p<m C. p<n<m D.p<m<n05.〔“希望杯〞邀请赛试题〕:a、b、c、d都是整数,且a<2b,b<3c,c<4d,d<50,那么a的最大值是〔〕A.1157 B.1167 C.1191 D.119906.〔“CHSIO杯〞竞赛题〕关于x的不等式组4132x xx a+⎧>+⎪⎨⎪+<⎩的解集为x<2,那么a的取值范围是________________•07.〔复赛题〕正六边形轨道ABCDEF的周长为,甲、乙两只机器鼠分别冲A、C两点同时出发,均按A →B→C→D→E→F→A→…方向沿轨道奔跑,甲的速度为9.2厘米/秒,乙的速度为8厘米/秒,那么出发后经过_______秒钟时,甲、乙两只机器鼠第一次出如今同一条边上•08.〔“CHSIO杯〞竞赛题〕为了保护环境,某企业决定购置10台污水处理设备•现有A、B两种型号的设备,其中每台的价格、月处理污水及年消消耗如下表•经计算,该企业购置设备的资金不高于105万元,请你设计,该企业购置方案有_______种•09.〔竞赛题〕大、中、小三个正整数,大数与中数之和等于2021,中数减小数之差等于1000,那么这三个正整数的和为_____________•10.〔竞赛题〕不等式ax+3≥0的正整数解为1,2,3,那么a的取值范围是______•11.〔选拔赛试题〕小慧上宝塔观光,他发现:假设上了7阶楼梯时,剩下的楼阶梯数是已上的阶数的3倍多,假设再多上15阶楼梯时,已上阶数是剩下的楼梯阶数的3倍多,那么,此宝塔的楼梯一一共有多少阶•12.假设正整数x<y<z,k为整数,且111kx y z++=,试求x、y、z的值•13.〔华杯决赛题〕:a1+2a3≥3a2,a2+2a4≥3a3,a3+2a5≥3a4,…,a8+2a10≥3a9,a9+2a1≥3a10,a10+2a2≥3a1,且有a1+a2+a3+…+a10=100,求a1,a2,a3,…,a9,a10的值•制卷人:打自企;成别使;而都那。

一元一次不等式(组)培优40题(含解析)

一元一次不等式(组)培优40题(含解析)

