高中数学 求动点轨迹小专题4-消参法【教师版】

合集下载

高中数学轨迹方程求轨迹方程的的基本方法关点法参数法交轨法向量法新人教版选修

高中数学轨迹方程求轨迹方程的的基本方法关点法参数法交轨法向量法新人教版选修

轨 迹 方 程求轨迹方程的的基本方法:直接法、定义法、相关点法、参数法、交轨法、向量法等。

1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这种方法称之为直接法;例1、某检验员通常用一个直径为2 cm 和一个直径为1 cm 的标准圆柱,检测一个直径为3 cm 的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?【解析】设直径为3,2,1的三圆圆心分别为O 、A 、B ,问题转化为求两等圆P 、Q ,使它们与⊙O 相内切,与⊙A 、⊙B 相外切.建立如图所示的坐标系,并设⊙P 的半径为r ,则 |P A |+|PO |=1+r +1.5-r =2.5 ∴点P 在以A 、O 为焦点,长轴长2.5的椭圆上,其方程为3225)41(1622y x ++=1 ① 同理P 也在以O 、B 为焦点,长轴长为2的椭圆上,其方程为 (x -21)2+34y 2=1 ②由①、②可解得)1412,149(),1412,149(-Q P ,∴r =73)1412()149(2322=+-故所求圆柱的直径为76cm. ◎◎双曲线的两焦点分别是1F 、2F ,其中1F 是抛物线1)1(412++-=x y 的焦点,两点A (-3,2)、B (1,2)都在该双曲线上.(1)求点1F 的坐标; (2)求点2F 的轨迹方程,并指出其轨迹表示的曲线.【解析】(1)由1)1(412++-=x y 得)1(4)1(2--=+y x ,焦点1F (-1,0). (2)因为A 、B 在双曲线上,所以||||||||||||2121BF BF AF AF -=-,|||22||||22|22BF AF -=-.①若||22||2222BF AF -=-,则||||22BF AF =,点2F 的轨迹是线段AB 的垂直平分线,且当y =0时,1F 与2F 重合;当y =4时,A 、B 均在双曲线的虚轴上. 故此时2F 的轨迹方程为x =-1(y ≠0,y ≠4).②若22||||2222-=-BF AF ,则24||||22=+BF AF ,此时,2F 的轨迹是以A 、B 为焦点,22=a ,2=c ,中心为(-1,2)的椭圆,其方程为14)2(8)1(22=-++y x ,(y ≠0,y ≠4) 故2F 的轨迹是直线x =-1或椭圆4)2(8)1(22-++y x 1=,除去两点(-1,0)、(-1,4) 评析:1、用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。

备战2024年高考数学一轮复习40、轨迹方程的几种求法

备战2024年高考数学一轮复习40、轨迹方程的几种求法

曲线的本质----求轨迹方程的几种方法一、直接法按求动点轨迹方程的一般步骤求,其过程是建系设点,列出几何等式,坐标代换,化简整理,主要用于动点具有的几何条件比较明显时.例1、动点P到直线x+y=6的距离的平方等于由两坐标轴及点P到两坐标轴之垂线所围成的矩形面积,求P的轨迹方程例2、求与圆x2+y2-4x=0外切且与Y轴相切的动圆的圆心的轨迹方程。

例3、已知动点P到定点F(1,0)和直线x=3的距离之和等于4,求点P的轨迹方程。

二、代入法(相关点法)若动点M(x,y)依赖已知曲线上的动点N而运动,则可将转化后的动点N的坐标入已知曲线的方程或满足的几何条件,从而求得动点M的轨迹方程,此法称为代入法,一般用于两个或两个以上动点的情况.2 + y2 =9上的动点,求线段PA的中点M的轨迹方程例1 已知点A(6,0),点P是圆x例2、从定点A (0,4),连接双曲线x 2一4y 2=16上任一点Q ,求内分线段AQ 成1:2的分点P 的轨迹。

例3、圆222x y +=上的点M 与定点A(3,0)的线段MA 的中点为P ,求P 点的轨迹。

例4、已知抛物线12+=x y ,定点A (3,1),B 为抛物线上任意一点,点P 在线段AB 上,且有BP :P A =1:2,当点B 在抛物线上变动时,求点P 的轨迹方程,并指出这个轨迹为哪种曲线.三、定义法若动点运动的规律满足某种曲线的定义,则可根据曲线的定义直接写出动点的轨迹方程.此法一般用于求圆锥曲线的方程,在高考中常填空、选择题的形式出现.例1、若动圆与圆4)2(22=++y x 外切且与直线x =2相切,则动圆圆心的轨迹方程是(A )012122=+-x y (B )012122=-+x y (C )082=+x y (D )082=-x y 例2、已知圆25y )4x (22=++的圆心为M 1,圆1y )4x (22=+-的圆心为M 2,一动圆与这两个圆外切,求动圆圆心P 的轨迹方程。

高中解析几何专题题型复习:轨迹方程问题、定点定值问题

高中解析几何专题题型复习:轨迹方程问题、定点定值问题

解析几何讲义--定线、定点、定值问题学员编号:年级:高三课时数:学员姓名:辅导科目:数学学科教师:孙明靖授课类型T—同步C—专题T—能力星级★★★★★★★★★★教学目标1.求轨迹方程的题型方法2.定点问题的解题方法3.定制问题的解题方法教学重难点 1.熟练掌握相关的题型方法授课日期及时段2021年01月01日 13:00—15:00教学内容基础梳理定线问题:定直线问题是证明动点在定直线上,其实质是求动点的轨迹方程,所以所用的方法即为求轨迹方程的方法,如定义法、消参法、交轨法等.精讲精练一、一般法:求轨迹方程时,没有坐标系时要先建立坐标系,设轨迹上任一点的坐标为(),x y,轨迹方程就是,x y之间的等式,关键是找到等量关系,然后用,x y表示。

推导圆、圆锥曲线等的标准方程都用了这种方法。

【例1】点A(0,2)是圆x2+y2=16内的定点,B,C是这个圆上的两个动点,若BA⊥CA,求BC中点M的轨迹方程,并说明它的轨迹是什么曲线.【变式】已知坐标平面上点M(x,y)与两个定点M1(26,1),M2(2,1)的距离之比等于5.(1)求点M的轨迹方程,并说明轨迹是什么图形;(2)记(1)中的轨迹为C,过点M(-2,3)的直线l被C所截得的线段的长为8,求直线l的方程.二、相关点代入法【例2】已知点M(x0,y0)在圆x2+y2=4上运动,N(4,0),点P(x,y)为线段MN的中点.(1)求点P(x,y)的轨迹方程;(2)求点P(x,y)到直线3x+4y-86=0的距离的最大值和最小值.【变式】P 是椭圆x 2a 2+y 2b 2=1(a>b>0)上的任意一点,F 1,F 2是它的两个焦点,O 为坐标原点,OQ →=PF 1→+PF 2→,求动点Q 的轨迹方程.三、定义法【例3】已知点A(-12,0),B 是圆F :(x -12) 2+y 2=4(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于P ,求动点P 的轨迹方程.【变式】如图,已知圆A :(x +3)2+y 2=100,圆A 内一定点B(3,0),动圆P 过B 点且与圆A 内切,设动圆P 的半径为r ,求圆心P 的轨迹方程.能力检验1.动点P到两定点A(-3,0)、B(3,0)距离之和为10,则点P的轨迹方程为________.2与圆C1:(x+3)2+y2=1外切,且与圆C2:(x-3)2+y2=81内切的动圆圆心P的轨迹方程为________. 3.点A(2,0)是圆x2+y2=4上的定点,点B(1,1)是圆内一点,P,Q为圆上的动点.(1)求线段AP的中点的轨迹方程.(2)若∠PBQ=90°,求线段PQ的中点的轨迹方程.4.一动圆过定点A(2,0),且与定圆x2+4x+y2-32=0内切,求动圆圆心M的轨迹方程.5.如图△ABC中底边BC=12,其它两边AB和AC上中线的和为30,求此三角形重心G的轨迹方程,并求顶点A的轨迹方程.6.已知点A(0,3)和圆O1:x2+(y+3)2=16,点M在圆O1上运动,点P在半径O1M上,且|PM|=|PA|,求动点P的轨迹方程.知识小结定点问题:圆锥曲线中的定点问题往往与圆锥曲线中的“常数”有关,如椭圆的长、短轴,双曲线的虚、实轴,抛物线的焦参数等.解答这类题要大胆设参,运算推理,到最后参数必清.(1)参数法:参数法解决定点问题的思路:①引进动点的坐标或动直线中的参数表示变化量,即确定题目中的核心变量(此处设为k);②利用条件找到k与过定点的曲线F(x,y)=0之间的关系,得到关于k与x,y 的等式,再研究变化量与参数何时没有关系,找到定点.(2)由特殊到一般法:由特殊到一般法求解定点问题时,常根据动点或动直线的特殊情况探索出定点,再证明该定点与变量无关.题型:“设参→用参→消参”三步解决圆锥曲线中的定点问题【例1-1】已知抛物线C:y2=2px(p>0)的焦点F(1,0),O为坐标原点,A,B是抛物线C上异于O的两点.(1)求抛物线C的方程;(2)若直线OA,OB的斜率之积为-12,求证:直线AB过x轴上一定点.重点梳理精讲精练【跟踪训练3】(2017·全国卷Ⅰ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3(-1,32),P 4⎝ ⎛⎭⎪⎫1,32中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.【名师指导】定点问题实质及求解步骤解析几何中的定点问题实质是:当动直线或动圆变化时,这些直线或圆相交于一点,即这些直线或圆绕着定点在转动.这类问题的求解一般可分为以下三步:课后小结定值问题:定值问题的求解与证明类似,在求定值之前,已经知道定值的结果(题中未告知,可用特殊值探路求之),解答这类题要大胆设参,运算推理,到最后参数必清,定值显现.(1)圆锥曲线中的定值问题的常见类型及解题策略:(2)两种解题思路:①从特殊入手,求出定值,再证明这个值与变量无关;②引进变量法:其解题流程为:(1)直接消参求定值:常见定值问题的处理方法:①确定一个(或两个)变量为核心变量,其余量均利用条件用核心变量进行表示;②将所求表达式用核心变量进行表示(有的甚至就是核心变量),然后进行化简,看能否得到一个常数.(2)从特殊到一般求定值:常用处理技巧:①在运算过程中,尽量减少所求表达式中变量的个数,以便于向定值靠拢;②巧妙利用变量间的关系,例如点的坐标符合曲线方程等,尽量做到整体代入,简化运算.难点梳理“设参→用参→消参”三步解决圆锥曲线中的定值问题【例1】设O 为坐标原点,动点M 在椭圆x 29+y 24=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NP ―→=2NM ―→.(1)求点P 的轨迹E 的方程;(2)过F (1,0)的直线l 1与点P 的轨迹交于A ,B 两点,过F (1,0)作与l 1垂直的直线l 2与点P 的轨迹交于C ,D 两点,求证:1|AB |+1|CD |为定值.【跟踪训练1】已知椭圆C 的两个顶点分别为A (-2,0),B (2,0),焦点在x 轴上,离心率为32. (1)求椭圆C 的方程;(2)如图所示,点D 为x 轴上一点,过点D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过点D 作AM 的垂线交BN 于点E .求证:△BDE 与△BDN 的面积之比为定值,并求出该定值.能力突破能力提升【跟踪训练2】已知抛物线C :y 2=2px 经过点P (1,2),过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N .(1)求直线l 的斜率的取值范围;(2)设O 为原点,QM →=λQO →,QN →=μQO →,求证:1λ+1μ为定值.【跟踪训练3】(2017·全国卷Ⅲ)在直角坐标系xOy 中,曲线y =x 2+mx -2与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值【名师指导】定值问题实质及求解步骤定值问题一般是指在求解解析几何问题的过程中,探究某些几何量(斜率、距离、面积、比值等)与变量(斜率、点的坐标等)无关的问题.其求解步骤一般为:课后小结(Ⅰ)求动圆圆心P的轨迹方程过曲线C上位于。

