投影与视图难题汇编含答案
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.7B.8C.9D.10
【答案】A
【解析】
【分析】
【详解】
解:由俯视图可得最底层有4盒,由正视图和左视图可得第二层有2盒,第三层有1盒,共有7盒,则n的值是7.
故选A.
【点睛】
本题考查由三视图判断几何体.
7.如图所示的几何体的俯视图为()
A. B. C. D.
【答案】D
【解析】
【分析】
【详解】
从上往下看,易得一个正六边形和圆.
【答案】D
【解析】
【分析】
根据三视图看到的图形的形状和大小,确定几何体的底面,侧面,从而得出这个几何体的名称.
【详解】
俯视图是三角形的,因此这个几何体的上面、下面是三角形的,主视图和左视图是长方形的,且左视图的长方形的宽较窄,因此判断这个几何体是三棱柱,
故选:D.
【点睛】
考查简单几何体的三视图,画三视图注意“长对正,宽相等,高平齐”的原则,三视图实际上就是从三个方向的正投影所得到的图形.
【详解】
这个几何体为圆锥,圆锥的母线长为4,底面圆的直径为4,
所以这个几何体的侧面展开图的面积= .
故选:B.
【点睛】
本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.
2.从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是( )
11.如图是由4个大小相同的立方块搭成的几何体,这个几何体的主视图是()
A. B. C. D.
【答案】A
【解析】
【分析】
主视图:从物体正面观察所得到的图形,由此观察即可得出答案.
【详解】
从物体正面观察可得,
左边第一列有2个小正方体,第二列有1个小正方体.
故答案为:A.
【点睛】
本题考查三视图的知识,主视图是从物体的正面看得到的视图.
投影与视图难题汇编含答案
一、选择题
1.一个几何体的三视图如图所示,其中主视图与左视图都是边长为 的等边三角形,则这个几何体的侧面展开图的面积为()
A. B. C. D.
【答案】B
【解析】
【分析】
根据三视图得到这个几何体为圆锥,且圆锥的母线长为4,底面圆的直径为4,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.
【详解】
解:由俯视图可知有六个棱,再由主视图即左视图分析可知为六棱柱,
故选C.
【点睛】
本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.
16.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是
故选D.
8.如图是某几何体的三视图,则这个几何体可能是()
A. B. C. D.
【答案】B
【解析】
【分析】
根据主视图和左视图判断是柱体,再结合俯视图即可得出答案.
【详解】
解:由主视图和左视图可以得到该几何体是柱体,由俯视图是圆环,可知是空心圆柱.
故答案选:B.
【点睛】
此题主要考查由几何体的三视图得出几何体,熟练掌握常见几何体的三视图是解题的关键.
9.如图所示,该几何体的主视图为()
A. B. C. D.
【答案】B
【解析】
【分析】
找到从正面看所得到的图形即可.
【详解】
从正面看两个矩形,中间的线为虚线,
故选:B.
【点睛】
考查了三视图的知识,主视图是从物体的正面看得到的视图.
10.如图是某个几何体的三视图,该几何体是()
A.长方体B.圆锥C.圆柱D.三棱柱
18.如图是一个由7个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是()
A.俯视图B.主视图C.俯视图和左视图D.主视图和俯视图
【答案】A
【解析】
画出三视图,由此可知俯视图既是轴对称图形又是中心对称图形,故选A.
19.如图是一个几何体的三视图(图中尺寸单位: ),根据图中所示数据求得这个几何体的侧面积是()
考点:三视图.
5.如图是空心圆柱,则空心圆柱在正面的视图,正确的是( )
A. B. C. D.
【答案】C
【解析】
【分析】
找出从几何体的正面看所得到的视图即可.
【详解】
解:从几何体的正面看可得:
.
故选:C.
【点睛】
此题主要考查了简单几何体的三视图,关键是掌握三视图所看的位置.