一元一次不等式(组)培优40题(含解析)一.选择题:(共10题)1.从−7,−5,−1,0,4,3这六个数中,随机抽一个数,记为m ,若数m 使关于x 的不等式组{x−m2>0x −4<3(x −2)的解集为x >1,且关于x 的分式方程1−x 2−x +m x−2=3有非负整数解,则符合条件的m 的值的个数是( ) A .1个B .2个C .3个D .4个2.若方程组{3x +2y =2k 2y −x =3的解满足x <1,且y >1,则整数k 的个数是( )A .4B .3C .2D .13.若关于x 的不等式组{x <2(x −a)x −1≤23x恰有3个整数解,则a 的取值范围是( ) A .0≤a <12B .0≤a <1C .−12<a ≤0 D .−1≤a <04.正五边形广场 ABCDE 的边长为 80 米,甲、乙两个同学做游戏,分别从 A 、 C 两点处同时出发,沿 A −B −C −D −E −A 的方向绕广场行走,甲的速度为 50米/分,乙的速度为 46米/分,则两人第一次刚走到同一条边上时 ( )A .甲在顶点 A 处B .甲在顶点 B 处C .甲在顶点C 处D .甲在顶点D 处 5.若不等式组{x −2<3x −6x <m无解,则m 的取值范围是( )A .m >2B .m <2C .m ≥2D .m ≤26.若不等式组{1<x ≤2x >k无解,则k 的取值范围是( )A .k ≤2B .k >2C .k ≥2D .1≤k <27.如图,直线y=kx+b 与y=mx+n 分别交x 轴于点A (﹣0.5,0)、B (2,0),则不等式(kx+b )(mx+n )<0的解集为( )A .x >2B .﹣0.5<x <2C .0<x <2D .x <﹣0.5或x >28.若关于x 的不等式3x-2m ≥0的负整数解为-1,-2,则m 的取值范围是( ) A .−6≤m <−92 B .−6<m ≤−92 C .−92≤m <−3 D .−92<m ≤−3 9.如图,经过点B (1,0)的直线y=kx+b 与直线y=4x+4相交于点A (m ,83),则0<kx+b<4x+4的解集为( )A .x <-13B .-13<x <1 C .x <1 D .-1<x <110.若数a 使关于x 的不等式组{13x −1≤12(x −1)2x −a ≤3(1−x),有且仅有三个整数解,且使关于y 的分式方程3yy−2+a+122−y=1有整数解,则满足条件的所有a 的值之和是( )A .﹣10B .﹣12C .﹣16D .﹣18 二.填空题:(共10题)11.若数a 使关于x 的不等式组{x−12<1+x 35x −2≥x +a有且只有四个整数解,且使关于y 的方程y+a y−1+2a 1−y=2的解为非负数,则符合条件的正整数a 的值为______.12.如果不等式mx+13>1+x+33的解集为x>5,则m 的值为_______.13.若关于x ,y 的方程组{3x +2y =k −12x −3y =2 的解使4x +7y >2成立,则k 的取值范围是________.14.冬至节快到了,李老师和杨老师都准备给班级同学买饺子吃.到了超市两人均买了两款饺子,A 款单价为33元/袋,B 款41元/袋.其中李老师购买A 款数量少于B 款数量,合计花了500多元.杨老师购买的A ,B 两款的数量刚好与李老师互换,也花了500多元,巧合的是所花费用的十位数字与个位数字刚好也和李老师所花费用的十位数字与个位数字互换.则李老师购买A ,B 两款饺子共计____袋.15.若不等式组{x −a ≻0x −a ≺1-的解集中的任何一个x 的值均不在2≤x ≤5的范围内,则a 的取值范围为________.16.如果不等式组{3x −a ≥02x −b <0 的整数解仅为 2,且 a 、b 均为整数,则代数式 2a 2+b 的最大值=________.17.使得关于x 的分式方程x+kx+1−kx−1=1的解为负整数,且使得关于x 的不等式组{3x +2≥2x −14x −4≤k有5个整数解的所有k 的和为_____.18.关于x 的不等式组{4a +3x >03a −4x ≥0恰好只有三个整数解,则a 的取值范围是_____________.19.若关于x 的一元一次不等式组{x −a >02x −3<1有2个负整数解,则a 的取值范围是_____.20.在一次智力测验中有20道选择题,评分标准为:对l 题给5分,错1题扣2分,不答题不给分也不扣分,张强有1道题末答,如果总分才不会低于70分,则他至少答对____道题.三.解答题:(共20题)21.某工厂计划生产A 、B 两种产品共50件,需购买甲、乙两种材料.生产一件A 产品需甲种材料30千克、乙种材料10千克;生产一件B 产品需甲、乙两种材料各20千克.经测算,购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元.(1)甲乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不超过38000元,且生产B 产品不少于28件,问符合条件的生产方案有哪几种?(3)在(2)的条件下,若生产一件A 产品需加工费200元,生产一件B 产品需加工费300元,应选择哪种生产方案,使生产这50件产品的成本最低?(成本=材料费+加工费) 22.目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:(1)如何进货,进货款恰好为46000元?(2)设商场购进甲种节能灯x 只,求出商场销售完节能灯时总利润w 与购进甲种节能灯x 之间的函数关系式;(3)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元? 23.某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元.(1)符合公司要求的购买方案有几种?请说明理由;(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,那么应选择以上哪种购买方案?24.在平面直角坐标系中,已知直线l1:y=2x+1(1)若将直线l1平移,使之经过点(1,-5),求平移后直线的解析式;(2)若直线l2:y=x+m与直线l1的交点在第二象限,求m的取值范围;(3)如图,直线y=x+b与直线y=nx+2n(n≠0)的交点的横坐标为-5,求关于x的不等式组0<nx+2n<x+b的解集.25.为了争创全国文明卫生城市,优化城市环境,某市公交公司决定购买一批共10台全新的混合动力公交车,现有A、B两种型号,其中每台的价格,年省油量如下表:经调查,购买一台A型车比购买一台B型车多20万元,购买2台A型车比购买3台B型车少60万元.(1)请求出a和b;(2)若购买这批混合动力公交车(两种车型都要有)每年能节省的汽油量不低于22.4万升,请问有哪几种购车方案?(3)求(2)中最省钱的购买方案所需的购车款.26.某商场销售每个进价为150元和120元的A、B两种型号的足球,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入−进货成本)(1)求A、B两种型号的足球的销售单价;(2)若商场准备用不多于8400元的金额再购进这两种型号的足球共60个,求A种型号的足球最多能采购多少个?(3)在(2)的条件下,商场销售完这60个足球能否实现利润超过2550元,若能,请给出相应的采购方案;若不能请说明理由.27.(题文)小雨的外婆送来一篮鸡蛋.这篮鸡蛋最多只能装55只左右.小雨3只一数,结果剩下1只,但忘了数多少次,只好重数.他5只一数,结果剩下2只,可又忘了数多少次.他准备再数时,妈妈笑着说:“不用数了,共有52只.”小雨惊讶地问妈妈怎么知道的.妈妈笑而不答.同学们,你们知道这是为什么吗?28.夏季即将来临,某电器超市销售每台进价分别为200元、170元的A,B两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入-进货成本)(1)分别求出A ,B 两种型号电风扇的销售单价;(2)若超市准备用不超过5400元的金额再采购这两种型号的电风扇共30台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.29.某人共收集邮票若干张,其中14是2000年以前的国内外发行的邮票,18是2001年国内发行的,119是2002年国内发行的,此外尚有不足100张的国外邮票.求该人共有多少张邮票.30.为落实优秀传统文化进校园,某校计划购进“四书”、“五经”两套图书供学生借阅,已知这两套图书单价和为660元,一套“四书”比一套“五经”的2倍少60元. (1)分别求出这两套图书的单价;(2)该校购买这两套图书不超过30600元,且购进“四书”至少33套,“五经”的套数是“四书”套数的2倍,该校共有哪几种购买方案?31.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有多少块?32.国庆期间,为了满足百姓的消费需求,某商店计划用170000元购进一批家电,这批家电的进价和售价如表:类别 彩电 冰箱 洗衣机 进价(元/台) 2000 1600 1000 售价(元/台) 2300 1800 1100若在现有资金允许的范围内,购买表中三类家电共100台,其中彩电台数是冰箱台数的2倍,设该商店购买冰箱x 台. (1)商店至多可以购买冰箱多少台?(2)购买冰箱多少台时,能使商店销售完这批家电后获得的利润最大?最大利润为多少元? 33.一幢学生宿舍楼有一些空房间,现要安排一批学生入住.若每间住4人,则有20人无法入住;若每间住8人,则有1间房间还剩余一些空床位. (1)求空房间的间数和这批学生的人数;(2)这批学生入住后,男生房间的间数恰好是女生房间间数的2倍,每间房间都有8个床位,每间女生房间都空出数量相同的床位,问:男女学生各多少人?34.(2016黑龙江省牡丹江市)某绿色食品有限公司准备购进A和B两种蔬菜,B种蔬菜每吨的进价比A中蔬菜每吨的进价多0.5万元,经计算用4.5万元购进的A种蔬菜的吨数与用6万元购进的B种蔬菜的吨数相同,请解答下列问题:(1)求A,B两种蔬菜每吨的进价;(2)该公司计划用14万元同时购进A,B两种蔬菜,若A种蔬菜以每吨2万元的价格出售,B种蔬菜以每吨3万元的价格出售,且全部售出,请求出所获利润W(万元)与购买A种蔬菜的资金a(万元)之间的函数关系式;(3)在(2)的条件下,要求A种蔬菜的吨数不低于B种蔬菜的吨数,若公司欲将(2)中的最大利润全部用于购买甲、乙两种型号的电脑赠给某中学,甲种电脑每台2100元,乙种电脑每台2700元,请直接写出有几种购买电脑的方案.35.自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16 000元采购A型商品的件数是用7 500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元.(1)求一件A,B型商品的进价分别为多少元?(2)若该欧洲客商购进A,B型商品共250件进行试销,其中A型商品的件数不大于B型的件数,且不小于80件,已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出.设购进A型商品m件,求该客商销售这批商品的利润v与m之间的函数解析式,并写出m的取值范围;(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,求该客商售完所有商品并捐献慈善资金后获得的最大收益.36.某蓝莓种植生产基地产销两旺,采摘的蓝莓部分加工销售,部分直接销售,且当天都能销售完,直接销售是40元/斤,加工销售是130元/斤(不计损耗).已知基地雇佣20名工人,每名工人只能参与采摘和加工中的一项工作,每人每天可以采摘70斤或加工35斤.设安排x名工人采摘蓝莓,剩下的工人加工蓝莓.(1)若基地一天的总销售收入为y元,求y与x的函数关系式;(2)试求如何分配工人,才能使一天的销售收入最大?并求出最大值.37.某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如表.(1)该商场购进A、B两种商品各多少件?(2)商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原售价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?38.某农产品生产基地收获红薯192吨,准备运给甲、乙两地的承包商进行包销.该基地用大、小两种货车共18辆恰好能一次性运完这批红薯,已知这两种货车的载重量分别为14吨/吨和8吨/辆,运往甲、乙两地的运费如下表:(1)求这两种货车各用多少辆;(2)如果安排10辆货车前往甲地,其余货车前往乙地,其中前往甲地的大货车为a辆,总运费为w元,求w关于a的函数关系式;(3)在(2)的条件下,若甲地的承包商包销的红薯不少于96吨,请你设计出使总运费最低的货车调配方案,并求出最低总运费.39.每年的3月15日是“国际消费者权益日”,许多家居商城都会利用这个契机进行打折促销活动.甲卖家的某款沙发每套成本为5000元,在标价8000元的基础上打9折销售.(1)现在甲卖家欲继续降价吸引买主,问最多降价多少元,才能使利润率不低于20%?(2)据媒体爆料,有一些卖家先提高商品价格后再降价促销,存在欺诈行为.乙卖家也销售相同的沙发,其成本、标价与甲卖家一致,以前每周可售出5套,现乙卖家先将标价提高m%,再大幅降价40m元,使得这款沙发在3月15日那一天卖出的数量就比原来一周卖出的m%,这样一天的利润达到了31250元,求m.数量增加了1240.某校九年级6个班举行毕业文艺汇演,每班3个节目,有歌唱与舞蹈两类节目,年级统计后发现歌唱类节目数比舞蹈类节目数的2倍少6个.设舞蹈类节目有x个.(1)用含x的代数式表示:歌唱类节目有______________个;(2)求九年级表演的歌唱类与舞蹈类节目数各有多少个?(3)该校七、八年级有小品节目参与汇演,在歌唱、舞蹈、小品三类节目中,每个节目的演出平均用时分别是5分钟、6分钟、8分钟,预计全场节目交接所用的时间总共16分钟.若从19:00开始,21:30之前演出结束,问参与的小品类节目最多能有多少个?答案与解析1.解{x−m2>0①x−4<3(x−2)②,解不等式①得:x>m,解不等式②得:x>1,∵该不等式组的解集为:x>1,∴m≤1,即m取−7,−5,−1,0;1−x 2−x +mx−2=3,方程两边同时乘以(x−2)得:x−1+m=3(x−2),去括号得:x−1+m=3x−6,移项得:x−3x=1−6−m,合并同类项得:−2x=−5−m,系数化为1得:x=m+52,∵该方程有非负整数解,∴即m+52≥0,m+52≠2,且m+52为整数,∴m取−5,3,综上:m取−5,即符合条件的m的值的个数是1个,故选A.2.解{3x +2y =2k ①2y −x =3②,①﹣②,得:4x=2k ﹣3,∴x =2k−34.∵x <1,∴2k−34<1,解得:k <72.将x =2k−34代入②,得:2y −2k−34=3,∴y =2k+98.∵y >1,∴2k+98>1,解得:k >−12,∴−12<k <72.∵k 为整数,∴k 可取0,1,2,3,∴k 的个数为4个. 故选A . 3.A解:解不等式x <2(x ﹣a ),得:x >2a ,解不等式x ﹣1≤23x ,得:x ≤3. ∵不等式组恰有3个整数解,∴0≤2a <1,解得:0≤a <12.故选A .4.解:两人如果在同一条边上,说明两人的距离小于等于80米,∵甲、乙两个同学做游戏,分别从 A 、 C 两点处同时出发,两人相差160米,甲要追回80米需要的时间是80÷(50-46)=20分钟,20分钟甲走了1000米,正好走到CD 的中点设为F;20分钟乙走920米走到DE 距D 点40米处设为G.甲从F 走到D 是40比50等于0.8分钟;乙用0.8分从G 点走出0.8乘46等于36.8米距E 点80-36.8-40=3.2米由此得知甲走到D 点时乙走在DE 线上距E3.2米处. ∴D 选项是正确的 5.解{x −2<3x −6①x <m ②.∵解不等式①得:x >2,不等式②的解集是x <m . 又∵不等式组{x −2<3x −6x <m无解,∴m ≤2.故选D .6.解:由题意可知不等式组{1<x ≤2x >k无解所以k ≥4.故选:C.7.解∵(kx+b )(mx+n )<0,∴{kx +b >0mx +n <0 ①或{kx +b <0mx +n >0②.∵直线y=kx+b 与直线y=mx+n 分别交x 轴于点A (﹣0.5,0)、B (2,0),∴①的解集为:x <﹣0.5,②的解集为:x >2,∴不等式(kx+b )(mx+n )<0的解集为x <﹣0.5或x >2.故选D .8.解:3x −2m ≥0,得x ≥23m ,根据题意得,-3<23m ≤-2,解得−92<m ≤−3,故选D. 点睛:本题主要考查了一元一次不等式的解法,先用含m 的式子表示出不等式的解集,再根据不等式的负整数解得到含m 的式子的范围,即关于m 的不等式组,解这个不等式组即可求解.9.解∵经过点B (1,0)的直线y=kx+b 与直线y=4x+4相交于点A (m ,83),∴4m+4=83,∴m=−13,∴直线y=kx+b 与直线y=4x+4的交点A 的坐标为(−13,83),直线y=kx+b 与x 轴的交点坐标为B (1,0),又∵当x <1时,kx+b >0,当x >−13时,kx+b <4x+4,∴0<kx+b <4x+4的解集为−13<x <1.故选B .10.