平面解析几何(直线和圆的方程圆锥曲线)专题

合集下载

专题05 平面解析几何(选择题、填空题)-三年(2022–2024)高考数学真题分类汇编(原卷版)

专题05 平面解析几何(选择题、填空题)-三年(2022–2024)高考数学真题分类汇编(原卷版)

专题05平面解析几何(选择题、填空题)考点三年考情(2022-2024)命题趋势考点1:直线方程与圆的方程2022年全国II卷、2022年全国甲卷(文)2022年全国乙卷(理)近三年高考对解析几何小题的考查比较稳定,考查内容、频率、题型难度均变化不大,备考时应熟练以下方向:(1)要重视直线方程的求法、两条直线的位置关系以及点到直线的距离公式这三个考点.(2)要重视直线与圆相交所得弦长及相切所得切线的问题.(3)要重视椭圆、双曲线、抛物线定义的运用、标准方程的求法以及简单几何性质,尤其是对离心率的求解,更是高考的热点问题,因方法多,试题灵活,在各种题型中均有体现.考点2:直线与圆的位置关系2024年北京卷、2022年全国甲卷(理)2022年天津卷、2022年北京卷2023年全国Ⅰ卷、2024年北京卷考点3:圆与圆的位置关系2022年全国I卷考点4:轨迹方程及标准方程2023年北京卷、2023年天津卷2024年全国Ⅱ卷、2022年天津卷2022年全国甲卷(文)考点5:椭圆的几何性质2022年全国I卷2023年全国甲卷(理)2023年全国甲卷(文)考点6:双曲线的几何性质2022年北京卷2023年全国乙卷(理)考点7:抛物线的几何性质2024年北京卷、2024年天津卷2023年全国乙卷(理)2023年天津卷、2023年全国Ⅱ卷2024年全国Ⅱ卷、2022年全国I卷考点8:弦长问题2022年全国乙卷(理)2023年全国甲卷(理)考点9:离心率问题2024年全国Ⅰ卷、2022年全国甲卷(文)2023年全国Ⅰ卷、2022年浙江卷2022年全国乙卷(理)2024年全国甲卷(理)2023年全国Ⅰ卷、2022年全国甲卷(理)考点10:焦半径、焦点弦问题2022年全国II卷、2023年北京卷考点11:范围与最值问题2022年全国II卷2024年全国甲卷(文)2023年全国乙卷(文)考点12:面积问题2024年天津卷、2023年全国Ⅱ卷2023年全国Ⅱ卷考点13:新定义问题2024年全国Ⅰ卷考点1:直线方程与圆的方程1.(2022年新高考全国II 卷数学真题)已知直线l 与椭圆22163x y +=在第一象限交于A ,B 两点,l 与x 轴,y 轴分别交于M ,N 两点,且||||,||23MA NB MN ==l 的方程为.2.(2022年高考全国甲卷数学(文)真题)设点M 在直线210x y +-=上,点(3,0)和(0,1)均在M 上,则M 的方程为.3.(2022年高考全国乙卷数学(理)真题)过四点(0,0),(4,0),(1,1),(4,2)-中的三点的一个圆的方程为.考点2:直线与圆的位置关系4.(2024年北京高考数学真题)若直线()3y k x =-与双曲线2214xy -=只有一个公共点,则k 的一个取值为.5.(2022年高考全国甲卷数学(理)真题)若双曲线2221(0)x y m m-=>的渐近线与圆22430x y y +-+=相切,则m =.6.(2022年新高考天津数学高考真题)若直线()00x y m m -+=>与圆()()22113x y -+-=相交所得的弦长为m ,则m =.7.(2022年新高考北京数学高考真题)若直线210x y +-=是圆22()1x a y -+=的一条对称轴,则=a ()A .12B .12-C .1D .1-8.(2023年新课标全国Ⅰ卷数学真题)过点()0,2-与圆22410x y x +--=相切的两条直线的夹角为α,则sin α=()A .1B .154C .104D 649.(2024年北京高考数学真题)圆22260x y x y +-+=的圆心到直线20x y -+=的距离为()A 2B .2C .3D .32考点3:圆与圆的位置关系10.(2022年新高考全国I 卷数学真题)写出与圆221x y +=和22(3)(4)16x y -+-=都相切的一条直线的方程.考点4:轨迹方程及标准方程11.(2023年北京高考数学真题)已知双曲线C 的焦点为(2,0)-和(2,0),离心率为2,则C 的方程为.12.(2023年天津高考数学真题)已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为12F F 、.过2F 向一条渐近线作垂线,垂足为P .若22PF =,直线1PF 的斜率为24,则双曲线的方程为()A .22184x y -=B .22148x y -=C .22142x y -=D .22124x y -=13.(2022年新高考天津数学高考真题)已知抛物线21245,,y F F =分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,抛物线的准线过双曲线的左焦点1F ,与双曲线的渐近线交于点A ,若124F F A π∠=,则双曲线的标准方程为()A .22110x y -=B .22116y x -=C .2214y x -=D .2214x y -=14.(2022年高考全国甲卷数学(文)真题)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为13,12,A A 分别为C 的左、右顶点,B 为C 的上顶点.若121BA BA ⋅=-,则C 的方程为()A .2211816x y +=B .22198x y +=C .22132x y +=D .2212x y +=15.(2024年新课标全国Ⅱ卷数学真题)已知曲线C :2216x y +=(0y >),从C 上任意一点P 向x 轴作垂线段PP ',P '为垂足,则线段PP '的中点M 的轨迹方程为()A .221164x y +=(0y >)B .221168x y +=(0y >)C .221164y x +=(0y >)D .221168y x +=(0y >)考点5:椭圆的几何性质16.(2022年新高考全国I 卷数学真题)已知椭圆2222:1(0)x y C a b a b+=>>,C 的上顶点为A ,两个焦点为1F ,2F ,离心率为12.过1F 且垂直于2AF 的直线与C 交于D ,E 两点,||6DE =,则ADE V 的周长是.17.(2023年高考全国甲卷数学(理)真题)设O 为坐标原点,12,F F 为椭圆22:196x yC +=的两个焦点,点P 在C 上,123cos 5F PF ∠=,则||OP =()A .135B .302C .145D .35218.(2023年高考全国甲卷数学(文)真题)设12,F F 为椭圆22:15x C y +=的两个焦点,点P 在C 上,若120PF PF ⋅=,则12PF PF ⋅=()A .1B .2C .4D .5考点6:双曲线的几何性质19.(2022年新高考北京数学高考真题)已知双曲线221x y m +=的渐近线方程为3y =,则m =.20.(2023年高考全国乙卷数学(理)真题)设A ,B 为双曲线2219y x -=上两点,下列四个点中,可为线段AB 中点的是()A .()1,1B .()1,2-C .()1,3D .()1,4--考点7:抛物线的几何性质21.(2024年北京高考数学真题)抛物线216y x =的焦点坐标为.22.