6.小亮领来n盒粉笔,整齐地摆在讲桌上,其三视图如图,则n的值是( )
A.主视图B.左视图C.俯视图D.主视图和左视图
【答案】C
【解析】
【分析】根据所得到的主视图、俯视图、左视图结合中心对称图形的定义进行判断即可.
【详解】观察几何体,可得三视图如图所示:
可知俯视图是中心对称图形,
故选C.
【点睛】本题考查了三视图、中心对称图形,正确得到三视图是解决问题的关键.
17.如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是
故选:C.
【点睛】
本题考查的知识点是三视图,需注意被其他部分遮挡而看不见的小正方体.
4.如图,是由一个圆柱体和一个长方体组成的几何体,其主视图是( )
A. B. C. D.
【答案】B
【解析】
试题分析:长方体的主视图为矩形,圆柱的主视图为矩形,根据立体图形可得:主视图的上面和下面各为一个矩形,且下面矩形的长比上面矩形的长要长一点,两个矩形的宽一样大小.
由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,
所以其主视图为:
故选C.
【点睛】
考查了三视图的知识,主视图是从物体的正面看得到的视图.
3.如图是由几个相同的小正方形搭成的几何体,搭成这个几何体需要()个小正方体,在保持主视图和左视图不变的情况下,最多可以拿掉()个小正方体
A. B.
C. D.
【答案】C
【解析】
【分析】
由已知条件可知这个几何体由10个小正方体组成,主视图有3列,每列小正方形数目分别为3、1、2;左视图又列,每列小正方形的数目分别为3、2、1;俯视图有3列,每列小正方形数目分别为3、2、1,据此即可得出答案.
A.圆柱B.圆锥C.棱锥D.球
【答案】A
【解析】
【分析】
由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱.
【详解】
解:∵主视图和左视图都是长方形,
∴此几何体为柱体,
∵俯视图是一个圆,
∴此几何体为圆柱.
故选A.
【点睛】
此题考查利用三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.
A. B. C. D.
【答案】C
【解析】
【分析】
根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.
【详解】
先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm,高是3cm.
所以该几何体的侧面积为2π×1×3=6π(cm2).
故选C.
【点睛】
此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.
【解析】
【分析】
根据从左边看得到的图形是左视图,可得答案.
【详解】
如图所示零件的左视图是 .
故选D.
【点睛】
本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看到的线画实线.
15.如图是某个几何体的三视图,该几何体是()
A.三棱柱B.圆柱C.六棱柱D.圆锥
【答案】C
【解析】Leabharlann Baidu
【分析】
由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.
20.如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是( )
A. B. C. D.
【答案】C
【解析】
【分析】
由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,据此可得.
【详解】
A. B. C. D.
【答案】A
【解析】
【分析】
找到从正面看所得到的图形即可.
【详解】
解:从正面可看到从左往右2列一个长方形和一个小正方形,
故选A.
【点睛】
本题考查了三视图的知识,主视图是从物体的正面看得到的视图.
14.发展工业是强国之梦的重要举措,如图所示零件的左视图是()
A. B. C. D.
【答案】D
12.如图所示的几何体,它的左视图是( )
A. B. C. D.
【答案】D
【解析】
分析:根据从左边看得到的图形是左视图,可得答案.
详解:从左边看是等长的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,
故选D.
点睛:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.
13.如图所示的几何体的主视图是()
【详解】
解:这个几何体由10个小正方体组成;
∵主视图有3列,每列小正方形数目分别为3、1、2;左视图有3列,每列小正方形的数目分别为3、2、1;俯视图有3列,每列小正方形数目分别为3、2、1,
∴在保持主视图和左视图不变的情况下,只能拿掉俯视图的第2列中减少1个小正方体,因此,最多可以拿掉1个小正方体.
A. B. C. D.
【答案】B
【解析】
【分析】
找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.
【详解】
从上面看易得:有3列小正方形第1列有2个正方形,第2列有1个正方形,第3列有1个正方形.
故选B.
【点睛】
本题考查的知识点是简单组合体的三视图,解题关键是数出从上方看每一列各有几个正方形.
