(完整word版)2018年初中数学新课标经典试题
第88题+频率分布直方图-2018精品之高中数学(理)黄金100题系列+Word版含解析
第88题 频率分布直方图I .题源探究·黄金母题【例1】若某校高一年级8个班参加合唱比赛的得分茎叶图如图所示,则这组数据的中位数和平均数分别是 ( )A .91.5和91.5B .91.5和92C .91和91.5D .92和92 【答案】A【例2】如图是某城市100位居民去年的月均用水量(单位:t )的频率分布直方图,月均用水量在区间[)1.5,2.5的居民大约有 ( )A .37位B .40位C .47位D .52位 【答案】C【解析】由频率分布直方图月均用水量在区间[)1.5,2的频率为0.450.50.225⨯=,月均用水量在区间[)2,2.5的居民的频率 为0.50050.25⨯=..月均用水量在区间[)1.5,2.5的居民的频数大约为精彩解读【试题来源】例1:人教A 版必修3P 70改编;例2:人教A 版必修3P 65例题改编.【母题评析】这类题主要考查平均数、方差的计算以及茎叶图与频率分布直方图的简单应用. 【思路方法】用样本估计总体是统计的基本方法:(1)最高的矩形的中点横坐标即众数;(2)中位数左边和右边的直方图的面积是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.()0.2250.2510047+⨯=,故选C.II.考场精彩·真题回放【例1】【2017高考新课标3理3】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳【答案】A客量波动性大,D选项正确.故选A.【例2】【2017高考新课标1文2】为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数【命题意图】这类重点题考查分层抽样和系统抽样的计算.考查考生基本计算能力.【考试方向】这类试题在考查题型上,主要以选择题或填空题为主,属于中低档题.【难点中心】1.将频率分布直方图中相邻的矩形的上底边的中点顺次连结起来,就得到一条折线,我们称这条折线为本组数据的频率折线图,频率分布折线图的的首、尾两端取值区间两端点须分别向外延伸半个组距,即折线图是频率分布直方图的近似,他们比频率分布表更直观、形象地反映了样本的分布规律.2.分清几个样本特征数:众数:一组数据出现次数最多的数叫众数,众数反应一组数据的多数水平;中位数:一组数据中间的数,(起到分水岭的作用)中位数反应一组数据的中间水平;平均数:反应一组数据的平均水平;方差:方差是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方【答案】B【解析】刻画评估这种农作物亩产量稳定程度的指标是标准差,故选B.【例3】【2017高考山东文8】如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为A.3,5 B.5,5 C.3,7 D.5,7【答案】A得3x .故选A.【例4】【2017高考北京文17】某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),┄,[80,90],并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;差.在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.标准差是方差的算术平方根,意义在于反映一个数据集的离散程度.3.用样本估计总体是统计的基本思想,而利用频率分布表和频率分布直方图来估计总体则是用样本的频率分布去估计总体分布的两种主要方法.分布表在数量表示上比较准确,直方图比较直观.4.频率分布表中的频数之和等于样本容量,各组中的频率之和等于1;在频率分布直方图中,各小长方形的面积表示相应各组的频率,所以,所有小长方形的面积的和等于1.(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数学不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例. 【答案】(Ⅰ)0.4;(Ⅱ)20;(Ⅲ):32.(Ⅱ)根据题意,样本中分数不小于50的频率为(0.010.020.040.02)100.9+++⨯=,分数在区间[40,50)内的人数为1001000.955-⨯-=.所以总体中分数在区间[40,50)内的人数估计为540020100⨯=. (Ⅲ)由题意可知,样本中分数不小于70的学生人数为(0.020.04)1010060+⨯⨯=,所以样本中分数不小于70的男生人数为160302⨯=. 所以样本中的男生人数为30260⨯=,女生人数为1006040-=,男生和女生人数的比例为60:403:2=.所以根据分层抽样原理,总体中男生和女生人数的比例估计为3:2.III .理论基础·解题原理⑴一表二图:①频率分布表——数据详实 ②频率分布直方图——分布直观③频率分布折线图——便于观察总体分布趋势 注:总体分布的密度曲线与横轴围成的面积为1. ⑵茎叶图:①茎叶图适用于数据较少的情况,从中便于看出数据的分布,以及中位数、众位数等. ②个位数为叶,十位数为茎,右侧数据按照从小到大书写,相同的数据重复写. 3.总体特征数的估计:⑴平均数:nx x x x x n++++=321;取值为n x x x ,,,21 的频率分别为n p p p ,,,21 ,则其平均数为n n p x p x p x +++ 2211;注意:频率分布表计算平均数要取组中值.⑵方差与标准差:一组样本数据n x x x ,,,21 方差:212)(1∑=-=ni ix xns ;标准差:21)(1∑=-=ni ix xns注:方差与标准差越小,说明样本数据越稳定.平均数反映数据总体水平;方差与标准差反映数据的稳定水平.IV .题型攻略·深度挖掘【考试方向】这类试题在考查题型上,通常以选择题或填空题的形式出现,难度中等. 【技能方法】1.解题模板:第一步,根据频率分布直方图计算出相应的频率;第二步,运用样本的频率估计总体的频率;第三步,得出结论.2.用样本估计总体是统计的基本思想.用样本频率分布来估计总体分布的重点是频率分布表和频率分布直方图的绘制及用样本频率分布估计总体分布;难点是频率分布表和频率分布直方图的理解及应用.3.(1)众数、中位数及平均数都是描述一组数据集中趋势的量,平均数是最重要的量,与每个样本数据有关,这是中位数、众数所不具有的性质.(2)标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度就越大. 4.茎叶图、频率分布表和频率分布直方图都可直观描述样本数据的分布规律. 【易错指导】1.在使用茎叶图时,一定要注意看清楚所有的样本数据,弄清楚这个图中的数字特点,不要漏掉了数据,也不要混淆茎叶图中茎与叶的含义.2.利用频率分布直方图求众数、中位数与平均数时,应注意这三者的区分:(1)最高的矩形的中点横坐标即众数;(2)中位数左边和右边的直方图的面积是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.3.直方图与条形图不要搞混频率分布直方图的纵坐标为频率/组距,每一个小长方形的面积表示样本个体落在该区间内的频率;条形图的纵坐标为频数或频率,把直方图视为条形图是常见的错误.V .举一反三·触类旁通考向1 茎叶图及其应用【例1】【2018黑龙江齐齐哈尔高三第一次模】某校连续12天对同学们的着装进行检查,着装不合格的人数用茎叶图表示,如图,则该组数据的中位数是A .24B .26C .27D .32 【答案】CC . 【例2】【2018江西上饶高三下学期二模】如图1是某学习小组学生在某次数学考试中成绩的茎叶图,1号到20号同学的成绩依次为1220,,,a a a ,图2是统计茎叶图中成绩在一定范围内的学生人数的程序框图,那么该框图的输出结果是( )A .8B .9C .11D .12 【答案】A【例3】某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(1)分别估计该市的市民对甲、乙两部门评分的中位数;(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率; (3)根据茎叶图分析该市的市民对甲、乙两部门的评价.【答案】(1)75,75;(2)0.1,0.16;(3)该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.(2)由所给茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为550=0.1,850=0.16,故该市的市民对甲、乙部门的评分高于90的概率的估计值分别为0.1,0.16.(3)由所给茎叶图知,市民对甲部门的评分的中位数高于对乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.规律方法 (1)茎叶图的优点是保留了原始数据,便于记录及表示,能反映数据在各段上的分布情况. (2)①作样本的茎叶图时先要根据数据特点确定茎、叶,再作茎叶图;作“叶”时,要做到不重不漏,一般由内向外,从小到大排列,便于数据的处理.②根据茎叶图中数据数字特征进行分析判断考查识图能力,判断推理能力和创新应用意识;解题的关键是抓住“叶”的分布特征,准确提炼信息. 【跟踪练习】1.【2018河南安阳高三二模】在某校连续5次考试成绩中,统计甲,乙两名同学的数学成绩得到如图所示的茎叶图.已知甲同学5次成绩的平均数为81,乙同学5次成绩的中位数为73,则x y +的值为( )A .3B .4C .5D .6 【答案】A 【解析】77728680908105x x +++++=∴=因为乙同学5次成绩的中位数为73,所以33,y x y =∴+=选A .2.【2018山西平遥中学高三3月高考适应性调研】某学校A、B两个班的数学兴趣小组在一次数学对抗赛中的成绩绘制茎叶图如下,通过茎叶图比较两班数学兴趣小组成绩的平均值及方差①A班数学兴趣小组的平均成绩高于B班的平均成绩②B班数学兴趣小组的平均成绩高于A班的平均成绩③A班数学兴趣小组成绩的标准差大于B班成绩的标准差④B班数学兴趣小组成绩的标准差大于A班成绩的标准差其中正确结论的编号为()A.①③B.①④C.②③D.②④【答案】B【解析】A班:53,63,64,76,74,78,78,76,81,85,86,88,82,92,95;B班:45,48,51,3.【2018湖北武汉武昌区高三1月调研】将某选手的7个得分去掉1个最高分,去掉1个最低分,剩余5个分数的平均数为91,现场作的7个分数的茎叶图有一个数据模糊,无法辨认,在图中以x表示,则5个剩余分数的方差为________.【答案】6【解析】依题意8793909190915x+++++=,解得4x=.则方差为1641965+++=.【名师点睛】本题主要考查茎叶图的分辨,考查平均数的计算,考查方差的计算.从茎叶图可以看出最低分是87,最高分是99,去掉这两个分数后,可利用平均数的公式列方程来求出x的值.根据前面求出的值再利用方差的计算公式()211n i i x x n =-∑来计算方差.考向2 频率分布直方图【例4】某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A .56B .60C .120D .140【答案】D【解析】由频率分布直方图可知每周自习时间不少于22.5小时的频率为(0.16+0.08+0.04)×2.5=0.7,则每周自习时间不少于22.5小时的人数为0.7×200=140,故选D .【例5】某校从高一年级学生中随机抽取100名学生,将他们期中考试的数学成绩(均为整数)分成六段:[40,50),[50,60),…,[90,100]后得到频率分布直方图(如下图所示),则分数在[70,80)内的人数是 .【答案】30【解析】由频率分布直方图知小长方形面积为对应区间概率,所有小长方形面积和为1,因此分数在[70,80)内的概率为3.010)005.0010.02015.0025.0(1=⨯++⨯+-,人数为301003.0=⨯【例6】我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),……,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(3)估计居民月均用水量的中位数.【答案】(1)0.30;(2)36 000;(3)2.04.(2)由(1)知,该市100位居民中月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000.(3)设中位数为x吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5.又前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5.所以2≤x<2.5.由0.50×(x-2)=0.5-0.48,解得x=2.04.故可估计居民月均用水量的中位数为2.04吨.