(2024年天津高考数学真题)圆22(1)25-+=x y 的圆心与抛物线22(0)y px p =>的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为.23.(2023年高考全国乙卷数学(理)真题)已知点(5A 在抛物线C :22y px =上,则A 到C 的准线的距离为.24.(2023年天津高考数学真题)已知过原点O 的一条直线l 与圆22:(2)3C x y ++=相切,且l 与抛物线22(0)y px p =>交于点,O P 两点,若8OP =,则p =.25.(多选题)(2024年新课标全国Ⅱ卷数学真题)抛物线C :24y x =的准线为l ,P 为C 上的动点,过P 作22:(4)1A x y +-=⊙的一条切线,Q 为切点,过P 作l 的垂线,垂足为B ,则()A .l 与A 相切B .当P ,A ,B 三点共线时,||15PQ =C .当||2PB =时,PA AB⊥D .满足||||PA PB =的点P 有且仅有2个26.(多选题)(2022年新高考全国I 卷数学真题)已知O 为坐标原点,点(1,1)A 在抛物线2:2(0)C x py p =>上,过点(0,1)B -的直线交C 于P ,Q 两点,则()A .C 的准线为1y =-B .直线AB 与C 相切C .2|OP OQ OA⋅>D .2||||||BP BQ BA ⋅>27.(多选题)(2023年新课标全国Ⅱ卷数学真题)设O 为坐标原点,直线)31y x =--过抛物线()2:20C y px p =>的焦点,且与C 交于M ,N 两点,l 为C 的准线,则().A .2p =B .83MN =C .以MN 为直径的圆与l 相切D .OMN 为等腰三角形考点8:弦长问题28.(2022年高考全国乙卷数学(理)真题)设F 为抛物线2:4C y x =的焦点,点A 在C 上,点(3,0)B ,若AF BF =,则AB =()A .2B .22C .3D .3229.(2023年高考全国甲卷数学(理)真题)已知双曲线2222:1(0,0)x y C a b a b-=>>5C 的一条渐近线与圆22(2)(3)1x y -+-=交于A ,B 两点,则||AB =()A 55B .255C .355D .455考点9:离心率问题30.(2024年新课标全国Ⅰ卷数学真题)设双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为.31.(2022年高考全国甲卷数学(文)真题)记双曲线2222:1(0,0)x y C a b a b -=>>的离心率为e ,写出满足条件“直线2y x =与C 无公共点”的e 的一个值.32.(2023年新课标全国Ⅰ卷数学真题)已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为12,F F .点A 在C 上,点B 在y 轴上,11222,3F A F B F A B ⊥=- ,则C 的离心率为.33.(2022年新高考浙江数学高考真题)已知双曲线22221(0,0)x y a b a b -=>>的左焦点为F ,过F 且斜率为4b a的直线交双曲线于点()11,A x y ,交双曲线的渐近线于点()22,B x y 且120x x <<.若||3||FB FA =,则双曲线的离心率是.34.(多选题)(2022年高考全国乙卷数学(理)真题)双曲线C 的两个焦点为12,F F ,以C 的实轴为直径的圆记为D ,过1F 作D 的切线与C 交于M ,N 两点,且123cos 5F NF ∠=,则C 的离心率为()A 52B .32C .132D .17235.(2024年高考全国甲卷数学(理)真题)已知双曲线的两个焦点分别为()()0,4,0,4-,点()6,4-在该双曲线上,则该双曲线的离心率为()A .4B .3C .2D 236.(2023年新课标全国Ⅰ卷数学真题)设椭圆2222122:1(1),:14x x C y a C y a +=>+=的离心率分别为12,e e .若213e e =,则=a ()A 233B 2C 3D 637.(2022年高考全国甲卷数学(理)真题)椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C上,且关于y 轴对称.若直线,AP AQ 的斜率之积为14,则C 的离心率为()A 32B .22C .12D .13考点10:焦半径、焦点弦问题38.(多选题)(2022年新高考全国II 卷数学真题)已知O 为坐标原点,过抛物线2:2(0)C y px p =>焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点(,0)M p ,若||||AF AM =,则()A .直线AB 的斜率为26B .||||OB OF =C .||4||AB OF >D .180OAM OBM ∠+∠<︒39.(2023年北京高考数学真题)已知抛物线2:8C y x =的焦点为F ,点M 在C 上.若M 到直线3x =-的距离为5,则||MF =()A .7B .6C .5D .4考点11:范围与最值问题40.(2022年新高考全国II 卷数学真题)设点(2,3),(0,)A B a -,若直线AB 关于y a =对称的直线与圆22(3)(2)1x y +++=有公共点,则a 的取值范围是.41.(2024年高考全国甲卷数学(文)真题)已知直线20ax y a ++-=与圆2241=0C x y y ++-:交于,A B 两点,则AB 的最小值为()A .2B .3C .4D .642.(2023年高考全国乙卷数学(文)真题)已知实数,x y 满足224240x y x y +---=,则x y -的最大值是()A .3212+B .4C .132+D .7考点12:面积问题43.(2024年天津高考数学真题)双曲线22221()00a x y a bb >-=>,的左、右焦点分别为12.F F P 、是双曲线右支上一点,且直线2PF 的斜率为2.12PF F △是面积为8的直角三角形,则双曲线的方程为()A .22182y x -=B .22184x y -=C .22128x y -=D .22148x y -=44.(2023年新课标全国Ⅱ卷数学真题)已知直线:10l x my -+=与()22:14C x y -+= 交于A ,B 两点,写出满足“ABC 面积为85”的m 的一个值.45.(2023年新课标全国Ⅱ卷数学真题)已知椭圆22:13x C y +=的左、右焦点分别为1F ,2F ,直线y x m =+与C 交于A ,B 两点,若1F AB △ 面积是2F AB △ 面积的2倍,则m =().A .23B 23C .23D .23-考点13:新定义问题46.(多选题)(2024年新课标全国Ⅰ卷数学真题)设计一条美丽的丝带,其造型可以看作图中的曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足:横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则()A .2a =-B .点(22,0)在C 上C .C 在第一象限的点的纵坐标的最大值为1D .当点()00,x y 在C 上时,0042y x ≤+。