解{13x −1≤12(x −1)①2x −a ≤3(1−x)②, 解①得x ≥-3,解②得x ≤3+a 5,不等式组的解集是-3≤x ≤3+a 5. ∵仅有三个整数解,∴-1≤3+a 5<0∴-8≤a <-3,3y y−2+a+122−y =1,3y-a-12=y-2.∴y=a+102,∵y ≠-2,∴a ≠-6,又y=a+102有整数解,∴a=-8或-4,所有满足条件的整数a 的值之和是-8-4=-12,故选B .11.解:{x−12<1+x 3①5x −2≥x +a ② ,解不等式①得:x <5,解不等式②得:x ≥a+24,∵该不等式组有且只有四个整数解,∴该不等式组的解集为:a+24≤x <5,且0<a+24≤1, 解得:−2<a ≤2,又∵y+a y−1+2a 1−y =2,方程两边同时乘以(y −1)得:y +a −2a =2(y −1),去括号得:y −a =2y −2,移项得:y =2−a ,∵该方程的解为非负数,∴2−a ≥0且2−a ≠1,解得:a ≤2且a ≠1,综上可知:符合条件的正整数a 的值为2,故答案为:2.12.解:由不等式mx+13>1+x+33可得(1-m )•x <-5,∵不等式的解集为x >5,∴1-m <0,∴(1-m )•5=-5,∴m=2.故答案为:2.13.解{3x +2y =k −1①2x −3y =2②由①×2﹣②得:4x+7y=2k-2-2,∴2k-2-2>2,∴2k >6,解得:k >3.故答案为:k >3.14.解:依题意设李老师买了A 款饺子x 袋,B 款饺子y 袋,购买的金额十位上的数字为a ,各位上的数字为b ,则可列出方程组:{33x +41y =500+10a +b ①33y +41y =500+10b +a ②①+②得x+y=1000+11a+11b 74③,∵500<33x +41y <600,500<41x +33y <600∴1000<74(x+y )<1200,即13.5<x+y <16.2x+y 可能为14、15、16当x+y=14时,代入③得11a+11b=36,不符题意,当x+y=15时,代入③得11a+11b=110,a+b=10符题意,当x+y=16时,代入③得11a+11b=184,不符题意,故x+y=15,填15.15.解:不等式组{x −a >0x −a <1的解集为:a <x <a+1, ∵任何一个x 的值均不在2≤x ≤5范围内,∴x <2或x >5,∴a+1≤2或a ≥5,解得,a ≤1或a ≥5,∴a 的取值范围是:a ≤1或a ≥5,故答案为:a ≤1或a ≥5.16.解:解不等式3x-a ≥0,得:x ≥a 3,解不等式2x-b <0,得:x <b 2,∵整数解仅为2,∴{1<a 3≤22<b 2≤3, 解得:3<a ≤6,4<b ≤6,∵a 、b 均为整数,∴当a=6、b=6时,2a 2+b 取得最大值,最大值为2×62+6=78,故答案为:78.17.解:解分式方程x+k x+1−k x−1=1,可得x=1-2k ,∵分式方程x+k x+1−k x−1=1的解为负整数,∴1-2k <0,∴k >12,又∵x ≠-1,∴1-2k ≠-1,∴k ≠1,解不等式组{3x +2≥2x −14x −4≤k ,可得{x ≥−3x ≤k +44, ∵不等式组{3x +2≥2x −14x −4≤k有5个整数解, ∴1≤k+44<2,解得0≤k <4,∴12<k <4且k ≠1,∴k 的值为1.5或2或2.5或3或3.5,∴符合题意的所有k 的和为12.5,故答案为:12.5.18.解:解不等式4a+3x>0得:x>-43a ,解不等式3a-4x ≥0得:x ≤34a , ∴不等式的解集为:-43a<x ≤34a ,∵方程组只有三个整数解,∴方程组的解包括0,∴方程组的整数解为:0、1、2或-1、0、1或-2、-1、0,当整数解为0、1、2时:{−1≤−43a ≤02≤34a <3 ,方程组无解,当整数解为-1、0、1时:{−2≤−43a ≤−11≤34a <2,解得:43≤a ≤32, 当整数解为-2、-1、0时:{−3≤−43a ≤−20≤34a <1方程组无解, ∴a 的取值范围为:43≤a ≤32, 故答案为:43≤a ≤3219.解:2x -3<1,得x <2,进而得负整数解为-1,-2,解得-3≤a <-2.20.解:设小明至少答对的题数是x 道,5x-2(20-1-x )≥70,x ≥1537故至少答对16题,总分才不会低于70分.故答案为:16.21.解(1)设甲钟材料每千克x 元,乙种材料每千克y 元,根据题意列方程组得: {x +y =402x +3y =105解之{x =15y =25甲钟材料每千克15元,乙种材料每千克25元.(2)设生产A 产品m 件,生产B 产品(50-m )件,则生产这50件产品的材料费为15×30m+25×10m+15×20(50-m )+25×20(50-m )=-100m+40000,由题意:-100m+40000≤38000,解得m ≥20,又∵50-m ≥28,解得m ≤22,∴20≤m ≤22,∵m 为正整数∴m 的值为20,21,22,共有三种方案,如下表:(3)设总生产成本为W元,加工费为:200m+300(50-m),则W=-100m+40000+200m+300(50-m)=-200m+55000,∵W 随m的增大而减小,而m=20,21,22,∴当m=22时,总成本最低,此时W=-200×22+55000=50600元,∴选择第三种方案. 22.解(1)设商场应购进甲型节能灯x只,则乙型节能灯为(1200﹣x)只.根据题意得:25x+45(1200﹣x)=46000解得:x=400.当x=400时,1200-x=800.答:购进甲型节能灯400只,乙型节能灯800只时,进货款恰好为46000元.(2)设商场应购进甲型节能灯x只,商场销售完这批节能灯可获利w元.根据题意得:w=(30﹣25)x+(60﹣45)(1200﹣x)=5x+18000﹣15x=﹣10x+18000所以w=﹣10x+18000;(3)设商场购进甲型节能灯x只,则购进乙型节能灯(1200﹣x)只,利润为w元,根据题意得:﹣10x+18000≤[25x+45(1200﹣x)]×30%解得:x≥450.∵w=﹣10x+18000,∴k=﹣10<0,∴w随x的增大而减小,∴x=450时,w最大=13500元.答:商场购进甲型节能灯450只,购进乙型节能灯750只时的最大利润为13500元.23.解(1)设购买轿车x辆,那么购买面包车(10-x)辆.由题意,得7x+4(10-x)≤55,解得x≤5.又因为x≥3,所以x的值为3,4,5,所以有三种购买方案:方案一:购买3辆轿车,7辆面包车;方案二:购买4辆轿车,6辆面包车;方案三:购买5辆轿车,5辆面包车.(2)方案一的日租金为3×200+7×110=1370(元)<1500元;方案二的日租金为4×200+6×110=1460(元)<1500元;方案三的日租金为5×200+5×110=1550(元)>1500元.所以为保证日租金不低于1500元,应选择方案三,即购买5辆轿车,5辆面包车.24.解(1)设平移后的直线解析式为y=2x+t ,把(1,-5)代入得2+t=-5,解得t=-7,所以平移后直线的解析式y=2x-7;(2)解方程组{y =x +m y=2x+1 得{y =2m −1x=m−1 ,所以y=x+m 与直线l 1的交点坐标为(m-1,2m-1)因为{2m −1>0m−1<0所以12<m <1; (3)当y=0时,nx+2n=0,解得x=-2,直线y=nx+2n 与x 轴的交点坐标为(-2,0), 所以不等式组0<nx+2n <x+b 的解集为-5<x <-2.25.解(1)由题意可得:{a =b +202a =3b −60,解得:{a =120b =100 . 答:a 的值是120,b 的值是100.(2)设购买A 型公交车x 辆,则购买B 型公交车(10﹣x )辆,根据题意得:2.4x+2(10﹣x )≥22.4,解得:x ≥6.∵两种车型都要有,∴x <10,∴6≤x <10.∵x 为整数,∴x=6、7、8、9,∴有四种购车方案.方案一:购买A 型公交车6辆,购买B 型公交车4辆;方案二:购买A 型公交车7辆,购买B 型公交车3辆;方案三:购买A 型公交车8辆,购买B 型公交车2辆;方案四:购买A 型公交车9辆,购买B 型公交车1辆.(3)设购车款为w 元,购买A 型车x 辆,根据题意得:w=120x+100(10﹣x )=20x+1000∴当x=6时,w 取得最小值,此时w=1120.答:(1)解:设A 、B 两种型号的足球销售单价分别是x 元和 y 元,列出方程组:{5x +3y =14503x+4y=1200解得{y =150x=200A 型号足球单价是200元,B 型号足球单价是150元.(2)解:设A 型号足球购进a 个,B 型号足球购进(60−a)个,根据题意得:150a +120(60−a)≤8400解得a ≤40,所以A 型号足球最多能采购40个.(3)解:若利润超过2550元,须 50a +30(60−a)>2550a >37.5,因为a 为整数,所以38<a ≤40能实现利润超过2550元,有3种采购方案.方案一:A 型号38个,B 型号22个;方案二:A 型号39个,B 型号21个;方案三:A 型号40个,B 型号20个.27.解:设小明第一次数了x 次,第二次数了y 次,由题意,得3x+1=5y+2,3x=5y+1,x=5y+13,3x+1≤55,5y+2≤55,∴x ≤18,y ≤10.6,∵x >0,y >0,且x 、y 为整数,且5y+1是3的倍数,∴5y+1=6,9,12,15,18…,y=1,4,7,10,13…,∴y 最大=10,∵篮子是装满的,并且最多只能装55只,∴(5y+2)中,y 的值只能取y=10,∴篮子的鸡蛋数量为:5×10+2=52(只).28.解(1)设A ,B 两种型号电风扇的销售单价分别为x 元、y 元.......1分根据题意,得{2x +3y =1130,5x +6y =2510.解这个方程组,得{x =250,y =210.答:A ,B 两种型号电风扇的销售单价分别为250元、210.(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(30﹣a )台,根据题意,得 200a+170(30﹣a )≤5400,解这个不等式,得a ≤10.答:A 种型号的电风扇最多能采购10台(3)根据题意,得(250﹣200)a+(210﹣170)(30﹣a )=1400,解这个方程,得a=20,由(2)可知,a ≤10,∴在(2)的条件下超市不能实现利润1400元的目标.29.解:该人共有x 张邮票,根据题意列方程得:14x+18x+119x >x-100,解得:x <167391.∵其中14是2000年以前的国内外发行的邮票,18是2001年国内发行的,119是2002年国内发行的,∴x 一定是4,8,19的倍数,这三个数的最小公倍数是:152.故该人共有邮票约152张.30.解(1)设五经的单价为x 元,则四书的单价为(2x −60)元,依题意得x +2x −60=660,解得x =240,∴2x −60=420,∴五经的单价为240元,则四书的单价为420元;(2)设购买四书a 套,五经b 套,依题意得{420a +240b ≤30600a ≥33b =2a, 解得33≤a ≤34,∵a 为正整数,∴a =33或34,∴当a =33时,b =66;当a =34时,b =68;∴该校共有2种购买方案:①四书33套,五经66套;②四书34套,五经68套.31.解:设这批手表有x 块,550×60+(x ﹣60)×500>55000解得,x >104答:这批电话手表至少有105块.32.解:(1)根据题意,得:2000⋅2x+1600x+1000(100−3x)⩽170000,解得:x ≤261213, ∵x 为正整数,∴x 最多为26,答:商店至多可以购买冰箱26台.(2)设商店销售完这批家电后获得的利润为y 元,则y=(2300−2000)2x+(1800−1600)x+(1100−1000)(100−3x)=500x+10000,∵k=500>0,∴y 随x 的增大而增大,∵ x ≤261213且x 为正整数, ∴当x=26时,y 有最大值,最大值为:500×26+10000=23000,答:购买冰箱26台时,能使商店销售完这批家电后获得的利润最大,最大利润为23000元.33.解:(1)设空房间有x 间,根据题意,得:8(x-1)<4x+20<8x ,解得:5<x <7,∵x 为整数,∴x=6,这批学生人数为4×6+20=44(人)答:空房间的间数为6间,这批学生的人数为44人.(2)设女生房间为m 间,则男生房间为2m 间,由m+2m=6,得:m=2,2m=4,又设每间女生房间都空出a 个床位,其中a >0则44-(8×2-2a)≤8×4,解得:a ≤2,∴0<a ≤2,且a 为整数,则a 为1或2,∴当a=1时,女生人数为16-2=14(人),男生人数为44-14=30(人);当a=2时,女生人数为16-4=12(人),男生人数为44-12=32(人).34.解:(1)设每吨A 种蔬菜的进价为x 万元,则每吨B 种蔬菜的进价为(x+0.5)万元,依题意得:4.5x =6x+0.5,解得x=1.5,经检验:x=1.5是原方程的解,∴x+0.5=2. 答:每吨A 种蔬菜的进价为1.5万元,每吨B 种蔬菜的进价为2万元;(2)根据题意得,W=(2﹣1.5)×a 1.5+(3﹣2)×14−a 2=−16a +7,∴所获利润W (万元)与购买A 种蔬菜的资金a (万元)之间的函数关系式为:W=−16a +7; (3)当a 1.5≥14−a 2时,a ≥6,∵在一次函数W=−16a +7中,W 随着a 的增大而减小,∴当a=6时,W 有最大值,W 的最大值为﹣1+7=6(万元).设购买甲种电脑a 台,购买乙种电脑b 台,则2100a+2700b=60000,∵a 和b 均为整数,∴{a =8b =16 或{a =17b =9 或{a =26b =2,∴有三种购买方案. 35.解:(1)设一件B 型商品的进价为x 元,则一件A 型商品的进价为(x+10)元. 由题意:16000x+10=7500x ×2,解得x=150,经检验x=150是分式方程的解.答:一件B 型商品的进价为150元,一件A 型商品的进价为160元.(2)因为客商购进A 型商品m 件,所以客商购进B 型商品(250﹣m )件.由题意:v=80m+70(250﹣m )=10m+17500,∵80≤m ≤250﹣m ,∴80≤m ≤125,∴v=10m+17500(80≤m ≤125);(3)设利润为w 元.则w=(80﹣a )m+70(250﹣m )=(10﹣a )m+17500:①当10﹣a >0时,w 随m 的增大而增大,所以m=125时,最大利润为(18750﹣125a )元. ②当10﹣a=0时,最大利润为17500元.③当10﹣a <0时,w 随m 的增大而减小,所以m=80时,最大利润为(18300﹣80a )元,∴当a <10时,最大利润为(18750﹣125a )元;当a=10时,最大利润为17500元;当a >10时,最大利润为(18300﹣80a )元.36.解:(1)根据题意得:.(2)因为,解得,又因为为正整数,且. 所以,且为正整数. 因为,所以的值随着的值增大而减小, 所以当时,取最大值,最大值为. 答:安排7名工人进行采摘,13名工人进行加工,才能使一天的收入最大,最大收入为60550元.37.解:(1)设购进A 种商品x 件,B 种商品y 件,根据题意得,{1200x +1000y =360000(1380−1200)x +(1200−1000)y =60000解得{x=200y=120.答:该商场购进A.B两种商品分别为200件和120件.(2)由于A商品购进400件,获利为(1380-1200)×400=72000(元),从而B商品售完获利应不少于81600-72000=9600(元).设B商品每件售价为z元,则120(z-1000)≥9600,解之得z≥1080.所以B种商品最低售价为每件1080元.38.解:(1)设大货车用x辆,则小货车用(18﹣x)辆,根据题意得:14x+8(18﹣x)=192,解得:x=8,18﹣x=18﹣8=10.答:大货车用8辆,小货车用10辆.(2)设运往甲地的大货车是a,那么运往乙地的大货车就应该是(8﹣a),运往甲地的小货车是(10﹣a),运往乙地的小货车是10﹣(10﹣a),w=720a+800(8﹣a)+500(10﹣a)+650[10﹣(10﹣a)]=70a+11400(0≤a≤8且为整数);(3)14a+8(10﹣a)≥96,解得:a≥83.又∵0≤a≤8,∴3≤a≤8 且为整数.∵w=70a+11400,k=70>0,w随a的增大而增大,∴当a=3时,W最小,最小值为:W=70×3+11400=11610(元).答:使总运费最少的调配方案是:3辆大货车、7辆小货车前往甲地;5辆大货车、3辆小货车前往乙地.最少运费为11610元.39.解:(1)设降价x元,列不等式:8000×0.9-x≥5000(1+20%),解得:x≤1800.答:最多降价1800元,才能使得利润不低于20%.设m%=a,根据题意得:[8000(1+a)-4000a-5000]×5(1+12a)=31250,整理得,8a2+22a-13=0,解得a=12或a=-2(舍).所以m%=1,则m=50.2答:m的值为50.40.解:(1)(2x−6).(2)根据题意得:x+(2x−6)=6×3,解得:x=8.经检验,符合题意.当x=8时,2x−6=10.答:表演的歌唱类节目10个,舞蹈类节目8个.(3)设参与的小品类节目有a个,根据题意得:5×10+6×8+8a+16<150,解得:a<4.5.∵a为整数,∴a最多为4.答:参与的小品类节目最多能有4个.。