【名师点睛】(1)准确理解频率分布直方图的数据特点,频率分布直方图中纵轴上的数据是各组的频率除以组距的结果,不要误以为纵轴上的数据是各组的频率和条形图混淆.(2)“命题角度二”的例题中抓住频率分布直方图中各小长方形的面积之和为1,这是解题的关键.而利用频率分布直方图可以估计总体分布.【跟踪练习】1.【2018江西高三毕业班新课程教学质量监测】如图是60名学生参加数学竞赛的成绩(均为整数)的频率分布直方图,估计这次数学竞赛的及格率(60分及以上为及格)是()A .0.9B .0.75C .0.8D .0.7 【答案】B同样可得,60分及以上的频率=(0.015+0.03+0.025+0.005)×10=0.75 估计这次数学竞赛竞赛的及格率(大于或等于60分为及格)为75%, 故选:B .【名师点睛】利用频率分布直方图求众数、中位数与平均数时,易出错,应注意区分这三者.在频率分布直方图中:(1)最高的小长方形底边中点的横坐标即是众数; (2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.2.【2018贵州黔东南州联考】近年呼吁高校招生改革的呼声越来越高,在赞成高校招生改革的市民中按年龄分组,得到样本频率分布直方图如图,其中年龄在[)30,40岁的有2500人,年龄在[)20,30岁的有1200人,则m 的值为( )A .0.013B .0.13C .0.012D .0.12 【答案】C3.【2018河南六市高三第一次联考(一模)】为了解学生在课外活动方面的支出情况,抽取了n 个同学进行调查,结果显示这些学生的支出金额(单位:元)都在[]10,50,其中支出金额在[]30,50的学生有117人,频率分布直方图如图所示,则n =( )A .180B .160C .150D .200 【答案】A【解析】[]30,50对应的概率为()10.010.025100.65-+⨯=,所以117=1800.65n =,选A . 4.一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在[)2500,3500(元)月收入段应抽出 人.【答案】40【解析】由图(2500,3500元/月)收入段的频率是0.0005×500+0.0003×500=0.4,故用分层抽样方法抽出100人作进一步调查,则在(2500,3500元/月)收入段应抽出人数为0.4×100=40. 考向3 样本的数字特征【例7】【2018内蒙古呼和浩特高三第一次质量调研】如图为某班35名学生的投篮成绩(每人投一次)的条形统计图,其中上面部分数据破损导致数据不完全.已知该班学生投篮成绩的中位数是5,则根据统计图,无法确定下列哪一选项中的数值( )A .3球以下(含3球)的人数B .4球以下(含4球)的人数C .5球以下(含5球)的人数D .6球以下(含6球)的人数 【答案】C【解析】因为共有35人,而中位数应该是第18个数,所以第18个数是5,从图中看出第四个柱状图故选C .【例8】【2018湖南衡阳高三第二次联考(二模)】已知样本12,,,n x x x 的平均数为x ;样本12,,,m y y y 的平均数为()y x y ≠,若样本12,,,n x x x ,12,,,m y y y 的平均数()z ax 1a y =+-;其中10a 2<<,则()*,,n m n m N ∈的大小关系为( ) A .n m = B .n m ≥ C .n m < D .n m > 【答案】C【解析】由题得()11,,n n n z nx my x y a n m n m n m n m ⎛⎫=+=+-∴= ⎪++++⎝⎭110,0,.22n a n m n m <<∴<<∴<+故选C .【例9】【2018长沙一中高三模拟】某企业有甲、乙两个研发小组.为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b )(a ,b ),(a ,b ),(a ,b ),(a ,b ).其中a ,a 分别表示甲组研发成功和失败;b ,b 分别表示乙组研发成功和失败.(1)若某组成功研发一种新产品,则给该组记1分,否则记0分.试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平;(2)若该企业安排甲、乙两组各自研发一种新产品,试估计恰有一组研发成功的概率.(2)记E ={恰有一组研发成功}.在所抽得的15个结果中,恰有一组研发成功的结果是(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),共7个.因此事件E 发生的频率为715.用频率估计概率,即得所求概率为P (E )=715.【名师点睛】(1)平均数反映了数据的中心,是平均水平,而方差和标准差反映的是数据围绕平均数的波动大小.进行平均数与方差的计算,关键是正确运用公式;(2)平均数与方差所反映的情况有着重要的实际意义,一般可以通过比较甲、乙两组样本数据的平均数和方差的差异,对甲、乙两品种可以做出评价或选择. 【跟踪练习】1.【2018贵州黔东南州高三下学期二模】甲乙两名同学6次考试的成绩统计如下图,甲乙两组数据的平均数分别为x 甲、x 乙,标准差分别为σσ甲乙,,则A .x x σσ<<甲乙甲乙,B .x x σσ甲乙甲乙,C .x x σσ><甲乙甲乙,D .x x σσ>>甲乙甲乙,【答案】C【解析】由图可知,甲同学除第二次考试成绩略低与乙同学,其他次考试都远高于乙同学,可知x x >甲乙,图中数据显示甲同学的成绩比乙同学稳定,故σσ<甲乙.故选C .2.【2018云南昆明高三教学质量检查(二统)】“搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.“搜索指数”越大,表示网民对该关键词的搜索次数越多,对该关键词相关的信息关注度也越高.下图是2017年9月到2018年2月这半年中,某个关键词的搜索指数变化的走势图.根据该走势图,下列结论正确的是( )A .这半年中,网民对该关键词相关的信息关注度呈周期性变化B .这半年中,网民对该关键词相关的信息关注度不断减弱C .从网民对该关键词的搜索指数来看,去年10月份的方差小于11月份的方差D .从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值 【答案】D【解析】根据走势图可知:这半年中,网民对该关键词相关的信息关注度不呈周期性变化,A 错;这半年中,网民对该关键词相关的信息关注度增减不确定,B 错;从网民对该关键词的搜索指数来看,去年10月份的搜索指数的稳定性小于11 月份的搜索指数的稳定性,所以去年10月份的方差大于11 月份的方差,C 错;从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值,D正确,故选D.3.【2018陕西榆林高三二模】为了反映各行业对仓储物流业务需求变化的情况,以及重要商品库存变化的动向,中国物流与采购联合会和中储发展股份有限公司通过联合调查,制定了中国仓储指数.由2016年1月至2017年7月的调查数据得出的中国仓储指数,绘制出如下的折线图.根据该折线图,下列结论正确的是()A.2016年各月的合储指数最大值是在3月份B.2017年1月至7月的仓储指数的中位数为55C.2017年1月与4月的仓储指数的平均数为52D.2016年1月至4月的合储指数相对于2017年1月至4月,波动性更大D【答案】则这5 天中,每天最高气温较为稳定(方差较小)的城市为_______.(填甲或乙). 【答案】甲【解析】甲、乙两个城市的最高气温平均值都是30,甲的方差为419914.85++++=,乙的方差为2516116369318.6,55++++==∴每天最高气温较为稳定(方差较小)的城市为甲,故答案为甲.5.【2018山东枣庄高三二模】随着高校自主招生活动的持续开展,我市高中生掀起了参与数学兴趣小组的热潮.为调查我市高中生对数学学习的喜好程度,从甲、乙两所高中各随机抽取了40名学生,记录他们在一周内平均每天学习数学的时间,并将其分成了6个区间:(]0,10、(]10,20、(]20,30、(]30,40、(]40,50、(]50,60,整理得到如下频率分布直方图:根据一周内平均每天学习数学的时间t ,将学生对于数学的喜好程度分为三个等级:(Ⅰ)试估计甲高中学生一周内平均每天学习数学的时间的中位数m 甲(精确到0.01);(Ⅱ)判断从甲、乙两所高中各自随机抽取的40名学生一周内平均每天学习数学的时间的平均值X 甲与X 乙及方差2S 甲与2S 乙的大小关系(只需写出结论),并计算其中的X 甲、2S 甲(同一组中的数据用该组区间的中点值作代表);(Ⅲ)从甲高中与乙高中随机抽取的80名同学中数学喜好程度为“痴迷”的学生中随机抽取2人,求选出的2人中甲高中与乙高中各有1人的概率.【答案】(Ⅰ) 26.67m ≈甲;(Ⅱ)答案见解析;(Ⅲ)37. 【解析】试题分析:()1根据频率分布直方图,由样本估计总体的思想可求得()0.50.10.2200.3m -+=+甲1026.67⨯≈;()2根据所给数据求出X 甲,X 乙,2S 甲,2S 乙,然后对比即可得到答案;()3求出甲高中随机选取的40名学生中“痴迷”的学生的个数,记为1A ,2A ;乙高中随机选取的40名的概率解析:(Ⅰ)由样本估计总体的思想,甲高中学生一周内平均每天学习数学的时间的中位数()0.50.10.2200.3m -+=+甲 1026.67⨯≈;(Ⅱ)X X <甲乙;22S S >甲乙;50.1150.2250.3X =⨯+⨯+⨯甲 350.2450.15550.0527.5+⨯+⨯+⨯=;()()221[527.5400.140S =⨯-⨯⨯甲 ()()21527.5400.2+-⨯⨯ ()()22527.5400.3+-⨯⨯ ()()23527.5400.2+-⨯⨯ ()()24527.5400.15+-⨯⨯ ()()25527.5400.05]+-⨯⨯178.75=.(Ⅲ)甲高中随机选取的40名学生中“痴迷”的学生有()400.005102⨯⨯=人,记为1A ,2A ;乙高中随机选取的40名学生中“痴迷”的学生有()400.015106⨯⨯=人,记为1B ,2B ,3B ,4B ,5B ,6B .随机选出2人有以下28种可能:()12,A A ,()11,A B ,()12,A B ,()13,A B ,()14,A B ,()15,A B ,()16,A B , ()21,A B ,()22,A B ,()23,A B ,()24,A B ,()25,A B ,()26,A B ,()12,B B , ()13,B B ,()14,B B ,()15,B B ,()16,B B ,()23,B B ,()24,B B ,()25,B B , ()26,B B ,()34,B B ,()35,B B ,()36,B B ,()45,B B ,()46,B B ,()56,B B ,所以,从甲、乙两所高中数学喜好程度为“痴迷”的同学中随机选出2人,选出的2人中甲、乙两所高中各有1人的概率为123287=. 6.【2018海南高三第二次联合考试】从某小区抽取50户居民进行月用电量调查,发现其用电量都在50到350度之间,频率分布直方图如下.(1)求频率分布直方图中x 的值并估计这50户用户的平均用电量;(2)若将用电量在区间[)50,150内的用户记为A 类用户,标记为低用电家庭,用电量在区间[)250,350内的用户记为B 类用户,标记为高用电家庭,现对这两类用户进行问卷调查,让其对供电服务进行打分,打分情况见茎叶图:①从B 类用户中任意抽取1户,求其打分超过85分的概率;②若打分超过85分视为满意,没超过85分视为不满意,请填写下面列联表,并根据列联表判断是否有95%的把握认为“满意度与用电量高低有关”?附表及公式:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.【答案】(1)0.0044x =,186(2)23,没有【解析】试题分析:(1)由矩形面积和为1,求得x ,再由每一个矩形的中点横坐标乘以矩形面积求和可得平均值;试题解析: 解:(1)1(0.0060.00360.002450x =-++ 20.0012)0.0044⨯+=, 按用电量从低到高的六组用户数分别为6,9,15,11,6,3, 所以估计平均用电量为675912515175112256275332550⨯+⨯+⨯+⨯+⨯+⨯ 186=度.(2)①B 类用户共9人,打分超过85分的有6人,所以从B 类用户中任意抽取3户,恰好有2户打分超过85分的概率为2163391528C C C =. ②12因为2K的观测值()22469631212915k⨯⨯-⨯=⨯⨯⨯1.6 3.841=<,所以没有95%的把握认为“满意与否与用电量高低有关”.【名师点睛】利用频率分布直方图求众数、中位数与平均数时,易出错,应注意区分这三者.在频率分布直方图中:(1)最高的小长方形底边中点的横坐标即是众数;(2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.。
【名校推荐】专题25 概率与统计-三年高考(2016-2018)数学(文)试题分项版解析 Word版含解析