高中数学平面解析几何知识点总结

高中数学平面解析几何知识点总结

平面解析几何一、直线与圆1.斜率公式 2121y y k x x -=-(111(,)P x y 、222(,)P x y ). 2.直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ).(2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). < (4)截距式 1x y a b+=(a b 、分别为直线的横、纵截距,0a b ≠、). (5)一般式 0Ax By C ++=(其中A 、B 不同时为0).3.两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+①121212||,l l k k b b ⇔=≠;②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222||A B C l l A B C ⇔=≠; < ②1212120l l A A B B ⊥⇔+=;4.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).5.圆的四种方程 (1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).圆心⎪⎭⎫ ⎝⎛--2,2E D ,半径r=2422F E D -+. 6.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种: .若d =d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内. 7.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种: 0<∆⇔⇔>相离r d ;0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d . 其中22B A CBb Aa d +++=.8.两圆位置关系的判定方法#设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d ;条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ;条公切线内切121⇔⇔-=r r d ;无公切线内含⇔⇔-<<210r r d .$二、圆锥曲线1.圆锥曲线的定义(1)椭圆:|MF 1|+|MF 2|=2a (2a >|F 1F 2|);(2)双曲线:||MF 1|-|MF 2||=2a (2a <|F 1F 2|).2.圆锥曲线的标准方程(1)椭圆:x 2a 2+y 2b 2=1(a >b >0)(焦点在x 轴上)或y 2a 2+x 2b 2=1(a >b >0)(焦点在y 轴上); (2)双曲线:x 2a 2-y 2b 2=1(a >0,b >0)(焦点在x 轴上)或y 2a 2-x 2b 2=1(a >0,b >0)(焦点在y 轴上). 3.圆锥曲线的几何性质&(1)椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩.长轴长为2a ,短轴长为2b ,焦距为2c ,三者满足a 2=b 2+c 2,顶点为(a,0),(0,b),焦点为(c,0),离心率e=ac ,准线c a 2±=x (X 型). (2)双曲线22221(0,0)x y a b a b-=>>,实轴长为2a ,虚轴长为2b ,焦距为2c ,三者满足a 2+b 2=c 2,顶点为(a,0),焦点为(c,0),离心率e=a c (e>1),渐近线为x ab y ±=. 4.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x ab y ±=. (2)共轭双曲线: 12222=-b y ax 与1-2222=a x b y 渐近线一样. (3)等轴双曲线:若双曲线与12222=-by a x 中a=b ,(e=2,渐近线为y=x ±). 5.抛物线px y 22=的焦半径公式抛物线22(0)y px p =>焦半径02p CF x =+.准线:x=2p ,离心率为e=1.(点到焦点的距离等于点到准线的距离).。

课题直线、圆、圆锥曲线的方程及性质

课题直线、圆、圆锥曲线的方程及性质

课题:直线、圆、圆锥曲线的方程及性质备课时间:2009年2月12日 主备人:唐春兵 编号:009一、高考情况分析及预测1.直线与方程、圆与方程:本部分主要包括两个方面的内容,一是直线的基本概念,直线的方程,两直线的位置关系及点到直线的距离等,高考对此类问题的考查大多属中、低档题,以填空题的形式出现,每年必考.二是圆的两类方程及直线与圆的位置关系等,今年考试大纲对该部分的要求较高,故要予以足够重视.去年江苏高考考查了圆的方程与函数知识的综合应用,故对圆的两类方程及直线与圆的位置关系的考查将是今后一段时间平面解析几何的命题方向.2.圆锥曲线与方程:圆锥曲线与方程在高考中一般会出现两个小题,一个大题.根据今年江苏省考试说明的要求可以看出:新课标突出了对椭圆的考查,但同时也兼顾到了双曲线和抛物线.所以复习应加强对椭圆定义及中心在原点的椭圆的标准方程和几何性质的基础知识的复习,并适当的深化训练.但同时也不要忽视对双曲线和抛物线定义、标准方程和几何性质的复习.二、在高考中的要求1、平面解析几何初步: 直线的斜率和倾斜角、直线的平行关系与垂直关系、两条直线的交点、两点间的距离及直线与圆的、圆与圆的位置关系均为B 级要求;直线方程和圆的标准方程与一般方程均为C 级要求;空间直角坐标系则为A 级要求.2.圆锥曲线与方程:中心在原点的椭圆的标准方程与几何性质为B 级 要求;中心在原点的双曲线的标准方程与几何性质和顶点在原点的抛物线的标准方程与几何性质均为A 级要求.三、08高考真题再现1.(全国卷I15)在ABC ∆中,7,cos 18AB BC B ==-.若以A B 、为焦点的椭圆经过点C ,则该椭圆的离心率e = .2.(全国卷II9)设1a >,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是 . 3.(北京卷7)过直线y x =上一点作圆22(5)(1)2x y -+-=的两条切线12,l l ,当直线12,l l 关于直线y x =对称时,它们夹角为 .4.(天津卷13)已知圆C 的圆心与抛物线24y x =的焦点关于直线y x =对称.直线4320x y --=与圆C 相交于,A B 两点,且||6AB =,则圆C 的方程为 . 5.(安徽卷8)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为 . 6.(宁夏卷10)点()P x y ,在直线430x y +=上,且x y ,满足147x y --≤≤,则点P 到坐标原点距离的取值范围是 .7.(浙江卷10)若0,0≥≥b a ,且当⎪⎩⎪⎨⎧≤+≥≥1,0,0y x y x 时,恒有1≤+by ax ,则以a ,b 为坐标点(,)P a b所形成的平面区域的面积等于 .8.(湖北卷9)过点(11,2)A 作圆22241640x y x y ++--=的弦,其中弦长为整数的共有 条.9.(湖南卷12)已知椭圆22221(0)x y a b a b +=>>的右焦点为F ,右准线为l,离心率e =,过顶点(0,)A b 作AM l ⊥,垂足为M ,则直线FM 的斜率等于 .10.(山东卷11)已知圆的方程22680.x y x y +--=设该圆过点(3,5)的最长弦和最短弦分别为AC BD 和,则四边形ABCD 的面积为 .四、例题精选例1(镇江一模18)已知圆22:(3)(4)4C x y -+-=,直线1l 过定点(1,0).A (1)若直线1l 与圆C 相切,求1l 的方程;(2)若直线1l 与圆C 相交于P Q 、两点,线段PQ 的中点为M ,又1l 与2:220l x y ++=为N ,则AM AN 是否为定值,若是,则求此定值,若不是,请说明理由.例2.(盐城一模18)已知C 过点)1,1(P ,且与M :222(2)(2)(0)x y r r +++=>关于直线20x y ++=对称.(1)求C 的方程; (2)设Q 为C 上的一个动点,求PQ MQ ⋅的最小值;(3)过点P作两条相异直线分别与C 相交于B A ,,且直线PA 和直线PB 的倾斜角互补,O 为坐标原点,试判断直线OP 和AB 是否平行?请说明理由.例3.(南京市一模18)如图,已知椭圆22:13620x y C +=的左顶点,右焦点分别为,A F ,右准线为l ,N 为l 上一点,且在x 轴上方,AN 与椭圆交于点M 。

2023高考数学一轮总复习第九章平面解析几何第四节直线与圆圆与圆的位置关系pptx课件北师大版

2023高考数学一轮总复习第九章平面解析几何第四节直线与圆圆与圆的位置关系pptx课件北师大版
第九章
第四节
直线与圆、圆与圆的位置关系




01
强基础 增分策略
02
增素能 精准突破
课标解读
衍生考点
核心素养
1.能根据给定直线、圆的方程,
判断直线与圆、圆与圆的位置 1.直线与圆的位置关系 直观想象
关系.
2.圆的切线与弦长问题 数学运算
2.能用直线和圆的方程解决一
3.圆与圆的位置关系
些简单的数学问题与实际问题.
设圆C1:x2+y2+D1x+E1y+F1=0,①
圆C2:x2+y2+D2x+E2y+F2=0,②
若两圆相交,则有一条公共弦,其公共弦所在直线的方程可由①-②得到,即
(D1-D2)x+(E1-E2)y+(F1-F2)=0.
(2)两个圆系方程
①过直线Ax+By+C=0与圆x2+y2+Dx+Ey+F=0交点的圆系方
典例突破
例1.(1)已知直线l:ax+by-r2=0与圆C:x2+y2=r2,点A(a,b),则下列说法错误的
是(
)
A.若点A在圆C上,则直线l与圆C相切
B.若点A在圆C内,则直线l与圆C相离
C.若点A在圆C外,则直线l与圆C相离
D.若点A在直线l上,则直线l与圆C相切
(2)(2021北京人大附中模拟)已知圆C过点(-1,0)和(1,0),且与直线y=x-1只有
对点演练
1.判断下列结论是否正确,正确的画“√”,错误的画“×”.
(1)若两圆的圆心距小于两圆的半径之和,则两圆相交.( × )