(完整版)高中数学动点轨迹问题专题讲解

(完整版)高中数学动点轨迹问题专题讲解

动点轨迹问题专题讲解一.专题内容:求动点(, )P x y 的轨迹方程实质上是建立动点的坐标, x y 之间的关系式,首先要分析形成轨迹的点和已知条件的内在联系,选择最便于反映这种联系的坐标形式,寻求适当关系建立等式,常用方法有: (1)等量关系法.....:根据题意,列出限制动点的条件等式,这种求轨迹的方法叫做等量关系法,利用这种方法时,要求对平面几何中常用的定理和解析几何中的有关基本公式很熟悉. (2)定义法...:如果动点满足的条件符合某种已知曲线(如圆锥曲线)的定义,可根据其定义用待定系数法求出轨迹方程.(3)转移代入法.....:如果所求轨迹上的点(, )P x y 是随另一个在已知曲线C :(, )0F x y =上的动点00(, )M x y 的变化而变化,且00, x y 能用, x y 表示,即0(, )x f x y =,0(, )y g x y =,则将00, x y 代入已知曲线(, )0F x y =,化简后即为所求的轨迹方程.(4)参数法...:选取适当的参数(如直线斜率k 等),分别求出动点坐标, x y 与参数的关系式,得出所求轨迹的参数方程,消去参数即可. (5)交轨法...:即求两动直线交点的轨迹,可选取同一个参数,建立两动直线的方程,然后消去参数,即可(有时还可以由三点共线,斜率相等寻找关系). 注意:轨迹的完备性和纯粹性!一定要检验特殊点和线! 二.相关试题训练(一)选择、填空题1.( )已知1F 、2F 是定点,12||8F F =,动点M 满足12||||8MF MF +=,则动点M 的轨迹是 (A )椭圆 (B )直线 (C )圆 (D )线段2.( )设(0,5)M ,(0,5)N -,MNP ∆的周长为36,则MNP ∆的顶点P 的轨迹方程是(A )22125169x y +=(0x ≠) (B )221144169x y +=(0x ≠) (C )22116925x y +=(0y ≠) (D )221169144x y +=(0y ≠) 3.与圆2240x y x +-=外切,又与y 轴相切的圆的圆心轨迹方程是 ;4.P 在以1F 、2F 为焦点的双曲线221169x y -=上运动,则12F F P ∆的重心G 的轨迹方程是 ;5.已知圆C :22(16x y +=内一点)A ,圆C 上一动点Q , AQ 的垂直平分线交CQ 于P 点,则P 点的轨迹方程为 .2214x y += 6.△ABC 的顶点为(5, 0)A -、(5, 0)B ,△ABC 的内切圆圆心在直线3x =上,则顶点C 的轨迹方程是 ;221916x y -=(3x >) 变式:若点P 为双曲线221916x y -=的右支上一点,1F 、2F 分别是左、右焦点,则△12PF F 的内切圆圆心的轨迹方程是 ;推广:若点P 为椭圆221259x y +=上任一点,1F 、2F 分别是左、右焦点,圆M 与线段1F P 的延长线、线段2PF 及x 轴分别相切,则圆心M 的轨迹是 ;7.已知动点M 到定点(3,0)A 的距离比到直线40x +=的距离少1,则点M 的轨迹方程是 .(212y x =)8.抛物线22y x =的一组斜率为k 的平行弦的中点的轨迹方程是 .(4kx =(28k y >))9.过抛物线24y x =的焦点F 作直线与抛物线交于P 、Q 两点,当此直线绕焦点F 旋转时, 弦PQ 中点的轨迹方程为 . 解法分析:解法1 当直线PQ 的斜率存在时,设PQ 所在直线方程为 (1)y k x =-与抛物线方程联立,2(1),4y k x y x=-⎧⎨=⎩ 消去y 得 2222(24)0k x k x k -++=. 设11(,)P x y ,22(,)Q x y ,PQ 中点为(,)M x y ,则有21222,22(1).x x k x k y k x k ⎧++==⎪⎪⎨⎪=-=⎪⎩消k 得22(1)y x =-.当直线PQ 的斜率不存在时,易得弦PQ 的中点为(1,0)F ,也满足所求方程. 故所求轨迹方程为22(1)y x =-. 解法2 设11(,)P x y ,22(,)Q x y ,由2112224,4.y x y x ⎧=⎪⎨=⎪⎩ 得121212()()4()y y y y x x -+=-,设PQ 中点为(,)M x y ,当12x x ≠时,有121224y y y x x -⋅=-,又1PQ MF yk k x ==-,所以,21yy x ⋅=-,即22(1)y x =-. 当12x x =时,易得弦PQ 的中点为(1,0)F ,也满足所求方程. 故所求轨迹方程为22(1)y x =-.10.过定点(1, 4)P 作直线交抛物线:C 22y x =于A 、B 两点, 过A 、B 分别作抛物线C 的切线交于点M, 则点M 的轨迹方程为_________.44y x =-(二)解答题1.一动圆过点(0, 3)P ,且与圆22(3)100x y ++=相内切,求该动圆圆心C 的轨迹方程. (定义法)2.过椭圆221369x y +=的左顶点1A 作任意弦1A E 并延长到F ,使1||||EF A E =,2A 为椭圆另一顶点,连结OF 交2A E 于点P , 求动点P 的轨迹方程.(直接法、定义法;突出转化思想)3.已知1A 、2A 是椭圆22221x y a b+=的长轴端点,P 、Q 是椭圆上关于长轴12A A 对称的两点,求直线1PA 和2QA 的交点M 的轨迹.(交轨法)4.已知点G 是△ABC 的重心,(0,1), (0,1)A B -,在x 轴上有一点M ,满足||||MA MC =, GM AB R λλ=(∈).(1)求点C 的轨迹方程;(2)若斜率为k 的直线l 与点C 的轨迹交于不同两点P 、Q ,且满足||||AP AQ =,试求k 的取值范围.解:(1)设(,)C x y ,则由重心坐标公式可得(,)33x yG . ∵ GM AB λ=,点M 在x 轴上,∴ (,0)3x M .∵ ||||MA MC =,(0,1)A -,∴=,即 2213x y +=. 故点C 的轨迹方程为2213x y +=(1y ≠±).(直接法) (2)设直线l 的方程为y kx b =+(1b ≠±),11(,)P x y 、22(,)Q x y ,PQ 的中点为N . 由22,3 3.y kx b x y =+⎧⎨+=⎩消y ,得222(13)63(1)0k x kbx b +++-=.∴ 22223612(13)(1)0k b k b ∆=-+->,即22130k b +->. ①又122613kbx x k+=-+,∴212122262()221313k b b y y k x x b b k k -+=++=+=++, ∴ 223(,)1313kb bN k k-++. ∵ ||||AP AQ =,∴ AN PQ ⊥,∴ 1ANk k =-,即 221113313bk kb k k ++=--+,∴ 2132k b +=,又由①式可得 220b b ->,∴ 02b <<且1b ≠.∴ 20134k <+<且2132k +≠,解得11k -<<且3k ≠±. 故k 的取值范围是11k -<<且k ≠. 5.已知平面上两定点(0,2)M -、(0,2)N ,P 为一动点,满足MP MN PN MN ⋅=⋅. (Ⅰ)求动点P 的轨迹C 的方程;(直接法)(Ⅱ)若A 、B 是轨迹C 上的两动点,且AN NB λ=.过A 、B 两点分别作轨迹C 的切线,设其交点为Q ,证明NQ AB ⋅为定值.解:(Ⅰ)设(,)P x y .由已知(,2)MP x y =+,(0,4)MN =,(,2)PN x y =--,48MP MN y ⋅=+.4PN MN x ⋅=……………………………………………3分∵MP MN PN MN ⋅=⋅,∴48y += 整理,得 28x y =.即动点P 的轨迹C 为抛物线,其方程为28x y =.6.已知O 为坐标原点,点(1,0)E -、(1,0)F ,动点A 、M 、N 满足||||AE m EF =(1m >),0MN AF =⋅,1()2ON OA OF =+,//AM ME .求点M 的轨迹W 的方程.解:∵0MN AF ⋅=,1()2ON OA OF =+,∴ MN 垂直平分AF .又//AM ME ,∴ 点M 在AE 上,∴ ||||||||2AM ME AE m EF m +===,||||MA MF =, ∴ ||||2||ME MF m EF +=>,∴ 点M 的轨迹W 是以E 、F 为焦点的椭圆,且半长轴a m =,半焦距1c =, ∴ 22221b a c m =-=-.∴ 点M 的轨迹W 的方程为222211x y m m +=-(1m >).7.设,x y R ∈,,i j 为直角坐标系内,x y 轴正方向上的单位向量,若向量(2)a xi y j =++,(2)b xi y j =+-, 且||||8a b +=.(1)求点(,)M x y 的轨迹C 的方程;(定义法)(2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程,若不存在,试说明理由.解:(1)2211216x y +=; (2)因为l 过y 轴上的点(0,3).若直线l 是y 轴,则,A B 两点是椭圆的顶点.0OP OA OB =+=,所以P 与O 重合,与四边形OAPB 是矩形矛盾. 故直线l 的斜率存在,设l 方程为3y kx =+,1122(,),(,)A x y B x y .由223,1,1216y kx x y =+⎧⎪⎨+=⎪⎩ 消y 得22(43)18210,k x kx ++-=此时22(18)4(43)(21)k k ∆=-+->0恒成立,且1221843k x x k +=-+,1222143x x k =-+, OP OA OB =+,所以四边形OAPB 是平行四边形.若存在直线l ,使得四边形OAPB 是矩形,则OA OB ⊥,即0OA OB ⋅=.1122(,),(,)OA x y OB x y ==,∴ 12120OA OB x x y y ⋅=+=.即21212(1)3()90k x x k x x ++++=.2222118(1)()3()4343k k k k k +⋅-+⋅-++ 90+=.2516k =,得54k =±. 故存在直线l :534y x =±+,使得四边形OAPB 是矩形. 8.如图,平面内的定点F 到定直线l 的距离为2,定点E 满足:||EF =2,且EF l ⊥于G ,点Q 是直线l 上一动点,点M 满足:FM MQ =,点P 满足://PQ EF ,0PM FQ ⋅=. (I )建立适当的直角坐标系,求动点P 的轨迹方程;(II )若经过点E 的直线1l 与点P 的轨迹交于相异两点A 、B ,令AFB θ∠=,当34πθπ≤<时,求直线1l 的斜率k 的取值范围.解:(1)以FG 的中点O 为原点,以EF 所在直线为y 轴,建立平面直角坐标系xoy ,设点(,)P x y ,则(0, 1)F ,(0, 3)E ,:1l y =-.∵ FM MQ =,//PQ EF ,∴(,1)Q x -,(, 0)2x M .∵0PM FQ ⋅=,∴ ()()(2)02xx y -⨯+-⨯-=,即所求点P 的轨迹方程为24x y =. (2)设点))(,(),,(212211x x y x B y x A ≠设AF 的斜率为1k ,BF 的斜率为2k ,直线1l 的方程为3+=kx y由⎩⎨⎧=+=yx kx y 432…………6分 01242=--kx x 得 1242121-==+∴x x k x x …………7分 9)4(44221222121==⋅=∴xx x x y y646)(22121+=++=+k x x k y y …………8分)1)(1()1,(),1,,(21212211--+=⋅∴-=-=y y x x FB FA y x FB y x FA841649121)(22212121--=+--+-=++-+=k k y y y y x x)1)(1(||||21++=⋅y y FB FA 又16416491)(222121+=+++=+++=k k y y y y4216484||||cos 2222++-=+--=⋅=∴k k k k FB FA θ…………10分 由于πθπ<≤43 2242122cos 122-≤++-<--≤<-∴k k 即θ…………11分 222242222≥∴≥++∴k k k解得4488-≤≥k k 或…………13分∴直线1l 斜率k 的取值范围是}8,8|{44-≥≥k k k 或9.