考纲解读明方向分析解读 本节内容是高考的重点考查内容之一,最近几年的高考有以下特点:1.古典概型主要考查等可能性事件发生的概率,也常与对立事件、互斥事件的概率及统计知识综合起来考查;2.几何概型试题也有所体现,可能考查会有所增加,以选择题、填空题为主.本节内容在高考中分值为5分左右,属容易题.分析解读从近几年的高考试题来看,本部分在高考中的考查点如下:1.主要考查分层抽样的定义,频率分布直方图,平均数、方差的计算,识图能力及借助概率知识分析、解决问题的能力;2.在频率分布直方图中,注意小矩形的高=频率/组距,小矩形的面积为频率,所有小矩形的面积之和为1;3.分析两个变量间的相关关系,通过独立性检验判断两个变量是否相关.本节内容在高考中分值为17分左右,属中档题.1.【2018年浙江卷】设0<p<1,随机变量ξ的分布列是则当p在(0,1)内增大时,A. D(ξ)减小B. D(ξ)增大C. D(ξ)先减小后增大D. D(ξ)先增大后减小【答案】D【解析】分析:先求数学期望,再求方差,最后根据方差函数确定单调性.点睛:2.【2018年全国卷Ⅲ文】若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A. 0.3B. 0.4C. 0.6D. 0.7【答案】B【解析】分析:由公式计算可得详解:设设事件A为只用现金支付,事件B为只用非现金支付,则,因为,所以,故选B.点睛:本题主要考查事件的基本关系和概率的计算,属于基础题。
3.【2018年全国卷II文】从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A. B. C. D.【答案】D【解析】分析:分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能及事件“选中的2人都是女同学”的总可能,代入概率公式可求得概率.点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件;第二步,分别求出基本事件的总数与所求事件中所包含的基本事件个数;第三步,利用公式求出事件的概率.4.【2018年江苏卷】某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.【答案】【解析】分析:先确定总基本事件数,再从中确定满足条件的基本事件数,最后根据古典概型概率公式求概率.详解:从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法(理科):适用于限制条件较多且元素数目较多的题目.5.【2018年江苏卷】已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.【答案】90【解析】分析:先由茎叶图得数据,再根据平均数公式求平均数.点睛:的平均数为.6.【2018年全国卷Ⅲ文】某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.【答案】分层抽样【解析】分析:由题可知满足分层抽样特点详解:由于从不同龄段客户中抽取,故采用分层抽样,故答案为:分层抽样。
初中数学课程标准试题
课程标准测试题初中数学一、判断题(每小题2分,共10分)1、新课标提倡关注知识获得的过程,不提倡关注获得知识结果。
【】2、要创造性地使用教材,积极开发、利用各种教学资源为学生提供丰富多彩的学习素材。
【】3、不管这法那法只要能提高学生考试成绩就是好法。
【】4、《基础教育课程改革纲要》指出:课程标准是教材编写、教学、评估和考试命题的依据,是国家管理和评价课程的基础。
【】5、《纲要》提出要使学生“具有良好的心理素质”这一培养目标很有必要,不仅应该在心理健康教育课中培养,在数学课上也应该关注和培养学生的心理素质。
【】二、选择题(每小题3分,共24分)1、新课程的核心理念是【】A. 联系生活学数学B.培养学生的学习兴趣C. 掌握知识培养能力D.为了每一位学生的发展2、教学的三维目标是【】A.知识、技能和情感B.知识、技能和数学思考C.知识、能力和思想方法D.知识与技能、过程与方法、情感态度价值观3、初中数学课程为课标中规定的第几学段【】A. 第二B. 第三C. 第四D. 第五4、《基础教育课程改革纲要》为本次课程改革明确了方向,基础教育课程改革的具体目标中共强调了几个改变【】A. 6个B. 5个C. 4个D. 3个5、课标中要求“会解一元一次方程、简单的二元一次方程组、可化为一元一次方程的分式方程”。
这里要求方程中的分式不超过【】A.一个B.两个C.三个D.四个6、对“平行四边形、矩形、菱形、正方形、梯形的概念和性质”,课标中知识技能的目标要求是【】A.了解B.理解C.掌握D.灵活运用7、教材七年级上册第七章《可能性》属于下面哪一部分内容【】A.数与代数B.空间与图形C.统计与概率D.课题学习8、课标中要求“掌握有理数的加、减、乘、除、乘方及简单的混合运算”,这里的运算步骤要【】A.以两步为主 B.以三步为主C.以四步为主D.没有限制三、填空题(每空2分,共48分)1、义务教育阶段的数学课程应突出体现_______性,普及性和发展性,使数学教育面向全体学生,实现不同的人在数学上得到不同的发展。
2018-2019-新课标实验室--初中电学第二版word版本 (13页)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==新课标实验室--初中电学第二版篇一:201X版新课标初中物理必做20个实验及答案(可编辑)其中光学实验3个实验:1.探究光的反射规律;2.探究平面镜成像时像与物的关系(探究平面镜成像的特点); 3.探究凸透镜成像的规律。
热学实验2个:1.用常见温度计测量温度;2.探究水沸腾时温度变化的特点(探究水的沸腾过程);电学实验7个:1.连接简单的串联电路和并联电路(连接两个用电器组成的串联、并联电路);2.用电流表测量电流(使用电流表并探究串、并联电路中电流的规律); 3.用电压表测量电压(使用电压表并探究串、并联电路中电压的规律); 4.探究电流与电压、电阻的关系(探究欧姆定律;用伏安法测量小灯泡的电阻); 5.探究通电螺线管外部磁场的方向;6.探究导体在磁场中运动时产生感应电流的条件;7.测量小灯泡的电功率(用电流表和电压表测量小灯泡的电功率)。
力学实验8个:1.用刻度尺测量长度、用表测量时间;2.用弹簧测力计测量力(用弹簧测力计测钩码的重力和用弹簧测力计木块的滑动摩擦力); 3.用天平测量物体的质量(用天平测量固体和液体的质量);4.测量物体运动的速度(测量纸锥下落的速度和测量运动物体的平均速度);5.测量水平运动物体所受的滑动摩擦力(探究牛顿第一定律;探究摩擦力大小的因素); 6.测量固体和液体的密度(建构密度的概念;用天平和量筒测量液体和固体的密度); 7.探究浮力大小与哪些因素有关(探究阿基米德原理);8.探究杠杆的平衡条件。
新课程标准初中物理必做20个实验答案实验1、探究光的反射规律方法与步骤:(1)如下左图所示,把一个平面镜放在水平桌面上,再把一张纸板ENF竖直地立在平面镜上,纸板上的直线ON垂直于镜面。
(2)让一束光贴着纸板沿某一个角度射到O点,经平面镜的反射,沿另一个方向射出,在纸板上用笔描出入射光EO和反射光OF的径迹。
(详尽版)初中数学新课标解读
(详尽版)初中数学新课标解读1. 引言随着我国教育改革的深入推进,新的课程标准已经逐步取代了旧的教学大纲。
初中数学新课标在继承我国数学教育传统的基础上,吸收了国际数学教育的先进理念,对初中数学教育提出了新的要求。
本文将对初中数学新课标进行详细解读,帮助教师、学生和家长更好地理解和把握新课标的精神实质。
2. 新课标的总体目标初中数学新课标明确提出,数学教育要培养学生适应未来社会发展的数学素养,让学生掌握必要的数学知识与技能,培养学生的创新精神与实践能力,使学生在情感、态度与价值观方面得到全面发展。
3. 课程内容的变化新课标对初中数学课程内容进行了调整,增加了许多与学生生活密切相关的数学知识,如统计与概率、图形与几何等。
同时,新课标还强调了对数学思想方法的渗透,如方程思想、函数思想、转化思想等。
4. 教学方法的创新新课标提倡采用多样化的教学方法,鼓励学生主动探究、合作交流,引导学生从生活实际中发现数学问题,培养学生的数学建模能力。
教师应充分发挥信息技术的优势,为学生提供丰富的学习资源,提高教学质量。
5. 评价体系的改革新课标要求建立多元化的评价体系,既要关注学生的数学知识与技能掌握情况,也要关注学生在数学学习过程中的情感、态度与价值观。
评价方式应包括过程性评价和终结性评价,注重学生的自我评价和同伴评价。
6. 实施建议为了更好地落实新课标,教师、学生和家长都需要做出相应的调整。
教师要转变教育教学观念,不断提高自身素质;学生要积极参与数学学习,培养良好的学习习惯;家长要关注孩子的数学学习,营造良好的家庭氛围。
7. 结语初中数学新课标的实施,对我国初中数学教育改革具有重要意义。
通过深入解读新课标,我们相信广大教师、学生和家长能够更好地适应新课程,实现初中数学教育的全面提高。
本文旨在为广大教育工作者、学生和家长提供关于初中数学新课标的详细解读,以期促进对新课标的深入理解和有效实施。
在实际操作过程中,我们还需不断学习、探索和实践,为提高我国初中数学教育质量贡献力量。
2018年新课标I、II、III数学(文)(理)高考真题试卷(Word版含答案)
2018 年一般高等学校招生全国一致考试( Ⅰ卷 )文科数学注意事项:1.答卷前,考生务势必自己的九名、考生号等填写在答题卡和试卷指定地点上.2.回答选择题时,选出每题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需变动,用橡皮擦洁净后,再选涂其余答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(此题共 12 小题,每题 5 分,共60 分.在每题给出的四个选项中,只有一项是切合题目要求的.)1.已知会合 A 0,2 ,B 2 , 1,0 ,1,2 ,则AIB ()A. 0,2 B. 1,2 C. 0 D. 2, 1,0 ,1,21 i,则 z ()2.设z 2i1 iA.0 B.1C. 1 D. 2 23.某地域经过一年的新乡村建设,乡村的经济收入增添了一倍.实现翻番.为更好地认识该地域乡村的经济收入变化状况,统计了该地域新乡村建设前后乡村的经济收入组成比率.获得以下饼图:则下边结论中不正确的选项是()A.新乡村建设后,栽种收入减少B.新乡村建设后,其余收入增添了一倍以上C.新乡村建设后,养殖收入增添了一倍D.新乡村建设后,养殖收入与第三家产收入的总和超出了经济收入的一半4.记 S n为等差数列a n的前n项和.若 3S3 S2 S4, a1 2 ,则 a3 ()A.12 B.10 C.10 D. 125.设函数 f x x 3a 1 x 2ax .若 f x 为奇函数, 则曲线 yf x 在点 0 ,0 处的切线方程为()A . y2xB . y xC . y 2xD . y x6.在 △ ABC 中, AD 为 BC 边上的中线,uuurE 为 AD 的中点,则 EB ()A . 3 uuur1 uuurB . 1 uuur 3 uuur4 AB4 AC 4 AB AC4 C . 3 uuur 1 uuur D . 1 uuur 3 uuur 4 AB4 AC4 AB AC47.某圆柱的高为 2,底面周长为 16,其三视图以下图,圆柱表面上的点 M 在正视图上的对应点为 A ,圆柱表面上的点 N 在左视图上的对应点为 B ,则在此圆柱 侧面上,从 M 到 N的路径中,最短路径的长度为( )A .2 17B .2 5C .3D .28.设抛物线 C :y24 x 的焦点为 F ,过点2 ,0 且斜率为2的直线与 C 交于 M , N 两点,3uuuur uuur ()则FM FNA .5B . 6C .7D . 89.已知函数 f xx, ≤0 , f xf x x a (),若 g x 存在 2 个零点, 则 a 的exln x ,x 0取值范围是A . 1,0B . ,C . 1,D . 1,10.下列图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆组成,三个半圆的直径分别为直角三角形ABC 的斜边 BC ,直角边 AB , AC , △ ABC 的三边所围成的地区记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1 , p 2 , p 3 ,则( )A . p 1 p 2B . p 1 p 3C . p 2 p 3D . p 1 p 2p 3211.已知双曲线 C :xy 2 1 , O 为坐标原点, F 为 C 的右焦点,过 F 的直线与 C 的两条渐 3近线的交点分别为 M , N .若 △ OMN 为直角三角形,则 MN () A .3B . 3C .2 3D . 4212.设函数 f x2 x, ≤ 0,则知足 f x 1f 2x 的 x 的取值范围是()x 01,yA .,1B . 0,C . 1,0D . ,0二、填空题(此题共 4 小题,每题 5 分,共 20 分)13.已知函数 f xlog 2 x 2 a ,若 f 31 ,则 a________.x 2 y 2 ≤ 014.若 x ,y 知足拘束条件x ≥ 0 ,则 z3x 2 y 的最大值为 ________.y 1y ≤ 015.直线 y x 1 与圆 x 2y 2 2 y 3 0 交于 A ,B 两点,则 AB________ .16. △ ABC 的内角 A ,B ,C 的对边分别为 a ,b ,c ,已知 b sinC csin B4asin Bsin C ,b 2c 2 a 2 8 ,则 △ ABC 的面积为 ________.三、解答题(共70 分。