平面解析几何与圆锥曲线

平面解析几何与圆锥曲线

平面解析几何与圆锥曲线解析几何是数学中的一门学科,它研究的是几何图形在坐标系中的运动和性质。

圆锥曲线是解析几何中的一个重要内容,由直线和圆相交、旋转、平移等方式形成的曲线。

本文将探讨平面解析几何与圆锥曲线的关系及相关概念。

一、平面解析几何基本概念在平面解析几何中,我们常用的坐标系是笛卡尔坐标系,它由两条相互垂直的直线构成。

其中,横轴称为x轴,纵轴称为y轴。

平面上的点可以用有序数对(x, y)表示,x称为横坐标,y称为纵坐标。

根据欧氏距离公式,两点间的距离可以表示为d = √((x₂ - x₁)² + (y₂ - y₁)²)。

在解析几何中,直线是一个基本图形。

根据两点确定一条直线的原理,我们可以通过已知的两个点求解直线的方程。

一般形式为Ax + By + C = 0,其中A、B、C为常数。

二、圆锥曲线的基本类型圆锥曲线可以分为四种基本类型:椭圆、双曲线、抛物线和直线。

1. 椭圆椭圆是圆锥曲线中最简单的一种形式。

它的定义是平面上到两个定点的距离之和等于常数的点组成的图形。

如果两个定点的距离为2a,且椭圆的长轴在x轴上,短轴在y轴上,那么椭圆的标准方程为(x²/a²) + (y²/b²) = 1。

2. 双曲线双曲线是圆锥曲线中另一个重要的类型。

它的定义是平面上到两个定点的距离之差等于常数的点组成的图形。

如果两个定点的距离为2a,双曲线的标准方程为(x²/a²) - (y²/b²) = 1。

3. 抛物线抛物线是圆锥曲线中非常常见的一种形式。

它的定义是平面上到一个定点的距离等于定直线的距离的点组成的图形。

抛物线的标准方程为y² = 2px,其中p是焦点到准线的垂直距离。

4. 直线直线可以看作是圆锥的一种特殊情况,它的标准方程可以表示为Ax + By + C = 0。

直线在平面解析几何中有着重要的应用,如直线的交点和直线与曲线的切点等。

数学一轮复习第八章平面解析几何第九节圆锥曲线的综合问题第1课时最值范围证明问题学案含解析

数学一轮复习第八章平面解析几何第九节圆锥曲线的综合问题第1课时最值范围证明问题学案含解析

第九节圆锥曲线的综合问题最新考纲考情分析1.掌握解决直线与椭圆、抛物线的位置关系的思想方法.2.了解圆锥曲线的简单应用.3.理解数形结合的思想.1.直线与椭圆、抛物线的位置关系是近几年高考命题的热点.2.考查知识有直线与椭圆、抛物线相交,涉及弦长、中点、面积、对称、存在性问题.3.题型主要以解答题的形式出现,属中高档题。

知识点一直线与圆锥曲线的位置关系1.直线与圆锥曲线的位置关系判断直线l与圆锥曲线C的位置关系时,通常将直线l的方程Ax+By+C=0(A,B不同时为0)代入圆锥曲线C的方程F(x,y)=0,消去y(也可以消去x)得到一个关于变量x(或变量y)的一元方程.即错误!消去y,得ax2+bx+c=0。

(1)当a≠0时,设一元二次方程ax2+bx+c=0的判别式为Δ,则Δ>0⇔直线与圆锥曲线C相交;Δ=0⇔直线与圆锥曲线C相切;Δ<0⇔直线与圆锥曲线C相离.(2)当a=0,b≠0时,即得到一个一元一次方程,则直线l 与圆锥曲线C相交,且只有一个交点,此时,若C为双曲线,则直线l与双曲线的渐近线的位置关系是平行;若C为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A,B两点,A(x1,y1),B(x2,y2),则|AB|=错误!|x1-x2|=错误!·错误!=错误!·|y1-y2|=错误!·错误!.知识点二圆锥曲线中的最值与取值范围问题圆锥曲线中的最值与取值范围问题一直是高考命题的热点,各种题型都有,命题角度很广,归纳起来常见的命题角度有:1.转化为函数利用基本不等式或二次函数求最值;2.利用三角函数有界性求最值;3.数形结合利用几何性质求最值.知识点三圆锥曲线中的定值与定点问题1.这类问题一般考查直线与圆锥曲线的位置关系,一元二次方程的根与系数之间的关系,考查斜率、向量的运算以及运算能力.2.解决这类定点与定值问题的方法有两种:一是研究一般情况,通过逻辑推理与计算得到定点或定值,这种方法难度大,运算量大,且思路不好寻找;另外一种方法就是先利用特殊情况确定定点或定值,然后验证,这样在整理式子或求值时就有了明确的方向.1.思考辨析判断下列结论正误(在括号内打“√”或“×”)(1)直线l与椭圆C相切的充要条件是:直线l与椭圆C只有一个公共点.(√)(2)直线l与双曲线C相切的充要条件是:直线l与双曲线C只有一个公共点.(×)(3)直线l与抛物线C相切的充要条件是:直线l与抛物线C 只有一个公共点.(×)(4)如果直线x=ty+a与圆锥曲线相交于A(x1,y1),B(x2,y2)两点,则弦长|AB|=错误!|y1-y2|.(√)解析:(2)因为直线l与双曲线C的渐近线平行时,也只有一个公共点,是相交,但并不相切.(3)因为直线l与抛物线C的对称轴平行或重合时,也只有一个公共点,是相交,但不相切.2.小题热身(1)过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线有(C)A.1条B.2条C.3条D.4条解析:结合图形分析可知,满足题意的直线共有3条:直线x=0,过点(0,1)且平行于x轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x=0).(2)(2020·浙江八校联考)抛物线y=ax2与直线y=kx+b(k≠0)交于A,B两点,且这两点的横坐标分别为x1,x2,直线与x轴交点的横坐标是x3,则(B)A.x3=x1+x2B.x1x2=x1x3+x2x3C.x1+x2+x3=0 D.x1x2+x2x3+x3x1=0解析:由错误!消去y得ax2-kx-b=0,可知x1+x2=错误!,x1x2=-错误!,令kx+b=0得x3=-错误!,所以x1x2=x1x3+x2x3.(3)已知抛物线y=ax2(a>0)的准线为l,l与双曲线x24-y2=1的两条渐近线分别交于A,B两点,若|AB|=4,则a=错误!.解析:抛物线y=ax2(a〉0)的准线l:y=-错误!,双曲线错误!-y2=1的两条渐近线分别为y=错误!x,y=-错误!x,可得x A=-错误!,x B=错误!,可得|AB|=错误!-错误!=4,解得a=错误!。