如图所示,已知定点(1, 0)F ,动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且0PM PF ⋅=,||||PM PN =. (1)求动点N 的轨迹方程;(2)直线l 与动点N 的轨迹交于A 、B 两点,若4OA OB ⋅=-,且||AB ≤求直线l 的斜率k 的取值范围.解:(1)设(,)N x y ,由||||PM PN =得(,0)M x -,(0, )2y P ,(,)2y PM x =--,(1,)2y PF =-,又0PM PF ⋅=,∴204y x -+=,即动点N 的轨迹方程为24y x =. (2)10.已知点(0, 1)F ,点M 在x 轴上,点N 在y 轴上,P 为动点,满足0MN MF ⋅=,0MN MP +=.(1)求P 点轨迹E 的方程;(2)将(1)中轨迹E 按向量(0, 1)a =平移后得曲线E ',设Q 是E '上任一点,过Q 作圆22(1)1x y ++=的两条切线,分别交x 轴与A 、B 两点,求||AB 的取值范围.解:(1)设(, 0)M a 、(0, )N b 、(,)P x y ,则(,)MN a b =-、(, 1)MF a =-、(, )MP x a y =-.由题意得(, )(, 1)0,(, )(,)(0, 0).a b a a b x a y -⋅-=⎧⎨-+-=⎩ ∴ 20,, ,2a b xa b y ⎧+=⎪⎨==-⎪⎩ ∴ 214y x =, 故动点P 的轨迹方程为214y x =. (2)11.如图()A m和(,)B n 两点分别在射线OS 、OT 上移动,且12OA OB ⋅=-, O 为坐标原点,动点P 满足OP OA OB =+.(1)求m n ⋅的值; (2)求P 点的轨迹C 的方程,并说明它表示怎样的曲线?(3)若直线l 过点(2, 0)E 交(2)中曲线C 于M 、N 两点,且3ME EN =,求l 的方程. 解:(1)由已知得1()(,)22OA OB m n mn ⋅=⋅=-=-,∴ 14mn =. (2)设P 点坐标为(,)x y (0x >),由OP OA OB =+得(,)()(,)x y m n =+())m n m n =+-,∴,)x m n y m n =+⎧⎪⎨=-⎪⎩ 消去m ,n 可得2243y x mn -=,又因14mn =,∴ P 点的轨迹方程为221(0)3y x x -=>.它表示以坐标原点为中心,焦点在x 轴上,且实轴长为2,焦距为4的双曲线2213y x -=的右支.(3)设直线l 的方程为2x ty =+,将其代入C 的方程得223(2)3ty y +-= 即 22(31)1290t y ty -++=,易知2(31)0t -≠(否则,直线l的斜率为又22214436(31)36(1)0t t t ∆=--=+>,设1122(,),(,)M x y N x y ,则121222129,3131t y y y y t t -+==-- ∵ l 与C 的两个交点,M N 在y 轴的右侧212121212(2)(2)2()4x x ty ty t y y t y y =++=+++2222291234240313131t t t t t t t -+=⋅+⋅+=->---, ∴ 2310t -<,即2103t <<,又由120x x +>同理可得 2103t <<,由3ME EN =得 1122(2,)3(2,)x y x y --=-, ∴ 121223(2)3x x y y -=-⎧⎨-=⎩由122222123231t y y y y y t +=-+=-=--得22631t y t =-,由21222229(3)331y y y y y t =-=-=-得222331y t =--,消去2y 得 2222363(31)31t t t =---考虑几何求法!! 解之得:2115t = ,满足2103t <<.故所求直线l0y --=0y +-=.12.设A ,B分别是直线y x =和y x =上的两个动点,并且||20AB =点P 满足OP OA OB =+.记动点P 的轨迹为C . (I ) 求轨迹C 的方程;(II )若点D 的坐标为(0,16),M 、N 是曲线C 上的两个动点,且DM DN λ=,求实数λ的取值范围.解:(I )设(,)P x y ,因为A 、B分别为直线5y x =和5y x =-上的点,故可设11()A x x,22(,)B x x . ∵OP OA OB =+,∴1212,()5x x x y x x =+⎧⎪⎨=-⎪⎩.∴1212,2x x x x x y +=⎧⎪⎨-=⎪⎩.又20AB =, ∴2212124()()205x x x x -++=.∴22542045y x +=. 即曲线C 的方程为2212516x y +=. (II ) 设N (s ,t ),M (x ,y ),则由DN DM λ=,可得(x ,y-16)=λ (s ,t-16). 故x s λ=,16(16)y t λ=+-.∵ M 、N 在曲线C 上, ∴⎪⎪⎩⎪⎪⎨⎧=+-+=+ 1.16)1616t (25s 1,16t 25s 22222λλλ消去s 得116)1616t (16)t 16(222=+-+-λλλ.由题意知0≠λ,且1≠λ,解得 17152t λλ-=. 又 4t ≤, ∴421517≤-λλ. 解得 3553≤≤λ(1≠λ).故实数λ的取值范围是3553≤≤λ(1≠λ). 13.设双曲线22213y x a -=的两个焦点分别为1F 、2F ,离心率为2. (1)求此双曲线的渐近线1l 、2l 的方程;(3y x =±) (2)若A 、B 分别为1l 、2l 上的动点,且122||5||AB F F =,求线段AB 的中点M 的轨迹方程,并说明是什么曲线.(22317525x y +=) 提示:()221212||10()10AB x x y y =⇒-+-=,又1133y x =-,2233y x =, 则12213()3y y x x +=-,21123()3y y x x -=+. 又 122x x x =+,122y y y =+代入距离公式即可.(3)过点(1, 0)N 是否存在直线l ,使l 与双曲线交于P 、Q 两点,且0OP OQ ⋅=,若存在,求出直线l 的方程;若不存在,说明理由.(不存在) 14.已知点(1, 0)F ,直线:2l x =,设动点P 到直线l 的距离为d ,已知2||2PF d =,且2332d ≤≤. (1)求动点P 的轨迹方程; (2)若13PF OF ⋅=,求向量OP 与OF 的夹角;(3)如图所示,若点G 满足2GF FC =,点M 满足3MP PF =,且线段MG 的垂直平分线经过点P ,求△PGF 的面积.15.如图,直线:1l y kx =+与椭圆22:2C ax y +=(1a >)交于A 、B 两点,以OA 、OB 为邻边作平行四边形OAPB (O 为坐标原点). (1)若1k =,且四边形OAPB 为矩形,求a 的值;(3a =)(2)若2a =,当k 变化时(k R ∈),求点P 的轨迹方程.(22220x y y +-=(0y ≠))16.双曲线C :22221x y a b -=(0a >,0b >)的离心率为2,其中(0,)A b -,(, 0)B a ,且22224||||||||3OA OB OA OB +=⋅.(1)求双曲线C 的方程; (2)若双曲线C 上存在关于直线l :4y kx =+对称的点,求实数k 的取值范围. 解:(I )依题意有:lxyCGFOPM2222222c 2,a 4a b a b ,3a b c .⎧=⎪⎪⎪+=⎨⎪⎪+=⎪⎩解得:.2,3,1===c b a所求双曲线的方程为.1322=-y x ………………………………………6分 (Ⅱ)当k=0时,显然不存在.………………………………………7分当k≠0时,设双曲线上两点M 、N 关于直线l 对称.由l ⊥MN ,直线MN 的方程为1y x b k=-+.则M 、N 两点的坐标满足方程组由221y x b,k3x y 3.⎧=-+⎪⎨⎪-=⎩消去y 得 2222(3k 1)x 2kbx (b 3)k 0-+-+=.…………………………………9分显然23k 10-≠,∴2222(2kb)4(3k 1)(b 3)k 0∆⎡⎤=---+>⎣⎦.即222k b 3k 10+->. ①设线段MN 中点D (00x ,y )则02202kb x ,3k 13k b y .3k 1-⎧=⎪⎪-⎨⎪=⎪-⎩∵D (00x ,y )在直线l 上,∴22223k b k b43k 13k 1-=+--.即22k b=3k 1- ② 把②带入①中得 222k b +bk 0>, 解得b 0>或b 1<-.∴223k 10k ->或223k 1<-1k-.即k >或1k 2<,且k≠0.∴k 的取值范围是113(,)(,0)(0,)(,)3223-∞--+∞.…………………14分 17.已知向量OA =(2,0),OC =AB =(0,1),动点M 到定直线y =1的距离等于d ,并且满足OM ·AM =K(CM ·BM -d 2),其中O 为坐标原点,K 为参数. (Ⅰ)求动点M 的轨迹方程,并判断曲线类型;(Ⅱ)如果动点M 的轨迹是一条圆锥曲线,其离心率e 满足33≤e ≤22,求实数K 的取值范围.18.过抛物线24y x =的焦点作两条弦AB 、CD ,若0AB CD ⋅=,1()2OM OA OB =+,1()2ON OC OD =+.(1)求证:直线MN 过定点;(2)记(1)中的定点为Q ,求证AQB ∠为钝角; (3)分别以AB 、CD 为直径作圆,两圆公共弦的中点为H ,求H 的轨迹方程,并指出轨迹是什么曲线.19.(05年江西)如图,M 是抛物线上2y x =上的一点,动弦ME 、MF 分别交x 轴于A 、B 两点,且MA MB =.(1)若M 为定点,证明:直线EF 的斜率为定值; (2)若M 为动点,且90EMF ∠=,求△EMF 的重心G 的轨迹.思路分析:(1)由直线MF (或ME )方程与抛物线方程组成的方程组解出点F 和点E 的坐标,利用斜率公式来证明;(2)用M 点的坐标将E 、F 点的坐标表示出来,进而表示出G 点坐标,消去0y 即得到G 的轨迹方程(参数法).解:(1)法一:设200(,)M y y ,直线ME 的斜率为k (0k >),则直线MF 的斜率为k -,方程为200()y y k x y -=-.∴由2002()y y k x y y x⎧-=-⎪⎨=⎪⎩,消x 得200(1)0ky y y ky -+-=,解得01F ky y k-=,∴ 202(1)F ky x k -=, ∴0022000022211214(1)(1)2E F EFE F ky ky y y k k k k ky ky ky x x y k k k -+---====---+--(定值).所以直线EF 的斜率为定值.法二:设定点00(,)M x y ,11(,)E x y 、22(,)F x y ,由200211,y x y x ⎧=⎪⎨=⎪⎩ 得 010101()()y y y y x x -+=-,即011ME k y y =+;同理 021MF k y y =+.∵ MA MB =,∴ ME MF k k =-,即010211y y y y =-++,∴ 1202y y y +=-.所以,1212221212120112EF y y y y k x x y y y y y --====---+(定值). 第一问的变式:过点M 作倾斜角互补的直线ME 、MF ,则直线EF 的斜率为定值;根据不同的倾斜角,可得出一组平行弦.(2)90,45,1,EMF MAB k ∠=∠==当时所以直线ME 的方程为200()y y k x y -=-由2002y y x y y x ⎧-=-⎪⎨=⎪⎩得200((1),1)E y y --同理可得200((1),(1)).F y y +-+设重心G (x , y ),则有222200000000(1)(1)23333(1)(1)333M E F M E F y y y y x x x x y y y y x x x y ⎧+-+++++===⎪⎪⎨+--+++⎪===-⎪⎩消去参数0y 得2122()9273y x x =->. 20.如图,ABCD 是边长为2的正方形纸片,沿某动直线l 为折痕将正方形在其下方的部分向上翻折,使得每次翻折后点B 都落在边AD 上,记为B ',折痕l 与AB 交于点E ,点M 满足关系式EM EB EB '=+.(1)建立适当的直角坐标系,求点M 的轨迹方程;(2)若曲线C 是由点M 的轨迹及其关于边AB 对称的曲线组成的,F 是AB 边上的一点,4BA BF =,过点F 的直线交曲线C 于P 、Q 两点,且PF FQ λ=,求实数λ的取值范围.。