2018-2019数学同步新课标导学人教A版必修二通用版练习:第四章 圆与方程4.1.2 Word版含解析
第四章 4.14.1.2A 级基础巩固一、选择题1.圆x 2+y 2-4x +6y =0的圆心坐标是导学号09024937( D ) A .(2,3) B .(-2,3) C .(-2,-3)D .(2,-3)[解析]圆的一般程化成标准方程为(x -2)2+(y +3)2=13,可知圆心坐标为(2,-3).2.(2018·本溪市高一期中)若直线y =kx 与圆(x -2)2+y 2=1的两个交点关于直线2x +y +b =0对称,则k ,b 的值分别为导学号09025184( A )A .12,-4B .-12,4C .12,4D .-12,-4[解析]由题意知直线y =kx 与2x +y +b =0垂直,且直线2x +y +b =0过圆心 ∴错误!,解得错误!.3.(2016~2017·长沙高一检测)已知圆C 过点M (1,1),N (5,1),且圆心在直线y =x -2上,则圆C 的方程为导学号09024939( A )A .x 2+y 2-6x -2y +6=0B .x 2+y 2+6x -2y +6=0C .x 2+y 2+6x +2y +6=0D .x 2+y 2-2x -6y +6=0[解析]由条件知,圆心C 在线段MN 的中垂线x =3上,又在直线y =x -2上,∴圆心C (3,1),半径r =|MC |=2.方程为(x -3)2+(y -1)2=4,即x 2+y 2-6x -2y +6=0. 故选A . 4.设圆的方程是x 2+y 2+2ax +2y +(a -1)2=0,若0<a <1,则原点与圆的位置关系是导学号09024940( B )A .在圆上B .在圆外C .在圆内D .不确定[解析]将原点坐标(0,0)代入圆的方程得(a -1)2 ∵0<a <1,∴(a -1)2>0,∴原点在圆外.5.若圆x 2+y 2-2x -4y =0的圆心到直线x -y +a =0的距离为22,则a 的值为导学号09024941( C )A .-2或2B .12或32C .2或0D .-2或0[解析]化圆的标准方程为(x -1)2+(y -2)2=5,则由圆心(1,2)到直线x -y +a =0距离为22,得|1-2+a|2=22,∴a =2或0.6.圆x 2+y 2-2y -1=0关于直线y =x 对称的圆的方程是导学号09024942( A ) A .(x -1)2+y 2=2 B .(x +1)2+y 2=2 C .(x -1)2+y 2=4D .(x +1)2+y 2=4[解析]圆x 2+y 2-2y -1=0的圆心坐标为(0,1),半径r =2,圆心(0,1)关于直线y =x 对称的点的坐标为(1,0),故所求圆的方程为(x -1)2+y 2=2.二、填空题7.圆心是(-3,4),经过点M (5,1)的圆的一般方程为__x 2+y 2+6x -8y -48=0__.导学号09024943 [解析]只要求出圆的半径即得圆的标准方程,再展开化为一般式方程.8.设圆x 2+y 2-4x +2y -11=0的圆心为A ,点P 在圆上,则P A 的中点M 的轨迹方程是__x 2+y 2-4x +2y +1=0__.导学号09024944[解析]设M (x ,y ),A (2,-1),则P (2x -2,2y +1),将P 代入圆方程得:(2x -2)2+(2y +1)2-4(2x -2)+2(2y +1)-11=0,即为:x 2+y 2-4x +2y +1=0.三、解答题9.判断方程x 2+y 2-4mx +2my +20m -20=0能否表示圆,若能表示圆,求出圆心和半径.导学号09024945[解析]解法一:由方程x 2+y 2-4mx +2my +20m -20=0 可知D =-4m ,E =2m ,F =20m -20∴D 2+E 2-4F =16m 2+4m 2-80m +80=20(m -2)2,因此,当m =2时,D 2+E 2-4F =0,它表示一个点,当m ≠2时,D 2+E 2-4F >0,原方程表示圆的方程,此时,圆的圆心为(2m ,-m ),半径为r =12D2+E2-4F =5|m -2|.解法二:原方程可化为(x -2m )2+(y +m )2=5(m -2)2,因此,当m =2时,它表示一个点 当m ≠2时,原方程表示圆的方程. 此时,圆的圆心为(2m ,-m ),半径为r =5|m -2|.10.求过点A (-1,0)、B (3,0)和C (0,1)的圆的方程.导学号09024946 [解析]解法一:设圆的方程为 x 2+y 2+Dx +Ey +F =0(*)把A 、B 、C 三点坐标代入方程(*)得⎩⎪⎨⎪⎧1-D +F =09+3D +F =01+E +F =0,∴⎩⎪⎨⎪⎧D =-2E =2F =-3.故所求圆的方程为x 2+y 2-2x +2y -3=0解法二:线段AB 的中垂线方程为x =1,线段AC 的中垂线方程为x +y =0由⎩⎪⎨⎪⎧x =1x +y =0,得圆心坐标为M (1,-1) 半径r =|MA |=5∴圆的方程为(x -1)2+(y +1)2=5.B 级素养提升一、选择题1.若圆x 2+y 2-2ax +3by =0的圆心位于第三象限,那么直线x +ay +b =0一定不经过导学号09024947( D )A .第一象限B .第二象限C .第三象限D .第四象限[解析]圆x 2+y 2-2ax +3by =0的圆心为(a ,-32b )则a <0,b >0.直线y =-1a x -b a ,其斜率k =-1a >0,在y 轴上的截距为-ba >0,所以直线不经过第四象限,故选D .2.在圆x 2+y 2-2x -6y =0内,过点E (0,1)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面只为导学号09024948( B )A .52B .102C .152D .202[解析]圆x 2+y 2-2x -6y =0化成标准方程为(x -1)2+(y -3)2=10,则圆心坐标为M (1,3),半径长为10.由圆的几何性质可知:过点E 的最长弦AC 为点E 所在的直径,则|AC |=210.BD 是过点E 的最短弦,则点E 为线段BD 的中点,且AC ⊥BD ,E 为AC 与BD 的交点,则由垂径定理可是|BD |=2|BM|2-|ME|2=2错误!=2错误!.从而四边形ABCD 的面积为错误!|AC ||BD |=错误!×2错误!×2错误!=10错误!.3.若点(2a ,a -1)在圆x 2+y 2-2y -5a 2=0的内部,则a 的取值范围是导学号09024949( D ) A .(-∞,45]B .(-43,43)C .(-34,+∞)D .(34,+∞)[解析]化圆的标准方程为x 2+(y -1)2=5a 2+1,点(2a ,a -1)的圆的内部,则(2a )2+(a -1-1)2<5a 2+1,解得a >34.4.若直线l :ax +by +1=0始终平分圆M :x 2+y 2+4x +2y +1=0的周长,则(a -2)2+(b -2)2的最小值为导学号09024950( B )A .5B .5C .25D .10[解析]由题意,得直线l 过圆心M (-2,-1) 则-2a -b +1=0,则b =-2a +1所以(a -2)2+(b -2)2=(a -2)2+(-2a +1-2)2=5a 2+5≥5 所以(a -2)2+(b -2)2的最小值为5. 二、填空题5.已知圆C :x 2+y 2+2x +ay -3=0(a 为实数)上任意一点关于直线l :x -y +2=0的对称点都在圆C 上,则a =__-2__.导学号09024951[解析]由题意可知直线l :x -y +2=0过圆心∴-1+a2+2=0,∴a =-2.6.若实数x 、y 满足x 2+y 2+4x -2y -4=0,则x2+y2的最大值是导学号09024952[解析]关键是搞清式子x2+y2的意义.实数x ,y 满足方程x 2+y 2+4x -2y -4=0,所以(x ,y )为方程所表示的曲线上的动点.x2+y2=错误!,表示动点(x ,y )到原点(0,0)的距离.对方程进行配方,得(x +2)2+(y -1)2=9,它表示以C (-2,1)为圆心,3为半径的圆,而原点的圆内.连接CO 交圆于点M ,N ,由圆的几何性质可知,MO 的长即为所求的最大值.C 级能力拔高1.设圆的方程为x 2+y 2=4,过点M (0,1)的直线l 交圆于点A 、B ,O 是坐标原点,点P 为AB 的中点,当l 绕点M 旋转时,求动点P 的轨迹方程.导学号09024953[解析]设点P 的坐标为(x ,y )、A (x 1,y 1)、B (x 2,y 2). 因为A 、B 在圆上,所以x 21+y 21=4,x 2+y 2=4 两式相减得x 21-x 2+y 21-y 2=0所以(x 1-x 2)(x 1+x 2)+(y 1-y 2)(y 1+y 2)=0. 当x 1≠x 2时,有x 1+x 2+(y 1+y 2)·y1-y2x1-x2=0,①并且⎩⎪⎨⎪⎧x =x1+x22,y =y1+y22,y -1x =y1-y2x1-x2,②将②代入①并整理得x 2+(y -12)2=14.③当x 1=x 2时,点A 、B 的坐标为(0,2)、(0,-2),这时点P 的坐标为(0,0)也满足③. 所以点P 的轨迹方程为x 2+(y -12)2=14.2.已知方程x 2+y 2-2(m +3)x +2(1-4m 2)y +16m 4+9=0表示一个圆.导学号09024954 (1)求实数m 的取值范围; (2)求该圆的半径r 的取值范围; (3)求圆心C 的轨迹方程. [解析](1)要使方程表示圆,则 4(m +3)2+4(1-4m 2)2-4(16m 4+9)>0即4m 2+24m +36+4-32m 2+64m 4-64m 4-36>0 整理得7m 2-6m -1<0,解得-17<m <1.(2)r =12错误!=-7m2+6m +1=错误!.∴0<r ≤477.(3)设圆心坐标为(x ,y ),则⎩⎪⎨⎪⎧x =m +3y =4m2-1.消去m 可得(x -3)2=14(y +1).∵-17<m <1,∴207<x <4.故圆心C 的轨迹方程为(x -3)2=14(y +1)(207<x <4).。
初中数学新课程标准测试(四套)有答案
初中数学课标测试卷(一)一、选择题(每小题3分,共45分)姓名1、新课程的核心理念是()A.联系生活学数学B.培养学习数学的爱好C.一切为了每一位学生的发展 D、进行双基教学2、教学是数学活动的教学,是师生之间、学生之间()的过程。
A.交往互动B.共同发展C.交往互动与共同发展3、教师要积极利用各种教学资源,创造性地使用教材,学会()。
A.教教材B.用教材教 C、教课标 D、教课本4、根据《数学课程标准》的理念,解决问题的教学要贯穿于数学课程的全部内容中,不再单独出现()的教学。
A.概念 B.计算 C.应用题 D、定义5、“三维目标”是指知识与技能、()、情感态度与价值观。
A.理解与掌握B.过程与方法C.科学与探究 D、继承与发展6、《数学课程标准》中使用了“经历(感受)、体验(体会)、探索”等刻画数学活动水平的()的动词。
A.过程性目标 B.知识技能目标7、建立成长记录是学生开展()的一个重要方式,它能够反映出学生发展与进步的历程。
A.自我评价 B.相互评价 C.多样评价 D、小组评价8、学生的数学学习活动应是一个()的过程。
A、生动活泼的主动的和富有个性B、主动和被动的生动活泼的C、生动活泼的被动的富于个性9、“用数学”的含义是()A.用数学学习B.用所学数学知识解决问题C.了解生活数学 D、掌握生活数学10、《新课程标准》对“基本理念”进行了很大的修改,过去的基本理念说:“人人学有价值的数学,人人获得必须的数学,不同人在数学上得到不同的发展。
”,现在的《新课标》改为: ( )A.人人都能获得良好的数学教育,不同的人在数学上得到不同的发展B.人人都获得教育,人人获得良好的教育C.人人学有用的数学,人人获得有价值的教育D.人人获得良好的数学教育11、《新课标》强调“从双基到四基”的转变,四基是指:()A. 基础知识、基本技能、基本方法和基本过程B. 基础知识、基本经验、基本过程和基本方法C. 基础知识、基本技能、基本思想和基本活动经验D. 基础知识、基本经验、基本思想和基本过程12、《新课标》强调“从两能到四能”的转变,“四能”是指()A. 分析问题、解决问题的能力;发现问题和讨论问题的能力。
(精品word)2018年五年级上数学月考试题综合考练(15)-1415人教新课标-文档资料