高中数学圆锥曲线(平面解析几何)基础

高中数学圆锥曲线(平面解析几何)基础

圆锥曲线基础1.椭圆的有关公式(1)定义性质:|PF ₃|+|PF ₂|=2aa²=b²+c²(2)离心率:e =c a ,e <1(3)焦半径:|PF ₁|=a+ex ₀,|PF ₂|=a-ex 。

(4)通径:2b 2a(5)焦点三角形:周长=2a+2c,面积=b 2tan θ2(∠F 1PF 2=θ)当P 为短轴的端点时,θ最大,越向两侧,θ越小.(6)椭圆的第二定义:设椭圆上任意一点M(x,y)F(c,0)直线l:x =a 2c ,由|MF|d =c a (a ⟩c >0),其中d =a 2c −x化简,得:x 2a 2+y 2b 2=1(b 2=a 2−c 2)平面内到定点距离与到定直线距离比等于常数e(0圆的焦点,定直线为椭圆的准线.(7)弦长公式:|AB|=√1+k 2⋅|x 1−x 2|点差法可以解决直线与椭圆相交时,与弦中点有关的问题.(8)椭圆的参数方程:(θ为参数)(9)点差法:设,A(x ₁,y ₁),B(x ₂,y ₂)在x 2a 2+y 2b 2=1上,(1)-(2)得:(x 1−x 2)(x 1+x 2)a 2=−(y 1−y 2)(y 1+y 2)b 2为AB 中点坐标2.双曲线的有关公式(1)定义性质:||PF₁|-|PF₂||=2a<|F₁F₂|=2c,a²+b²=c²(2)离心率:e=ca =√1+(ba)2,e>1(3)渐近线:焦点在x轴上,渐近线y=±bxa焦点在y轴上,渐近线y=±axb(4)渐近线常用结论①求渐近线:令常数“1”等于0时,解出y即为渐近线方程②双曲线x2a2−y2b2=1的渐近线为矩形(x=±a,y=±b)的对角线③等轴双曲线:即a=b时,渐近线方程y=±x;离心率(e=√2如:y=1x,焦点(−√2,−√2),(√2,√2),a=b=√2,c=2.④与x2a2−y2b2=1共渐近线的双曲线方程:x2a2−y2b2=λ(λ≠0)⑤共轭双曲线:x2a2−y2b2=1与y2b2−x2a2=1互为共轭双曲线它们渐近线相同;四个焦点共圆;1e12+1e22=1(5)通径:|AB|=2b 2a(6)焦点三角形:三角形面积(7)焦半径:①双曲线的第二定义:平面内到定点距离和它到定直线距离之比是常数e(e>1)的点的轨迹.定点为焦点,定直线为准线x=±a 2c②焦半径:∴|PF₁|=|a+ex₀||PF₂|=|a-ex₀|3.抛物线有关公式(1)平面内到定点F与到定直线L(L不经过F)距离相等的点的轨迹叫抛物线,F叫焦点,L叫准线.(2)离心率:e=1(3)通径:2P(4)焦半径:|PF|=x0+P2(5)过焦点倾斜角为α的直线AB,|AB|=2Psin2α,且x1⋅x2=P24,y1⋅y2=−P2.4.平面解析几何公式直线与圆的公式(1)两点间距离公式:|AB|=√(x1−x2)2+(y1−y2)2.(2)点到直线的距离:d=00√22(3)圆的标准方程:(x-a)²+(y-b)²=r²(r>0)圆心:(a,b)半径:r(4)圆的一般方程:x²+y²+Dx+Ey+F=0D²+E²-4F>0圆心坐标:(−D2,−E2)半径长:√D2+E2−4F2。

平面解析几何

平面解析几何
但问题在于,射影平面包含有无穷远点。这样就 可能出现如下情形:直线与圆锥曲线在欧氏平面 内有一个交点,在射影平面内却可能有两个交点 (另一个交点是无穷远点)。
怎样避免这种情况发生呢?解决办法是加上“重 合”两字。即,圆的切线是与圆有两个重合交点 的直线。这个定义可以推广到一般圆锥曲线。
6、如何看待解析几何成为教学难点?
在“平面解析几何初步”模块中,学生将在平面 直角坐标系中建立直线和圆的代数方程,运用代 数方法研究它们的几何性质及其相互位置关系, 并了解空间直角坐标系。体会数形结合的思想, 初步形成用代数方法解决几何问题的能力。
在“圆锥曲线与方程”模块中,学生将学习圆锥 曲线与方程,了解圆锥曲线与二次方程的关系, 掌握圆锥曲线的基本几何性质,感受圆锥曲线在 刻画现实世界和解决实际问题中的作用。结合已 学过的曲线及其方程的实例,了解曲线与方程的 对应关系,进一步体会数形结合的思想。
以二次曲线为例。二次曲线的方程之所以复杂, 是由于坐标系的任意选取所产生的。如果选取适 当的坐标系,那么曲线方程就可以大为简化,这 也就是通常所说的标准方程。我们就是通过标准 方程来研究相应曲线的性质的。
4、如何理解圆锥曲线的统一性
圆锥曲线是解析几何的核心内容,是解析几何基 本思想和基本方法的具体运用。高中学习三种圆 锥曲线是单独展开的,对它们统一性的揭示不够 充分。理解圆锥曲线的统一性至少有三个角度: 统一的来源、统一的定义、统一的方程。
◎统一的来源(圆锥截线的观点)
设圆锥面母线、截平面与轴线的夹角分别为α,θ
☆截面不过圆锥顶点(非退化圆锥曲线)
θ=π/2时,曲线是圆; α<θ<π/2时,曲线是椭圆; θ=α时,曲线是抛物线; 0≤θ<α时,曲线是双曲线. 上述曲线离心率均为cosθ/cosα