【答案】A
【解析】
【分析】
【详解】
解:由俯视图可得最底层有4盒,由正视图和左视图可得第二层有2盒,第三层有1盒,共有7盒,则n的值是7.
故选A.
【点睛】
本题考查由三视图判断几何体.
7.如图所示的几何体的俯视图为()
A. B. C. D.
【答案】D
【解析】
【分析】
【详解】
从上往下看,易得一个正六边形和圆.
【答案】D
【解析】
【分析】
根据三视图看到的图形的形状和大小,确定几何体的底面,侧面,从而得出这个几何体的名称.
【详解】
俯视图是三角形的,因此这个几何体的上面、下面是三角形的,主视图和左视图是长方形的,且左视图的长方形的宽较窄,因此判断这个几何体是三棱柱,
故选:D.
【点睛】
考查简单几何体的三视图,画三视图注意“长对正,宽相等,高平齐”的原则,三视图实际上就是从三个方向的正投影所得到的图形.
【详解】
这个几何体为圆锥,圆锥的母线长为4,底面圆的直径为4,
所以这个几何体的侧面展开图的面积= .
故选:B.
【点睛】
本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.
2.从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是( )
11.如图是由4个大小相同的立方块搭成的几何体,这个几何体的主视图是()
A. B. C. D.
【答案】A
【解析】
【分析】
主视图:从物体正面观察所得到的图形,由此观察即可得出答案.
【详解】
从物体正面观察可得,
左边第一列有2个小正方体,第二列有1个小正方体.
故答案为:A.
【点睛】
本题考查三视图的知识,主视图是从物体的正面看得到的视图.
投影与视图难题汇编含答案
一、选择题
1.一个几何体的三视图如图所示,其中主视图与左视图都是边长为 的等边三角形,则这个几何体的侧面展开图的面积为()
A. B. C. D.
【答案】B
【解析】
【分析】
根据三视图得到这个几何体为圆锥,且圆锥的母线长为4,底面圆的直径为4,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.
【详解】
解:由俯视图可知有六个棱,再由主视图即左视图分析可知为六棱柱,
故选C.
【点睛】
本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.
16.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是
故选D.
8.如图是某几何体的三视图,则这个几何体可能是()
A. B. C. D.
【答案】B
【解析】
【分析】
根据主视图和左视图判断是柱体,再结合俯视图即可得出答案.
【详解】
解:由主视图和左视图可以得到该几何体是柱体,由俯视图是圆环,可知是空心圆柱.
故答案选:B.
【点睛】
此题主要考查由几何体的三视图得出几何体,熟练掌握常见几何体的三视图是解题的关键.
9.如图所示,该几何体的主视图为()
A. B. C. D.
【答案】B
【解析】
【分析】
找到从正面看所得到的图形即可.
【详解】
从正面看两个矩形,中间的线为虚线,
故选:B.
【点睛】
考查了三视图的知识,主视图是从物体的正面看得到的视图.
10.如图是某个几何体的三视图,该几何体是()
A.长方体B.圆锥C.圆柱D.三棱柱
18.如图是一个由7个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是()
A.俯视图B.主视图C.俯视图和左视图D.主视图和俯视图
【答案】A
【解析】
画出三视图,由此可知俯视图既是轴对称图形又是中心对称图形,故选A.
19.如图是一个几何体的三视图(图中尺寸单位: ),根据图中所示数据求得这个几何体的侧面积是()
考点:三视图.
5.如图是空心圆柱,则空心圆柱在正面的视图,正确的是( )
A. B. C. D.
【答案】C
【解析】
【分析】
找出从几何体的正面看所得到的视图即可.
【详解】
解:从几何体的正面看可得:
.
故选:C.
【点睛】
此题主要考查了简单几何体的三视图,关键是掌握三视图所看的位置.