2019-2019学年新人教版五年级(上)第一次月考数学试卷(8)一、填空.(每空1分,共29分)1. 4.5+4.5+4.5+4.5+4.5+4.5= ___________ X ___________ = ____________ .2. _________________________ 1.78X0.7的积有 __________________________ 位小数,得数保留两位小数是__________________ .3. 计算2.7+(6.8 - 5)X时先算______________ 法,接着算 _____________ 法,最后算 ______ 法.4. 4.2 时= __________ 时 ______________ 分.3.05平方米= ____________ 平方米_____________ 平方分米8000平方米= ___________ 公顷903公顷= _______________ 平方千米.5. __________________________________________________________________________小军坐在教室的第3列第4行,用(3, 4)表示,小红坐在第1列第6行,用_________________ 来表示,用(5, 2)表示的同学坐在第_______________ 歹y第 __________ 行.6. 在横线里填上“”或=”.25.4 X5 _________ 125 ;4.05X10 __________ 45;6.4 >7.9 _________ 7.9 >6.4;2.8 >5 __________ 140.7. 不计算,说出各题的积是几位小数.2.45 X0.3 _________ ;6.32X0.51 ____________ ;0.37 ».15 ____________ .& 4.9095保留一位小数是________________ ,保留两位小数是_____________ ,保留三位小数是_____________ .9. 一个三位小数四舍五入后是 _________________ 2.40,这个三位小数最大可能是,最小可能是_____________ .二、判断题.(每题1分,共6分)10. 一个不为零的数除以大于_________________ 1的数,商一定比原数小. .(判断对错)11. 一个小数乘0.01,就是把这个小数缩小100倍. _________________ .(判断对错)12. ______________________________________________________ 计算4.25X5.32的简便方法是 4.25 >4>0.8=13.6 . ______________________________________ (判断对错)13. 0.9除以8.1的商是9. ______________ .(判断对错)14. _____________________________________ 5.994保留两位小数是6.00. (判断对错)15. ____________________________________________________ 一个数除以一个小数,商不一定比被除数大. ________________________________________________ (判断对错)三、选择题.(每题1分,共6分)16. 与25.8W.5的积相等的算式是()A . 0.258 >5.5B . 0.258X55C . 2.58 X55D . 2.58>0.5517 .如图:如果点X的位置表示为(2, 3),则点Y的位置可以表示为()A . (4, 4)B . (4, 5)C. (5, 4)D. (3, 3)18 . 2.34545…是()小数.A.有限B .循环19 .音乐课,聪聪坐在音乐教室的第4列第2行,用数对(4, 2)表示,明明坐在聪聪正后方的第一个位置上,明明的位置用数对表示是()A . (5, 2)B . (4, 3)C . (3, 2)D. (4, 1)20 .要使3.2>5.1+3.2 >4.9的计算简便,应该应用()A .乘法分配律B.乘法结合律C .乘法交换律21 •下面保留两位小数错误的是( )A • 5.374弋.37B . 2.995P.00C . 8.105P.10D . 5.494^5.49 四、计算题.【1题9分,2题7分,3题18分,共34分】 23. 用竖式计算. 0.5X1.25= 52.65 勻3= 9.25^3.7=验算.24. 用递等式计算(能简算的要简算) 20.9+10.2 - (5.2 - 3.5) 15.52 - 4.3 - 5.7 10.64+7.65 X .4+11.76 9.83X (3.8- 2.3) +1.5X 3.17.五、 列综合算式计算.(每题3分,共6分) 25. 18.5与12.7的差,乘以10.42,积是多少? 26. 3个3.02比5.7多多少?六、 解决问题.(每题5分,共25分) 27.果农们要将680千克的葡萄装进纸箱运走,每个纸箱最多可以盛下 15千克.一共需要 个纸箱.28. —个服装厂计划做 660套衣服,已经做了 5天,平均每天做75套,剩下的要3天完成, 剩下的平均每天要做多少套?.29. 王铁小学买回8个篮球和6个足球.篮球每个 34.5元,足球每个25.8元.一共用多少 钱? 30. 陈老师要用80元买一些文具作为年级运动会的奖品.他先化 45.6元买了 8本相册,并 准备用剩下的钱买一些钢笔,每枝钢笔 2.5元.陈老师还可以买几枝钢笔?31. 某煤矿3月份产煤38.5万吨,4月份的产煤量是3月份的1.4倍,5月份的产量比4月 份少2.8万吨.5月份产煤多少万吨?2019-2019学年新人教版五年级(上)第一次月考数学试 卷(8)参考答案与试题解析一、填空.(每空1分,共29分) 1. 4.5+4.5+4.5+4.5+4.5+4.5= 4.5 X 6= 27.【考点】小数乘法.【分析】根据小数乘整数的意义, 小数乘整数与整数乘法的意义相同, 都表示求几个相同加数的和的简便运算.据此解答.【解答】解:4.5+4.5+4.5+4.5+4.5+4.5 =4.5X 5 =2722. 直接写得数. 2.5XJ.4 >0.8=0.88+0.12=3.2».4= 0.5 ».3= 0.5+5 X 0.2=- 0.8X 6= 4.5X 8=1.25 ».4 >=故答案为:4.5、6, 27.2. 1.78 >0.7的积有三位小数,得数保留两位小数是 1.25 .【考点】小数乘法;近似数及其求法.【分析】将1.78 ».7计算出来,是1.246,保留两位小数就要看小数点后第三位是不是满5, 根据四舍五入法解答即可.【解答】解:1.78 X0.7=1.246;是三位小数;1.246保留两位小数是:1.25.故答案为:三;1.25.3•计算2.7+( 6.8 - 5) >时先算减法,接着算除法,最后算乘法.【考点】小数四则混合运算.【分析】根据小数四则混合运算的运算顺序,可得计算 2.7 + ( 6.8- 5) >时先算减法,接着算除法,最后算乘法,据此解答即可.【解答】解:计算2.7+( 6.8 - 5)疋时先算减法,接着算除法,最后算乘法.故答案为:减、除、乘.4. 4.2 时=4 时12 分.3.05平方米=3 平方米5 平方分米8000平方米=0.8 公顷903公顷=9.03 平方千米.【考点】时、分、秒及其关系、单位换算与计算;面积单位间的进率及单位换算.【分析】(1)将4.2时化成4时+0.2时的形式,时化成分需要乘以进率60;(2)平方米化成平方分米需要乘以进率100;(3 )平方米化成公顷需要除以进率10000;(4)公顷化成平方千米需要除以进率100 .【解答】解:4.2时=4时12分;3.05平方米=3平方米5平方分米;8000平方米=0.8公顷;903公顷=9.03平方千米.故答案为:4;12;3;5;0.8;9.03.5. 小军坐在教室的第3列第4行,用(3,4)表示,小红坐在第1列第6行,用(1,6)来表示,用(5,2)表示的同学坐在第5列第 2 行.【考点】数对与位置.【分析】(1)根据小红坐在第1列第6行,知道数对中的第一个数是1,第二个数是6,由此得出答案,(2)根据数对的意义作答,即数对中的第一个数表示列数,第二个数表示行数.【解答】解:(1)因为,小红坐在第1列第6行,所以,用(1,6)表示小红的位置;(2)因为,在数对(5,2)中5表示列数,2表示行数,所以,该同学在第5列第2行,故答案为:(1,6),5,2 .6. 在横线里填上•” “”或=”.25.4X5 > 125 ;4.05X10 < 45 ;6.4>7.9 = 7.9W.4:2.8 >5 V 140.【考点】小数乘法.【分析】根据小数乘法的计算法则,分别计算出各式的结果,然后根据小数大小比较的方法进行比较即可.【解答】解:①25.4 >5=127,所以25.4拓〉125;② 4.05X10=40.5,所以 4.05 >0v45;③由乘法交换律可知,两个数相乘,交换因数的位置积不变,所以 6.4>7.9=7.9 >6.4 ;④ 2.8X5=14,所以2.8X5V 140.故答案为:〉;V;=;<.7. 不计算,说出各题的积是几位小数.2.45X0.3三位小数;6.32X0.51 四位小数:0.37 >0.15 四位小数.【考点】小数乘法.【分析】根据小数乘法的计算法则,先按照整数乘法的计算法则算出积,再看因数中一共有几位小数,就从积右边起数出几位点上小数点,末尾有0的可以根据小数的性质化简. 据此解答.【解答】解:2.45是两位小数,0.3是一个小数,所以 2.45>0.3的积是三位小数;6.32是两位小数,0.51是两位小数,所以6.32 >0.51的积是四位小数;0.37是两位小数,0.15是两位小数,所以0.37 >0.15的积是四位小数. 故答案为:三位小数,四位小数,四位小数.& 4.9095保留一位小数是 4.9 ,保留两位小数是 4.91 ,保留三位小数是4.910 .【考点】近似数及其求法.【分析】保留一位小数,即精确到十分位,看小数点后面第二位(百分位),保留两位小数,即精确到百分位,看小数点后面第三位(千分位),保留三位小数,即精确到千分位,看小数点后面第四位(万分位);利用四舍五入”法分别解答即可.【解答】解:4.9095保留一位小数是 4.9,保留两位小数是 4.91,保留三位小数是 4.910; 故答案:4.9, 4.91 , 4.910.9. 一个三位小数四舍五入后是 2.40,这个三位小数最大可能是 2.404 ,最小可能是—2.395 .【考点】近似数及其求法.【分析】要考虑2.40是一个三位数的近似数,有两种情况:四舍”得到的2.40最大是2.404, 五入”得到的2.40最小是2.395,由此解答问题即可.【解答】解:一个三位小数四舍五入后是 2.40,这个三位小数最大可能是 2.404,最小可能是 2.395;故答案为:2.404 , 2.395.二、判断题.(每题1分,共6分)10. 一个不为零的数除以大于1的数,商一定比原数小. V .(判断对错)【考点】小数除法.【分析】本题可以用列举法求证.【解答】解:例如:3^1.5=2 , 3> 2 ;39^13=3, 39>3;0.4*0.1 , 0.4 > 0.1;这些例子都符合题意,而且找不出反例.故答案为:V11. 一个小数乘0.01,就是把这个小数缩小100倍. 正确.(判断对错)【考点】小数乘法.【分析】由于0.01表示将整体1 ”等分成100份,其中的一份为为0.01,由此可知,一个小数乘0.01,就是把这个小数缩小100倍.【解答】解:根据小数的意义可知,一个小数乘0.01,就是把这个小数缩小100倍.故答案为:正确.12. 计算4.25X5.32的简便方法是4.25用>0.8=13.6 . X (判断对错)【考点】运算定律与简便运算.【分析】先把0.32分解成4>0.08,再运用乘法结合律简算,得出结果即可判断.【解答】解:4.25 X0.32=4.25 >4X0.08=(4.25 X4)XJ.08=17X5.08=1.36 ;故答案为:X13. 0.9除以8.1的商是9. 错误 .(判断对错)【考点】小数除法.【解答】解:据题意,正确答案为:【分析】本题由于混淆了除法中除”除以”这两种读法的意义而列式计算错误,正确列式为:故答案为:错误.14. 5.994保留两位小数是6.00. X (判断对错)【考点】近似数及其求法.【分析】保留两位小数是把千分位上的数进行四舍五入,据此求出 5.994的近似数,然后选择.【解答】解:5.994保留两位小数是5.99;故答案为:X15. 一个数除以一个小数,商不一定比被除数大.V(判断对错)【考点】小数除法.【分析】举例证明:当除数是小数时商可能比被除数大,也可能比被除数小,也可能和被除数相等.【解答】解:例如:①4七.5=8 ;8> 4,商比被除数大;②10 吃.5=4,4< 10,商比被除数小;③0吃.5=0 ;0=0,商和被除数相等.故一个数除以一个小数,商不一定比被除数大的说法是正确的.故答案为:v<三、选择题.(每题 1 分,共6分)16. 与25.80.5的积相等的算式是()A . 0.258 >5.5B . 0.258X55C. 2.58 X55D . 2.58>0.55【考点】积的变化规律.【分析】一个因数扩大(或缩小)若干倍(0 除外),另一个因数缩小(或扩大)相同的倍数,积不变;据此解答.