数学七年级下册培优第13讲 一元一次不等式(组)的解法探究

数学七年级下册培优第13讲 一元一次不等式(组)的解法探究

第十三讲一元一次不等式(组)的解法探究专题讲解专题1 一元一次不等式的解法例1解不等式,并在数轴上表示出来:(1)3-2x>4;(2)10-3(x+6)≤1;(3)12(x-3)<1-2x;(4)213x-<715x++1.归纳总结:①题型特征:________________________________________________________________________②方法与技巧:______________________________________________________________________练1.1(1)不等式x>-3的负整数解是________.(2)求不等式2x-2≥2(2x+1)的正整数解是________.(3)若a<b<0,则下列式子:①a+1<b+2;②ab>1;③a+b<ab;④1a<1b.其中正确的有()A.1个B.2个C.3个D.4个变式已知y=2-2x,试求:(1)当x为何值时,y>0;(2)当y为何值时,x≤-1.专题2 一元一次不等式组的解法例2解不等式组,并在数轴上表示出来:(1)591131xx⎧⎨⎩+>--<;(2)23212x xx⎧⎪⎨⎪⎩-≤->-;(3)3353324xx⎧⎪⎨⎪⎩+<+<.归纳总结:①题型特征:________________________________________________________________________②方法与技巧:______________________________________________________________________练2.1不等式组21318xx⎧⎨⎩-≥-->的解集在数轴上可表示为()练2.2不等式组31526xx⎧⎨⎩+≥-->-的解集是________,这个不等式组的所有整数解的和是________.练2.3不等式组31212131xx x⎧⎨⎩-≤-<-的解集是________;负整数解是________.变式1已知三角形的三边长分别为a+1,a,a-1,求a的取值范围.专题3 含参数不等式(组)例3不等式13(x-m)>2-m的解集为x>2,求m的值.归纳总结:DCBA②方法与技巧:______________________________________________________________________ 练3.1如果不等式ax≤2的解集是x≥-4,则a的值为()A.a=-12B.a≤-12C.a>-12D.a<-12例4已知不等式组2133x ax b⎧⎨⎩-<->的解集为-1<x<1,求a,b的值为多少.归纳总结:①题型特征:________________________________________________________________________②方法与技巧:______________________________________________________________________练3.2不等式组2123x ax b⎧⎨⎩-<->的解集为-1<x<1,那么(a+1)(b-1)=________.练3.3关于x的不等式组12x mx m⎧⎨⎩>->+的解集为x>-1,则m=________.变式若不等式组x a bx a b⎧⎨⎩+<->的解集为-1<x<3,求关于x的不等式ax-b<0.例5已知关于x的不等式(2a-b)x+a-5b>0的解集是x<107,求关于x的不等式ax+b>0的解集.归纳总结:①题型特征:________________________________________________________________________②方法与技巧:______________________________________________________________________练3.4 已知关于x的不等式ax+b<0的解集是x>13,求bx-a>0的解集.变式已知不等式组1xx a⎧⎨⎩><.(1)如果此不等式组无解,求a的取值范围,并利用数轴说明;(2)如果此不等式组有解,求a的取值范围,并利用数轴说明.A 级1.将下列不等式化成“x<a”或“x>a”的形式,并在数轴上表示出来:(1)-2x>5;(2)2x-1<7;(3)23x-1<5.2.若0<b<a,下列不等式组:①x ax b⎧⎨⎩><;②x ax b⎧⎨⎩>-<-;③x ax b⎧⎨⎩><-;④x ax b⎧⎨⎩>-<.其中有解的个数有()A.1个B.2个C.3个D.4个3.点P(5-a,2)位于第二象限,则a的取值范围是()A.a>5 B.a<5 C.a≤5 D.a≥5 4.长方形的周长为30,宽不超过3,则长a的取值范围是()A.27≤a≤30 B.12≤a<15 C.12<a<15 D.0<a<125.不等式组2403xx⎧⎨⎩->->0的解集为()A.x>2 B.x<3 C.x>2或x<-3 D.2<x<36.若不等式组530xx m⎧⎨⎩-≥-≥有实数解,则实数m的取值范围是()A.m≤53B.m<53C.m>53D.m≥537.不等式x-12(1-12x)-13(2-4x)≤2的非负整数解为________.8.关于x的方程(2-3a)x=1的解为负数,则a的取值范围是________.9.若a为整数,且点P(3a-9,2a-10)在第四象限,求2a+1的值.10.已知x 满足3351114x x x ⎧⎪⎨⎪⎩+>-+>-,化简|x -2|+|x +5|.B 级1.解不等式组()2214310x x xxx ⎧⎪⎪⎨⎪⎪⎩-<-≤--> 2.解不等式(2x +1)(3x -2)>0时,根据有理数乘法法则“两数相乘,同号得正”有210320x x ⎧⎨⎩+>->①或210320x x ⎧⎨⎩+<-<②,解不等式①,得x >23;解不等式②,得x <-12,则不等式(2x +1)(3x -2)>0的解集为x >23或x <-12,请根据上述方法解不等式5123x x +-<0.家庭作业1.将下列不等式化成“x <a ”或“x >a ”的形式,并在数轴上表示出来: (1)-34x >34; (2)3-2x >-4; (3)-1-3x <7x -3.2.已知y =2x -3,当x 时,x >y 成立. 3.命题:①-a >b ⇒a +b <0;②a <-b ⇒a >b ;③ab >0⇒a >0,b >0;④a >b ,c ≠0⇒ac >bc 其中正确个数是 .4.不等式3(x +1)≥5 x -1的非负整数解是 . 5.不等式组235324x x ⎧⎨⎩+>-≤的解集是 .6.已知三个奇数的和不超过27且大于10,这样的数组共有 个.7.已知点M (-35-P ,3+P )是第三象限的点,则P 的取值范围是 .8.不等边三角形的周长为8,其中最大的一条边长为3,最小一边的长为c ,则c 的取值范围是 . 9.若a <0,则不等式ax +b <0的解集是( )A .x >b a B .x <b a C .x >-b a D .x <-ba10.若a <b <0,则下列式子:①a +1<b +1;②a b >1;③a +b <ab ;④1a <1b其中正确的有( ).A .1个B .2个C .3个D .4个11.已知x =3是关于x 的不等式3x -2>22ax +的解,求a 的取值范围.12.解下列不等式(组),并把解集在数轴上表示出来:(1)3(x+1)≤4(x-2)-3;(2)213x--512x+≤1;(3)4813458x xx x⎧⎨⎩-<++<+(4)-1<322x-<2.13.已知2b-a<3,2 a-b<5,化简|2b-a-7|-|b-2a+8|+|a+b-9|.下次课必背不等式的解法:步骤:去分母,去括号,移项,合并同类项,系数化为一;注意:去分母与系数化为一要特别小心,因为要在不等式两端同时乘或除以某一个数,要考虑不等号的方向是否发生改变的问题.不等式组的解:“大大取大”,“小小取小”,“大小小大中间找”,“大大小小找不了”.二元一次方程组的解法:①代入消元法:由二元一次方程组中一个方程,将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解.②加减消元法:两个二元一次方程中同一个未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,再求解.。