求动点轨迹方程最简捷的四种方法

求动点轨迹方程最简捷的四种方法

2023年4月上半月㊀学法指导㊀㊀㊀㊀求动点轨迹方程最简捷的四种方法◉安徽省全椒县城东中学㊀殷宏林㊀㊀摘要:求符合某种条件的动点轨迹方程,实际上就是利用已知的点的坐标之间的运动规律去寻找变量间的关系.求轨迹方程的常规思路,就是想方设法地把题目中的几何问题转化为代数方程问题来解决.关键词:参数法;复数法;交轨法;相关点法㊀㊀求动点的轨迹方程既是高中数学教学大纲要求掌握的主要内容,也是近年来高考考查的高频考点[1].这类题型由于涉及到的知识点多,综合性较强,考查的范围广,分值较高,因此学习和掌握求轨迹方程的方法与技巧,已成为考生在高考中夺取高分的必要条件.轨迹是指点的集合,而方程是实数对的集合.二者看似毫不相干,实则它们之间是可以沟通转化的,求轨迹方程运用的就是这种转化思想.由于动点运动规律所给出的条件不同,因此求动点轨迹方程的方法也就不同[2],但其中最简捷㊁最实用的有以下四种.1参数法当所求动点满足的几何条件不易得出,也看不出明显的相关性时,如果经过仔细观察,发现这个动点的运动常常会受到某个变量(时间㊁角度㊁斜率㊁比值等)的制约,那么我们就可以用这个变量作参数,建立轨迹的参数方程,这就是参数法.图1例1㊀动直线l 与单位圆交于不同的两点A ,B ,当l 总保持平行于直线y =2x 的条件下移动时,求弦A B 中点轨迹的方程.解:由l 平行于直线y =2x ,可设l 的方程为y =2x +b (b 为参数),将其代入单位圆的方程x 2+y 2=1中,整理得5x 2+4b x +b 2-1=0.如图1,因为l 与单位圆有两个交点,所以Δ=16b 2-20b 2+20=20-4b 2>0,则-5<b <5.设弦A B 的中点为P (x ,y ),根据韦达定理可知x =x 1+x 22=-25b ,代入l 的方程中,得y =b5.所以中点P 的轨迹方程为x =-25b ,y =b 5,ìîíïïïï其中-5<b <5.消去参数b ,得x +2y =0(-255<x <255),此即为弦A B 中点轨迹的普通方程,其轨迹为单位圆中的一条线段.思路与方法:从本题的解题思路可以看出以下几点.①利用几何直观即可判断出动点轨迹为过原点且垂直于y =2x 的含于单位圆中的线段;②当动点位置随着直线的平行移动而变化时,常选择截距作为参数较方便;③在求轨迹方程时,只要参数选择得当,常能使问题获得更简捷的解法.2复数法有些问题可以由复数的几何意义将动点和已知点表示成复数式,然后经过复数运算转化为动点的轨迹,这就是复数法.当涉及有向线段绕定点旋转,长度伸缩变化,或可用复数模的形式给出坐标间关系等问题时,运用复数法求解最简捷.图2例2㊀如图2,以抛物线y 2=4x 的焦半径F B 为对角线作正方形F A B C (顶点按逆时针方向顺序排列).求顶点C 的轨迹方程.解:因为抛物线y 2=4x 中焦参数p =2,所以焦点坐标为F (1,0).设动点C (x ,y ),其相关点B (x ᶄ,yᶄ).把x 轴看作实轴,y 轴为虚轴,则在复平面上,有z C =x +y i ,z B =x ᶄ+y ᶄi ,z F =1,所以z F Cң=(x -1)+y i ,z F Bң=(x ᶄ-1)+y ᶄi .由øB F C =π4,F B =2F C ,得z F B ң=z F C ңˑ2c o s (-π4)+i s i n (-π4)éëêêùûúú,即(x ᶄ-1)+y ᶄi=[(x -1)+y i ] 2(22-22i )=[(x -1)+y ]+[y -(x -1)]i .所以x ᶄ-1=x -1+y ,y ᶄ=y -x +1,{即x ᶄ=x +y ,yᶄ=y -x +1.{因为点B 在y 2=4x 上,所以(yᶄ)2=4x ᶄ.故(y -x +1)2=4(x +y ).整理即得动点C 的轨迹方程为14Copyright ©博看网. All Rights Reserved.学法指导2023年4月上半月㊀㊀㊀x 2+y 2-2x y -6x -2y =0.思路与方法:本题通过建立复平面,利用复数加法和乘法的几何意义,求出动点对应的复数表达式,然后通过比较实部㊁虚部求得动点的轨迹方程.3交轨法在求动点轨迹时,有时会遇到求两动曲线交点的轨迹问题.这类问题可以通过解方程组求出含参数的交点坐标,再消去参数得出所求轨迹的方程,这就是交轨法.图3例3㊀在直角坐标系中,矩形O A B C 的边O A =a ,O C =b ,点D 在A O 的延长线上,D O =a ,设M ,N 分别是O C ,B C 上的动点,使O M ʒM C =B N ʒN C ʂ0,求直线DM 和A N 的交点P 的轨迹方程.解:如图3,建立平面直角坐标系,则各点的坐标分别为A (a ,0),C (0,b ),D (-a ,0),B (a ,b ),设P (x ,y ).设O M ʒM C =B N ʒN C =λ(ʂ0).由定比分点公式,得M (0,λb 1+λ),N (a1+λ,b ).根据两点式,可得直线DM ,A N 的方程分别为㊀㊀㊀㊀y =λba (1+λ)(x +a ),①㊀㊀㊀㊀y =-b (1+λ)λa(x -a ).②①ˑ②,得y 2=-b 2a 2(x 2-a2),即x 2a 2+y 2b2=1(0<x <a ,0<y <b ).故点P 的轨迹方程为x 2a 2+y 2b2=1其中0<x <a ,0<b <y .思路与方法:本题中由于动点P 为动直线DM ,A N 的交点,两动直线均有一定点(D ,A )一动点(M ,N ),而两动点又满足O M ʒM C =B N ʒN C 这一比值条件,所以设此比值为参数较为方便.从本题的求解过程我们发现,运用交轨法求解时,可以不用求交点的坐标,只要能消掉参数,得出点P 的坐标间的关系即可.这也充分展示了运用交轨法求轨迹方程的便捷性与实用性.4相关点法在求动点轨迹方程的过程中,有时动点满足的条件不方便用等式列出,但动点是随着另外相关点而运动的.如果相关点所满足的条件能够看出,或可分析出,这时就可以用动点的坐标来表示相关点的坐标,根据相关点所满足的方程就能够求得动点的轨迹方程,这就是相关点法.图4例4㊀已知定点O (0,0)和A (6,0),M 为O A 的中点,以O A为一边作菱形O A B C ,M B 与A C 交于点P ,当菱形变动时,求点P 的轨迹方程.解:如图4,设动点P (x ,y ),其相关点B (x ᶄ,yᶄ).由A (6,0),得M (3,0).易知M P P B =12.所以由x =3+12x ᶄ1+12,y =0+12y ᶄ1+12,ìîíïïïïïïïïïï得x ᶄ=3x -6,y ᶄ=3y .{由A B =O A =6,可得(x ᶄ-6)2+(yᶄ-0)2=6.即(3x -6-6)2+(3y -0)2=6.整理,得(x -4)2+y 2=4.因为点P 不可能在x 轴上,所以点P 的轨迹方程为(x -4)2+y 2=4(y ʂ0).思路与方法:本题分析已知点与动点间的关系时,找出相关点是关键的一步.在图4中,若连接O B ,则可知P 为әA B O 的重心,所以选B 为相关点更方便;当然也可由A C 平分øO A B ,推知|B P ||PM |=2.事实上,求已知曲线关于某定点(或定直线)的中心对称(或轴对称)的曲线方程时,通常选择相关点法较简捷[3].5结论从上述典型实例可以看出,求动点轨迹方程的方法虽然很多,但上述四种方法最简捷,也非常实用,值得学生借鉴.当然,在求轨迹方程的过程中,要注意以上方法的灵活运用.对同一问题,若几种方法都可解决时,应择优选用;对较复杂的问题,有时需将两种或两种以上的方法结合起来使用.参考文献:[1]钟载硕.求动点轨迹方程八法[J ].理科考试研究:高中版,2004(3):10G14.[2]张黎青.求动点轨迹方程的常用方法介绍[J ].新高考(高二语数外),2010(2):33G35.[3]陆钧.浅谈求动点轨迹方程[J ].理科考试研究:高中版,2006(11):12G13.Z 24Copyright ©博看网. All Rights Reserved.。

求动点轨迹方程的三种基本方法

求动点轨迹方程的三种基本方法

求动点轨迹方程的三种基本方法梁关化,2015,6,16高考数学的解几题中有一类是求动点轨迹方程题。

有的复习资料归纳这类题的解法过细,其实从历届的高考题来看,主要是下面三种:一是直接法,二是消参法,三是定义法。

直接法就是根据题目提供的明的和暗的条件,把动点的坐标满足的等式直接写出。

消参法就是分析动点的变动是因什么变动而引起,是另一动点,还是动直线,还是动曲线?如是另一动点引起,就把动点的坐标设为参数。

如是动直线引起,就把动直线方程的有关参数设为参数。

如是动曲线引起,就把动曲线方程的有关参数设为参数,接着根据题目提供的明的和暗的条件,把动点的坐标和参数满足的等式列出,最后把参数消去。

理论上,n 个参数需要(n+1)个等式才能把参数消去。

消参方法很奇妙,要通过解题,总结消参的技巧。

定义法就是分析动点满足的条件是否就是某一轨迹满足的条件,符合某一轨迹的定义,如是,就可以用待定法求解。

三法当中,高考解几大题考得最多的是消参法,难度也较大。

我在一篇消参法的小文中说到消参的许多具体做法,如代入法,加减法,平方后加减法,两式相乘法,两式相除法等等。

下面以2015年广东高考数学的解几大题为例,详细述说这三种方法。

(2015年广东高考数学的解几大题,文理同题,本小题满分14分)已知过原点的动直线l 与圆C 1:05622=+-+x y x 相交于不同的两点A ,B .(1) 求圆C 1的圆心坐标;(解略,答案:(3,0)) (2) 求线段AB 的中点M 的轨迹C 的方程;(答案:492322=+⎪⎭⎫ ⎝⎛-y x ⎪⎭⎫ ⎝⎛≤<335x ) (3) 是否存在实数k ,使得直线L :)4(-=x k y 与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由。

(解略,答案:存在,752752≤≤-k 或34±=k )12221112222211(,),,,333,1,)(),322,,334,)()225,03,3y y M x y C M x x y y C M y x x C A B C C M C y y x -⊥⋅=-+=-+<+=<≤解法一(直接法):设则动直线l 的斜率为直线的斜率为由图易知l 从而有化简变形得(x-但由于动直线l 与圆相交于两个不同的点故圆心到直线l 的距离(即线段的长度)小于圆的半径,因此有(x-3)与(x-联立解得x>同时由图易知所以222112222222253,,3335)()(3)223(:)(,),(,),(,),650)65093620()0,5x y x M x y A x y B x y y kx x y x y x x x <≤+=<≤=⎧⎨+-+=⎩-+=∆=->⇒<因此动点M 的轨迹方程为(x-说明此法中用到平面几何的垂径分弦定理解法二(消参法):设动直线l 的方程为y=kx(这里的k 与第三小题中的k不同).解方程组消后整理得(1+k 于是有1+k 1+k 12222222222263(1)3(2)33)()2295503,3533335)()(3)223(:(,),x x k y y x x y x y xM x y +=⎧=⎪⎪∴⎨⎪=⎪⎩+=<<≤∴<≤+=<≤∆1+k 1+k 1+k 消去k 后,再变形得(x-由1+k ,得x>,同时由图易知因此,动点M 的轨迹方程为(x-说明消k 是分两步进行,先(2)式除以(1)式,求出k=,再代入(1)即可)解法三(定义法):设由图易知OMC 12222223,0),233,,22335)()3,223335,)()(3)223(:MC y x y x =+=<≤+=<≤是一个直角三角形,其斜边中点C 的坐标为(所以动点M 的轨迹以C 为圆心,为半径的圆.因此动点M 的轨迹方程为(x-,用解法一的方法同样可以求出x 的取值范围:因此动点M 的轨迹方程为(x-说明此法中用到平面几何直角三角形斜边上的中线等于斜边的一半的性质) 虽然此题三法都可以解,但不是所有的题都是如此,我们要具体问题具体分析,选用最好的方法求解.此题还涉及到轨迹的完备性问题,如果考生不注意,肯定被扣分.。

轨迹方程的 几种求法整理(例题+答案)

轨迹方程的 几种求法整理(例题+答案)