积的变化规律:一个因数不变,另一个因数扩大或缩小几倍(0除外),积也就扩大或缩小相同的倍数;据此逐项分析解答.【解答】解:以25.8>5.5为标准,根据积的变化规律可知,选项A , 0.258^5.5, 一个因数缩小了100倍,另一个因数不变,则积缩小了100倍;选项B,0.258>55,一个因数缩小了100倍,另一个因数扩大了10倍,则积缩小了10倍;选项C,2.58>55,一个因数缩小了10倍,另一个因数扩大了10倍,则积不变;选项D,2.58>0.55,一个因数缩小了10倍,另一个因数缩小了10倍,则积缩小100倍.所以与25.8>5.5 的结果相等的算式是2.58>55;故选:C.17.如图:如果点X 的位置表示为(2,3),则点Y 的位置可以表示为()A.(4,4)B.(4,5)C.(5,4)D.(3,3)【考点】数对与位置.【分析】根据X的位置为(2, 3),知道2是指第2列,3是指第三行,再根据Y在第5列,第4 行,即可得出Y 的位置.【解答】解;因为Y 在第5列,第4行, 所以,点Y 的位置用数对表示为(5, 4), 故选:C.18. 2.34545…是()小数.A .有限B .循环【考点】小数的读写、意义及分类.【分析】根据循环小数的含义来判断:一个小数的小数部分, 从某一位起一个数字或几个数字依次不断重复出现,这样的小数叫做循环小数;据此解答即可.【解答】解:2.34545••是循环小数;故选:B.19.音乐课,聪聪坐在音乐教室的第4列第2行,用数对(4, 2)表示,明明坐在聪聪正后方的第一个位置上,明明的位置用数对表示是()A.(5, 2)B.(4, 3)C.(3, 2)D.(4, 1)【考点】数对与位置.【分析】数对表示位置的方法是:第一个数字表示列,第二个数字表示行, 由此利用明明和聪聪的位置关系即可得出明明的数对位置,从而进行选择.【解答】解:聪聪坐在音乐教室的第4列第2行, 明明坐在聪聪正后方的第一个位置上,所以明明和聪聪都在第 4 列,聪聪在第 2 行,则明明在第 3 行, 根据数对表示位置的方法可得,明明的位置是:(4, 3),故选:B.20.要使3.2>5.1+3.2>4.9 的计算简便,应该应用()A .乘法分配律B .乘法结合律C .乘法交换律【考点】运算定律与简便运算.【分析】3.2X5.1+3.2 >4.9,加号左右的乘法中都有一个共同的因数 3.2,就可以根据乘法分配律进行简算.【解答】 解:3.2>5.1+3.2>4.9, =3.2>(5.1+4.9), =3.2>10,=32; 这是运用了乘法分配律简算. 故选: A .21.下面保留两位小数错误的是()A . 5.374祗.37B . 2.995W.00C . 8.105吃.10D . 5.494^5.49 【考点】 近似数及其求法.【分析】 利用“四舍五入 ”的方法分别求出保留两位小数的近似值即可解答. 【解答】 解:A 、5.374弋.37 B 、 2.995^3.00 C 、 8.105^8.11 D 、 5.494^5.49 故选: C .四、计算题. 【1题 9分, 2题 7分, 3题 18分,共 34分】 22. 直接写得数.考点】 小数四则混合运算;小数的加法和减法;小数乘法. 分析】 根据小数加减乘除运算的方法口算即可,注意运算顺序. 解答】 解:2.5>0.4>0.8=0.8 0.5>0.3=0.1552.65 勻3= 9.25^3.7=验算.【考点】 小数乘法;小数除法.【分析】 根据小数乘除法运算的计算法则计算即可求解.注意最后一题要验算. 【解答】 解: 0.5>1.25=0.625 52.65 勻3=4.05 9.25^3.7=2.524.用递等式计算(能简算的要简算) 20.9+10.2 - (5.2 - 3.5)15.52- 4.3- 5.7 10.64+7.65>2.4+11.76 9.83>(3.8- 2.3) +1.5>6.17.2.5>0.4>0.8= 0.88+0.12=3.2>0.4= 0.5>0.3= 0.5+5>0.2=1.8 - 0.18= 0.8>6= 4.5> 8=1.25>0.4>8=.0.8>6=4.80.88+0.12=1 3.2>0.4=1.28 23.用竖式计算. 0.5>1.25=0.5+5>0.2=1.5 1.8- 0.18=1.624.5>8=36 1.25>0.4>8=4.【考点】小数四则混合运算;运算定律与简便运算.【分析】(1)首先计算小括号里面的,然后计算除法,最后计算加法即可;(2)根据减法的性质简算即可;(3 )根据加法交换律和结合律简算即可;(4)根据乘法分配律计算即可.【解答】解:(1) 20.9+10.2-(5.2 - 3.5)=20.9+10.2 W.7=20.9+6=26.9(2)15.52 - 4.3 - 5.7=15.52 -(4.3+5.7)=15.52 - 10=5.52(3)10.64+7.65 >2.4+11.76=10.64+18.36+11.76=10.64+11.76+18.36=22.4+18.36=40.76(4)9.83X ( 3.8 - 2.3) +1.5 >6.17=9.83 X1.5+1.5 >6.17=(9.83+6.17) X.5=16X1.5=24五、列综合算式计算.(每题3分,共6分)25. 18.5与12.7的差,乘以10.42,积是多少?【考点】小数四则混合运算.【分析】最后求的是积,一个因数是18.5减去12.7的差,另一个因数是10.42,然后用差乘另一个因数即可.【解答】解:(18.5- 12.7) X10.42=5.8X0.42=60.436答:积是60.436.26. 3个3.02比5.7多多少?【考点】小数四则混合运算.【分析】首先根据题意,用3.02乘以3,求出3个3.02是多少,然后再减去 5.7,求出3个3.02比5.7多多少即可.【解答】解:3.02 X3- 5.7=9.06 - 5.7=3.36答:3 个 3.02 比5.7 多 3.36.六、解决问题.(每题5分,共25分)27. 果农们要将680千克的葡萄装进纸箱运走,每个纸箱最多可以盛下15千克•一共需要.4^个纸箱.【考点】整数的除法及应用;有余数的除法.【分析】由题意可知,本题是求680 里面有多少个15,用除法计算即可.【解答】解:680^15=45 (箱)--5 (千克)纸箱盛东西,无论剩多少都要用进一法,多加 1 箱,即45+1=46(箱),答:一共需要46 个纸箱.故答案为:46.28.一个服装厂计划做660 套衣服,已经做了5 天,平均每天做75 套,剩下的要3 天完成,剩下的平均每天要做多少套?.【考点】平均数的含义及求平均数的方法.【分析】先用平均每天做的数量乘做的天数计算出已经完成的数量,用计划做的总数量减去已经完成的数量计算出剩下的数量,再除以对应用的天数即可计算出剩下的平均每天完成的数量.【解答】解:75X5=375 (套)660 - 375=285 (套)285^3=95 (套).答:剩下的平均每天要做95 套.29.王铁小学买回8个篮球和6个足球.篮球每个34.5元,足球每个25.8 元.一共用多少钱?【考点】整数、小数复合应用题.【分析】王铁小学买回8 个篮球和 6 个足球.篮球每个34.5 元,足球每个25.8 元,根据总价=单价X数量,分别求出买篮球和足球各花了多少钱,再相加即可.【解答】解:8 X34.5+6 X25.8=276+154.8=430.8 (元)答:一共用430.8 元钱.30.陈老师要用80 元买一些文具作为年级运动会的奖品.他先化45.6 元买了8 本相册,并准备用剩下的钱买一些钢笔,每枝钢笔 2.5 元.陈老师还可以买几枝钢笔?【考点】列方程解应用题(两步需要逆思考).【分析】要求可以买几支钢笔,钢笔的单价已知,再知道买钢笔的钱数即可,而买钢笔的钱数就是总钱数减去买相册用的钱数,从而问题得解.【解答】解:设陈老师还可以买x 枝钢笔,则: 2.5x=80- 45.6,2.5x=34.4 ,x=13 - 1.9;答:陈老师还可以买13 枝钢笔,剩余 1.9 元.31.某煤矿3 月份产煤38.5 万吨,4 月份的产煤量是3 月份的1.4倍,5月份的产量比4月份少2.8 万吨. 5 月份产煤多少万吨?【考点】整数、小数复合应用题.【分析】某煤矿3月份产煤38.5 万吨,4月份的产煤量是3月份的1.4倍,用38.5X1.4=53.9 万吨,先求出4 月份的产煤量,又因为5 月份的产量比4 月份少2.8 万吨,用4 月份的产煤量减去2.8 万吨,列式解答即可.【解答】解:38.5X1.4- 2.8=53.9- 2.8=51.1 (万吨)答:5月份产煤51.1 万吨.2019 年7 月19 日。
完整word版,初三月考数学试卷分析
完好word版,初三月考数学试卷剖析初三月考数学试卷剖析一、试卷基本状况试题紧扣教材,表现了新课标的理念和基本要求,侧重关于基础知识和基本技术的考察。
题型适合,难易适中,题量适量,共22 个小题。
二、考试概略试卷满分为 120 分.全卷共三个大题,此中选择题 12 个小题,填空题 5 个小题,解答题 5 个小题,三班均分 70 分,四班均分 74 分平,及格率为 54.% ,优生率为 28%,(90 分以上)最高分 120 分。
一二大题主要错误种类小题号主要错误8形似三角形对应关系找错12考察面积比等于相像比的平方,同高等底的三角形面积关系与底的关系未想到。
14不可以经过做协助线证明相像,找相像比。
20/22解直角三角形地应用部分同学不可以将实质问题转变为数学识题第三大题主要错误种类小题号182122/22主要错误计算犯错,特别角三角函数值记错应用相像三角形判断定理正相像条件不全解直角三角形地应用部分同学不可以将实质问题转变为数学识题二、教课建议1、增强基础知识的教课,重视双基,平常的教课要进一步表现面向全体学生的原则。
2、重视观点、公式定理的教课,提升学生的计算能力。
3、增强综合题的训练,提升学生的创新能力和应变能力。
4、讲堂教课中板书不行忽略,让学生不单听懂,并且会规范的书写。
5、此后教课要进一步增强教课观点的更新,更为重视教课过程,同时还要自始自终地抓好双基。
6.掌握命题的基来源则。
(1)考察学生的基本运算能力、思想能力和空间观点的同时,侧重考察学生运用数学知识剖析和解决实质问题的能力。
( 2)试题立意,以“两个意识”(创新意识、应意图识)和“四种能力” (运算能力、空间想象能力、逻辑思想能力和应用数学知识解决简单实质问题的能力)并举立意,试题要表现出数学的教育价值。
所以,我们在平常的教课中要在这些方面下时间。
7、增强对学生思想、意志和心理素质等“非智力要素”的指导与训练,培育学生优秀的书写习惯(解题周祥、谨慎、书写规范、精练),减少过错性的失分。
【新课标II卷】2018年高考数学试题(理)(Word全部解析版)
绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.12i12i+=- A .43i 55-- B .43i 55-+C .34i 55--D .34i 55-+【解析】54341441)21)(21()21)(21(2121ii i i i i i i +-=+-+=+-++=-+ 【D 】 2.已知集合(){}223A x y x y x y =+∈∈Z Z ,≤,,,则A 中元素的个数为A .9B .8C .5D .4【解析】如右图所示,符合条件的整点个数为9个 【A 】3.函数()2e e x xf x x --=的图像大致为【解析】设x x e e x g --=)(,2)(x x q =,则)(x g 为奇函数,)(x q 为偶函数且不过x =0点。
所以,由复合函数的奇偶性知函数)(x f 为奇函数,排除A 。
2)1(1>-=-ee f 所以 【B 】4. 己知向量a , b 满足|a | = l ,a•b =-l,则a •(2a -b )= A. 4 B. 3 C. 2 D. 0【解析】a •(2a -b )=2a 2-a•b =2|a|2-(-1)=2+1=3 【B 】5. 双曲线12222=-by a x (a >0,b >0)的离心率为3则其渐近线方程为A. x y 2±=B. x y 3±=C. x y 22±= D.x y 23±= 【解析】3==ace ,223b a a c +==,2223b a a += 所以a b 2= 所以渐近线方程为x aby 2±=±= 【A 】6. 在△ABC 中,552cos=C ,BC = l, AC = 5,则AB = A. 24 B.30 C.29 D. 52【解析】53155212cos 2cos 22-=-⎪⎪⎭⎫ ⎝⎛=-=C C C BC AC BC AC AB cos 222⋅-+==)53(1521522-⨯⨯⨯-+=24【A 】7. 为计算10019914131211-++-+-= S ,设计了右侧的程序框图,则在空白框中应填入 A. 1+=i i B. 2+=i i C. 3+=i i D. 4+=i i 【解析】奇数项为正,偶数项为负,规律是差2个。
教师初中数学新课标考试试题