一元一次不等式组 重难点专项练习【八大题型】-2022-2023学年七年级数学下册同步精品课堂

一元一次不等式组 重难点专项练习【八大题型】-2022-2023学年七年级数学下册同步精品课堂

9.3《一元一次不等式组》重难点题型专项练习考查题型一 一元一次不等式组的定义(2021春·四川绵阳·七年级校考期中)1. 下列不等式组是一元一次不等式组的是( )A. ()2012x x x ->⎧⎨-≤⎩B. 1010x y +>⎧⎨-<⎩C. 203x x ->⎧⎨<-⎩D. 30110x x>⎧⎪⎨+<⎪⎩(2020春·四川巴中·七年级统考期末)2. 下列不等式组中,是一元一次不等式组的是( )A. 203x x ->⎧⎨<-⎩B. 1010x y +>⎧⎨-<⎩C. ()()320230x x x ->⎧⎨-+>⎩ D. 30110x x>⎧⎪⎨+>⎪⎩(2020春·浙江台州·七年级台州市书生中学校考期中)3. 下列不等式组是一元一次不等式组的是( )A. 00x y x y ->⎧⎨+<⎩B. 1132341x x x x ⎧+>⎪⎨⎪≠-⎩C. 320(2)(3)0x x x ->⎧⎨-+>⎩D. 320x y x y +=⎧⎨>-⎩(2022春·全国·七年级假期作业)4. 下列不等式组:①23x x >-⎧⎨<⎩,②024x x >⎧⎨+>⎩,③22124x x x ⎧+<⎨+>⎩,④307x x +>⎧⎨<-⎩,⑤1010x y +>⎧⎨-<⎩.其中一元一次不等组的个数是( )A. 2个 B. 3个 C. 4个 D. 5个考查题型二 求不等式组的解集(2022春·山西晋城·七年级统考期末)5. 不等式组211238x x ->⎧⎨-<⎩的解集是( ).A. 1x >B. 2<<1x -C. 2x >-D. 无解(2022春·海南海口·七年级琼山中学校考阶段练习)6. 不等式组21390x x >-⎧⎨-+≥⎩的解集是( )A. 3x ≤- B. 12x >- C. 132x -<≤ D. 132x ≤<(2022春·福建厦门·七年级统考期末)7. 将不等式组23x x >⎧⎨≥⎩的解集表示在数轴上,正确的是( )A. B. C.D.(2022春·宁夏吴忠·七年级校考期末)8. 不等式组13x x -≤-⎧⎨<⎩的解集在数轴上可以表示为( )A. B. C.D.考查题型三 求一元一次不等式组的整数解(2022春·陕西商洛·七年级校考期末)9. 不等式组2313252x x x +>⎧⎨≤-⎩的非负整数解的个数是( )A. 6个B. 5个C. 4个D. 3个(2022春·四川眉山·七年级统考期末)10. 已知56m <≤,则关于x 的不等式组01112m x x x ->⎧⎪⎨-≤-⎪⎩的整数解共有()A. 6个B. 5个C. 4个D. 3个(2022春·四川乐山·七年级统考期末)11. 已知关于x 的不等式组0320x a x ->⎧⎨->⎩的整数解共有3个,则a 的取值范围是( )A. 21a -<<-B. 21a -<-C. 21a -<-D. 21a - (2022春·安徽合肥·七年级统考期末)12. 一元一次不等式组3620x x x -<⎧⎨+≥⎩的解集中,最大的整数解是( )A. 2 B. 3 C. 2- D. 1-考查题型四 由一元一次不等式组的解集求参数(2022秋·重庆北碚·七年级统考期末)13. 若关于x 的不等式组51222x x x x a+⎧<-⎪⎨⎪+<+⎩只有4个整数解,则a 的取值范围是( )A. 13a ≥B. 1314a <<C. 1314a ≤<D. 1314a <≤(2023春·安徽六安·七年级校考阶段练习)14. 不等式组2x x a ≥⎧⎨<⎩无解,则a 的取值范围是( )A. 2a < B. 2a > C. 2a ≤ D. 2a ≥(2022春·江苏扬州·七年级校考阶段练习)15. 如果不等式组212x m x m >+⎧⎨>+⎩的解集是x >-1,那么m 的值是( )A. 1 B. 3 C. -1 D. -3(2022春·河南驻马店·七年级校考期中)16. 如果不等式组262x x x m x-+<-⎧⎨>-⎩的解集是x >4,那么m 的取值范围是( )A. m ≥4 B. m ≤4 C. m <4 D. m =4考查题型五 不等式组和方程组结合问题(2022春·河南南阳·七年级统考期中)17. 关于x 的方程3﹣2x =3(k ﹣2)的解为非负整数,且关于x 的不等式组()21323x x k x x ⎧--≥⎪⎨+≤⎪⎩无解,则符合条件的整数k 的值的和为( )A. 5 B. 2 C. 4 D. 6(2022春·重庆忠县·七年级校考期中)18. 若关于x ,y 的二元一次方程组128x y a x y +=+⎧⎨+=⎩的解为正数,则满足条件的所有整数a 的和为( )A. 14B. 15C. 16D. 17(2022春·内蒙古呼伦贝尔·七年级校考期末)19. 如果关于x 、y 的方程组322x y x y a +=⎧⎨-=-⎩的解为正数,则a 的取值范围是( )A. 45a -<<B. 54a -<<C. 4a <-D. 5a >(2021春·福建南平·七年级统考期末)20. 已知2321x y k x y k +=⎧⎨+=+⎩,且01x y <-<,则k 的取值范围为( )A. 112k << B. 102k <<C. 01k << D. 112k -<<-考查题型六 列一元一次不等式组(2021春·辽宁抚顺·七年级期末)21. 七年级下册数学课本有如下6章:《相交线与平行线》、《实数》、《平面直角坐标系》、《二元一次方程组》、《不等式与不等式组》、《数据的收集、整理与描述》.期末试卷编题要求,每章至少有3个题,全卷总题数不超过26题,若本次期末试卷的全卷总题数为x ,则x 的取值范围是______.(2020春·黑龙江佳木斯·七年级统考期末)22. 若干名学生住宿舍,每间住4人,2人无处住;每间住 6人,空一间还有一间不空也不满,问多少学生多少宿舍?设有x 间宿舍,则可列不等式组为____(2020春·江西南昌·七年级校联考期末)23. 运行程序如图所示,从“输入实数x”到“结果是否>18”为一次程序操作,若输入x后程序操作进行了两次停止,则x的取值范围是______.(2020春·广西崇左·七年级统考期中)24. 方程组431,65x y kx y-=+⎧⎨+=⎩的解x、y满足条件0<3x-7y<1,则k的取值范围______.考查题型七用一元一次不等式组解决销售利润问题(2020·湖南湘潭·中考真题)25. 习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气”.某校为提高学生的阅读品味,现决定购买获得第十届矛盾文学奖的《北上》(徐则臣著)和《牵风记》(徐怀中著)两种书共50本.已知购买2本《北上》和1本《牵风记》需100元;购买6本《北上》与购买7本《牵风记》的价格相同.(1)求这两种书的单价;(2)若购买《北上》的数量不少于所购买《牵风记》数量的一半,且购买两种书的总价不超过1600元.请问有哪几种购买方案?哪种购买方案的费用最低?最低费用为多少元?(2019·四川泸州·统考中考真题)26. 某出租汽车公司计划购买A型和B型两种节能汽车,若购买A型汽车4辆,B 型汽车7辆,共需310万元;若购买A型汽车10辆,B型汽车15辆,共需700万元.(1)A型和B型汽车每辆的价格分别是多少万元?(2)该公司计划购买A型和B型两种汽车共10辆,费用不超过285万元,且A型汽车的数量少于B型汽车的数量,请你给出费用最省的方案,并求出该方案所需费用.(2020·湖南邵阳·中考真题)27. 2020年5月,全国“两会”召开以后,应势复苏的“地摊经济”带来了市场新活力,小丹准备购进A、B两种类型的便携式风扇到地摊一条街出售.已知2台A 型风扇和5台B型风扇进价共100元,3台A型风扇和2台B型风扇进价共62元.(1)求A型风扇、B型风扇进货的单价各是多少元?(2)小丹准备购进这两种风扇共100台,根据市场调查发现,A型风扇销售情况比B型风扇好,小丹准备多购进A型风扇,但数量不超过B型风扇数量的3倍,购进A、B两种风扇的总金额不超过1170元.根据以上信息,小丹共有哪些进货方案?(2023·广东深圳·二模)28. 某初三某班计划购买定制钢笔和纪念卡册两种毕业纪念礼物,已知购买1支定制钢笔和4本纪念卡册共需130元,购买3支定制钢笔和2本纪念卡册共需140元.(1)求每支定制钢笔和每本纪念卡册的价格分别为多少元?(2)该班计划购买定制钢笔和纪念卡册共60件,总费用不超过1600元,且纪念卡册本数小于定制钢笔数量的3倍,那么有几种购买方案,请写出设计方案?考查题型八用一元一次不等式组解决方案选择问题(2022·四川遂宁·统考中考真题)29. 某中学为落实《教育部办公厅关于进一步加强中小学生体质管理的通知》文件要求,决定增设篮球、足球两门选修课程,需要购进一批篮球和足球.已知购买2个篮球和3个足球共需费用510元;购买3个篮球和5个足球共需费用810元.(1)求篮球和足球的单价分别是多少元;(2)学校计划采购篮球、足球共50个,并要求篮球不少于30个,且总费用不超过5500元.那么有哪几种购买方案?(2021·广西贵港·统考中考真题)30. 某公司需将一批材料运往工厂,计划租用甲、乙两种型号的货车,在每辆货车都满载的情况下,若租用30辆甲型货车和50辆乙型货车可装1500箱材料;若租用20辆甲型货车和60辆乙型货车可装载1400箱材料.(1)甲、乙两种型号的货车每辆分别可装载多少箱材料?(2)经初步估算,公司要运往工厂的这批材料不超过1245箱,计划租用甲、乙两种型号的货车共70辆,且乙型货车的数量不超过甲型货车数量的3倍,该公司一次性将这批材料运往工厂共有哪几种租车方案?(2019·贵州遵义·中考真题)31. 某校计划组织240名师生到红色教育基地开展革命传统教育活动.旅游公司有A,B两种客车可供租用,A型客车每辆载客量45人,B型客车每辆载客量30人.若租用4辆A型客车和3辆B型客车共需费用10700元;若租用3辆A型客车和4辆B型客车共需费用10300元.(1)求租用A,B两型客车,每辆费用分别是多少元;(2)为使240名师生有车坐,且租车总费用不超过1万元,你有哪几种租车方案?哪种方案最省钱?(2023·湖南湘潭·湘潭县云龙中学校考一模)32. 随着新能源汽车的发展,某公交公司将用新能源汽车淘汰某一条线路上“冒黑烟”较严重的燃油公交车,计划购买A型和B型新能源公交车共10辆.若购买A 型公交车1辆和B型公交车2辆共需300万元;且购买一辆A型公交车的费用比购买一辆B型公交车的费用少30万元.(1)求A型和B型公交车的单价分别为多少万元?(2)预计在该条线路上A型和B型公交车每辆日均载客量为160人次和200人次,若该公司购买A型和B型公交车的总费用不超过1000万元,且确保这10辆公交车在该线路的日均载客量总和不少于1800人次,则该公司有哪几种购车方案?哪种购车方案的总费用最少?最少总费用是多少?9.3《一元一次不等式组》重难点题型专项练习考查题型一 一元一次不等式组的定义(2021春·四川绵阳·七年级校考期中)【1题答案】【答案】C【解析】【分析】根据一元一次不等式组的定义逐个判断即可.【详解】解:A .最高二次,不是一元一次不等式组,故本选项不符合题意;B .有两个未知数,不是一元一次不等式组,故本选项不符合题意;C .是一元一次不等式组,故本选项符合题意;D .第二个不等式中有的式子不是整式,不是一元一次不等式组,故本选项不符合题意;故选:C .【点睛】本题考查了一元一次不等式组的定义,能熟记一元一次不等式组的定义是解此题的关键,含有相同字母的几个不等式,如果每个不等式都是一次不等式,那么这几个不等式组合在一起,就叫一元一次不等式组.(2020春·四川巴中·七年级统考期末)【2题答案】【答案】A【解析】【分析】根据一元一次不等式组的概念逐一辨析.【详解】A. 203x x ->⎧⎨<-⎩是一元一次不等式组,故正确; B. 1010x y +>⎧⎨-<⎩是二元一次不等式组,故不正确; C. ()()320230x x x ->⎧⎨-+>⎩是一元二次不等式组,故不正确;D.30110xx>⎧⎪⎨+>⎪⎩是分式不等式组,故不正确;故选A.【点睛】本题考查了对一元一次不等式组概念的理解,深刻理解基本定义是解决这类问题的关键.(2020春·浙江台州·七年级台州市书生中学校考期中)【3题答案】【答案】B【解析】【分析】根据不等式组中只含有一个未知数并且未知数的次数是一次的,可得答案.【详解】A、是二元一次不等式组,故A错误;B、是一元一次不等式组,故B正确;C、是一元二次不等式组,故C错误;D、不是一元一次不等式组,故D错误;故选:B.【点睛】本题考查了一元一次不等式组的定义,不等式组中只含有一个未知数并且未知数的最高次的次数是一次的.(2022春·全国·七年级假期作业)【4题答案】【答案】B【解析】【分析】根据一元一次不等式组的定义,含有两个或两个以上的不等式,不等式中的未知数相同,并且未知数的最高次数是1,对各选项判断再计算个数即可【详解】根据一元一次不等式组的定义,①②④都只含有一个未知数,所含未知数相同,并且未知数的最高次数是1,所以都是一元一次不等式组.③含有一个未知数,但是未知数的最高次数是2;⑤含有两个未知数,所以③⑤不是一元一次不等式组故选B【点睛】此题主要考查一元一次不等式组的定义考查题型二求不等式组的解集(2022春·山西晋城·七年级统考期末)【5题答案】【答案】A【解析】【分析】先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可.【详解】解:211 238xx->⎧⎨-<⎩①②,解①得,1x>,解②得,2x>-,∴不等式组的解集是1x>.故选A.【点睛】本题考查了一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解答本题的关键.(2022春·海南海口·七年级琼山中学校考阶段练习)【6题答案】【答案】C【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:21 390xx>-⎧⎨-+≥⎩①②∵解不等式①得:12 x>-,解不等式②得:3x≤,∴不等式组的解集为13 2x-<≤,故选:C.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此(2022春·福建厦门·七年级统考期末)【7题答案】【答案】D【解析】【分析】先定界点,再定方向即可得.【详解】解:不等式组23x x >⎧⎨≥⎩的解集在数轴上表示如下:,故选:D .【点睛】本题考查了在数轴上表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点;二是定方向,注意“实心点”、“空心点”的用法.(2022春·宁夏吴忠·七年级校考期末)【8题答案】【答案】B【解析】【分析】先解出不等式组的解集,然后在数轴上表示出来即可.【详解】解:13x x -≤-⎧⎨<⎩①②,解不等式1x -≤-得:1x ≥,∴该不等式组的解集是13x ≤<,其解集在数轴上表示如下:故选:B .【点睛】本题考查解一元一次不等式组、在数轴上表示不等式的解集,解答本题的关键是掌握解一元一次不等式的方法.考查题型三 求一元一次不等式组的整数解(2022春·陕西商洛·七年级校考期末)【答案】A【解析】【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集,最后在解集中找到非负整数解即可.【详解】解不等式231x +>,得:x >-1,解不等式3252x x ≤-,得:5x ≤,∴该不等式组的解集为:15x -<≤,∴该不等式组的非负整数解为:0、1、2、3、4、5,共有6个.故选A .【点睛】本题主要考查解一元一次不等式组,熟知确定解集的方法“同大取大,同小取小,大小小大中间找,大大小小无处找”是解题的关键.(2022春·四川眉山·七年级统考期末)【10题答案】【答案】C【解析】【分析】先解不等式组求出不等式组的解集,再根据56m <≤即可得.【详解】解:01112m x x x ->⎧⎪⎨-≤-⎪⎩①②,解不等式①得:x m <,解不等式②得:43x ≥, 不等式组有整数解,43x m ∴≤<,又56m <≤ ,∴不等式组的整数解为2,3,4,5,共有4个,故选:C .【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解题关键.(2022春·四川乐山·七年级统考期末)【答案】C【解析】【分析】分别求出每一个不等式的解集,根据不等式组的解集的情况得出a 的范围.【详解】解:由0x a ->,得:x a >,由320x ->,得:32x <, 不等式组有3个整数解,∴不等式组的整数解为1、0、1-,21a ∴-<- ,故选:C .【点睛】本题考查了一元一次不等式组的整数解,解题的关键是正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则.(2022春·安徽合肥·七年级统考期末)【12题答案】【答案】A【解析】【分析】按照解一元一次不等式组的步骤进行计算,即可解答.【详解】解:3620x x x -⎧⎨+≥⎩<①②,解不等式①得:x <3,解不等式②得:x ≥-2,∴原不等式组的解集为:-2≤x <3,∴该不等式组的最大的整数解是2,故选:A .【点睛】本题考查了解一元一次不等式组,一元一次不等式组的整数解,准确熟练地进行计算是解题的关键.考查题型四 由一元一次不等式组的解集求参数(2022秋·重庆北碚·七年级统考期末)【13题答案】【答案】D【解析】【分析】先求出不等式组的解集,再根据题意求a 的取值范围即可.【详解】解:51222x x x x a +⎧<-⎪⎨⎪+<+⎩①②,解①得7x >,解②得2x a <-,所以不等式组的解集为72x a <<-,因为不等式组只有4个整数解,所以11212a <-≤,所以1314a <≤.故选:D .【点睛】本题考查了求不等式组的解集和根据解集求取值范围,正确求出2a -的取值范围是解题的关键.(2023春·安徽六安·七年级校考阶段练习)【14题答案】【答案】C【解析】【分析】利用不等式组的解集是无解可知,x 应该是大大小小找不到.【详解】解:∵不等式组2x x a ≥⎧⎨<⎩无解,∴2a ≤,故选:C .【点睛】主要考查了已知一元一次不等式解集求不等式中的字母的值,同样也是利用口诀求解,注意:当符号方向不同,数字相同时(如:x a >,x a <),没有交集也是无解,但是要注意当两数相等时,在解题过程中不要漏掉相等这个关系.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).(2022春·江苏扬州·七年级校考阶段练习)【15题答案】【答案】D【解析】【分析】根据不等式组的解集口诀“同大取大”,可分两种情况:212m m +≥+和212m m +<+讨论求解即可.【详解】解:由题意,分两种情况:当212m m +≥+即m ≥1时,2m +1=-1,解得:m =-1,不合题意,舍去;当212m m +<+即m <1时,m +2=-1,解得:m =-3,符合题意,故选:D .【点睛】本题考查解一元一次不等式组,解答关键是将不等式组解集口诀“同大取大,同小取小,大小小大取中间,大大小小找不到(无解)”逆用,即已知不等式组解集求m 的范围,注意分类讨论思想的运用,以防漏解.(2022春·河南驻马店·七年级校考期中)【16题答案】【答案】B【解析】【分析】先求出第一个不等式的解集,再根据不等式组的解集为x >4得出答案即可.【详解】解:262x x x m x -+-⎧⎨-⎩<①>②解不等式①得:4x >,解不等式②得:x m >,∵不等式组的解集为x >4,∴4m ≤,故B 正确.故选:B .【点睛】本题主要考查了解一元一次不等式组,能根据不等式的解集和不等式组的解集得出关于m 的不等式是解此题的关键.考查题型五不等式组和方程组结合问题(2022春·河南南阳·七年级统考期中)【17题答案】【答案】C【解析】【分析】先求出3﹣2x=3(k﹣2)的解为x932k-=,从而推出3k≤,整理不等式组可得整理得:1xx k≤-⎧⎨≥⎩,根据不等式组无解得到k>﹣1,则﹣1<k≤3,再由整数k和932kx-=是整数进行求解即可.【详解】解:解方程3﹣2x=3(k﹣2)得x932k-=,∵方程的解为非负整数,∴932k-≥0,∴3k≤,把()213x xx k⎧--≥⎨≥⎩整理得:1xx k≤-⎧⎨≥⎩,由不等式组无解,得到k>﹣1,∴﹣1<k≤3,即整数k=0,1,2,3,∵932kx-=是整数,∴k=1,3,综上,k=1,3,则符合条件的整数k的值的和为4.故选C.【点睛】本题主要考查了解一元一次方程,根据一元一次不等式组的解集情况求参数,解题的关键在于能够熟练掌握相关知识进行求解.(2022春·重庆忠县·七年级校考期中)【18题答案】【答案】B【解析】【分析】先将二元一次方程组128x y ax y+=+⎧⎨+=⎩的解用a表示出来,然后再根据题意列出不等式组求出的取值范围,进而求出所有a的整数值,最后求和即可.【详解】解:解关于x,y的二元一次方程组128x y ax y+=+⎧⎨+=⎩,得267x ay a=-⎧⎨=-⎩,∵关于x,y的二元一次方程组128x y ax y+=+⎧⎨+=⎩的解为正数,∴260 70aa->⎧⎨->⎩,∴3<a<7,∴满足条件的所有整数a的和为4+5+6=15.故选:B.【点睛】本题考查了二元一次方程组的解法、一元一次不等式组等知识点,根据题意求得a的取值范围是解答本题关键.(2022春·内蒙古呼伦贝尔·七年级校考期末)【19题答案】【答案】A【解析】【分析】将a看做已知数求出方程组的解表示出x与y,根据x与y都为正数,取出a的范围即可.【详解】解:解方程组322x yx y a+=⎧⎨-=-⎩,得:4353axay+⎧=⎪⎪⎨-⎪=⎪⎩,方程组的解为正数,∴03503a >⎪⎪⎨-⎪>⎪⎩,解得:45a -<<,故选:A .【点睛】此题考查了二元一次方程组的解, 方程组的解即为能使方程组中两方程成立的未知数的值.(2021春·福建南平·七年级统考期末)【20题答案】【答案】B【解析】【分析】两个方程相减得出x ﹣y =1﹣2k ,由0<x ﹣y <1知0<1﹣2k <1,解之即可得出答案.【详解】解:两个方程相减,得:x ﹣y =1﹣2k ,∵0<x ﹣y <1,∴0<1﹣2k <1,解得0<k <12,故选:B .【点睛】本题考查的是解二元一次方程组和一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.考查题型六 列一元一次不等式组(2021春·辽宁抚顺·七年级期末)【21题答案】【答案】1826x ≤≤【解析】【分析】设本次期末试卷的全卷总题数为x ,根据七年级下册数学课本有6章,每章至少有3个题,全卷总题数不超过26题,即可列出关于x 的不等式组.【详解】解:设本次期末试卷的全卷总题数为x ,根据题意得,26x ⎨≤⎩,解得1826x ≤≤.故答案为:1826x ≤≤.【点睛】本题考查了一元一次不等式组的应用,解题的关键是理解题意得到不等关系.(2020春·黑龙江佳木斯·七年级统考期末)【22题答案】【答案】()142626x x ≤+--<【解析】【分析】先根据“每间住4人,2人无处住”可得学生人数,再根据“每间住 6人,空一间还有一间不空也不满”建立不等式组即可得.【详解】设有x 间宿舍,则学生有()42x +人,由题意得:()142626x x ≤+--<,故答案为:()142626x x ≤+--<.【点睛】本题考查了列一元一次不等式组,理解题意,正确找出不等关系是解题关键.(2020春·江西南昌·七年级校联考期末)【23题答案】【答案】1483x <≤【解析】【分析】根据运行程序,第一次运算结果小于等于18,第二次运算结果大于18列出不等式组,然后求解即可.【详解】解:由题意得:36183(36)618x x -≤⎧⎨-->⎩①②,解不等式①,得:8x ≤,解不等式②,得:143x >,则x得取值范围是:148 3x<≤;故答案为148 3x<≤.【点睛】本题考查了一元一次不等式组的应用,读懂题目信息,理解运行程序并列出不等式组是解题的关键.(2020春·广西崇左·七年级统考期中)【24题答案】【答案】43<k<53【解析】【分析】将两个等式相减,可得3x-7y=3k-4,再根据0<3x-7y<1即可解出k 的范围.【详解】解:43165x y kx y-=+⎧⎨+=⎩①,②,①-②,得3x-7y=3k-4,则0<3k-4<1,解得43<k<53,故答案为:43<k<53.【点睛】此题主要考查二元一次方程组与不等式的综合,熟知二元一次方程组的解法是解题的关键.考查题型七用一元一次不等式组解决销售利润问题(2020·湖南湘潭·中考真题)【25题答案】【答案】(1)两种书的单价分别为35元和30元;(2)共有4种购买方案分别为:购买《北上》和《牵风记》的数量分别为17本和33本,购买《北上》和《牵风记》的数量分别为18本和32本,购买《北上》和《牵风记》的数量分别为19本和31本,购买《北上》和《牵风记》的数量分别为20本和30本;其中购买《北上》和《牵风记》的数量分别为17本和33本费用最低,最低费用为1585元.【解析】【分析】(1)设购买《北上》和《牵风记》的单价分别为x、y,根据“购买2本《北上》和1本《牵风记》需100元”和“ 购买2本《北上》和1本《牵风记》需100元”建立方程组求解即可;(2)设购买《北上》的数量n本,则购买《牵风记》的数量为50-n,根据“购买《北上》的数量不少于所购买《牵风记》数量的一半”和“购买两种书的总价不超过1600元”两个不等关系列不等式组解答并确定整数解即可.【详解】解:(1)设购买《北上》和《牵风记》的单价分别为x、y由题意得:210067x yx y+=⎧⎨=⎩解得3530xy=⎧⎨=⎩答:两种书的单价分别为35元和30元;(2)设购买《北上》的数量n本,则购买《牵风记》的数量为50-n根据题意得()()15023530501600n nn n⎧≥-⎪⎨⎪+-≤⎩解得:216203n≤≤则n可以取17、18、19、20,当n=17时,50-n=33,共花费17×35+33×30=1585元;当n=18时,50-n=32,共花费17×35+33×30=1590元;当n=19时,50-n=31,共花费17×35+33×30=1595元;当n=20时,50-n=30,共花费17×35+33×30=1600元;所以,共有4种购买方案分别为:购买《北上》和《牵风记》的数量分别为17本和33本,购买《北上》和《牵风记》的数量分别为18本和32本,购买《北上》和《牵风记》的数量分别为19本和31本,购买《北上》和《牵风记》的数量分别为20本和30本;其中购买《北上》和《牵风记》的数量分别为17本和33本费用最低,最低费用为1585元.【点睛】本题考查了二元一次方程组和不等式组的应用,弄清题意、确定等量关系和不等关系是解答本题的关键.(2019·四川泸州·统考中考真题)【26题答案】【答案】(1)A型汽车每辆的价格为25万元,B型汽车每辆的价格为30万元;(2)费用最省的方案是购买A型汽车4辆,B型汽车6辆,该方案所需费用为280万元.【解析】【分析】(1)设A 型汽车每辆的价格为x 万元,B 型汽车每辆的价格为y 万元,根据购买A 型汽车4辆,B 型汽车7辆,共需310万元;购买A 型汽车10辆,B 型汽车15辆,共需700万元,列方程组进行求解即可;(2)设购买A 型汽车m 辆,则购买B 型汽车(10)m -辆,根据总费用不超过285万元,且A 型汽车的数量少于B 型汽车的数量,列不等式组进行求解得出购买方案,然后再讨论即可得.【详解】解:(1)设A 型汽车每辆的价格为x 万元,B 型汽车每辆的价格为y 万元,由题意得:473101015700x y x y +=⎧⎨+=⎩,解得2530x y =⎧⎨=⎩,答:A 型汽车每辆的价格为25万元,B 型汽车每辆的价格为30万元;(2)设购买A 型汽车m 辆,则购买B 型汽车(10)m -辆,由题意得:102530(10)285m m m m <-⎧⎨+-≤⎩,解得:35m ≤<,因为m 是整数,所以3m =或4,当3m =时,该方案所需费用为:253307285⨯+⨯=万元;当4m =时,该方案所需费用为:254306280⨯+⨯=万元,答:费用最省的方案是购买A 型汽车4辆,B 型汽车6辆,该方案所需费用为280万元.【点睛】本题考查了二元一次方程组的应用,一元一次不等式组的应用,弄清题意,找准题中的等量关系、不等关系是解题的关键.(2020·湖南邵阳·中考真题)【27题答案】【答案】(1)A 型风扇、B 型风扇进货的单价各是10元和16元;(2)丹4种进货方案分别是:①进A 型风扇72台,B 型风扇28台;②进A 型风扇73台,B 型风扇27台;③进A 型风扇74台,B 型风扇26台;①进A 型风扇75台,B 型风扇24。