轨迹方程的六种求法整顿求轨迹方程是高考中罕有的一类问题.本文对曲线方程轨迹的求法做一归纳,供同窗们参考.求轨迹方程的一般办法:1.直译法:假如动点P的活动纪律是否合乎我们熟知的某些曲线的界说难以断定,但点P知足的等量关系易于树立,则可以先暗示出点P所知足的几何上的等量关系,再用点P的坐标(x,y)暗示该等量关系式,即可得到轨迹方程.2.界说法:假如动点P的活动纪律合乎我们已知的某种曲线(如圆.椭圆.双曲线.抛物线)的界说,则可先设出轨迹方程,再依据已知前提,待定方程中的常数,即可得到轨迹方程3. 参数法:假如采取直译法求轨迹方程难以奏效,则可追求引动员点P活动的某个几何量t,以此量作为参变数,分离树立P 点坐标x,y与该参数t的函数关系x=f(t), y=g(t),进而经由过程消参化为轨迹的通俗方程F(x,y)=0.4. 代入法(相干点法):假如动点P的活动是由别的某一点P'的活动激发的,而该点的活动纪律已知,(该点坐标知足某已知曲线方程),则可以设出P(x,y),用(x,y)暗示出相干点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P的轨迹方程.5.交轨法:在求动点轨迹时,有时会消失请求两动曲线交点的轨迹问题,这种问题平日经由过程解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用. 6. 待定系数法:已知曲线是圆,椭圆,抛物线,双曲线等一.直接法把标题中的等量关系直接转化为关于x,y,的方程根本步调是:建系.设点.列式.化简.解释等,圆锥曲线尺度方程的推导. 1. 已知点(20)(30)A B -,,,,动点()P x y ,知足2PA PB x =·,求点P 的轨迹.26y x =+,2. 2.已知点B (-1,0),C (1,0),P 是平面上一动点,且知足.||||CB PB BC PC ⋅=⋅(1)求点P 的轨迹C 对应的方程;(2)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD 和AE,且AD⊥AE,断定:直线DE 是否过定点?试证实你的结论.(3)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD,AE,且AD,AE 的斜率k1.k2知足k1·k2=2.求证:直线DE 过定点,并求出这个定点.解:(1)设.4,1)1(||||),(222x y x y x CB PB BC PC y x P =+=+-⋅=⋅化简得得代入二.界说法应用所学过的圆的界说.椭圆的界说.双曲线的界说.抛物线的界说直接写出所求的动点的轨迹方程,这种办法叫做界说法.这种办法请求题设中有定点与定直线及两定点距离之和或差为定值的前提,或应用平面几何常识剖析得出这些前提.1. 若动圆与圆4)2(22=++y x 外切且与直线x=2相切,则动圆圆心的轨迹方程是解:如图,设动圆圆心为M,由题意,动点M 到定圆圆心(-2,0)的距离等于它到定直线x=4的距离,故所求轨迹是以(-2,0)为核心,直线x=4为准线的抛物线,并且p=6,极点是(1,0),启齿向左,所以方程是)1(122--=x y .选(B ).2.一动圆与两圆122=+y x 和012822=+-+x y x 都外切,则动圆圆心轨迹为解:如图,设动圆圆心为M,半径为r,则有.1,2,1=-+=+=MO MC r MC r MO 动点M 到两定点的距离之差为1,由双曲线界说知,其轨迹是以O.C 为核心的双曲线的左支3.在ABC △中,24BC AC AB =,,上的两条中线长度之和为39,求ABC △的重心的轨迹方程.解:以线段BC 地点直线为x 轴,线段BC 的中垂线为y 轴树立直角坐标系,如图1,M 为重心,则有239263BM CM +=⨯=. M ∴点的轨迹是认为B C ,核心的椭圆,个中1213c a ==,.225b a c =-=∴.∴所求ABC △的重心的轨迹方程为221(0)16925x y y +=≠. 留意:求轨迹方程时要留意轨迹的纯粹性与完整性.4.设Q 是圆x2+y2=4上动点另点A (3.0).线段AQ 的垂直等分线l 交半径OQ 于点P(见图2-45),当Q 点在圆周上活动时,求点P 的轨迹方程.解:衔接PA ∵l⊥PQ,∴|PA|=|PQ|.又P在半径OQ 上.∴|PO|+|PQ|=2.由椭圆界说可知:P 点轨迹是以O.A 为核心的椭圆.5.已知ΔABC中,A,B,C 所对应的边为a,b,c,且a>c>b,a,c,b 成等差数列,|AB|=2,求极点C 的轨迹方程 解:|BC|+|CA|=4>2,由椭圆的界说可知,点C 的轨迹是以A.B 为核心的椭圆,其长轴为4,焦距为2, 短轴长为23,∴椭圆方程为13422=+y x , 又a>b, ∴点C 在y 轴左侧,必有x<0,而C 点在x 轴上时不克不及组成三角形,故x≠─2,是以点C 的轨迹方程是:13422=+y x (─2<x<0) 点评:本题在求出了方程今后评论辩论x 的取值规模,现实上就是斟酌前提的须要性6.一动圆与圆22650x y x +++=外切,同时与圆226910x y x +--=内切,求动圆圆心M 的轨迹方程,并解释它是什么样的曲线.解析:(法一)设动圆圆心为(,)M x y ,半径为R ,设已知圆的圆心分离为1O .2O ,将圆方程分离配方得:22(3)4x y ++=,22(3)100x y -+=,当M 与1O 相切时,有1||2O M R =+①当M 与2O 相切时,有2||10O M R =-②将①②两式的双方分离相加,得21||||12O M O M +=, 即2222(3)(3)12x y x y +++-+=③移项再双方分离平方得:222(3)12x y x ++=+④双方再平方得:22341080x y +-=,整顿得2213627x y +=, 所以,动圆圆心的轨迹方程是2213627x y +=,轨迹是椭圆. (法二)由解法一可得方程2222(3)(3)12x y x y +++-+=, 由以上方程知,动圆圆心(,)M x y 到点1(3,0)O -和2(3,0)O 的距离和是常数12,所以点M 的轨迹是核心为1(3,0)O -.2(3,0)O ,长轴长等于12的椭圆,并且椭圆的中间在坐标原点,核心在x 轴上,∴26c =,212a =,∴3c =,6a =,∴236927b =-=,∴圆心轨迹方程为2213627x y +=. 三.相干点法此办法实用于动点随已知曲线上点的变更而变更的轨迹问题. 若动点P(x,y)随已知曲线上的点Q(x0,y0)的变动而变动,且x0.y0可用x.y 暗示,则将Q 点坐标表达式代入已知曲线方程,即得点P 的轨迹方程.这种办法称为相干点法(或代换法).x y 1O 2O P1.已知抛物线y2=x+1,定点A(3,1).B 为抛物线上随意率性一点,点P 在线段AB 上,且有BP∶PA=1∶2,当B 点在抛物线上变动时,求点P 的轨迹方程.剖析解:设点P(x,y),且设点B(x0,y0)∵BP∶PA=1∶2,且P 为线段AB 的内分点.2.双曲线2219x y -=有动点P ,12,F F 曲直线的两个核心,求12PF F ∆的重心M 的轨迹方程.解:设,P M 点坐标各为11(,),(,)P x y M x y ,∴在已知双曲线方程中3,1a b ==,∴9110c =+=∴已知双曲线两核心为12(10,0),(10,0)F F -,∵12PF F ∆消失,∴10y ≠ 由三角形重心坐标公式有11(10)10003x x y y ⎧+-+=⎪⎪⎨++⎪=⎪⎩,即1133x x y y =⎧⎨=⎩ . ∵10y ≠,∴0y ≠.3.已知点P 在双曲线上,将上面成果代入已知曲线方程,有22(3)(3)1(0)9x y y -=≠ 即所求重心M 的轨迹方程为:2291(0)x y y -=≠.4.(上海,3)设P 为双曲线-42x y2=1上一动点,O 为坐标原点,M 为线段OP 的中点,则点M 的轨迹方程是.解析:设P (x0,y0) ∴M(x,y ) ∴2,200y y x x ==∴2x=x0,2y =y0∴442x -4y2=1⇒x2-4y2=15.已知△ABC 的极点(30)(10)B C -,,,,极点A 在抛物线2y x =上活动,求ABC △的重心G 的轨迹方程.解:设()G x y ,,00()A x y ,,由重心公式,得003133x x y y -++⎧=⎪⎪⎨⎪=⎪⎩,,00323x x y y =+⎧⎨=⎩, ①∴. ② 又00()A x y ,∵在抛物线2y x =上,200y x =∴. ③将①,②代入③,得23(32)(0)y x y =+≠,即所求曲线方程是2434(0)3y x x y =++≠. 四.参数法假如不轻易直接找出动点的坐标之间的关系,可斟酌借助中央变量(参数),把x,y 接洽起来.若动点P (x,y )的坐标x 与y 之间的关系不轻易直接找到,而动点变更受到另一变量的制约,则可求出x.y 关于另一变量的参数方程,再化为通俗方程.1.已知线段2AA a '=,直线l 垂直等分AA '于O ,在l 上取两点P P ',,使有向线段OP OP ',知足4OP OP '=·,求直线AP 与A P ''的交点M 的轨迹方程. 解:如图2,以线段AA '地点直线为x 轴,以线段AA '的中垂线为y 轴树立直角坐标系.设点(0)(0)P t t ≠,, 则由题意,得40P t ⎛⎫' ⎪⎝⎭,. 由点斜式得直线AP A P '',的方程分离为4()()t y x a y x a a ta =+=--,. 两式相乘,消去t ,得222244(0)x a y a y +=≠.这就是所求点M 的轨迹方程.评析:参数法求轨迹方程,症结有两点:一是选参,轻易暗示出动点;二是消参,消参的门路灵巧多变.2.设椭圆中间为原点O,一个核心为F (0,1),长轴和短轴的长度之比为t .(1)求椭圆的方程;(2)设经由原点且斜率为t 的直线与椭圆在y 轴右边部分的交点为Q,点P 在该直线上,且12-=t t OQ OP,当t 变更时,求点P 的轨迹方程,并解释轨迹是什么图形.解:(1)设所求椭圆方程为).0(12222>>b a b x a y =+由题意得⎪⎩⎪⎨⎧==-,,122t b a b a 解得 ⎪⎪⎩⎪⎪⎨⎧-=-=.11.122222t b t t a 所以椭圆方程为222222)1()1(t y t x t t =-+-.(2)设点),,(),,(11y x Q y x P 解方程组⎩⎨⎧==-+-,,)1()1(1122122122tx y t y t x t t 得 ⎪⎪⎩⎪⎪⎨⎧-=-=.)1(2,)1(212121t t y t x 由12-=t t OQ OP 和1x x OQ OP =得⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==,2,2,2222t y t x t y t x 或 个中t >1.消去t,得点P 轨迹方程为)22(222>=x y x 和)22(222-<-=x y x .其轨迹为抛物线y x 222=在直线22=x 右侧的部分和抛物线y x 222-=在直线22-=x 在侧的部分.3.已知双曲线2222n y m x -=1(m >0,n >0)的极点为A1.A2,与y 轴平行的直线l 交双曲线于点P.Q 求直线A1P 与A2Q 交点M 的轨迹方程; 解设P 点的坐标为(x1,y1),则Q 点坐标为(x1,-y1),又有A1(-m,0),A2(m,0),则A1P 的方程为y=)(11m x mx y ++① A2Q 的方程为y=-)(11m x mx y --② ①×②得y2=-)(2222121m x m x y --③又因点P 在双曲线上,故).(,12212221221221m x m n y n y m x -==-即 代入③并整顿得2222n y m x +=1此即为M 的轨迹方程4.设点A 和B 为抛物线 y2=4px(p >0)上原点以外的两个动点,已知OA⊥OB,OM⊥AB,求点M 的轨迹方程,并解释它暗示什么曲线 解法一设A(x1,y1),B(x2,y2),M(x,y) (x≠0)直线AB 的方程为x=my+a由OM⊥AB,得m=-y x 由y2=4px 及x=my+a,消去x,得y2-4pmy -4pa=0所以y1y2=-4pa, x1x2=22122()(4)y y a p = 所以,由OA⊥OB,得x1x2 =-y1y2所以244a pa a p =⇒=故x=my+4p,用m=-y x代入,得x2+y2-4px=0(x≠0)故动点M 的轨迹方程为x2+y2-4px=0(x≠0),它暗示以(2p,0)为圆心,以2p 为半径的圆,去失落坐标原点 解法二设OA 的方程为y kx =,代入y2=4px 得222(,)p p A k k则OB 的方程为1y x k =-,代入y2=4px 得2(2,2)B pk pk -∴AB 的方程为2(2)1k y x p k=--,过定点(2,0)N p , 由OM⊥AB,得M 在以ON 为直径的圆上(O 点除外)故动点M 的轨迹方程为x2+y2-4px=0(x≠0),它暗示以(2p,0)为圆心,以2p 为半径的圆,去失落坐标原点 解法三设M(x,y) (x≠0),OA 的方程为y kx =,代入y2=4px 得222(,)p p A k k 则OB 的方程为1y x k =-,代入y2=4px 得2(2,2)B pk pk -由OM⊥AB,得M 既在以OA 为直径的圆222220p p x y x y k k+--=……①上, 又在以OB 为直径的圆222220x y pk x pky +-+=……②上(O 点除外),①2k ⨯+②得 x2+y2-4px=0(x≠0)故动点M 的轨迹方程为x2+y2-4px=0(x≠0),它暗示以(2p,0)为圆心,以2p 为半径的圆,去失落坐标原点5.过点A (-1,0),斜率为k 的直线l 与抛物线C :y2=4x 交于P,Q 两点.若曲线C 的核心F 与P,Q,R 三点按如图次序组成平行四边形PFQR,求点R 的轨迹方程;解:请求点R 的轨迹方程,留意到点R 的活动是由直线l 的活动所引起的,是以可以寻找点R 的横.纵坐标与直线l 的斜率k 的关系.然而,点R 与直线l 并没有直接接洽.与l 有直接接洽的是点P.Q,经由过程平行四边形将P.Q.R 这三点接洽起来就成为解题的症结.由已知:(1)l y k x =+,代入抛物线C :y2=4x 的方程,消x 得:204k y y k -+=∵C l P 直线交抛物线于两点.Q∴20410k k ⎧≠⎪⎨⎪∆=->⎩解得1001k k -<<<<或设1122(,),(,),(,)P x y Q x y R x y ,M 是PQ 的中点,则由韦达定理可知:122,2M y y y k+==将其代入直线l的方程,得2212M M x k y k ⎧=-⎪⎪⎨⎪=⎪⎩∵四边形PFQR 是平行四边形, ∴RF 中点也是PQ 中点M .∴242342M F Mx x x k y y k ⎧=-=-⎪⎪⎨⎪==⎪⎩又(1,0)(0,1)k ∈-⋃∴(1,)M x ∈+∞.∴点R 的轨迹方程为.1),3(42>+=x x y6.垂直于y 轴的直线与y 轴及抛物线y2=2(x –1)分离交于点A 和点P,点B 在y 轴上且点A 分OB 的比为1:2,求线段PB 中点的轨迹方程解:点参数法 设A(0,t),B(0,3t),则P(t2/2 +1, t),设Q(x,y),则有⎪⎪⎩⎪⎪⎨⎧=+=+=+=t tt y t t x 223)2(4121222,消去t 得:y2=16(x –21) 点评:本题采取点参数,即点的坐标作为参数在求轨迹方程时应剖析动点活动的原因,找出影响动点的身分,据此恰当地选择参数7.过双曲线C :x2─y2/3=1的左核心F 作直线l 与双曲线交于点P.Q,以OP.OQ 为邻边作平行四边形OPMQ,求M 的轨迹方程解:k 参数法 当直线l 的斜率k 消失时,取k 为参数,树立点M 轨迹的参数方程设M(x,y),P(x1,y1), Q(x2,y2),PQ 的中点N(x0,y0), l:y=k(x+2), 代入双曲线方程化简得:(3─k2)x2─4k2x─4k2─3=0,依题意k≠3,∴3─k2≠0,x1+x2=4k2/(3─k2), ∴x=2x0=x1+x2=4k2/(3─k2),y=2y0=2k(x0+2)=12k/(3─k2),∴⎪⎪⎩⎪⎪⎨⎧-=-=22231234k k y k k x , 消去k 并整顿,得点M 的轨迹方程为:1124)2(22=-+y x 当k 不消失时,点M(─4,0)在上述方程的曲线上,故点M 的轨迹方程为:点评:本题用斜率作为参数,即k 参数法,k 是经常应用的参数设点P.Q 的坐标,但没有求出P.Q 的坐标,而是用韦达定理求x1+x2,y1+y2,从整体上行止理,是处懂得析几何分解题的罕有技能8.(06辽宁,20)已知点11(,)A x y ,22(,)B x y 12(0)x x ≠是抛物线22(0)y px p =>上的两个动点,O 是坐标原点,向量OA ,OB 知足OA OB OA OB +=-.设圆C 的方程为(I) 证实线段AB 是圆C 的直径;(II)当圆C 的圆心到直线X2Y=0的距离的最小值为5时,求p 的值.解析:(I)证实1:22,()()OA OB OA OB OA OB OA OB +=-∴+=- 整顿得:0OA OB ⋅=12120x x y y ∴⋅+⋅=设M(x,y)是以线段AB 为直径的圆上的随意率性一点,则0MA MB ⋅= 即1212()()()()0x x x x y y y y --+--=整顿得:221212()()0x y x x x y y y +-+-+= 故线段AB 是圆C 的直径(II)解法1:设圆C 的圆心为C(x,y),则又因12120x x y y ⋅+⋅=1212x x y y ∴⋅=-⋅22121224y y y y p∴-⋅= 所以圆心的轨迹方程为222y px p =- 设圆心C 到直线x2y=0的距离为d,则当y=p 时,d=2p ∴=.五.交轨法一般用于求二动曲线交点的轨迹方程.其进程是选出一个恰当的参数,求出二动曲线的方程或动点坐标合适的含参数的等式,再消去参数,即得所求动点轨迹的方程.1. 已知两点)2,0(),2,2(Q P -以及一条直线ι:y=x,设长为2的线段AB 在直线λ上移动,求直线PA 和QB 交点M 的轨迹方程.解:PA 和QB 的交点M (x,y )随 A.B 的移动而变更,故可设)1,1(),,(++t t B t t A ,则PA :),2)(2(222-≠++-=-t x t t y QB :).1(112-≠+-=-t x t t y 消去t,得.082222=+-+-y x y x 当t=-2,或t=-1时,PA 与QB 的交点坐标也知足上式,所以点M 的轨迹方程是.0822222=+--+-y x x y x以上是求动点轨迹方程的重要办法,也是经常应用办法,假如动点的活动和角度有显著的关系,还可斟酌用复数法或极坐标法求轨迹方程.但无论用何办法,都要留意所求轨迹方程中变量的取值规模.2.自抛物线y2=2x 上随意率性一点P 向其准线l 引垂线,垂足为Q,贯穿连接极点O 与P 的直线和贯穿连接核心F 与Q 的直线交于R 点,求R 点的轨迹方程.解:设P (x1,y1).R (x,y ),则Q (-21,y1).F (21,0),∴OP 的方程为y=11x y x,①FQ 的方程为y=-y1(x -21).②由①②得x1=xx 212-,y1=xy 212-,代入y2=2x,可得y2=-2x2+x.六.待定系数法当曲线(圆.椭圆.双曲线以及抛物线)的外形已知时,一般可用待定系数法解决.1.已知A,B,D三点不在一条直线上,且(20)A -,,(20)B ,,2AD =,1()2AE AB AD =+.(1)求E 点轨迹方程;(2)过A 作直线交认为A B ,核心的椭圆于M N ,两点,线段MN 的中点到y 轴的距离为45,且直线MN 与E 点的轨迹相切,求椭圆方程.解:(1)设()E x y ,,由1()2AE AB AD =+知E 为BD 中点,易知(222)D x y -,.又2AD =,则22(222)(2)4x y -++=.即E 点轨迹方程为221(0)x y y +=≠; (2)设1122()()M x y N x y ,,,,中点00()x y ,.由题意设椭圆方程为222214x y a a +=-,直线MN 方程为(2)y k x =+.∵直线MN 与E 点的轨迹相切, 2211k k =+∴,解得33k =±. 将33y =±(2)x +代入椭圆方程并整顿,得222244(3)41630a x a x a a -++-=,2120222(3)x x a x a +==--∴,又由题意知045x =-,即2242(3)5a a =-,解得28a =.故所求的椭圆方程为22184x y +=.2.已知圆C1的方程为(x -2)2+(y -1)2=320,椭圆C2的方程为2222by ax +=1(a >b >0),C2的离心率为22,假如C1与C2订交于A.B 两点,且线段AB 恰为圆C1的直径,求直线AB 的方程和椭圆C2的方程..解:由e=22,可设椭圆方程为22222b y b x +=1,又设A(x1,y1).B(x2,y2),则x1+x2=4,y1+y2=2, 又2222222212212,12by bx by bx +=+=1,两式相减,得22221222212by y bx x -+-=0,2121x x y y --=-1,故直线AB 的方程为y=-x+3,代入椭圆方程得3x2-12x+18-2b2=0. 有Δ=24b2-72>0,又|AB|=3204)(221221=-+x x x x ,得3209722422=-⋅b ,解得b2=8.故所求椭圆方程为81622y x +=1.3.已知直线1+-=x y 与椭圆)0(12222>>=+b a by a x 订交于A.B 两点,且线段AB 的中点在直线02:=-y x l 上.(1)求此椭圆的离心率;(2 )若椭圆的右核心关于直线l 的对称点的在圆422=+y x 上,求此椭圆的方程. 讲授:(1)设A.B 两点的坐标分离为⎪⎩⎪⎨⎧=++-=11).,(),,(22222211b y ax x y y x B y x A ,则由得02)(2222222=-+-+b a a x a x b a , 依据韦达定理,得∴线段AB的中点坐标为(222222,ba b b a a ++).由已知得2222222222222)(22,02c a c a b a ba b b a a =∴-==∴=+-+ 故椭圆的离心率为22=e .(2)由(1)知,c b =从而椭圆的右核心坐标为),0,(b F 设)0,(b F 关于直线2:=-y x l 的对称点为,02221210),,(000000=⨯-+-=⋅--yb x b x y y x 且则解得b y b x 545300==且由已知得 4,4)54()53(,42222020=∴=+∴=+b b b y x故所求的椭圆方程为14822=+y x .。