高中 平面解析几何直线与圆、圆与圆的位置关系 知识点+例题

高中 平面解析几何直线与圆、圆与圆的位置关系 知识点+例题

辅导讲义――直线和圆、圆与圆的位置关系圆的切线方程设法:(1)过圆222r y x =+上一点),(00y x P 的圆的切线方程为200r y y x x =+.(2)过圆222)()(r b y a x =-+-上一点),(00y x P 的圆的切线方程为200))(())((r b y b y a x a x =--+--. (3)过圆222r y x =+外一点),(00y x P 作圆的两条切线,则两切点所在直线方程为200r y y x x =+.(4)过圆222)()(r b y a x =-+-外一点),(00y x P 作圆的两条切线,则两切点所在直线方程为200))(())((r b y b y a x a x =--+--.[例]经过点M (2,-1)作圆522=+y x 的切线,则切线方程为_________________. 2x-y-5=0[巩固] 过点P (3,1)作曲线C :0222=-+x y x 的两条切线,切点分别为A ,B ,则直线AB 的方程为____________. 2x+y-3=01.若两圆的半径分别为r 1,r 2,两圆的圆心距为d ,则两圆的位置关系的判断方法如下:位置 关系 外离外切相交内切内含图示d 与r 1,r 2 的关系d >r 1+r 2 d =r 1+r 2 |r 1-r 2|< d < r 1+r 2d =|r 1-r 2|d <|r 1-r 2|两圆的公共点个数0个 1个 2个 1个 0个2.两圆的共切线:(1)当两圆内含时,没有公切线; (2)当两圆内切时有一条公切线; (3)当两圆相交时,有两条外公切线;知识模块4圆与圆的位置关系 精典例题透析知识模块3切线及弦所在直线的方程设法∴切线方程为2x +y ±52=0; ③∵k AC =-2+11-4=13,∴过切点A (4,-1)的切线斜率为-3,∴过切点A (4,-1)的切线方程为y +1=-3(x -4), 即3x +y -11=0.[巩固] (2013·江苏)如图,在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4.设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使|MA |=2|MO |,求圆心C 的横坐标a 的取值范围. (1)由题设,圆心C 是直线y =2x -4和y =x -1的交点,解得点C (3,2), 于是切线的斜率必存在.设过A (0,3)的圆C 的切线方程为y =kx +3, 由题意,得|3k +1|k 2+1=1,解得k =0或-34,故所求切线方程为y =3或3x +4y -12=0.(2)因为圆心在直线y =2x -4上,所以圆C 的方程为 (x -a )2+[y -2(a -2)]2=1.设点M (x ,y ),因为|MA |=2|MO |,所以x 2+(y -3)2=2 x 2+y 2,化简得x 2+y 2+2y -3=0,即x 2+(y +1)2=4,所以点M 在以D (0,-1)为圆心,2为半径的圆上.由题意,点M (x ,y )在圆C 上,所以圆C 与圆D 有公共点,则|2-1|≤|CD |≤2+1, 即1≤a 2+(2a -3)2≤3. 由5a 2-12a +8≥0,得a ∈R ; 由5a 2-12a ≤0,得0≤a ≤125. 所以点C 的横坐标a 的取值范围为⎣⎢⎡⎦⎥⎤0,125.题型三:直线与圆相交的问题[例]已知直线kx -y +6=0被圆x 2+y 2=25所截得的弦长为8,求k 的值.设直线kx -y +6=0被圆x 2+y 2=25所截得的弦长为AB ,其中点为C ,则△OCB 为直角三角形.因为圆的半径为|OB |=5,半弦长为|AB |2=|BC |=4,所以圆心到直线kx -y +6=0的距离为3,由点到直线的距离公式得6k 2+1=3,解之得k =±3.[巩固] 求直线x -3y +23=0被圆x 2+y 2=4截得的弦长.如图,设直线x -3y +23=0与圆x 2+y 2=4交于A ,B 两点,弦AB 的中点为M ,则OM ⊥AB (O 为坐标原点),所以OM =|0-0+23|12+(-3)2=3,所以AB =2AM =2OA 2-OM 2=222-(3)2=2.圆x 2+(y -3)2=4的圆心为点(0,3),又因为直线l 与直线x +y +1=0垂直,所以直线l 的斜率k =1.由点斜式得直线l :y -3=x -0,化简得x -y +3=0.3.若圆C 1:x 2+y 2-2ax +a 2-9=0(a ∈R )与圆C 2:x 2+y 2+2by +b 2-1=0 (b ∈R )内切,则ab 的最大值为___________. 圆C 1:x 2+y 2-2ax +a 2-9=0 (a ∈R ).化为:(x -a )2+y 2=9,圆心坐标为(a,0),半径为3.圆C 2:x 2+y 2+2by +b 2-1=0 (b ∈R ),化为x 2+(y +b )2=1,圆心坐标为(0,-b ),半径为1,∵圆C 1:x 2+y 2-2ax +a 2-9=0 (a ∈R )与圆C 2:x 2+y 2+2by +b 2-1=0 (b ∈R )内切,∴a 2+b 2=3-1,即a 2+b 2=4,ab ≤12(a 2+b 2)=2. ∴ab 的最大值为2.4.(2013·山东)过点P (3,1)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为____________.解析 如图所示:由题意知:AB ⊥PC ,k PC =12,∴k AB =-2, ∴直线AB 的方程为y -1=-2(x -1),即2x +y -3=0.5.已知直线y =kx +b 与圆O :x 2+y 2=1相交于A ,B 两点,当b =1+k 2时,OA →·OB →等于___________.设A (x 1,y 1),B (x 2,y 2),将y =kx +b 代入x 2+y 2=1得(1+k 2)x 2+2kbx +b 2-1=0,故x 1+x 2=-2kb 1+k 2,x 1x 2=b 2-11+k 2, 从而·=x 1x 2+y 1y 2=(1+k 2)x 1x 2+kb (x 1+x 2)+b 2=b 2-1-2k 2b 21+k 2+b 2=2b 21+k 2-1=1. 6.若直线y =x +b 与曲线y =3-4x -x 2有公共点,则b 的取值范围是______________.由y =3-4x -x 2,得(x -2)2+(y -3)2=4(1≤y ≤3).∴曲线y =3-4x -x 2是半圆,如图中实线所示.当直线y =x +b 与圆相切时,|2-3+b |2=2.∴b =1±2 2. 由图可知b =1-2 2.∴b 的取值范围是[]1-22,3.7.(2014·上海)已知曲线C :x =-4-y 2,直线l :x =6,若对于点A (m,0),存在C 上的点P 和l 上的Q 使得AP →+AO→=0,则m 的取值范围为________.曲线C :x =-4-y 2,是以原点为圆心,2为半径的圆,并且x P ∈[-2,0],对于点A (m,0),存在C 上的点P 和l 上的Q 使得+=0,(1)求矩形ABCD 的外接圆的方程;(2)已知直线l :(1-2k )x +(1+k )y -5+4k =0(k ∈R ),求证:直线l 与矩形ABCD 的外接圆恒相交,并求出相交的弦长最短时的直线l 的方程.(1)∵l AB :x -3y -6=0且AD ⊥AB ,点(-1,1)在边AD 所在的直线上,∴AD 所在直线的方程是y -1=-3(x +1),即3x +y +2=0.由⎩⎪⎨⎪⎧x -3y -6=0,3x +y +2=0,得A (0,-2). ∴|AP |=4+4=22, ∴矩形ABCD 的外接圆的方程是(x -2)2+y 2=8.(2)直线l 的方程可化为k (-2x +y +4)+x +y -5=0,l 可看作是过直线-2x +y +4=0和x +y -5=0的交点(3,2)的直线系,即l 恒过定点Q (3,2),由(3-2)2+22=5<8知点Q 在圆P 内,∴l 与圆P 恒相交.设l 与圆P 的交点为M ,N ,则|MN |=28-d 2(d 为P 到l 的距离),设PQ 与l 的夹角为θ,则d =|PQ |·sin θ=5sin θ,当θ=90°时,d 最大,|MN |最短.此时l 的斜率为PQ 的斜率的负倒数,即-12, 故l 的方程为y -2=-12(x -3),即x +2y -7=0.11.若直线l :y =kx +1 (k <0)与圆C :x 2+4x +y 2-2y +3=0相切,则直线l 与圆D :(x -2)2+y 2=3的位置关系是_________. 因为圆C 的标准方程为(x +2)2+(y -1)2=2,所以其圆心坐标为(-2,1),半径为2,因为直线l 与圆C 相切.所以|-2k -1+1|k 2+1=2,解得k =±1,因为k <0,所以k =-1,所以直线l 的方程为x +y -1=0.圆心D (2,0)到直线l 的距离d =|2+0-1|2=22<3,所以直线l 与圆D 相交. 12.设曲线C 的方程为(x -2)2+(y +1)2=9,直线l 的方程为x -3y +2=0,则曲线上的点到直线l 的距离为71010的点的个数为____________.B解析 由(x -2)2+(y +1)2=9,得圆心坐标为(2,-1),半径r =3,圆心到直线l 的距离d =|2+3+2|1+(-3)2=710=71010. 能力提升训练要使曲线上的点到直线l 的距离为71010, 此时对应的点在直径上,故有两个点.13.(2013·江西)过点(2,0)引直线l 与曲线y =1-x 2相交于A 、B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于____________.∵S △AOB =12|OA ||OB |sin ∠AOB =12sin ∠AOB ≤12. 当∠AOB =π2时, △AOB 面积最大.此时O 到AB 的距离d =22. 设AB 方程为y =k (x -2)(k <0),即kx -y -2k =0.由d =|2k |k 2+1=22得k =-33. (也可k =-tan ∠OPH =-33). 14.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________.圆C 的标准方程为(x -4)2+y 2=1,圆心为(4,0).由题意知(4,0)到kx -y -2=0的距离应不大于2,即|4k -2|k 2+1≤2.整理,得3k 2-4k ≤0.解得0≤k ≤43. 故k 的最大值是43. 15.(2014·重庆)已知直线ax +y -2=0与圆心为C 的圆(x -1)2+(y -a )2=4相交于A ,B 两点,且△ABC 为等边三角形,则实数a =________.圆心C (1,a )到直线ax +y -2=0的距离为|a +a -2|a 2+1.因为△ABC 为等边三角形,所以|AB |=|BC |=2,所以(|a +a -2|a 2+1)2+12=22,解得a =4±15.。