6.小亮领来n盒粉笔,整齐地摆在讲桌上,其三视图如图,则n的值是( )
A.主视图B.左视图C.俯视图D.主视图和左视图
【答案】C
【解析】
【分析】根据所得到的主视图、俯视图、左视图结合中心对称图形的定义进行判断即可.
【详解】观察几何体,可得三视图如图所示:
可知俯视图是中心对称图形,
故选C.
【点睛】本题考查了三视图、中心对称图形,正确得到三视图是解决问题的关键.
17.如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是
故选:C.
【点睛】
本题考查的知识点是三视图,需注意被其他部分遮挡而看不见的小正方体.
4.如图,是由一个圆柱体和一个长方体组成的几何体,其主视图是( )
A. B. C. D.
【答案】B
【解析】
试题分析:长方体的主视图为矩形,圆柱的主视图为矩形,根据立体图形可得:主视图的上面和下面各为一个矩形,且下面矩形的长比上面矩形的长要长一点,两个矩形的宽一样大小.
由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,
所以其主视图为:
故选C.
【点睛】
考查了三视图的知识,主视图是从物体的正面看得到的视图.
3.如图是由几个相同的小正方形搭成的几何体,搭成这个几何体需要()个小正方体,在保持主视图和左视图不变的情况下,最多可以拿掉()个小正方体
A. B.
C. D.
【答案】C
【解析】
【分析】
由已知条件可知这个几何体由10个小正方体组成,主视图有3列,每列小正方形数目分别为3、1、2;左视图又列,每列小正方形的数目分别为3、2、1;俯视图有3列,每列小正方形数目分别为3、2、1,据此即可得出答案.
A.圆柱B.圆锥C.棱锥D.球
【答案】A
【解析】
【分析】
由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱.
【详解】
解:∵主视图和左视图都是长方形,
∴此几何体为柱体,
∵俯视图是一个圆,
∴此几何体为圆柱.
故选A.
【点睛】
此题考查利用三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.
A. B. C. D.
【答案】C
【解析】
【分析】
根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.
【详解】
先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm,高是3cm.
所以该几何体的侧面积为2π×1×3=6π(cm2).
故选C.
【点睛】
此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.
【解析】
【分析】
根据从左边看得到的图形是左视图,可得答案.
【详解】
如图所示零件的左视图是 .
故选D.
【点睛】
本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看到的线画实线.
15.如图是某个几何体的三视图,该几何体是()
A.三棱柱B.圆柱C.六棱柱D.圆锥
【答案】C
【解析】Leabharlann Baidu
【分析】
由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.
20.如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是( )
A. B. C. D.
【答案】C
【解析】
【分析】
由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,据此可得.
【详解】
A. B. C. D.
【答案】A
【解析】
【分析】
找到从正面看所得到的图形即可.
【详解】
解:从正面可看到从左往右2列一个长方形和一个小正方形,
故选A.
【点睛】
本题考查了三视图的知识,主视图是从物体的正面看得到的视图.
14.发展工业是强国之梦的重要举措,如图所示零件的左视图是()
A. B. C. D.
【答案】D
12.如图所示的几何体,它的左视图是( )
A. B. C. D.
【答案】D
【解析】
分析:根据从左边看得到的图形是左视图,可得答案.
详解:从左边看是等长的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,
故选D.
点睛:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.
13.如图所示的几何体的主视图是()
【详解】
解:这个几何体由10个小正方体组成;
∵主视图有3列,每列小正方形数目分别为3、1、2;左视图有3列,每列小正方形的数目分别为3、2、1;俯视图有3列,每列小正方形数目分别为3、2、1,
∴在保持主视图和左视图不变的情况下,只能拿掉俯视图的第2列中减少1个小正方体,因此,最多可以拿掉1个小正方体.
A. B. C. D.
【答案】B
【解析】
【分析】
找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.
【详解】
从上面看易得:有3列小正方形第1列有2个正方形,第2列有1个正方形,第3列有1个正方形.
故选B.
【点睛】
本题考查的知识点是简单组合体的三视图,解题关键是数出从上方看每一列各有几个正方形.