求动点的轨迹方程(方法例题习题答案)

求动点的轨迹方程(方法例题习题答案)

求动点的轨迹方程〔例题,习题与答案〕在中学数学教学和高考数学考试中,求动点轨迹的方程和曲线的方程是一个难点和重点内容〔求轨迹方程和求曲线方程的区别主要在于:求轨迹方程时,题目中没有直接告知轨迹的形状类型;而求曲线的方程时,题目中明确告知动点轨迹的形状类型〕。

求动点轨迹方程的常用方法有:直接法、定义法、相关点法、参数法与交轨法等;求曲线的方程常用“待定系数法〞。

求动点轨迹的常用方法动点P 的轨迹方程是指点P 的坐标〔*,y 〕满足的关系式。

1. 直接法〔1〕依题意,列出动点满足的几何等量关系;〔2〕将几何等量关系转化为点的坐标满足的代数方程。

例题直角坐标平面上点Q 〔2,0〕和圆C :122=+y x ,动点M 到圆C 的切线长等与MQ ,求动点M 的轨迹方程,说明它表示什么曲线. 解:设动点M(*,y),直线MN 切圆C 于N 。

依题意:MN MQ =,即22MN MQ = 而222NO MO MN-=,所以(*-2)2+y 2=*2+y 2-1化简得:*=45。

动点M 的轨迹是一条直线。

2. 定义法分析图形的几何性质得出动点所满足的几何条件,由动点满足的几何条件可以判断出动点的轨迹满足圆〔或椭圆、双曲线、抛物线〕的定义。

依题意求出曲线的相关参数,进一步写出轨迹方程。

例题:动圆M 过定点P 〔-4,0〕,且与圆C :0822=-+x y x 相切,求动圆圆心M 的轨迹方程。

解:设M(*,y),动圆M的半径为r 。

假设圆M 与圆C 相外切,则有 ∣MC ∣=r +4 假设圆M 与圆C 相内切,则有 ∣MC ∣=r-4 而∣MP ∣=r, 所以∣MC ∣-∣MP ∣=±4动点M 到两定点P(-4,0),C(4,0)的距离差的绝对值为4,所以动点M 的轨迹为双曲线。

其中a=2, c=4。

动点的轨迹方程为:3. 相关点法假设动点P(*,y)随曲线上的点Q(*0,y 0)的变动而变动,且*0、y 0可用*、y 表示,则将Q 点坐标表达式代入曲线方程,即得点P 的轨迹方程。