高考数学专题7解析几何之直线与圆

高考数学专题7解析几何之直线与圆

壹高考数学专题七解析几何之直线与圆的方程一、直线 ●1.直线的方程(1)直线l 的倾斜角α的取值范围是0απ≤<;平面内的任意一条直线都有唯一确定的倾斜角。

(2)直线l 的斜率tan (0,k ααπ=≤<且2πα≠)。

变化情况如下:斜率的计算公式:若斜率为k 的直线过点111(,)P x y 与222(,)P x y ,则211221()k x x x x =≠-。

(3)直线方程的五种形式贰●2.两条直线位置关系(1)设两条直线111:l y k x b =+和222:l y k x b =+,则有下列结论:1212//l l k k ⇔=且12b b ≠; 12121l l k k ⊥⇔⋅=-。

(2)设两条直线111111:0(,l A x B y C A B ++=不全为0)和2222:0l A x B y C ++=22(,A B ,不全为0),则有下列结论:12//l l ⇔12210A B A B -=且12210BC B C -≠或12210A B A B -=且12210AC A C -≠; 12l l ⊥⇔12120A A B B +=。

(3)求两条直线交点的坐标:解两条直线方程所组成的二元一次方程组而得解。

(4)与直线0Ax By C ++=平行的直线一般可设为0Ax By m ++=;与直线0Ax By C ++=垂直的直线一般可设为0Bx Ay n -+=。

(5)过两条已知直线1112220,0A x B y C A x B y C ++=++=交点的直线系:111222222()0(0)A x B y C A x B y C A x B y C λ+++++=++=其中不包括直线●3.中点公式:平面内两点111(,)P x y 、222(,)P x y ,则12,P P 两点的中点(,)P x y 为1212,22y y x x x y ++==。

●4.两点间的距离公式:平面内两点111(,)P x y ,222(,)P x y ,则12,PP两点间的距离为:12PP 。

解析几何与圆锥曲线

解析几何与圆锥曲线

解析几何与圆锥曲线解析几何是数学中的一个分支,研究的是几何图形在坐标系中的性质和关系。

而圆锥曲线是解析几何中的一个重要概念,指的是在平面上由一个定点(焦点)和一个定直线(直角平分线)确定的几何图形。

本文将详细解析解析几何与圆锥曲线之间的关系。

一、解析几何基础解析几何的基础是坐标系,通常使用直角坐标系来描述平面上的点和几何图形。

在直角坐标系中,每个点都可以用两个坐标表示,分别表示该点在横轴和纵轴上的位置。

我们可以利用坐标系来描述线段、直线、曲线等几何图形,并通过代数的方法来研究它们的性质和关系。

二、圆锥曲线的定义与分类圆锥曲线是指在平面上由一个定点(焦点)和一个定直线(直角平分线)确定的几何图形。

根据焦点和直角平分线的相对位置,圆锥曲线可以分为椭圆、双曲线和抛物线三种类型。

1. 椭圆:焦点到直角平分线的距离之和是一个常数,称为椭圆的离心率。

当离心率小于1时,椭圆是闭合曲线,当离心率等于1时,椭圆是一个线段,当离心率大于1时,椭圆是两个分离的曲线。

2. 双曲线:焦点到直角平分线的距离之差是一个常数,称为双曲线的离心率。

当离心率小于1时,双曲线是两个分离的曲线,当离心率等于1时,双曲线是两条渐进线,当离心率大于1时,双曲线是两个分离的曲线。

3. 抛物线:焦点到直角平分线的距离等于一个常数,称为抛物线的离心率。

抛物线有两种形式,一种是开口向上的抛物线,一种是开口向下的抛物线。

三、解析几何与圆锥曲线的关系解析几何主要研究的是几何图形在坐标系中的性质和关系,而圆锥曲线可以通过解析几何的方法进行研究和描述。

通过引入坐标系,我们可以将焦点和直角平分线的位置用代数的方式表示,从而推导出圆锥曲线的方程和各种性质。

以椭圆为例,假设焦点为F(a,0),直角平分线为x=k,其中a和k为常数。

根据椭圆的定义,点P(x,y)到焦点和直角平分线的距离之和等于常数,即PF1+PF2=2a,可以得到以下方程:(x-a)^2+y^2+(x-a)^2+y^2=4a^2化简后即为椭圆的标准方程。