不等式(组)的新定义问题(重难点培优)-2020-2021学年七年级数学下册(解析版)

不等式(组)的新定义问题(重难点培优)-2020-2021学年七年级数学下册(解析版)

2020-2021学年七年级数学下册尖子生同步培优题典【人教版】专题9.9不等式(组)的新定义问题(重难点培优)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷试题共20题,解答20道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置. 一.解答题(共20小题)1.(2020春•海淀区校级期末)如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1)在方程①3x ﹣1=0;②23x +1=0;③x ﹣(3x +1)=﹣5中,不等式组{−x +2>x −53x −1>−x +2关联方程是 ③ (填序号). (2)若不等式组{x −12<11+x >−3x +2的一个关联方程的根是整数,则这个关联方程可以是 2x ﹣2=0(写出一个即可).(3)若方程9﹣x =2x ,3+x =2(x +12)都是关于x 的不等式组{x <2x −m x −2≤m的关联方程,试求出m 的取值范围.【分析】(1)先求出方程的解和不等式组的解集,再判断即可;(2)解不等式组求得其整数解,根据关联方程的定义写出一个解为1的方程即可; (3)先求出方程的解和不等式组的解集,即可得出答案. 【解析】(1)①解方程3x ﹣1=0得:x =13, ②解方程23x +1=0得:x =−32,③解方程x ﹣(3x +1)=﹣5得:x =2, 解不等式组{−x +2>x −53x −1>−x +2得:34<x <72,所以不等式组{−x +2>x −53x −1>−x +2的关联方程是③,故答案为:③;(2)解不等式x −12<1得:x <1.5, 解不等式1+x >﹣3x +2得:x >0.25, 则不等式组的解集为0.25<x <1.5, ∴其整数解为1,则该不等式组的关联方程为2x ﹣2=0. 故答案为:2x ﹣2=0.(3)解方程9﹣x =2x 得x =3, 解方程3+x =2(x +12)得x =2, 解不等式组{x <2x −m x −2≤m得m <x ≤m +2,∵方程9﹣x =2x ,3+x =2(x +12)都是关于x 的不等式组{x <2x −m x −2≤m的关联方程,∴1≤m <2.2.(2020春•盱眙县期末)定义:对于任何数a ,符号[a ]表示不大于a 的最大整数. 例如:[5.7]=5,[5]=5,[﹣1.5]=﹣2. (1)[−114]= ﹣3 ;(2)如果[a ]=4,那么a 的取值范围是 4≤a <5 ; (3)如果[4x−55]=﹣5,求满足条件的所有整数x .【分析】(1)直接利用新定义求解可得; (2)根据新定义求解可得; (3)利用新定义列出不等式组﹣5≤4x−55<−4,解之求出x 的范围,从而得出答案. 【解析】(1)[−114]=﹣3, 故答案为:﹣3. (2)∵[a ]=4, ∴4≤a <5; 故答案为:4≤a <5; (3)[4x−55]=﹣5,∴﹣5≤4x−55<−4,解得:﹣5≤x <−154,∴满足条件的x 的整数有﹣4,﹣5.3.(2018•余姚市模拟)请你阅读如图框内老师的新定义运算规定,然后解答下列各小题. (1)若x ⊕y =1,x ⊕2y =﹣2,分别求出x 和y 的值;(2)若x 满足x ⊕2≤0,且3x ⊕(﹣8)>0,求x 的取值范围.【分析】(1)根据定义新运算得到二元一次方程组,再解方程组即可求解; (2)根据定义新运算得到一元一次不等式组,再解不等式组即可求解. 【解析】(1)根据题意得{4x −3y =14x −3×2y =−2,解得{x =1y =1;(2)根据题意得{4x −3×2≤04×3x −3×(−8)>0,解得﹣2<x ≤32.故x 的取值范围是﹣2<x ≤32.4.(2020春•润州区期末)先阅读短文,然后回答短文后面所给出的问题:对于三个数a 、b 、c 中,我们给出符号来表示其中最大(小)的数,规定min {a ,b ,c }表示这三个数中最小的数,max {a ,b ,c }表示这三个数中最大的数.(注:取英文单词minimum (最少的)、maximum (最多的)前三个字母)例如:min {﹣1,2,3}=﹣1,max {﹣1,2,3}=3;min {﹣1,2,a }={a(a ≤−1)−1(a >−1),(1)min {﹣2014,﹣2015,﹣2016}= ﹣2016 ;max {2,x 2+2,2x }= x 2+2 ; (2)若max {2,x +1,2x }=2x ,求x 的取值范围;(3)若min {4,x +4,4﹣x }=max {2,x +1,2x },求x 的值. 【分析】(1)根据新定义即可得出结论;(2)根据新定义列出关于x 的不等式组,解之可得; (3)分情况分别列出关于x 的方程,解方程可得. 【解析】(1)∵﹣2014>﹣2015>﹣2016, ∴min {﹣2014,﹣2015,﹣2016}=﹣2016; ∵x 2+2>2x ,x 2+2≥2, ∴max {2,x 2+2,2x }=x 2+2; 故答案为:﹣2016,x 2+2;(2)∵max {2,x +1,2x }=2x , ∴{2x ≥22x ≥x +1, 解得:x ≥1;(3)①当4最小时,∴x +4>4,4﹣x >4,此种情况不成立,②当x +4最小时,∴4≥x +4,4﹣x ≥x +4,∴x ≤0,x +4=2,解得:x =﹣2; ③当4﹣x 最小时,4>4﹣x ,4+x >4﹣x ,∴x >0Ⅰ、当2最大时,∴2≥x +1,2≥2x ,∴x ≤1,∴4﹣x =2,解得:x =2(舍); Ⅱ、当2x 最大时,∴2x >2,2x >x +1,∴x >1,∴4﹣x =2x ,解得:x =43; Ⅲ、当x +1最大时,∴x +1>2,x +1>2x ,此种情况不成立, 综上,x 的值为43或﹣2.5.(2020春•崇川区校级期末)若x 为实数,定义:[x ]表示不大于x 的最大整数. (1)例如[1.6]=1,[π]= 3 ,[﹣2.82]= ﹣3 .(请填空)(2)[x ]+1是大于x 的最小整数,对于任意的实数x 都满足不等式[x ]≤x <[x ]+1,利用这个不等式,求出满足[x ]=2x ﹣1的所有解.【分析】(1)根据[x ]表示不大于x 的最大整数即可求解;(2)根据题意可以列出相应的不等式,从而可以求得x 的取值范围,本题得以解决. 【解析】(1)[π]=3,[﹣2.82]=﹣3.(2)∵对任意的实数x 都满足不等式[x ]≤x <[x ]+1,[x ]=2x ﹣1, ∴2x ﹣1≤x <2x ﹣1+1,解得0<x ≤1, ∵2x ﹣1是整数, ∴x =0.5或x =1, 故答案为:3,﹣3.6.(2020春•锡山区期末)定义一种新运算“a ⊗b ”:当a ≥b 时,a ⊗b =a +2b ;当a <b 时,a ⊗b =a ﹣2b . 例如:3⊗(﹣4)=3+(﹣8)=﹣5,(﹣6)⊗12=﹣6﹣24=﹣30. (1)填空:(﹣3)⊗(﹣2)= 1 ;(2)若(3x ﹣4)⊗(5+x )=(3x ﹣4)+2(5+x ),则x 的取值范围为 x ≥92 ; (3)已知(5x ﹣7)⊗(﹣2x )>1,求x 的取值范围; (4)利用以上新运算化简:(3m 2+5m +10)⊗(2m 2﹣m ). 【分析】(1)根据公式计算可得; (2)结合公式知3x ﹣4≥5+x ,解之可得;(3)由题意可得①{5x −7≥−2x 5x −7+2(−2x)>1,②{5x −7<−2x 5x −7−2(−2x)>1,分别求解可得;(4)先利用作差法判断出3m 2+5m +10>2m 2﹣m ,再新运算化简即可得. 【解析】(1)(﹣3)⊗(﹣2)=﹣3﹣2×(﹣2)=1, 故答案为:1;(2)∵(3x ﹣4)⊗(5+x )=(3x ﹣4)+2(5+x ), ∴3x ﹣4≥5+x , 解得:x ≥92, 故答案为:x ≥92.(3)由题意可知分两种情况讨论: ①{5x −7≥−2x5x −7+2(−2x)>1,解之得x >8,②{5x −7<−2x5x −7−2(−2x)>1,解之得89<x <1,综上所述:x 的取值范围为x >8或89<x <1;(4)(3m 2+5m +10)﹣(2m 2﹣m ) =m 2+6m +10 =(m +3)2+1>0,原式=(3m 2+5m +10)+2(2m 2﹣m )=7m 2+3m +10. 7.(2020春•凤凰县期末)阅读材料:我们定义一个关于有理数a ,b 的新运算,规定:a ⊕b =4a ﹣3b .例如:5⊕6=4×5﹣3×6=2.完成下列各小题.(1)若a ⊕b =1,a ⊕2b =﹣5,分别求出a 和b 的值;(2)若m 满足m ⊕2≤0,且3m ⊕(﹣8)>0,求m 的取值范围. 【分析】(1)根据新运算,得到方程组,解方程组即可求解; (2)根据新运算,得到不等式组,解不等式组即可. 【解析】(1)根据题意,得{4a −3b =14a −3×2b =−5,解得:{a =74b =2,∴a 和b 的值分别为a =74,b =2;(2)根据题意,得{4m −3×2≤04×3m −3×(−8)>0,解得:−2<m ≤32. ∴m 的取值范围−2<m ≤32. 8.(2020春•微山县期末)阅读新知现对x ,y 进行定义一种运算,规定f (x ,y )=mx+ny2(其中m ,n 为常数且mn ≠0),等式的右边就是加、减、乘、除四则运算.例如: f (2,0)=m×2+n×02=m 应用新知(1)若f (1,1)=5,f (2,1)=8,求m ,n 的值; 拓展应用(2)已知f (﹣3,0)>﹣3,f (3,0)>−92,且m +n =16,请你求出符合条件的m ,n 的整数值. 【分析】(1)根据题中的新定义列出关于m 与n 的方程组,求出方程组的解即可得到a 与b 的值; (2)根据题中的新定义列出不等式组,求得不等式组的解,根据m +n =16确定出m 、n 的整数值.【解析】(1)根据题中的新定义得:{m+n2=52m+n 2=8,解得:{m =6n =4;(2)根据题中的新定义得:{−3m+02>−33m+02>−92, 解得:﹣3<m <2,∵m 、n 是整数,且m +n =16, ∴{m =−2n =18或{m =−1n =17或{m =1n =15. 9.(2020春•长沙期末)对x 、y 定义一种新运算F ,规定:F (x ,y )=ax +by (其中a ,b 均为非零常数).例如:F (2,3)=2a +3b .(1)已知F (2,﹣1)=﹣1,F (3,0)=3. ①求a ,b 的值.②已知关于p 的不等式组{F(3−2p ,3)≥4F(2,2−3p)<−1求p 的取值范围;(2)若运算F 满足{−2<F(1,2)≤4−1<F(2,1)≤5,请你求出F (k ,k )的取值范围(用含k 的代数式表示,这里k为常数且k >0).【分析】(1)①根据F (2,﹣1)=﹣1,F (3,0)=3列出关于a 、b 的方程组,解之可得; ②由{F(3−2p ,3)≥4F(2,2−3p)<−1列出关于p 的不等式组,解之可得;(2)根据{−2<F(1,2)≤4−1<F(2,1)≤5列出关于a 、b 的不等式组,相加得出a +b 的取值范围,再进一步求解可得.【解析】(1)①由题意知{2a −b =−13a =3,解得{a =1b =3;②由题意知{3−2p +9≥42+6−9p <−1,解得1<p ≤4; (2)由题意知{−2<a +2b ≤4−1<2a +b ≤5,∴﹣3<3a +3b ≤9, ∴﹣1<a +b ≤3,∵F (k ,k )=ka +kb ,且﹣k <k (a +b )≤3k , ∴﹣k <F (k ,k )≤3k .10.(2020春•天心区期中)如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的相伴方程.(1)在方程2x ﹣1=1①,4x ﹣3=0②,x ﹣(3x +1)=﹣5③中,写出是不等式组{−x +2>x −53x −1>−x +2的相伴方程的序号 ①③ . (2)写出不等式组{x +1<02x −3<4x +3的一个相伴方程,使得它的根是整数: x =﹣2 .(3)若方程2x ﹣1=3;x3+1=2都是关于x 的不等式组{x <2x −m x −2≤m的相伴方程,求m 的取值范围.【分析】(1)分别解出三个一元一次方程的解和一元一次不等式的解集,方程的解在不等式解集范围内即为所求;(2)求出不等式组的解集,在此范围内只有x =﹣2一个整数解,写出符合条件的方程即可; (3)求出不等式组的解集为m <x ≤m +2,x =2和x =3在此范围内,列出不等式m <2,m +2≥3即可求解.【解析】(1)分别求解一元一次方程为①x =1;②x =34;③x =2; 不等式组的解集为34<x <72,∵x =1,x =2是不等式组的解, ∴不等式组的相伴方程是①③; 故答案为①③; (2)由不等式组{x +1<02x −3<4x +3,解得,﹣3<x <﹣1,则它的相伴方程的解是整数,所以,相伴方程x =﹣2, 故答案为x =﹣2; (3){x <2x −m x −2≤m得,不等式组的解集为m <x ≤m +2,解方程2x ﹣1=3;x3+1=2得,x =2和x =3,∵方程2x ﹣1=3;x3+1=2都是关于x 的不等式组{x <2x −m x −2≤m的相伴方程,∴m <2,m +2≥3, ∴1≤m <2.11.(2020春•通山县期末)阅读材料:形如2<2x +1<3的不等式,我们就称之为双连不等式,求解双连不等式的方法一,转化为不等式组求解,如{2<2x +1,2x +1<3.;方法二,利用不等式的性质直接求解,双连不等式的左、中、右同时减去1,得1<2x <2,然后同时除以2,得12<x <1.解决下列问题:(1)请你写一个双连不等式并将它转化为不等式组; (2)利用不等式的性质解双连不等式2≥﹣2x +3>﹣5;(3)已知﹣3≤x <−52,求3x +5的整数值.【分析】(1)3<x ﹣2<5,转化为不等式组{3<x −2x −2<5;(2)根据方法二的步骤解答即可;(3)根据方法二的步骤解答,得出﹣4≤3x +5<−52,即可得到结论. 【解析】(1)3<x ﹣2<5, 转化为不等式组{3<x −2x −2<5;(2)2≥﹣2x +3>﹣5,不等式的左、中、右同时减去3,得﹣1≥﹣2x >﹣8, 同时除以﹣2,得12≤x <4;(3)﹣3≤x <−52,不等式的左、中、右同时乘以3,得﹣9≤3x <−152, 同时加5,得﹣4≤3x +5<−52, ∴3x +5的整数值﹣4或﹣3.12.(2020春•石城县期末)阅读材料:分母中含有未知数的不等式叫分式不等式,如x−3x+1>0,如何求其解集呢?它的理论依据是,两数相除,同号得正,异号得负,其字母表达式为: 若a >0,b >0,则a b >0;若a <0,b <0,则a b >0.若a >0,b <0,则ab<0;若a <0,b >0,则ab<0.(1)反之:若a b>0,则{a >0b >0或{a <0b <0,若a b <0,则: {a >0b <0或{a <0b >0;(2)根据上述材料,求不等式x−3x+1≥0的解集.【分析】(1)根据有理数除法法则求解可得; (2)根据题意列出不等式组,解之可得. 【解析】(1)若ab <0,则{a >0b <0或{a <0b >0, 故答案为:{a >0b <0或{a <0b >0; (2)由题意知①{x −3≥0x +1>0或②{x −3≤0x +1<0,解不等式组①得x ≥3; 解不等式组②得x <﹣1,故不等式的解集为x ≥3或x <﹣1.13.(2020春•椒江区期末)规定min (m ,n )表示m ,n 中较小的数(m ,n 均为实数,且mn ),例如:min {3,﹣1}=﹣1,、min {√2,√3}=√2据此解决下列问题: (1)min {−12,−13}= −12 ; (2)若min {2x−13,2}=2,求x 的取值范围;(3)若min {2x ﹣5,x +3}=﹣2,求x 的值.【分析】(1)利用题中的新定义确定出所求即可;(2)利用题中的新定义得出2x−13≥2,计算即可求出x 的取值;(3)利用题中的新定义分类讨论计算即可求出x 的值.【解析】(1)根据题中的新定义得:min {−12,−13}=−12;故答案为:−12;(2)由题意2x−13≥2,解得:x ≥3.5;(3)若2x ﹣5=﹣2,解得:x =1.5,此时x +3=4.5>﹣2,满足题意;若x +3=﹣2,解得:x =﹣5,此时2x ﹣5=﹣15<﹣2,不符合题意,综上,x =1.5.14.(2020•通辽)用※定义一种新运算:对于任意实数m 和n ,规定m ※n =m 2n ﹣mn ﹣3n ,如:1※2=12×2﹣1×2﹣3×2=﹣6.(1)求(﹣2)※√3;(2)若3※m ≥﹣6,求m 的取值范围,并在所给的数轴上表示出解集.【分析】(1)根据新定义规定的运算法则列式,再由有理数的运算法则计算可得;(2)根据新定义列出关于x 的不等式,解不等式即可得.【解析】(1)(﹣2)※√3=(﹣2)2×√3−(﹣2)×√3−3√3=4√3+2√3−3√3=3√3;(2)3※m ≥﹣6,则32m ﹣3m ﹣3m ≥﹣6,解得:m ≥﹣2,将解集表示在数轴上如下:15.(2020•张家界)阅读下面的材料:对于实数a ,b ,我们定义符号min {a ,b }的意义为:当a <b 时,min {a ,b }=a ;当a ≥b 时,min {a ,b }=b ,如:min {4,﹣2}=﹣2,min {5,5}=5.根据上面的材料回答下列问题:(1)min {﹣1,3}= ﹣1 ;(2)当min {2x−32,x+23}=x+23时,求x 的取值范围. 【分析】(1)比较大小,即可得出答案;(2)根据题意判断出2x−32≥x+23,解不等式即可判断x 的取值范围.【解析】(1)由题意得min {﹣1,3}=﹣1;故答案为:﹣1;(2)由题意得:2x−32≥x+233(2x ﹣3)≥2(x +2)6x ﹣9≥2x +44x ≥13x ≥134, ∴x 的取值范围为x ≥134. 16.(2020春•仁寿县期末)对于任意实数a 、b 约定关于⊗的一种运算如下:a ⊗b =2a +b .例如:(﹣3)⊗2=2×(﹣3)+2=﹣4.(1)3⊗(﹣5)的值等于 1 ;(2)若x 满足(x +2)⊗3>7,求x 的取值范围;(3)若x ⊗(﹣y )=5,且2y ⊗x =7,求x +y 的值.【分析】(1)根据公式a ⊗b =2a +b 代入计算可得;(2)根据公式列出关于x 的不等式,解之可得答案;(3)根据已知条件并结合公式列出关于x 、y 的方程组,将两个方程相加,再两边都除以3即可得出答案.【解析】(1)3⊗(﹣5)=2×3+(﹣5)=6﹣5=1,故答案为:1;(2)∵(x +2)⊗3>7,∴2(x +2)+3>7,∴2x +4+3>7,∴2x +7>7,∴2x >0,解得x >0;(2)∵x ⊗(﹣y )=5,且2y ⊗x =7,∴{2x −y =5①x +4y =7②, ①+②,得:3x +3y =12,∴x +y =4.17.(2020春•邗江区期末)定义一种新运算“a *b ”:当a ≥b 时,a *b =a +2b ;当a <b 时,a *b =a ﹣2b .例如:3*(﹣4)=3+(﹣8)=﹣5,(﹣6)*12=﹣6﹣24=﹣30.(1)填空:(﹣4)*3= ﹣10 .(2)若(3x ﹣4)*(x +6)=(3x ﹣4)+2(x +6),则x 的取值范围为 x ≥5 .(3)计算(2x 2﹣4x +7)*(x 2+2x ﹣2)= 4x 2+3 .(4)已知(3x ﹣7)*(3﹣2x )<﹣6,求x 的取值范围.【分析】(1)根据公式计算可得;(2)结合公式知3x ﹣4≥x +6,解之可得;(3)先利用作差法判断出2x 2﹣4x +8>x 2+2x ﹣2,再根据公式计算(2x 2﹣4x +7)*(x 2+2x ﹣2)即可得;(4)由题意可得{3x −7≥3−2x 3x −7+2(3−2x)<−6或{3x −7<3−2x 3x −7−2(3−2x)<−6,分别求解可得; 【解析】(1)(﹣4)*3=﹣4﹣2×3=﹣10,故答案为:﹣10;(2)∵(3x ﹣4)*(x +6)=(3x ﹣4)+2(x +6),∴3x ﹣4≥x +6,解得:x ≥5,故答案为:x ≥5.(3)∵2x 2﹣4x +7﹣(x 2+2x ﹣2)=x 2﹣6x +9=(x ﹣3)2≥0;∴2x 2﹣4x +7≥x 2+2x ﹣2,原式=2x 2﹣4x +7+2(x 2+2x ﹣2)=2x 2﹣4x +7+2x 2+4x ﹣4=4x 2+3;(4)由题意知{3x −7≥3−2x 3x −7+2(3−2x)<−6或{3x −7<3−2x 3x −7−2(3−2x)<−6, 解得:x >5或x <1;18.(2020春•丹阳市校级期末)定义一种新运算“a ※b ”:当a ≥b 时,a ※b =2a +b ;当a <b 时,a ※b =2a﹣b .例如:3※(﹣4)=2×3+(﹣4)=2,(﹣6)※12=2×(﹣6)﹣12=﹣24.(1)填空:(﹣2)※3= 7 ;(2)若(3x ﹣4)※(2x +3)=2(3x ﹣4)+(2x +3),则x 的取值范围为 x ≥7 ;(3)已知(2x ﹣6)※(9﹣3x )<7,求x 的取值范围;(4)小明在计算(2x 2﹣2x +4)※(x 2+4x ﹣6)时随意取了一个x 的值进行计算,得出结果是0,小丽判断小明计算错了,小丽是如何判断的?请说明理由.【分析】(1)根据公式计算可得;(2)结合公式知3x ﹣4≥2x +3,解之可得;(3)由题意可得{2x −6≥9−3x 2(2x −6)+(9−3x)<7或{2x −6<9−3x 2(2x −6)−(9−3x)<7,分别求解可得; (4)先利用作差法判断出2x 2﹣2x +4>x 2+4x ﹣6,再根据公式计算(2x 2﹣2x +4)※(x 2+4x ﹣6)即可.【解析】(1)(﹣2)※3=2×(﹣2)﹣3=﹣7,故答案为:﹣7;(2)∵(3x ﹣4)※(2x +3)=2(3x ﹣4)+(2x +3),∴3x ﹣4≥2x +3,解得:x ≥7,故答案为:x ≥7.(3)由题意知{2x −6≥9−3x 2(2x −6)+(9−3x)<7或{2x −6<9−3x 2(2x −6)−(9−3x)<7, 解得:3≤x <10或x <3,∴x <10.(4)∵2x 2﹣2x +4﹣(x 2+4x ﹣6)=x 2﹣6x +10=(x ﹣3)2+1>0∴2x 2﹣2x +4>x 2+4x ﹣6,原式=2(2x 2﹣2x +4)+(x 2+4x ﹣6)=4x 2﹣4x +8+x 2+4x ﹣6=5x 2+2;∴小明计算错误.19.(2020•河北模拟)定义新运算:对于任意实数m 、n 都有m ☆n =mn ﹣3n .例如4☆2=4×2﹣3×2=8﹣6=2,请根据上述知识解决下列问题:(1)x ☆12>4,求x 取值范围; (2)若|x ☆(−14)|=3,求x 的值;(3)若方程x ☆□x =6,□中是一个常数,且此方程的一个解为x =1,求□中的常数.【分析】(1)根据已知公式得出12x −32>4,解之可得答案; (2)根据公式得出|−14x +34|=3,即可得出−14x +34=3或−14x +34=−3,解之可得答案;(3)根据公式得到□x 2﹣3•□x =6,把x =1代入得到□﹣3□=6,即可求得□=﹣3.【解析】(1)∵x ☆12>4, ∴12x −32>4, 解得:x >11;(2)∵|x ☆(−14)|=3,∴|−14x +34|=3,∴−14x +34=3或−14x +34=−3,解得:x =﹣9或x =15;(3)∵方程x ☆□x =6,∴□x 2﹣3•□x =6,∵方程的一个解为x =1,∴□﹣3□=6,∴□=﹣3.20.(2020秋•岳麓区校级月考)定义:给定两个不等式组P 和Q ,若不等式组P 的任意一个解,都是不等式组Q 的一个解,则称不等式组P 为不等式组Q 的“子集”.例如:不等式组M :{x >2x >1是N :{x >−2x >−1的“子集”. (1)若关于x 的不等式组{x >a x >−1是不等式组{x >2x >1的“子集”,则a 的取值范围是 a ≥2 ; (2)已知a ,b ,c ,d 为不互相等的整数,其中a <b ,c <d ,下列三个不等式组A :a ≤x ≤b ,B :c ≤x ≤d ,C :1<x <6满足:A 是B 的“子集”,B 是C 的“子集”,求a ﹣b +c ﹣d 的值.(3)已知不等式组M :{2x ≥m 3x <n有解,且M 是不等式组N :1<x ≤3的“子集”,则满足条件的有序整数对(m ,n )共有多少个?【分析】(1)根据“子集”的定义确定出a 的范围即可;(2)根据“子集”的定义确定出各自的值,代入原式计算即可求出值;(3)根据“子集”的定义确定出所求即可.【解析】(1)∵关于x 的不等式组{x >a x >−1是不等式组{x >2x >1的“子集”, ∴a ≥2,故答案为a ≥2;(2)∵a ,b ,c ,d 为互不相等的整数,其中a <b ,c <d ,A :a ≤x ≤b ,B :c ≤x ≤d ,C :1<x <6满足:A 是B 的“子集”且B 是C 的“子集”,∴a =3,b =4,c =2,d =5,则a ﹣b +c ﹣d =3﹣4+2﹣5=﹣4;word 可编辑文档(3)不等式组M 整理得:{x ≥m 2x <n 3,由不等式组有解得到m 2<n 3,即m 2≤x <n 3,∵M :1<x ≤3是不等式组的“子集”, ∴m 2>1,n 3≤3,即m >2,n ≤9, 当n =9时,m =3,4,5,当n =8时,m =3,4,5,当n =7时,m =3,4,当n =6时,m =3,当n =5时,m =3,共10种情形,∴满足条件的有序整数对(m ,n )有10个。