教师初中数学新课标考试试题一、选择题(每题3分,共30分)1. 以下哪个选项是二次函数的一般形式?A. y = ax^2 + bx + cB. y = ax^3 + bx^2 + cx + dC. y = ax + bD. y = a^x + b2. 圆的面积公式是什么?A. A = πr^2B. A = 2πrC. A = πrD. A = 4πr^23. 绝对值的定义是什么?A. |x| = x,当x ≥ 0B. |x| = -x,当x < 0C. |x| = x,当x ≥ 0;|x| = -x,当x < 0D. |x| = x,当x < 04. 以下哪个选项是等腰三角形的性质?A. 两个底角相等B. 三条边相等C. 三个角相等D. 底边的中垂线也是高5. 以下哪个选项是勾股定理的表述?A. 在直角三角形中,直角边的平方和等于斜边的平方B. 在直角三角形中,斜边的平方等于两直角边的平方和C. 在直角三角形中,斜边的平方和等于两直角边的平方D. 在直角三角形中,两直角边的平方和等于斜边的平方6. 以下哪个选项是正比例函数的定义?A. y = kx + bB. y = kxC. y = k/xD. y = kx^27. 以下哪个选项是反比例函数的定义?A. y = kx + bB. y = kxC. y = k/xD. y = kx^28. 以下哪个选项是相似三角形的性质?A. 对应角相等B. 对应边成比例C. 面积相等D. 周长相等9. 以下哪个选项是三角形内角和定理?A. 三角形内角和等于180°B. 三角形内角和等于360°C. 三角形内角和等于90°D. 三角形内角和等于120°10. 以下哪个选项是函数的定义?A. 函数是一种关系B. 函数是一种特殊的映射C. 函数是一种运算D. 函数是一种图形二、填空题(每题2分,共20分)11. 一次函数的图象是一条______。
(完整word版)新课标人教版七年级数学上册全册教案人教版
新课标人教版七年级数学上册全册教案课题:正数和负数()授课时间:正数和负数()授课时间:课题: 有理数授课时间:数轴授课时间:课题:相反数授课时间:课题:绝对值授课时间:有理数的加减法授课时间:有理数的加法()【教学目标】.理解有理数加法的实际意义;。
会作简单的加法计算;。
感受到原来用减法算的问题现在也可以用加法算.【对话探索设计】〖探索〗()某仓库第一天运进吨化肥,第二天又运进吨化肥,两天一共运进多少吨?()某仓库第一天运进吨化肥,第二天运出吨化肥,两天总的结果一共运进多少吨?()某仓库第一天运进吨化肥,第二天又运进吨化肥, 两天一共运进多少吨?()把第()题的算式列为(),有道理吗?()某仓库第一天运进吨化肥,第二天又运进吨化肥,两天一共运进多少吨?〖探索〗如果物体先向右运动,再向右运动,那么两次运动后总的结果是什么?假设原点为运动起点,用下面的数轴检验你的答案。
若某场比赛红队胜黄队(即在足球比赛中,通常把进球数记为正数,失球数记为负数,它们的和叫做净胜球数..........红队进个球,失个球),红队净胜几个球?〖小游戏〗(请一位同学到黑板前)前进步,又前进步,那么两次运动后总的结果是什么?若是后退步,又后退步呢?〖练习〗。
登山队员第一天向上攀登,第二天又向上攀登(天气恶劣!),两天一共向上攀登多少米?.第一天营业赢利元,第二天亏本元,两天一共赢利多少元?〖补充作业〗.分别用加法和减法的算式表示下面每小题的结果(能求出得数最好):()温度由下降;()仓库原有化肥,又运进;()标准重量是,超过标准重量;()第一天盈利元, 第二天盈利元。
.借助数轴用加法计算:()前进,又前进,那么两次运动后总的结果是什么?()上午时的气温是,下午时的气温比上午时下降, 下午时的气温是多少?.某潜水员先潜入水下,他的位置记为.然后又上升,这时他处在什么位置?有理数的加法()授课时间:【教学目标】.进一步理解有理数加法的实际意义;.经历探索有理数加法法则的过程,理解有理数加法法则;。
(完整版)初中数学新课标解读
完整版)初中数学新课标解读1.引言本文档旨在解读初中数学新课标,并为教师、学生及家长提供关于该课程的详细信息和指导。
新课标的引入对于数学教育的发展具有重要意义,它将帮助学生建立更扎实的数学基础,并培养他们的数学思维和创新能力。
2.新课标的背景随着社会的快速发展和全球竞争的加剧,数学的重要性日益凸显。
为了适应新时代的教育需求,我国对初中数学课程进行了全面改革,推出了新课标。
新课标的设计理念是培养学生的数学素养,使他们能够在日常生活和学习中运用数学知识解决实际问题。
3.新课标的主要内容3.1 知识体系新课标包含了数学基本知识、基本技能和学科思想、方法与过程等方面的内容。
它以数学的核心概念为基础,融入实际问题求解、数学模型建立和推理证明等能力的培养。
3.2 学习目标新课标提出了明确的学习目标,旨在帮助学生掌握数学基本概念、基本技能和基本运用能力,并在解决实际问题的过程中,培养他们的数学思维和创新能力。
3.3 教学方法新课标强调以学生为中心的教学方法,倡导探究式学习和合作学习。
老师应引导学生主动参与课堂活动,培养他们的问题意识和解决问题的能力。
3.4 评价方式新课标提出了综合评价的思想,主张综合考核学生的知识、能力和素质。
除了传统的考试形式外,还注重学生的综合素质评价,如项目作业、实验报告等。
4.实施新课标的建议4.1 教师角色教师在新课标的实施中应发挥积极的主导作用,给予学生足够的指导和支持。
同时,要转变教育观念,注重培养学生的综合素养和能力。
4.2 学生自主学习学生应主动参与学习,积极思考和探索。
他们应养成积极合作的学习态度,并在思维习惯、方法运用等方面得到锻炼。
4.3 家长的支持家长应加强对孩子的监督和鼓励,为他们提供良好的学习环境和学习资源。
家长可以与学校建立紧密的联系,了解孩子的学习情况并帮助他们解决学习中的困惑。
5.结论新课标为初中数学教育带来了新的发展机遇,它将培养学生的数学素养和创新能力。
初中数学论文参考题目大全完整版
初中数学论文参考题目大全Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】初中数学论文参考题目大全新课程理念下中学数学教学的合作学习问题探析浅谈新课标下的数学课题学习乘船中的数学问题忽似一夜春风来----浅议数学教学中的顿悟初中数学教学应重视学生直觉思维能力的培养七年级学生学习情况的调研老师,这个答案为什么错了——由一堂没有准备的探究课引发的思考新课程背景下学生数学学习发展性评价的构建让学生走出“零阅读”的尴尬初中数学学生学法辅导之探究合理运用数学情境教学让学生在自信、兴趣和成功的体验中学习数学创设有效问题情景,培养探究合作能力重视数学教学中的生成展示过程,培养学生创新思维能力从一道中考题的剖析谈梯形中面积的求解方法浅谈课堂教学中的教学机智从《确定位置》的教学谈体验教学谈主体性数学课堂交流活动实施策略对数学例题教学的一些看法新课程标准下数学教学新方式举反例的两点技巧数学课堂教学中分层教学的实践与探索新课程中数学情境创设的思考数学新课程教学中学生思维的激发与引导新课程初中数学直觉思维培养的研究与实践“问题解决”与创造精神的培养做个学习数学的有心人让学生的创新之花绽放得更鲜艳对数学探索教学的观察与思考“先学后教”教学模式的探索与研究新形势、新气象、新变化浅谈新浙教版七年级数学教学体会让课堂充满问题让问题充满思考改变试卷讲评方式,提高学生复习效率构建信息能力培养的平台----新课标下的数学教学在数学新课程教学中谈如何培养学生的合作学习数学教学中的对学生发展性评价的浅显研究对目前初中数学课堂教学的一些思考读书无颖者顺教有疑,有疑者顺教无颖心与心的交流、共创人文和谐展示过程学习,促进数学能力发展它山之石,可以攻玉——北师大教材的几点借鉴和反思新课程理念下初中数学课堂教学的反思借新课程理念,探中下生转化之路论新课标下数学试卷讲评课的思考谈数学教学中的四个“适”是否一定要“探究”数学建模——数学与现实世界的桥梁新课标下学生问题意识的培养数学课堂教学应让学生多思考实施新课程、新教材的体会与思考谈合作学习中的误区和对策探究性学习在初中数学课堂中的尝试浅谈数学教学情境的创设点击思维过程,培养学生思维深刻性让每个学生在课堂上都有自由发展的空间初中数学探究性学习兴趣培养之初探新课程标准下数学教学的反思新课标下如何培养学生的问题意识小组合作学习在初中数学教学中的实施策略新课标教学课堂有效教学的艺术动与静大成徐孝萍试析学生在课堂学习中的行为表现成因及对策让学生快乐地学习——浅谈关注学生学习状况,提高数学教学效率加强师生互动,提高课堂效率对培养学生学习主动性的感受为数学和谐之美,教师应有所作为初一学生数学学习习惯的调查和干预策略《初三复习课例题设计之一》《新课标下数学学科对学生的评价》《如何让学生爱上你的课》《优化数学预习作业,促进师生和谐对话》有感于听≠懂;懂≠会;会≠通《浅谈多媒体技术在数学积教学中的应用》新《标准》下数学课堂上的教师个性对学生学习的影响贴近现实生活,注重应用意识创设现实生活版的数学教学注重体验教学——让数学走向生活多元化的评价给学生插上了自信的翅膀对初一学生数学解题错误的分析新课程下更应重视数学阅读谈学生的数学思维综合品质培养有-1=-2想到的在数学教学中进行德育渗透新课程理念下初中数学教学中的应用意识的渗透“问题解决”与创新意识的培养浅谈如何维持数学课的教学秩序小班化教学有效自主学习指导策略课改区中考学生复习之秘诀用信息技术为数学教学助力合作教学法,培养学生创新能力的尝试实践新课程理念,鼓励式分层教学数学美在数学教学中的渗透将研究性学习与学科教学整合的尝试试析数学教育的德育功能多媒体技术与中学数学整合如何才具长久的生命力浅谈《几何画版》在数学教学中的作用数学实验在数学教学的作用运用多媒体突破数学教学难点的实践体会如何在数学课堂教学中培养学生的态度情感求直线解析式有新招培养学生数学问题意识的探究浅谈新课程理念下的小组合作学习新理念下谈初一数学的学法与指导新课标下数学课题学习的实践与探索新课标下对数学开放题编制的几点思考谈新理念下的数学实验课堂的几点体会数学教学中培养学生创新能力的探讨“学习新课标理念,上好数学复习课”例析新课标下对数学教与学的思考浅谈数学教学中的心理渗透新课标下数学教学的几点体会学科渗透在初中数学教学中的运用例谈解题后反思对学生思维品质的培养一二三四五我是舟山人多媒体辅助数学教学在实践中的几点思考谈谈如何提高学好数学的自信心挖掘新教材阅读功能,培养学生数学阅读能力一元一次不等式(组)在中考中的应用激发学生的学习兴趣,让学生走近数学利用特殊化方法培养学生的思维品质情感教学在数学教学中的功效数学教学中学生思维品质的培养"开放性试题"如何做到更有效在课改新理念下创造性地使用教材培养团队精神开展合作学习新课程呼唤新颖的课堂导入预习——新课程不可或缺的好帮手新课程下初中数学“学困”现象的剖析谈谈课堂教学中的问题走进新课程步入新课堂抓住数学课堂合作的时机,提高合作学习的有效性初中数学解题策略谈谈如何培养学生学习数学的兴趣新理念,新题型,新对策让数学课堂更加生动活泼让学生在愉快中学习数学数学课堂上的探究性学习尝试数学实验,挖掘课堂亮点初中数学课堂教学现状及改革举措当一块石头有了愿望——谈在数学教学中如何做好后进生的转化工作以旧推新创设问题情境一道考题带来的思考促进中学生有效学习初探新课标理念下站在学生角度优化课堂结构的探索新教材教学中数学思想方法的渗透透过现象看本质——浅谈如何通过数学测试对学生的数学学习进行质的评价建构观下的数学网络教学现状浅析看中考数学试题再谈课堂素质教育的必要性让数学走进生活大成中学沈莉莉初中数学中类比推理的应用与学生思维能力的培养以问题探究激活思维简单有效建立图形运动变化观念,渗透数学教学思想新课程背景下教师文化的培育数学建模在初中教学中的应用浅谈农村中学学生的数学合作学习千古绝唱勾股定理让爱渗透数学教学营造宽松的数学课堂氛围策略探索浅谈新课标在中考数学中的体现初中数学中加强思想方法教学的策略课堂“互动”递进的教学模式初探给数学课加点调味剂让数学在快乐活动中飞升(图形和变换)让学生体验-----数学的美数学后进生问题之我见新课改欢呼学生数学应用意识的培养在数学教学中培养学生的创新思维树欲静而风不止隐含条件----解题过程中的“陷阱”数学课堂教学有效性的探索浅谈七年级数学教学中如何体现“让数学走向生活” 浅谈在数学教学中对学生的思维能力的培养一堂公开课引出的教学思考“做数学”比“说数学”更重要我被学生闪了一下腰自设问题情境,新课程下应用题教学中的“灵韵之笔” 可能相似吗小明的四天“数学”生活听公开课所感细节的重要性电信交费中的数学问题一节生动的复习课同一节课不同的“命运”让我再次琢磨复习课怎样上《利用平方差公式分解因式》初中数学中考复习题的改编游戏中探究,游戏中思考尝试开展数学欣赏课。
(完整版)初中数学新课标解读
(完整版)初中数学新课标解读初中数学新课标解读1. 引言数学是一门基础学科,对于学生的数学素养和综合能力的培养至关重要。
为了提高教学质量,并适应时代的发展需求,教育部发布了新的初中数学课程标准。
本文将对初中数学新课标进行解读,旨在帮助教师和学生更好地了解和应用新课标,促进数学教学的改革和提升。
2. 课程结构新课标将初中数学分为基础篇和拓展篇两个部分。
其中,基础篇包括数的基本概念、数的运算、代数与函数、几何与图形等内容;拓展篇则涵盖了统计与概率、解析几何、数论与离散数学等扩展知识。
通过将数学知识分为基础篇和拓展篇,新课标旨在培养学生基本的数学能力,并为对数学有较高要求的学生提供更深入的研究机会。
3. 强调数学思想与方法新课标强调数学思想与方法的培养。
在数学问题的解决过程中,学生应注重思考、探索和发现,并灵活运用数学思维和方法进行分析和解决。