高三数学例谈消参法求轨迹问题

高三数学例谈消参法求轨迹问题

例谈消参法求轨迹问题作者:于华东 郑州市第十二中学邮编: 450044 Email : yuhd16@求动点的轨迹问题,方法很多,但对消参法的考查每年高考都是热点,高考中的轨迹问题为选拔性试题,有一定的难度,区分度好,能使优秀生脱颖而出.本文对消参法求轨迹问题略举两例,从中体会对消参法求轨迹问题的灵活考查.例1 设椭圆方程为2214y x += ,过点M (0,1) 的直线l 交椭圆于点A 、B ,O 是坐标原点,点P 满足1()2OP OA OB =+uu u r uu r uu u r ,点 N 的坐标为11(,)22,当直线l 绕点M 旋转时,求动点P 的轨迹方程. 分析:由直线l 过点M (0,1),可设其斜率为k (斜率不存在时要讨论),则直线l 的方程可表示出来,根据直线l 的斜率变化直接影响动点P 的轨迹,所以,只要求出点P 的横、纵坐标与斜率k 的关系,然后消去参数k 即可求得点P 的轨迹方程.解:(1)当直线l 的斜率存在时,设其斜率为k ,由直线l 过点M (0,1),则l 的方程为1y kx =+.记点A 、B 的坐标分别为1122(,)(,)x y x y 、,由题设可得点A 、B 的坐标1122(,)(,)x y x y 、是方程组221,14y kx y x ì=+ïïïíï+=ïïî的解. 将1y kx =+代入2214y x +=,并化简得,所以1212122228, ()2.44k x x y y k x x k k+=-+=++=++ 于是12122214()22244x x y y k OP OA OB k k++-=+=++uu u r uu r uu u r (,)=(,).设点P 的坐标为(,)x y ,则22,44.4k x k y k ì-ïï=ïï+ïíïï=ïï+ïî消去参数k , 得2240x y y +-=;(2)当直线l 的斜率不存在时,A 、B 两点连线的中点为坐标原点(0,0),也满足方程2240x y y +-=.所以点P 的轨迹方程为2240x y y +-=.点评:在引入直线l 的斜率k 为参数时,应讨论直线l 的斜率存在与不存在两种情况,要注意解题的严谨性。

高三数学轨迹问题的求法

高三数学轨迹问题的求法

a2

1 2
)的
距离之和
为定值2a.
2003年高考题20(本小题满分12分) 在某海滨城市附近海面有一台风.据监测,当前台风
中心位于城市O(如图)的东偏南θ (θ = arccos 2 )方向
10
300 km的海面P处,并以20 km/h的速度问西偏北450方向 移动。台风侵袭的范围为圆形区域,当前半径为60 km,并 以10 km/h的速度不断增大.问几小时后该城市开始受到 台风的侵袭? 解:以O为原点,正东方向为x轴正向, 建立直角坐标系
移动,且,BE CF DG
BC CD DA
P为GE与OF的交点(如图),问是
否存在两个定点,使P到这两点的距离的和为定值?若存在,求
出这两点的坐标及此定值;若不存在,请说明理由。
解:根据题意,首先求出点P 坐标满足的方程, y
根据此判断是否存在两定点,使得
DF
点P到两定点的距离和为定值。
P
依题意有A(-2,0),B(2,0),C(2,4a),D(-2,4a)
,|θ
|≤
2

∵|AB|= a, | AP | 2
| PB | 1
∴|AP|=
2 3
a,
|PB|=
1 3
a
∴动点P的参数方程为
即:
5、交轨法 例6、椭圆与双曲线有共同的焦点F1(一4,0),F2(4,0),且椭圆
的长轴长是双曲线实轴长的2倍,求椭圆与双曲线交点的轨迹。 解:设双曲线的实半轴长为a(2<a<4),则椭圆长半轴长为 2a,由半焦距为4,得
解:设Q(xl,y1),P(x,y),由题设,

AP PQ

人教版数学高二-备课资料求解轨迹问题的三张秘籍

人教版数学高二-备课资料求解轨迹问题的三张秘籍

求解轨迹问题的三张“秘籍”求动点轨迹方程是解析几何的基本问题之一,是高考的热点.它能很好地反映出学生在能力方面的程度,符合高考改革的意图,因此历年受到命题专家的青睐.求轨迹方程的方法比较多、思路比较灵活,有时还感到无从下手,掌握一些求解技巧对解题有很大帮助,下面给出求解轨迹问题的三张“秘籍”.一、巧用平几知识例1 已知圆O′:(x -14)2+(y -12)2=362内一点C(4,2)和圆周上两动点A 、B ,使∠ACB =90º,求斜边AB 的中点M 的轨迹方程.分析 按照常规思考,设M(x ,y)、A(x 1,y 1)、B(x 2,y 2).根据题意,可列出方程组 ()()()()222112222212121212x 14y 1436 x 14y 1436 x x 2x, y y 2y (x 4)(x 4)(y 4)(y 4)0⎧-+-=⎪⎪-+-=⎨+=+=⎪⎪--+--=⎩, 消去x 1、y 1、x 2、y 2,即得所要求的方程,消元的过程比较麻烦.如果应用初中的平面几何,则这个轨迹方程的求解非常简单.解 如图,连结MO′、MC 、BO′,则MO′⊥MB ,|MC|=|AM|=|MB|.设点M(x ,y),则在∆BMO′中,|MO′|2+|MB|2=|O′B|2.又|MB|=|MC|,∴|MO′|2+|MC|2=|O′B|2.即(x -14)2+(y -12)2+(x -4)2+(y -2)2=362.故所求动点M 的轨迹方程为x 2+y 2-18x -14y -468=0.二、回扣曲线定义例2 如图,ABCD 是一张矩形纸片,AB =4,AD =8,按图中所示方法进行折叠,使每次折叠后点B 都落在AD 上,将此点记为B′(注:折痕EF 中,点F 也落在边CD 上).过B′作B′T ∥CD 交EF 于T 点,求T 点的轨迹方程.分析 对于折叠问题要理清折叠前后的图形关系,连结TB 后,可以证明∣TB ∣=∣TB ′∣,注意到:∣TB ∣是点T 到定点B 的距离,∣TB ′∣是点T 到定直线AD 的距离.回扣抛物线的定义,得到T 点的轨迹是抛物线.解 连结TB .因为点B′是由沿EF 折叠得到的,故∆EBT ≌∆EB ′T ,又B′T ∥CD ,所以∣TB ∣=∣TB ′∣.即点T 定点B 与定直线AD 的距离相等,故T 点的轨迹是抛物线的一部分,且B 为焦点,AD 为准线.以AB 的中垂线为x 轴,以AB 为y 轴建立直角坐标系,AB 的中点设为O .令抛物线的方程为x =-2py ,则∣OB ∣=p 2=2,故所求方程为x =-8y . 当以x 轴为折痕时,T 在原点O ;当以点A 和BC 中点连线为折痕时,T 在BC 的中点,所以T 点横坐标的范围是0≤x≤4.∴T 点的轨迹方程为x =-8y (0≤x≤4).三、紧盯目标消参例3(07’湖南文) 已知双曲线x 2-y 2=2的右焦点为F ,过点F 的动直线与双曲线相交于A 、B 两点,点C 的坐标是(1,0).⑴证明CA •CB 为常数;⑵若动点M 满足CM =CA +CB +CO ,(其中O 为坐标原点),求点M 的轨迹方程.分析 用参数法求轨迹的方程时,有时消参并不容易.只要是所列出的方程个数比参数个数多一个,一般情况下紧盯目标参数必能得到曲线的方程.这种决心和信心是必须要有的,并且能随着解题能力和技巧的逐步提高,一步步得到加强.证明 ⑴由已知条件知F(2,0),设A(x 1,y 1)、B(x 2,y 2).当AB 与x 轴垂直时,可求得A 、B 的坐标分别为(2)、(2,),此时CA •CB =(1)•(1)=-1.当AB 不与x 轴垂直时,设直线AB 的方程是y =k(x -2)(k ≠±1),代入x 2-y 2=2,有2222(1k )x +4k x (4k +2)=0--. 则x 1,x 2是上述方程的两个实根,所以21224k x +x =k 1-,21224k +2x x =k 1-, 于是CA •CB =1212(x 1)(x 1)+y y --=21212(x 1)(x 1)+k (x 2)(x 2)----.=2221212(k +1)x x (2k +1)(x +x )+4k +1-=2222222(k +1)(4k +2)4k (2k +1)+4k 1k 1k 1-+--. =22(4k 2)4k 1--++=-1.综上所述,CA •CB 为常数-1.解 ⑵设M(x ,y),则CM =(x -1,y),CA =(x 1-1,y 1),CB =(x 2-1,y 2),CO=(-1,0),由CM =CA +CB +CO ,得:1212x 1x x 3y y y -=+-⎧⎨=+⎩,即1212x x x 2y y y +=+⎧⎨+=⎩. 当AB 不与x 轴垂直时,由⑴知x 1+x 2=224k k 1-,x 1x 2=224k +2k 1-. ∴x +2=224k k 1-,y 1+y 2=k(x 1+x 2-4)=24k k 4k 1⎛⎫- ⎪-⎝⎭=24k k 1-. 两式相除,得k =1212x x y y ++=x 2y+. 当k≠0时,y ≠0,代入x +2=224k k 1-,整理得x 2-y 2=4.当k=0时,点M的坐标为(-2,0),满足上述方程.当AB与x轴垂直时,x1=x2=2,求得M(2,0),也满足上述方程.故点M的轨迹方程为x2-y2=4.。

高中数学常见题型解法归纳 参数方程消参的方法

高中数学常见题型解法归纳 参数方程消参的方法

高中数学常见题型解法归纳参数方程消参的方法高中数学常见题型解法——参数方程消参的方法知识要点】一、参数方程消参常用的方法有三种:1.加减消参:直接将两个方程相加减即可消去参数。

2.代入消参:通过其中一个方程求出参数的值,再代入另一个方程化简。

3.恒等式消参:通过方程计算出sinα、cosα,再利用三角恒等式sin²α+cos²α=1消去参数。

二、参数方程化为普通方程,一定要注意变量x、y的前后范围的一致性。

有时两个的范围都要写,有时只要写一个,有时可以不写。

方法讲评】方法一:加减消参解题步骤:直接将两个方程相加减即可消去参数。

例如,将参数方程x=t+1y=1-2t化为普通方程,不需要写变量x、y的范围,因为参数方程中x的范围是确定的,与直线的范围一致。

方法二:代入消参解题步骤:通过其中一个方程求出参数的值,再代入另一个方程化简。

例如,将参数方程x=sinα+cos2αy=2+sinα化为普通方程,需要注意x的范围为[-√2,√2],因为cos2α的范围为[-1,1],所以sinα的范围为[-√2,√2]。

方法三:恒等式消参解题步骤:通过方程计算出sinα、cosα,再利用三角恒等式sin²α+cos²α=1消去参数。

例如,将参数方程x=2sinαy=3cosα化为普通方程,需要注意x、y的范围为[-3,3],因为sinα、cosα的范围为[-1,1]。

反馈检测】1.将参数方程x=t+1,y=1-t²化为普通方程,并说明它表示什么曲线。

2.参数方程x=t+1,y=1-2t表示什么曲线?通过参数方程计算出sinα、cosα,然后利用三角恒等式sin²α+cos²α=1消去参数。

例如,将参数方程x=2+3sinθ,y=-1+3cosθ化为普通方程。

需要注意的是,不需要加上x的范围-1≤x≤5,因为x的范围隐含在方程(x-2)+(y+1)=9之中,也是-1≤x≤5,因此不需要加上x的范围。

高中数学动点轨迹方程求解方法

高中数学动点轨迹方程求解方法

高中数学动点轨迹方程求解方法轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性)。

轨迹方程就是与几何轨迹对应的代数描述。

轨迹方程就是与几何轨迹对应的代数描述。

符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹。

重点要掌握常用求轨迹方法,难点是轨迹的定型及其纯粹性和完备性的讨论。

一、动点轨迹方程解题步骤1.建系——建立适当的坐标系,设出动点M的坐标;2.设点——设轨迹上的任一点P(x,y),写出点P的集合;3.列式——列出动点p所满足的关系式;4.代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,化简方程为最简形式;5.证明——证明所求方程即为符合条件的动点轨迹方程。

二、动点轨迹方程求解常见的6种方法动点轨迹方程的求解方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

1.直译求解法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

如果动点P的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P满足的等量关系易于建立,则可以先表示出点P所满足的几何上的等量关系,再用点P的坐标(x,y)表示该等量关系式,即可得到轨迹方程。