第8章一元一次不等式(培优篇)-2022-2023学年七年级数学下册阶段性复习精选精练(华东师大版)

第8章一元一次不等式(培优篇)-2022-2023学年七年级数学下册阶段性复习精选精练(华东师大版)

第8章 一元一次不等式(培优篇)一、单选题(本大题共10小题,每小题3分,共30分) 1.如果,0a b c ><,那么下列不等式成立的是( ) A .a c b +> B .a c b c +>- C .11ac bc ->-D .()()11a c b c -<-2.一元一次不等式3(7﹣x )≥1+x 的正整数解有( ) A .3个B .4个C .5个D .6个3.数轴上A 、B 、C 三点依次从左向右排列,表示的数分别为-2,12x -,3x +,则x 可能是( )A .0B .-1C .-2D .34.已知a 、b 是不为0的实数,则下列选项中,解集可以为20222022x -<<的不等式组是( )A .11ax bx <⎧⎨>⎩B .11ax bx >⎧⎨>⎩C .11ax bx >⎧⎨<⎩D .11ax bx <⎧⎨<⎩5.小红购买了一本《数学和数学家的故事》·两位小伙伴想知道书的价格,小红让他们猜,小华说:“不少于20元”,小强说:“少于22元”,小红说:“你们两个人说的都没有错”,则这本书的价格x (元)所在的范围为( )A .2022x <<B .2022x ≤≤C .2022x ≤<D .2022x <≤6.如图,在数轴上A ,B ,C ,D 四个点所对应的数中是不等式组1202x x x -<⎧⎪⎨≤⎪⎩的解的是( )A .点A 对应的数B .点B 对应的数C .点C 对应的数D .点D 对应的数7.如图所示,运行程序规定:从“输入一个值x ”到“结果是否79>”为一次程序操作,如果程序操作进行了三次才停止,那么x 的取值范围是( )A .9x >B .19x ≤C .919x <≤D .919x ≤≤8.若数a 使关于x 的不等式52x x a -≥+的最小正整数解是1x =,则a 的取值范围是( ) A .2a >-B .2a <C .22a -<<D .2a ≤9.若关于x 的一元一次不等式组11(42)423122x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x ≤a ,且关于y 的分式方程24111y a y y y---=--有非负整数解,则符合条件的所有整数a 的和为( ) A .0 B .1 C .4 D .610.已知关于x 、y 的方程组,给出下列说法:①当a =1时,方程组的解也是方程x +y =2的一个解;①当x -2y >8时,15a >;①不论a 取什么实数,2x +y 的值始终不变;①若25y x =+,则4a =-. 以上说法正确的是( )A .①①①B .①①①C .①①D .①①二、填空题(本大题共8小题,每小题4分,共32分) 11.已知关于x 的不等式7xa <的解也是不等式27152x a a ->-的解,则常数a 的取值范围是_____.12.已知实数x ,y 满足x +y =3,且x >﹣3,y ≥1,则x ﹣y 的取值范围____.13.已知不等式组211x x x m <+⎧⎨->⎩的解集为1x >-,则m 的取值范围是________.14.若关于x 的不等式组()()324122x x x m x ⎧-<-⎨-≤-⎩,恰有两个整数解,则m 的取值范围是______.15.关于x 的不等式组2500x x a -<⎧⎨->⎩无整数解,则a 的取值范围为_____.16.不等式组29611x x x k +>+⎧⎨-<⎩的解集为2x <,则k 的取值范围为_____.17.已知a 、b 、c 是非负数,且2a +3b +c =10,a +b -c =4,如果S =2a +b -2c ,那么S 的最大值和最小值的和等于_________.18.如图,用图1中的a 张长方形和b 张正方形纸板作侧面和底面,做成如图2的竖式和横式两种无盖纸盒,若a +b 的值在285和315之间(不含285与315),且用完这些纸板做竖式纸盒比横式纸盒多30个,则a 的值可能是____________.三、解答题(本大题共6小题,共58分)19.(8分)解不等式组2153112x x x -<⎧⎪⎨-+≥⎪⎩,把解集在数轴上表示出来,并写出不等式组的所有整数解.20.(8分)解关于x 的不等式组:05310531x a x a <+≤⎧⎨<-≤⎩,其中a 为参数.21.(10分)现有不等式的两个性质:①在不等式的两边都加上(或减去)同一个数(或整式),不等号的方向不变.①在不等式的两边都乘同一个数(或整式),乘的数(或整式)为正时不等号的方向不变,乘的数(或整式)为负时不等号的方向改变.请解决以下两个问题:(1) 利用性质①比较2a 与a 的大小(a ≠0). (2) 利用性质①比较2a 与a 的大小(a ≠0).22.(10分)若任意一个代数式,在给定的范围内求得的最大值和最小值恰好也在该范围内,则称这个代数式是这个范围的“湘一代数式”.例如:关于x 的代数式2x ,当-1≤x ≤ 1时,代数式2x 在x =±1时有最大值,最大值为1;在x =0时有最小值,最小值为0,此时最值1,0均在-1≤x ≤1这个范围内,则称代数式2x 是-1≤x ≤1的“湘一代数式”.(1)若关于x 的代数式x ,当13x ≤≤时,取得的最大值为 ,最小值为 ,所以代数式“是”或“不是”)13x ≤≤的“湘一代数式”.(2)若关于x 的代数式12ax -+是22x -≤≤的“湘一代数式”,求a 的最大值与最小值. (3)若关于x 的代数式2x -是4m x ≤≤的“湘一代数式”,求m 的取值范围.23.(10分)为支援武汉抗击新冠肺炎,甲地捐赠了600吨的救援物质并联系了一家快递公司进行运送.快递公司准备安排A 、B 两种车型把这批物资从甲地快速送到武汉.其中,从甲地到武汉,A 型货车5辆、B 型货车6辆,一共需补贴油费3800元;A 型货车3辆、B型货车2辆,一共需补贴油费1800元.(1)从甲地到武汉,A、B两种型号的货车,每辆车需补贴的油费分别是多少元?(2)A型货车每辆可装15吨物资,B型货车每辆可装12吨物资,安排的B型货车的数量是A型货车的2倍还多4辆,且A型车最多可安排18辆、运送这批物资,不同安排中,补贴的总的油费最少是多少?24.(12分)老王是新农村建设中涌现出的“养殖专业户”.他准备购置80只相同规格的网箱,养殖A、B两种淡水鱼(两种鱼不能混养).计划用于养鱼的总投资不少于7万元,但不超过7.2万元,其中购置网箱等基础建设需要1.2万元.设他用x只网箱养殖A种淡水鱼,目前平均每只网箱养殖A、B两种淡水鱼所需投入及产出情况如表:(利润=收入-支出.收入指成品鱼收益,支出包括基础建设投入、鱼苗投资及饲料支出)(1)按目前市场行情,老王养殖A、B两种淡水鱼获得利润最多是多少万元?(2)基础建设投入、鱼苗投资、饲料支出及产量不变,但当老王的鱼上市时,A种鱼价格上涨a%,B种鱼价格下降20%,使老王养鱼实际获得利润5.68万元.求a的值.参考答案1.D【分析】根据不等式的性质即可求出答案. 解:①0c <, ①11c -<-, ①a b >,①()()11a c b c -<-, 故选D .【点拨】本题考查不等式的性质,解题的关键是熟练运用不等式的性质,本题属于中等题型.2.C【分析】先求出不等式的解集,根据解集得出答案即可. 解:3(7)1x x ≥﹣+ 2131x x -≥+3121x x --≥- 420x -≥-①5x ≤所以不等式的正整数解为1,2,3,4,5,共5个, 故选:C .【点拨】本题考查了解一元一次不等式,不等式的正整数解的应用,能求出不等式的解集是解此题的关键.3.A【分析】根据条件列出关于x 的一元一次不等式组,解得x 的范围,即可求得答案. 解:由题意知,212123x x x -<-⎧⎨-<+⎩ ,解得2332x -<<. 故选:A .【点拨】本题主要考查列一元一次不等式以及解一元一次不等式组,解决本题的关键是列出一元一次不等式组.4.D【分析】根据解集可以为20222022x -<<,所以a 、b 异号,分两种情况:当a >0,b <0时,则11a b>;当a <0,b >0时,则11a b <;分别逐项判定即可.解:①解集可以为20222022x -<<, ①a 、b 异号, 当a >0,b <0时,则11a b>, A 、11ax bx <⎧⎨>⎩的解集为x <1b ,故此选项不符合题意;B 、11ax bx >⎧⎨>⎩的无解,故此选项不符合题意;C 、11ax bx >⎧⎨<⎩的解集为x >1a ,故此选项不符合题意;D 、11ax bx <⎧⎨<⎩的解集为1b <x <1a ,故此选项符合题意;当a <0,b >0时,则11a b<, A 、11ax bx <⎧⎨>⎩的解集为x >1b ,故此选项不符合题意;B 、11ax bx >⎧⎨>⎩的无解,故此选项不符合题意;C 、11ax bx >⎧⎨<⎩的解集为x <1a ,故此选项不符合题意;D 、11ax bx <⎧⎨<⎩的解集为1a <x <1b ,故此选项符合题意;综上,a 、b 是不为0的实数,解集可以为20222022x -<<的不等式组是D , 故选:D .【点拨】本题考查不等式组的解集,解不等式组,熟练掌握不等式组解集的确定原则“大大取较大,小小取较小,大小小大中间找,大大小小无处找”是解题的关键.5.C【分析】根据不少于就是大于等于的意思去建立不等式即可. 解:①书的价格“不少于20元”,“少于22元”, ①2022x ≤<,故选C .【点拨】本题考查了列不等式,正确理解不少于的意义是解题的关键. 6.B【分析】先求出不等式组的解集,然后判断即可得出答案. 解:1202x x x-<⎧⎪⎨≤⎪⎩①② 解不等式①,得1x >-, 解不等式①,得0x ≤, ①不等式组的解为10-<≤x ,①在数轴上B 点所对应的数是不等式组的解. 故选①B .【点拨】本题考查了解不等式组和数轴上点的特征,正确求出不等式组的解集是解题的关键.7.C【分析】根据运算程序,前两次运算结果小于等于79,第三次运算结果大于79列出不等式组,然后求解即可.解:由题意得,()()217922117922211179x x x ⎧+≤⎪⎪++≤⎨⎪⎡⎤+++⎪⎣⎦⎩①②>③, 解不等式①得,x ≤39, 解不等式①得,x ≤19, 解不等式①得,x >9,所以,x 的取值范围是9<x ≤19. 故选:C .【点拨】本题考查了一元一次不等式组的应用,读懂题目信息,理解运输程序并列出不等式组是解题的关键.8.D【分析】由不等式的最小正整数解为1x =,可得出关于a 的一元一次不等式,解之即可得出a 的取值范围.解:①关于x 的不等式52x x a -≥+的最小正整数解是1x = ①214a+≤ 2a ≤故选:D.【点拨】此题主要考查一元一次不等式的正整数解的问题,熟练利用数轴理解一元一次不等式的解集是解题的关键.9.B【分析】先解关于x 的一元一次不等式组,根据其解集x a ≤,求出a 的取值范围,再解分式方程,根据其有非负整数解,求出a 的取值范围,进而可得符合要求的a 值,最后求和即可.解:由不等式组()1142423122x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩,解得:5x a x ≤⎧⎨<⎩ ①不等式组的解集为x a ≤ ①5a < 由分式方程24111y a y y y---=-- ,去分母得241y a y y -+-=- 解得32a y +=,1y ≠ ①分式方程有非负数解 ①3a ≥-且3a ≠①a 的取值为321---,,,0,1,2,4①符合条件的所有整数a 的和为()()32101241-+-+-++++= 故选B .【点拨】本题考查了解一元一次不等式组,解分式方程.解题的关键在于求出符合条件的所有整数a .10.A解:试题分析:当a=1时,方程x+y=1-a=0,因此方程组的解不是x+y=2的解,故①不正确;通过加减消元法可解方程组为x=3+a ,y=-2a -2,代入x -2y >8可解得a >15,故①正确;2x+y=6+2a+(-2a -2)=4,故①正确;代入x 、y 的值可得-2a -2=(3+a )2+5,化简整理可得a=-4,故①正确.故选:A 11.1009a -≤< 【分析】先把a 看作常数求出两个不等式的解集,再根据同小取小列出不等式求解即可. 解:关于x 的不等式27152x a a->-, 解得:19542x a >-, 关于x 的不等式7x a <的解也是不等式27152x a a->-的解, ∴0a <,∴不等式7xa<的解集是7x a >, ∴195742a a ≥-,解得:109a ≥-,0a <,1009a ∴-≤<, 故答案为:1009a -≤<. 【点拨】本题考查了一元一次不等式的解法,解题的关键是分别求出两个不等式的解集,再根据同小取小列出关于a 的不等式,注意在不等式两边都除以一个负数时,应只改变不等号的方向.12.91x y --≤<【分析】先设x ﹣y =m ,利用x +y =3,构造方程组,求出用m 表示x 、y 的代数式,再根据x >﹣3,y ≥1,列不等式求出m 的范围即可.解:设x ﹣y =m ,①3x y m x y -=⎧⎨+=⎩①②, ①+①得32mx +=, ①-①得32my -=, ①y ≥1, ①312m-≥,解得1m ,①x >﹣3, ①332m +>-, 解得9m >-,①91m ≤-<,x ﹣y 的取值范围91x y --≤<.故答案为91x y --≤<.【点拨】本题考查方程与不等式综合问题,解题关键是设出x ﹣y =m ,与x +y =3,构造方程组从中求出32m x +=,32m y -=,再出列不等式. 13.2m ≤-【分析】求出每个不等式的解集,根据已知得出关于m 的不等式,求出不等式的解集即可. 解:211x x x m <+⎧⎨->⎩①② 解①得,1x >-,解①得,1x m >+,不等式组211x x x m <+⎧⎨->⎩的解集为1x >-, 11m ∴+≤-,2m ∴≤-,故答案为:2m ≤-.【点拨】本题考查了解一元一次不等式组的应用,解题的关键是能根据不等式的解集和已知得出关于m 的不等式.14.21m -≤<【分析】不等式组整理后表示出解集,根据不等式组恰有两个整数解,确定出m 的范围即可.解:3(2)4(1)22x x x m x -<-⎧⎨-≤-⎩①②解不等式①得,2x >-,解不等式①得,23m x +≤, ①不等式解集为:223m x +-<≤, ①不等式组恰有两个整数解,即-1,0, ①0≤23m +<1, 解得:21m -≤<.故答案为:21m -≤<.【点拨】此题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.15.a ≥2.【分析】先求出两个不等式的解集,再根据不等式组无整数解列出关于a 的不等式求解即可 解:不等式组整理得:52x x a⎧<⎪⎨⎪>⎩ 不等式组的解集是:a <x <52, 当a ≥52时,不等式组无解, ①不等式组无整数解,①a ≥2故答案为:a ≥2.【点拨】本题考查了一元一次不等式组的解法,解题的关键是熟练掌握确定不等式组解集的方法.16.k≥1解:解不等式2x+9>6x+1可得x <2,解不等式x -k <1,可得x <k+1,由于x <2,可知k+1≥2,解得k≥1.故答案为k≥1.17.14【分析】把a 看成是已知数,分别用含a 的式子表示b ,c ,根据a ,b ,c 是非负数求出a 的范围,把b ,c 代入S =2a +b -2c ,根据a 的范围求出S 的最大值和最小值.