在教学中,教师应引导学生从实际问题出发,培养他们的数学建模能力。
通过实际问题的解析和仿真实验,学生可以更好地理解数学知识,并将其应用到实际生活中去。
4. 多元评价体系新课标提出了多元评价的体系,其中包括知识技能的评价、学科素养的评价和学业情感态度与价值观的评价。
教师应根据学生的不同能力和发展水平,选择合适的评价方式,并注重培养学生的自主研究和合作研究能力。
同时,评价过程应注重学生研究过程的质量,鼓励学生发现和改正错误,并提供有效的反馈。
5. 教学建议针对新课标的教学,可以采取以下方法和策略:- 引入实际问题,培养学生的数学建模能力。
- 创设合作研究环境,鼓励学生相互合作、交流与思考。
- 组织数学探究活动,培养学生的独立思考和创新能力。
- 积极运用信息技术辅助教学,提升教学效果。
6. 结论新的初中数学课程标准将有助于培养学生的数学素养和综合能力,提高数学教学的质量。
通过注重数学思想与方法的培养,多元评价体系的建立,以及教学建议的实施,我们有信心将初中数学教育推向新的高度。
2024年初中数学新课标试题
1.下列哪个数是有理数?A.πB.√2C.-3/4(答案)D.e(自然对数的底)2.下列哪个方程是一元一次方程?A.x2 + 3x = 5B.2x + y = 7C.x/2 - 3 = 0(答案)D.x + 1/x = 23.下列哪个不等式组的解集是 x > 3?A.{ x > 2, x < 4 }B.{ x > 3, x < 5 }(答案)C.{ x < 3, x > 2 }D.{ x > 4, x < 6 }4.下列哪个函数是一次函数?A.y = x2B.y = 1/xC.y = 2x + 1(答案)D.y = √x5.在平面直角坐标系中,点A(3, -4)位于哪个象限?A.第一象限B.第二象限C.第三象限(答案)D.第四象限6.下列哪个是平行四边形的性质?A.对角线相等B.对角线互相垂直C.对角线互相平分(答案)D.对角线互相垂直且平分7.下列哪个是三角形全等的判定条件?A.三边对应相等(答案)B.两边及一角对应相等C.两角及一边对应相等(非夹角)D.三角对应相等8.下列哪个是反比例函数的图像特征?A.图像经过原点B.图像是两条直线C.图像是两个分支的曲线,且不与坐标轴相交(答案)D.图像是一个完整的圆9.下列哪个是数据离散程度的度量?A.平均数B.中位数C.众数D.方差(答案)10.下列哪个是平面几何中的基本事实?A.两点之间线段最短B.两点确定一条直线(答案)C.平行线永不相交D.三角形的内角和为360°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数学课程标准》考核试卷参考答案一、填空(每空 1 分,共30 分)1、数学是研究(数量关系)和(空间形式)的科学。
2、数学是人类文化的重要组成部分,(数学素养)是现代社会每一个公民所必备的基本素养。
3、数学课程能使学生掌握必备的基础知识和基本技能,培养学生的(抽象思维和推理能力),培养学生的(创新意识和实践能力),促进学生在情感、态度与价值观等方面的发展。
4、数学课程应致力于实现义务教育阶段的培养目标,面向全体学生,适应学生个体发展的需要,使得:(人人都能获得良好的数学教育),(不同的人在数学上得到不同的发展。
)5、《数学课程标准》明确了义务教育阶段数学课程的总目标,并从知识技能、(数学思考)、(问题解决)和情感态度四方面具体阐述。
力求通过数学学习,学生能获得适应社会生活和进一步发展所必须的数学的(基本知识、基本技能、基本思想、基本活动经验)。
体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,运用(数学的思维方式)进行思考,增强(发现和提出问题)的能力、(分析和解决问题)的能力。
6、教学活动是师生(积极参与)、(交往互动)、共同发展的过程。
有效的数学教学活动是教师教与学生学的统一,应体现(“以人为本”)的理念,促进学生的全面发展。
7、《数学课程标准》中所说的“数学的基本思想”主要指:数学(抽象)的思想、数学(推理)的思想、数学建模的思想。
学生在积极参与教学活动的过程中,通过独立思考、合作交流,逐步感悟数学思想。
8、创新意识的培养是现代数学教育的基本任务,应体现在数学教与学的过程之中。
学生自己(发现和提出问题)是创新的基础;(独立思考、学会思考)是创新的核心;归纳概括得到(猜想和规律),并加以验证,是创新的重要方法。
9、统计与概率主要研究现实生活中的(数据)和客观世界中的(随机现象)。
10、数学教学过程中恰当的使用(数学课程资源),将在很大程度上提高学生从事数学活动的水平和教师从事教学活动的质量。
11、学习评价的主要目的是为了全面了解学生数学学习的(过程和结果),激励学生学习和改进教师教学。
在实施评价时,可以对部分学生采取(延迟评价)的方式,提供再次评价的机会,使他们看到自己的进步,树立学好数学的信心。
第二学段可以采用(描述性)评价和(等级评价)评价相结合的方式。
12、“综合与实践”内容设置的目的在于培养学生综合运用有关的(知识与方法)解决实际问题,培养学生的(问题)意识、应用意识和创新意识,积累学生的活动经验,提高学生解决现实问题的能力。
一、填空1、新课程的“三维”课程目标是指(知识与技能),(过程与方法)、(情感态度与价值观)。
2、学生的数学学习内容应当是(现实)的、(有意义)的、(富有挑战性)的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。
3.数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。
学生是数学学习的主人,教师是数学学习的(组织者)、(引导者)与(合作者)。
4、义务教育阶段的数学课程是培养公民素质的基础课程,具有(基础性)、(普及性)和(发展性)。
5、义务教育阶段的数学课程,其基本出发点是促进学生(全面)、(持续)、(和谐)地发展。
6、有效的数学学习活动不能单纯地依赖模仿与记忆,(动手实践)、(自主探索)与(合作交流)是学生学习数学的重要方式。
7、学生是数学学习的评价主人,教师是数学学习的(组织者)、(引导者)与(合作者)。
8、义务教育阶段数学课程的总目标,从(知识与技能)、(数学思路)、(解决问题)和(情感态度)等四个方面作出了阐述。
9、《数学课程标准》安排了(数与代数)、(空间与图形)、(统计与概率)、(实践与综合应用)等四个学习领域。
10、学生的数学学习内容应当是(现实的)、(有意义的)、(富有挑战的),这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。
二、填空题。
(45%)1、数学是研究数量关系和空间形式的科学。
2、有效的数学教学活动是教师教与学生学的统一,应体现“以人为本”的理念,促进学生的全面发展。
3、义务教育阶段数学课程的总体目标,从以下四个方面作出了阐述:知识技能、数学思考、问题解决、情感态度。
4、在各学段中,《标准》安排了四个方面的课程内容:数与代数、图形与几何、统计与概率、综合与实践。
5、学生学习应当是一个生动活泼的、主动和富有个性的过程。
除接受学习外,动手实践、自主探索与合作交流也是数学学习的重要方式。
学生应当有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程。
6、在“图形与几何”的教学中,应帮助学生建立空间观念,注重培养学生的几何直观与推理能力。
7、在“统计与概率”的教学中,应帮助学生逐渐建立起来数据分析观念,了解随机现象。
8、“综合实践”是一类以问题为载体、师生共同参与的学习活动,是帮助学生积累数学活动经验、培养学生应用意识与创新意识的重要途径。
9、《标准》中所提出的“四基”是指:基础知识、基本技能、基本思想、基本活动经验。
10、《标准》中所提出的“四能”是指:发现和提出问题的能力、分析和解决问题的能力。
11、教师教学应该以学生的认知发展水平和已有的经验为基础,面向全体学生,注重启发式和因材施教。
12、义务教育阶段的数学课程具有公共基础的地位,要着眼于学生整体素质的提高,促进学生全面、持续、和谐发展。
二、选择题(每小题 2 分,共20 分)1、教师教学应该面向全体学生,注重(C),提供充分的数学活动的机会。
A、探究式B、自主式C、启发式D、合作式2、《数学课程标准》安排了数与代数、(B)(统计与概率)、(综合与实践)等四个方面的内容。
A、空间图形B、图形与几何C、几何与直观D、图形与直观3、推理一般包括(C )。
A、逻辑推理和类比推理B、逻辑推理和演绎推理C、合情推理和演绎推理D、合情推理和逻辑推理4、“综合与实践”的教学活动应当保证每学期至少(A )次。
A、一B、二C、三D、四5、在第一学段计算技能评价要求中,两位数乘两位数笔算的速度要求(B)A、3-4 题/分B、1-2 题/分C、2-3 题/分D、8-10 题/分6、在第二学段知识技能方面要求体验从具体情境中抽象出数的过程,认识万以上的数;理解分数、小数、百分数的意义;了解(C)的意义。
A、分数B、小数C、负数D、万以上的数7、在第二学段情感态度目标中要求学生初步养成(D)、勇于质疑、言必有据等良好品质。
A、克服困难B、解决问题C、相信自己D、乐于思考8、(B)的含义是从具体实例中知道或举例说明对象的有关特征;根据对象的特征,从具体情境中辨认或者举例说明对象。
A、理解B、了解C、掌握D、经历9、在设计一些新知识的学习活动时,教材可以展现(C)的过程。
A、“问题情境——建立模型——求解验证”B、“经历收集数据——查阅资料——独立思考”C、“知识背景——知识形成——揭示联系”D、“合作交流——实践检验——推理论证”10、(D)能向学生提供并展示多种类型的资料,包括文字、声音、图像等,并能灵活选择与呈现。
A、文本资源B、社会教育资源C、生成性资源D、信息技术二、选择(1-10题为单选题,11-15题为多选题)1、新课程的核心理念是(C )A. 联系生活学数学B. 培养学习数学的兴趣C. 一切为了每一位学生的发展]2、新课程强调在教学中要达到和谐发展的三维目标是( B )A. 知识与技能B. 过程与方法C. 教师成长D. 情感、态度、价值观3、下列对“教学”的描述正确的是( D )A. 教学即传道、授业、解惑B. 教学就是引导学生“试误”C. 教学是教师的教和学生的学两个独立的过程D. 教学的本质是交往互动4、数学教学是数学活动的教学,是师生之间、学生之间(C)过程。
A. 交往互动B. 共同发展C. 交往互动与共同发展]5、教师要积极利用各种教学资源,创造性地使用教材,学会(B )。
A. 教教材B. 用教材教6、《数学课程标准》中使用了“经历(感受)、体验(体会)、探索”等刻画数学活动水平的(A)的动词。
A. 过程性目标B. 知识技能目标7、各科新教材中最一致、最突出的一个特点就是( C )A. 强调探究性学习B. 强调合作学习C. 内容密切联系生活D. 强调STS课程设计思想8、新课程倡导的学生观不包括( B )A. 学生是发展的人B. 学生是自主的人C. 学生是独特的人D. 学生是独立的人9、在学习活动中最稳定、最可靠、最持久的推动力是(A )A. 认知内驱力B. 学习动机C. 自我提高内驱力D. 附属内驱力10、遗忘的规律是先快后慢,所以学习后应该( A )A. 及时复习B. 及时休息C. 过度复习D. 分数复习11、学生的数学学习活动应是一个(A,B,C )的过程。
A. 生动活泼的B.主动的C.富于个性D.被动的12、数学活动必须建立在学生的(A,B )之上。
A. 认知发展水平B. 已有的知识经验基础13、义务教育阶段的数学课程标准应突出体现基础性、普及性和发展性,使数学教学面向全体学生,实现(A,B,C)。
A. 人人学有价值的数学B. 都能获得必需的数学,C. 不同的人在数学上得到不同的发展。
14、评价的主要目的是(A,B)。
A. 为了全面了解学生的数学学习历程B. 激励学生的学习和改进教师的教学15、课程内容的学习,强调学生的数学活动,发展学生的(A,B,C,D,E)。
A. 数感B. 符号感C. 空间观念D. 统计观念E. 应用意识及推理能力一、选择题(1-10单项选择,11-15多项选择)(30%)1、数学教学活动是师生积极参与,(C )的过程。
A、交往互动B、共同发展C、交往互动、共同发展2、教师要积极利用各种教学资源,创造性地使用教材,学会(B )。
A、教教材B、用教材教3、“三维目标”是指知识与技能、(B )、情感态度与价值观。
A、数学思考B、过程与方法C、解决问题4、《数学课程标准》中使用了“经历、体验、探索”等表述(A )不同程度。
A、学习过程目标B、学习活动结果目标。
5、评价要关注学习的结果,也要关注学习的( C )A、成绩B、目的C、过程6、“综合与实践”的教学活动应当保证每学期至少( A )次。
A、一B、二C、三D、四7、在新课程背景下,评价的主要目的是( C )A、促进学生、教师、学校和课程的发展B、形成新的教育评价制度C、全面了解学生数学学习的过程和结果,激励学生学习和改进教师教学8、学生是数学学习的主人,教师是数学学习的(C )。
A 组织者合作者B组织者引导者 C 组织者引导者合作者9、学生的数学学习活动应是一个( A )的过程。
A、生动活泼的主动的和富有个性B、主动和被动的生动活泼的C、生动活泼的被动的富于个性10、推理一般包括( C )。