根据已知条件及一些基本公式如两点间距离公式,点到直线的距离公式,直线的斜率公式等,直接列出动点满足的等量关系式,从而求得轨迹方程。

2.定义求解法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

待定系数法:如果动点P的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。

高中数学参数方程消参方法总结整理

高中数学参数方程消参方法总结整理

参数方程消参方法总结一、 参数方程常用消参方法: 1.加减法消参 2.代入法消参3.利用公式(完全平方公式、三角恒等变换公式)二、常见的参数方程①直线的参数方程若直线过(x 0,y 0),α为直线的倾斜角,则直线的参数方程为(t 为参数).这是直线的参数方程,其中参数t 有明显的几何意义. ②圆的参数方程若圆心在点M 0(x 0,y 0),半径为R,则圆的参数方程为0≤θ≤2π.③椭圆的参数方程若椭圆的中心不在原点,而在点M 0(x 0,y 0),相应的椭圆参数方程为0≤t ≤2π.题型一、加减消参1. 下列点不在直线{x =−1−√22ty =2+√22t(t 为参数)上的是( )A. (−1,2)B. (2,−1)C. (3,−2)D. (−3,2)2.在直角坐标系xoy 中,以原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的参数方程为:{x −−2+√22ty =√22t (t 为参数) ,P 的极坐标方程为(2,π),曲线C 的极坐标方程为ρcos 2θ=sinθ,试将曲线C 的极坐标方程化为直角坐标方程,并求曲线C 的焦点在直角坐标下的坐标。

3.将参数方程{x =1−cos 2θy =cos 2θ(θ为参数)化为普通方程为( )A. x +y −1=0B. x −y +1=0C. x +y −1=0(0≤x ≤1)D. x −y +1=0(0≤y ≤1)4.曲线C 的参数方程为{x =2t 21+t 2y =4−2t 21+t 2(t 为参数),则曲线C 是( ) A. 直线 B. 直线的一部分 C. 圆 D. 圆的一部分5.以直角坐标系xOy 的坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知直线l 的参数方程是{x =√22t y =√22t +4√2 (t 为参数),圆C 的极坐标方程为ρ=2cos(θ+π4).(1)求圆心C 的直角坐标;(2)试判断直线l 与圆C 的位置关系.6.在直角坐标系xOy 中,曲线C 1:{x =1+2ty =2−2t(t 为参数,t ∈R),曲线C 2:{x =4cosα+4y =4sinα(α为参数).(Ⅰ)以O 为极点,x 轴正半轴为极轴,取相同的长度单位建立极坐标系,求曲线C 2的极坐标方程;(Ⅱ)若曲线C 1与曲线C 2相交于点A 、B ,求|AB|.题型二、代入法消参1.⎩⎪⎨⎪⎧ x =1t ,y =1t t 2-1(t 为参数);2.⎩⎪⎨⎪⎧x =3k 1+k 2,y =6k 21+k2(k 为参数);3.在直角坐标系xOy 中,曲线C 的参数方程为(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为.求C 和l 的直角坐标方程4.参数方程是{x =3t 2+2y =t 2−1(0≤t ≤5)表示的曲线是( )A. 线段B. 双曲线C. 圆弧D. 射线5.与参数方程为{x =√t,y =2√1−t(t 为参数)等价的普通方程是( )A. x 2+y 24=1B. x 2+y 24=1(0≤x ≤1)C. x 2+y 24=1(0≤y ≤2)D. x 2+y 24=1(0≤x ≤1,0≤y ≤2)2221141t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩,2cos sin 110ρθθ++=题型三、利用公式1.⎩⎨⎧x =2+sin 2θ,y =-1+cos 2θ(θ为参数).2.⎩⎨⎧x =1-sin 2θ,y =sin θ+cos θ(θ为参数).3.参数方程{x =e t +e −ty =2(e t −e −t )(t 为参数)的普通方程为_____________4、在平面直角坐标系xOy 中,曲线1C 的参数方程为22cos ,2sin x y αα=+⎧⎨=⎩(α为参数),曲线2C 的参数方程为23,12x t y t =+⎧⎨=-+⎩(t 为参数).求曲线12,C C 的普通方程;5.在直角坐标系xOy 中,曲线C 1的方程为(x −2)2+y 2=6,曲线C 2的参数方程为{x =t 2+1t 2y =t 2−1t 2 (t 为参数) ,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为θ=α(−π2<α<π2,ρ∈R) 求曲线C 1、C 2的极坐标方程6.把参数方程{x =sinθ−cosθy =sinθ+cosθ(θ为参数,θ∈R)化成普通方程是______.7.在平面直角坐标系xOy 中,曲线C 的参数方程为{x =t +1ty =t 2−12t (t 为参数),以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系.直线l 的极坐标方程为ρsin(θ+π4)=2√2.(1)求曲线C 的极坐标方程和直线l 的直角坐标方程;(2)若t ≠−1,求以曲线C 与x 轴的交点为圆心,且这个交点到直线l 的距离为半径的圆的方程.。

动点轨迹方程的罕见求法

动点轨迹方程的罕见求法

轨迹方程。 解:如右图:过 A 且与圆 O 相切的圆,只能与圆 O 相内切,根据两圆相内切的性质:
连心线必过其切点,设切点为 M,则 O、P、M 共线,
OM = OP + PM 。又因为 A 在圆 P 上,
PM = PA 。 OP + PA = OM = 4。
故 P 的轨迹是以 O、A 为焦点,长轴长为
(y -1)
y
OA
P
M
x
2
五、相关点法;
若动点 P(x, y)依赖于某已知曲线上的另一个动点 P 1 (x 1 ,y 1 )而运动,且 x 1 , y 1 可用 x, y
表示,则将 P 1 (x 1 ,y 1 )代入已知曲线,求出 P 点的轨迹方程。此法也称代入法或转移法。
例 5、定点 A(3,0)为圆 x 2 + y 2 = 1 外一定点,P 为圆上任一点,(除出圆与 x 轴的交点), ∠POA 的平分线交 PA 于点 Q, 求出 Q 点的轨迹方程。
2x迹直接符合已知圆锥曲线定义,则可直接利用定义写出其方程。 例 3、已知定点 A(0, 7), B(0, -7), F 1 (12, 2),以 F 1 为一个焦点,作过 AB 的椭圆,求另一个 焦点
F 2 的轨迹。
解:根据椭圆的定义, AF1 + AF2 = BF1 + BF2 ,但 AF1 =13, BF1 = 15, 故得 AF2 +13 = BF2 +15,即 F2 A - F2 B = 2
Z B 2 + Z B 2 = 6。设点 A 所对应的复数是 Z,
因为 F、A、B 为逆时针方向排序,ΔFAB 为正三角形,
所以向量 FB 可由向量 FA 沿逆时针方向旋转 而得到。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求动点轨迹系列小专题4:消参法
消参法:顾名思义,通过消去参数,得到动点()y x P ,的轨迹方程。

本课时,敢于突破自己,在各式各样的情境下,多参数情况下,也能够找到消参的路径。

其实消参法学习过后,上课时的相关点法的本质也是消参法,消参的路径就是运用主动点的方程进行消参,相关点法实际上是以特殊的消参身份独立出来。

例1:平面直角坐标系中,O 为坐标原点,己知两点()()60,26A B -,
,若点C 满足OC OA OB αβ=+ ,其中21αβ+=.则点C 的轨迹方程为____________.
【答案】65180
x y +-=【解析】
【分析】
设点C 的坐标为(),x y ,由题意可得()(),62,6x y αββ=-,所以6186x y y αβ⎧=+⎪⎪⎨⎪=⎪⎩
,又由21αβ+=可得出点C 的轨迹方程.
【详解】
设点C 的坐标为(),x y ,由题意可得()(),62,6x y αββ=-,所以626x y αββ=-⎧⎨=⎩,所以6186x y y αβ⎧=+⎪⎪⎨⎪=⎪⎩
,又21αβ+=,所以216186
x y y ⎛⎫⨯+
+= ⎪⎝⎭,即65180x y +-=,故填:65180x y +-=.
变式1:在直角坐标系xOy 中,过点(1,0)-的直线与抛物线2:8C y x =相交于A ,B 两点,弦AB 的中点P 的轨迹记为W ,求W 的方程;
【分析】
先设()11,A x y ,()22,B x y ,()00,P x y ,根据21122
288y x y x ⎧=⎨=⎩,以及题意,得到121021284y y x x y y y -==+-,再由1201201
y y y x x x -=-+,两式联立,即可得出结果;【解析】
设()11,A x y ,()22,B x y ,()00,P x y ,由题意可得:21122
288y x y x ⎧=⎨=⎩,则()2212128y y x x -=-,从而121212
8y y x x y y =-+-,因为点P 为弦AB 的中点,所以1202y y y +=,即
121021284y y x x y y y -==+-,又直线AB 过点(1,0)-,所以1201201
y y y x x x -=-+,则000
41y x y =+,即()20041y x =+,而()00,P x y 必在抛物线2:8C y x =的内部,从而()2
000418y x x =+<,即01x >.故W 的方程为24(1)(1)y x x =+>.
变式2:过抛物线24y x =的焦点F 作直线与抛物线交于,A B 两点,当此直线绕焦点F 旋转时,弦AB 中点的轨迹方程为__________.
【答案】22(1)
y x =-【解析】
由题意知抛物线焦点为(1,0),
当直线的斜率存在时,设为k ,则焦点弦方程为(1)y k x =-,代入抛物线方程24y x =得2222(24)0k x k x k -++=,
由题意知斜率不等于0,
方程是一个一元二次方程,由韦达定理:2122
24k x x k ++=所以中点横坐标:2122
22x x k x k ++==代入直线方程,则中点纵坐标:2(1)y k x k =-=,即中点为2222(,k k k
+消参数k ,得其方程为22(1)
y x =-当直线的斜率不存在时,直线的中点是(1,0),符合题意,故答案为:22(1)
y x =-变式3:设P ()1,0是圆O :224x y +=内一定点,过P 作两条互相垂直的直线分别交圆O 于A 、B 两点,则弦AB 中点的轨迹方程是_________.
【答案】2222230
x y x +--=【分析】
设AB 的中点为(,)M x y ,设11(,)A x y ,22(,)B x y ,则12122,2x x x y y y =+=+,由题意,A B
均在圆O 上则有222211224,4x y x y +=+=.又由BP AP ⊥,得121212121x x y y x x x +=+-=-,
再代入消去参数,得到M 的轨迹方程.
【解析】
设AB 的中点为(,)M x y ,设11(,)A x y ,22(,)B x y .则12122,2x x x y y y =+=+.(1)
由题意,A B 均在圆O 上则有:222211224,4x y x y +=+=.(2)
又由条件有BP AP ⊥,即0BP AP ⋅= .
即BP AP ⋅ =1122(1,)(1,)x y x y --⋅--=1212121()0x x x x y y +-++=(3)将(1)代入(3)中有:121212121
x x y y x x x +=+-=-(4)将(1)中两式平方相加得:2222121244()()x y x x y y +=+++.
即222222112211224422x y x x x x y y y y +=+++++(5)
将(2),(4)代入(5)得:224482(21)x y x +=+-.即弦AB 中点的轨迹方程是2222230x y x +--=.故答案为:2222230
x y x +--=变式4:双曲线Γ:22
1143
x y -=的左右顶点分别为1A ,2A ,动直线l 垂直Γ的实轴,且交Γ于不同的两点,M N ,直线1A N 与直线2A M 的交点为P ,求点P 的轨迹C 的方程;
【解析】
因为()()122,0,2,0A A -,
设(),,P x y ()00,,M x y 则()00,,N x y -且22
00143x y -=①,因为动直线l 交双曲线于不同的两点,M N ,所以02x ≠±且2x ≠±,因为直线2A M 的方程为()0022
y y x x =--②,直线1A N 的方程为()0022
y y x x -=++③,②⨯③得()
22202044y y x x -=--,把①代入上式得()
22344y x =--,化简得22143x y +=,所以点P 的轨迹C 的方程为()22
1243
x y x +=≠±.变式5:已知椭圆C :22
1189
x y +=的短轴端点为1B ,2B ,点M 是椭圆C 上的动点,且不与1B ,2B 重合,点N 满足11NB MB ⊥,22NB MB ⊥.求动点N 的轨迹方程;
【答案】(Ⅰ)()22109
92
y x x +=≠;【解析】
设(),N x y ,()()000,0M x y x ≠,11,MB NB ⊥Q 22MB NB ⊥∴直线010:33x NB y x y +=-
+①直线020:33
x NB y x y -=--②⨯①②得22
202099x y x y -=-又22
001189
x y +=Q ,2022221819929
o y y x x y ⎛⎫- ⎪⎝⎭∴-==--,整理得点N 的轨迹方程为()22109
92y x x +=≠。

相关文档
最新文档