解:由方程组23104a b c a b c ++=⎧⎨+-=⎩得,143424a b a c -⎧⎪⎪⎨-⎪⎪⎩==, 因为a ,b ,c 是非负数,所以014304204a a a ⎧⎪≥⎪-⎪≥⎨⎪-⎪≥⎪⎩,解得2≤a ≤143. S =2a +b -2c =2a +1434a --2×239442a a -=+, 当a =2时,S =39242⨯+=6; 当a =143时,S =3149432⨯+=8. 则6+8=14.故答案为14.【点拨】三个未知数,两个方程的问题,通常将其中的一个未知数看成是已知数,用这个字母表示出其它两个未知数,再根据题意,确定这个未知数的取值范围.18.218,225,232【分析】根据题意图形可知,竖式纸盒需要4个长方形纸板与1个正方形纸板,横式纸盒要3个长方形纸板与2个正方形纸板,设做成横式纸盒x 个,则做成竖式纸盒()30x +个,即可算出总共用的纸板数,再根据285315a b <+<,即可得到不等式组求出x 的值,即可进行求解.解:设做成横式纸盒x 个,则做成竖式纸盒()30x +个,①285315a b <+<,①()2853243030315x x x x <+++++<,解得13.516.5x <<,①x 为正整数,①14x =或15x =或16x =,当14x =时,30143044x +=+=,314444218a =⨯+⨯=,当15x =时,30153045x +=+=,315445225a =⨯+⨯=,当16x =时,30163046x +=+=,316446232a =⨯+⨯=,综上所述,a 的值为218,225,232,故答案为:218,225,232.【点拨】此题主要考查不等式的应用,解题的关键是根据题意设出未知数,找到不等关系进行求解,注意结合实际情况取整数解.19.13x -≤<,数轴上表示略,不等式组的所有整数解为-1,0,1,2【分析】先求出两个不等式的解集,再求其公共解集,然后确定这个范围内的整数解即可.解:由①得:3x <,由①得:3122x x -+≥,解得:1x ≥-,解集为:13x -≤<.不等式组的所有整数解为-1,0,1,2.【点拨】本题主要考查了一元一次不等式组解集的求法,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;<”,“>”要用空心圆点表示.20.见分析【分析】求出不等式组中每个不等式的解集,分别求出当3355a a -=时、当131355a a -+=时、当31355a a +-=时、当31355a a -=时a 的值,结合不等式的解集,即可求出在各段的不等式组的解集.解:05310531x a x a <+≤⎧⎨<-≤⎩①② 解不等式①得:3513a x a -<≤-,31355a a x --<≤, 解不等式①得:3513a x a <≤+,31355a a x +<≤, ①当3355a a -=时,a =0, 当131355a a -+=时,a =0, 当31355a a +-=时,16a =-, 当31355a a -=时,16a =, ①当16a ≥ 或16a ≤-时,原不等式组无解; 当106a ≤<时,原不等式组的解集为31355a a x -<≤; 当106a -<<时,原不等式组的解集为:31355a a x +-<≤. 【点拨】本题考查了不等式组得解集,关键是能正确求出各段的不等式组的解集,本题比较特殊,有一定的难度.21.(1)2a<a;(2)2a<a试题分析:(1)根据不等式的性质①,可得答案;(2)根据不等式的性质①,可得答案.解:(1)当a >0时,a +a >a +0,即2a >a .当a <0时,a +a <a +0,即2a <a .(2)当a >0时,由2>1,得2·a >1·a ,即2a >a .当a <0时,由2>1,得2·a <1·a ,即2a <a .22.(1)3,1,是.(2)a 的最大值为6,最小值为2-;(3)20.m -≤≤【分析】(1)先求解当13x ≤≤时,x 的最大值与最小值,再根据定义判断即可; (2)当22x -≤≤时,得224,x ≤+≤分0,a ≥ a <0,分别求解12a x -+在22x -≤≤内时的最大值与最小值,再列不等式组即可得到答案;(3)当4m x ≤≤时,分24x ≤≤,2m x ≤≤两种情况分别求解2x -的最大值与最小值,再列不等式(组)求解即可.解:(1) 13x ≤≤当3x =时,x 取最大值3,当1x =时,x 取最小值1, 所以代数式x 是13x ≤≤的“湘一代数式”.故答案为:3,1,是.(2)①22x -≤≤,①0≤|x|≤2, ①224,x ≤+≤①当a≥0时,x=0时,12a x -+有最大值为12a -, x=2或-2时,12a x -+有最小值为1,4a - 所以可得不等式组122124a a ⎧-≤⎪⎪∴⎨⎪-≥-⎪⎩①②, 由①得:6,a ≤由①得:4,a ≥-所以:06,a ≤≤①a <0时,x=0时,12a x -+有最小值为12a -, x=2或-2时, 12a x -+的有大值为1,4a - 所以可得不等式组122124a a ⎧-≥-⎪⎪∴⎨⎪-≤⎪⎩①②, 由①得:2,a ≥-由①得:12,a ≤所以:2≤a -<0,综上①①可得26a -≤≤,所以a 的最大值为6,最小值为2-.(3) 2x -是4m x ≤≤的“湘一代数式”,当24x ≤≤时,2x -的最大值是2, 最小值是0,0,m ∴≤当2m x ≤≤时,22,x x -=-当2x =时,2x -取最小值0,当x m =时,2x -取最大值2m -,024m m ≤⎧∴⎨-≤⎩解得:20,m -≤≤综上:m 的取值范围是:20.m -≤≤【点拨】本题考查的是新定义情境下的不等式或不等式组的应用,理解定义列不等式(组)是解题的关键.23.(1)每辆A 型货车补贴油费400元,每辆B 型货车补贴油费300元;(2)16200元【分析】(1)设从甲地到武汉,每辆A 型货车补贴油费x 元,每辆B 型货车补贴油费y 元,根据“从甲地到武汉,A 型货车5辆、B 型货车6辆,一共需补贴油费3800元;A 型货车3辆、B 型货车2辆,一共需补贴油费1800元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设安排A 型货车m 辆,则安排B 型货车(2m+4)辆,根据A 型车最多可安排18辆且安排的车辆总的装载量不低于600吨,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,结合m 为整数即可得出m 的值,再求出各安排方案所需补贴的总的油费,比较后即可得出结论.解:(1)设从甲地到武汉,每辆A 型货车补贴油费x 元,每辆B 型货车补贴油费y 元,依题意,得:563800321800x y x y +=⎧⎨+=⎩解得:400300x y =⎧⎨=⎩ 答:从甲地到武汉,每辆A 型货车补贴油费400元,每辆B 型货车补贴油费300元.(2)设安排A 型货车m 辆,则安排B 型货车(24m +)辆,依题意,得:()181********m m m ≤⎧⎨++≥⎩解得:6141839m ≤≤ ①m 为正整数①m =15,16,17,18当15m =时,补贴的总的油费为()40015300152416200⨯+⨯⨯+=(元)当16m =时,补贴的总的油费为()40016300162417200⨯+⨯⨯+=(元);当17m =时,补贴的总的油费为()40017300172418200⨯+⨯⨯+=(元);当18m =时,补贴的总的油费为()40018300182419200⨯+⨯⨯+=(元)①16200172001820019200<<<①运送这批物资,不同安排中,补贴的总的油费最少是16200元.【点拨】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.24.(1)6.8万元;(2)36.试题分析:(1)根据题意求出30≤x≤35,再表示出A 、B 两种鱼所获利润,最后找最大利润;(2)表示出价格变动后,A 、B 两种鱼上市时所获利润,再解方程.解:(1)设他用x 只网箱养殖A 种淡水鱼,则用(80-x)只网箱养殖B 种淡水鱼.由题意,得700≤5x+9(80﹣x)+120≤720,解得:30≤x≤35设A 、B 两种鱼所获利润w="(10-5)x+(22-9)×(80-x)-120=-8x+920,"所以,当x=30时,所获利润w 最多是6.8万元(2)价格变动后,一箱A 种鱼的利润=100×0.1×(1+a%)﹣(2+3)=5+0.1a (百元), 一箱B 种鱼的利润=55×0.4×(1﹣20%)﹣(4+5)=8.6(百元).设A 、B 两种鱼上市时所获利润w="(5+0.1a)x+8.6×(80-x)-120=(0.1a -3.6)x+568," 所以,(0.1a -3.6)x+568=568,所以,(0.1a -3.6)x=0因为,30≤x≤35,所以,0.1a -3.6=0,a=36.考点:一元一次不等式组.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021学年七年级数学下册尖子生同步培优题典【人教版】
专题9.6一元一次不等式(组)的整数解问题(重难点培优)
姓名:__________________ 班级:______________ 得分:_________________
注意事项:
本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.
一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.
1.(2019•覃塘区三模)不等式1
2x +1<3的正整数解有( ) A .1个 B .2个 C .3个 D .4个 2.(2019春•霍邱县期末)使代数式4x −32的值不大于3x +5的值的x 的最大整数值是( )
A .4
B .6
C .7
D .8
3.(2020春•莒县期末)已知不等式2x ﹣a ≤0的正整数解恰好是1,2,3,4,5,那么a 的取值范围是( )
A .a >10
B .10≤a ≤12
C .10<a ≤12
D .10≤a <12
4.(2019•广元一模)不等式﹣4x ﹣k ≤0的负整数解是﹣1,﹣2,那么k 的取值范围是( )
A .8≤k <12
B .8<k ≤12
C .2≤k <3
D .2<k ≤3
5.(2020秋•青田县期末)若关于x 的不等式3x +1<m 的正整数解是1,2,3,则整数m 的最大值是( )
A .10
B .11
C .12
D .13
6.(2020春•嘉祥县期末)若一个不等式的正整数解为1,2,则该不等式的解集在数轴上的表示可能是下
列的( )
A .
B .
C .
D .
7.(2020秋•余杭区期末)若关于x 的不等式组{x −2<03x +4>a −x
恰好只有2个整数解,则所有满足条件的整数a 的值之和是( )
A .3
B .4
C .6
D .1
8.(2020•南山区三模)关于x 的不等式组{2x−13<2−1+x >a
恰好只有4个整数解,则a 的取值范围为( )
A .﹣2≤a <﹣1
B .﹣2<a ≤﹣1
C .﹣3≤a <﹣2
D .﹣3<a ≤﹣2
9.(2020•新泰市一模)若关于x 的不等式组{1+5x >3(x −1)x 2
≤8−3x 2+2a 恰有两个整数解,求实数a 的取值范围是( ) A .﹣4<a <﹣3 B .﹣4≤a <﹣3 C .﹣4<a ≤﹣3 D .﹣4≤a ≤﹣3
10.(2020春•张家港市期末)若关于x 的不等式组{x −m <03−2x ≤1所有整数解的和是6,则m 的取值范围是( ) A .2<m ≤3 B .2≤m <3 C .3<m ≤4 D .3≤m <4
二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上
11.(2019秋•娄星区期末)不等式1﹣4x ≥x ﹣8的非负整数解为 .
12.(2020春•西城区校级期中)不等式3x +12≥0的非正整数解为 .
13.(2020秋•余杭区期末)我们知道,适合二元一次方程的一对未知数的值叫做这个二元一次方程的一个
解.类似地,适合二元一次不等式的一对未知数的值叫做这个二元一次不等式的一个解.对于二元一次不等式x +2y ≤8,它的正整数解有 个.
14.(2020春•吴江区期末)已知不等式组{x >1x <a 有三个整数解,则a 的取值范围是 .
15.(2020秋•锦江区校级期末)关于x 的不等式组{8+2x >0x −a ≤−2
有2个整数解,则a 的取值范围为 . 16.(2020春•姑苏区期末)若关于x 的不等式组{x −a <05−2x <1
的整数解只有1个,则a 的取值范围是 . 17.(2020春•鼓楼区期末)若关于x 的不等式组{x >4x ≤a
有3个整数解,则a 的取值范围是 . 18.(2020春•江阴市期末)已知关于x 的不等式组{2x +1>x +a ,
x −1≤2x+a+23
(a 为整数)的所有整数解的和S 满足21.6≤S <33.6,则所有这样的a 的和为 .
三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)
19.(2020春•海陵区校级期中)解不等式(组)
(1)解不等式x +x+13≤1−
x−146,并把解集在数轴上表示出来. (2)解不等式组{8−x >3x 5x+13≥x −1,并写出它的所有整数解.
20.(2018春•天心区校级期中)已知方程组{x +y =−7−m x −y =1+3m
的解为{x =a y =b 满足a 为非正数,b 为负数.
(1)求m 的取值范围;
(2)化简:|2m ﹣6|+|2m +4|;
(3)在m 的取值范围内,当m 为何整数时,关于x 不等式2mx +x <2m +1的解集为x >1.
21.(2018春•雨花区校级月考)已知:关于x 、y 的方程组{3x +y =3a +9x −y =5a +7
的解为非负数. (1)求a 的取值范围;
(2)化简|2a +4|﹣|a ﹣1|;
(3)在a 的取值范围内,a 为何整数时,使得2ax +3x <2a +3解集为x >1.
22.(2020春•开福区校级期中)(1)已知x =a +2,若x <8,求a 的取值范围;
(2)已知不等式x ﹣a ≤2的解集中,任何x 的值均在x <8的范围内,求a 的取值范围;
(3)已知不等式组{x −a ≤2x −a >−1
的解集中,任何x 的值均在2≤x <8的范围内,求a 的整数解. 23.(2020春•西岗区期末)对x ,y 定义一种新的运算A ,规定:A (x ,y )={ax +by(当x ≥y 时)ay +bx(当x <y 时)
(其中ab ≠0).
(1)若已知a =1,b =2,则A (3,4)= .
(2)已知A (1,1)=0,A (0,2)=2.求a ,b 的值;
(3)在(2)问的基础上,若关于正数p 的不等式组{
A(3p ,2p −1)>4A(−1−3p ,−2p)≤m 恰好有2个整数解,求m
的取值范围.
24.(2018春•岳麓区校级期中)材料阅读:
已知m ,n 为整数,关于x 的不等式x >m 的最小整数解为x =m +1,关于y 的不等式y <n 的最大整数解为y =n ﹣1.根据材料回答以下问题:
已知a ,b 是整数,关于x 的不等式x >a ﹣2b 的最小整数解为x =8,关于y 的不等式y <2a ﹣3b ﹣19的最大整数解为y =﹣8.
(1)求a ,b 的值;
(2)在(1)的条件下,若|x ﹣a |=a ﹣x ,求符合题意的最大整数x ;
(3)在(1)的条件下,求关于x ,y 的方程xy +x +ab 2=0的非负整数解.。

相关文档
最新文档