高中数学平面几何中的圆与圆锥曲线

高中数学平面几何中的圆与圆锥曲线

高中数学平面几何中的圆与圆锥曲线在高中数学的平面几何中,圆与圆锥曲线是重要的概念。

本文将对圆和圆锥曲线进行详细的探讨和解释。

一、圆圆是平面几何中最常见的几何图形之一。

它由一组等距离于一点的点组成,这个点称为圆心,等距离称为半径。

圆可以用数学方程表示为:x² + y² = r²,其中r表示半径的长度。

1. 圆的性质圆的性质有很多,下面列举几个重要的性质:(1)圆上任意两点到圆心的距离相等。

(2)半径相等的圆互相重合。

(3)在同一个圆中,对圆心角相等的弧长相等。

(4)在同一个圆中,对圆心角大的弧长也大。

2. 圆的相关定理在平面几何中,圆与其他几何图形的相交关系往往会涉及到一些重要的定理。

(1)角的位置定理:两条相交弦决定的两个往往会涉及到一些重要的定理。

在图中,AB和CD是两条相交的弦,E和F是它们的交点,那么∠AEC和∠BFD是对内角,∠AFD和∠BEC是对外角。

根据角的位置定理,我们可以得到如下结论:∠AEC=∠BFD,∠AFD=∠BEC。

(2)弧的角度定理:弧与其所对圆心角的关系在图中,AB是圆的一条弧,O是圆心,α是弧对应的圆心角。

根据弧的角度定理,我们可以得到如下结论:弧AB所对圆心角α的角度为π。

二、圆锥曲线圆锥曲线是平面解析几何中的一个重要概念。

它由平面上一个固定点(焦点F)和到这个点的距离之比(离心率e)确定。

1. 定义在平面上,如果一点到定点和定直线的距离之比是一个常数,就称这条轨迹为圆锥曲线。

常见的圆锥曲线有椭圆、双曲线和抛物线。

2. 椭圆椭圆是圆锥曲线的一种,它与焦点的距离之和等于常数的点的集合。

在平面解析几何中,椭圆可以用数学方程表示为:x²/a² + y²/b² = 1,其中a表示椭圆的长半轴长度,b表示短半轴长度。

3. 双曲线双曲线是圆锥曲线的另一种,它与焦点的距离之差等于常数的点的集合。

在平面解析几何中,双曲线可以用数学方程表示为:x²/a² - y²/b²= 1,其中a表示双曲线的长半轴长度,b表示短半轴长度。

高考数学一轮总复习第九章平面解析几何第八节直线与圆锥曲线的位置关系课件

高考数学一轮总复习第九章平面解析几何第八节直线与圆锥曲线的位置关系课件


x=- ,分别过
2

F( ,0),
2
A,B 作准线的垂线,垂足为点 A',B',
过A作BB'的垂线,垂足为M,设|AA'|=|AF|=t,
∵|BF|=3|FA|,∴|BB'|=|BF|=3t,则|BM|=2t,|AB|=4t,
∴∠ABM=60°.
即直线l的倾斜角∠AFx=120°,可得直线l的斜率为
k=tan 120°= - 3 ,故选A.
考点二
弦长问题
典例突破
例2.(多选)(2023新高考Ⅱ,10)设O为坐标原点,直线 y=- 3(x-1) 过抛物线
C:y2=2px(p>0)的焦点,且与C交于M,N两点,l为C的准线,则(
A.p=2
B.|MN|=
8
3
C.以MN为直径的圆与l相切
D.△OMN为等腰三角形
21
22
(2 -1 )(2 +1 )
2
2
+1 =1, +2 =1,两式作差,得
+(y2-y1)(y2+y1)=0.因为
2
2
2
2 -1
0
x1+x2=2x0,y1+y2=2y0, - =kAB,所以 kAB=-2 .
2 1
0
(1)设弦中点为 M(x,y),由①式, 得

2=-2,所以
= 16 2 -4 × (1- 2 ) × (-10) > 0,
4
A(x1,y1),B(x2,y2),则 1 + 2 =
1 2 =
解得-
15
<k<-1.故选
3

圆锥曲线专题:定值问题的7种常见考法(解析版)

圆锥曲线专题:定值问题的7种常见考法(解析版)

圆锥曲线专题:定值问题的7种常见考法一、定值问题处理方法1、解析几何中的定值问题是指某些几何量(线段长度,图形面积,角度,直线的斜率等)的大小或某些代数表达式的值和题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值,求定值问题常见的解题方法有两种:法一、先猜后证(特例法):从特殊入手,求出定值,再证明这个定值与变量无关;法二、引起变量法(直接法):直接推理、计算,并在计算推理过程中消去参数,从而得到定值。

2、直接法解题步骤第一步设变量:选择适当的量当变量,一般情况先设出直线的方程:b kx y +=或n my x +=、点的坐标;第二步表示函数:要把证明为定值的量表示成上述变量的函数,一般情况通过题干所给的已知条件,进行正确的运算,将需要用到的所有中间结果(如弦长、距离等)用引入的变量表示出来;第三步定值:将中间结果带入目标量,通过计算化简得出目标量与引入的变量无关,是一个常数。

二、常见定值问题的处理方法1、处理较为复杂的问题,可先采用特殊位置(例如斜率不存在的直线等)求出定值,进而给后面一般情况的处理提供一个方向;2、在运算过程中,尽量减少所求表达式中变量的个数,以便于向定值靠拢;3、巧妙利用变量间的关系,例如点的坐标符合曲线方程等,尽量做到整体代入,简化运算。

三、常见条件转化1、对边平行:斜率相等,或向量平行;2、两边垂直:斜率乘积为-1,或向量数量积为0;3、两角相等:斜率成相反数或相等或利用角平分线性质;4、直角三角形中线性质:两点的距离公式5、点与圆的位置关系:(·1)圆外:点到直径端点向量数量积为正数;(2)圆上:点到直径端点向量数量积为零;(3)圆内:点到直径端点向量数量积为负数。

四、常用的弦长公式:(1)若直线AB 的方程设为b kx y +=,()11y x A ,,()22y x B ,,则()a k x x x x k x x k AB ∆⋅+=-+⋅+=-⋅+=22122122121411(2)若直线AB 的方程设为n my x +=,()11y x A ,,()22y x B ,,则()am y y y y m y y m AB ∆⋅+=-+⋅+=-⋅+=22122122121411【注】上式中a 代表的是将直线方程带入圆锥曲线方程后,化简得出的关于x 或y 的一元二次方程的二次项系数。

平面解析几何

平面解析几何
管理类联考
平面解析几何
101
Contents
目录
01. 基础知识
02. 直线与圆
03. 椭圆与双曲线
04. 多边形与圆
极坐标系与参数方程
Part One
基础知识
平面解析几何的定义
解析几何:研 究几何图形的 代数性质的数
学分支
平面解析几何: 研究平面上点 的坐标、向量、 直线、圆锥曲 线等几何图形
极坐标系与参数方程的应用
曲线的表示:利用极坐标系和参 数方程可以简洁地表示曲线的形
状和位置
曲线的变换:利用极坐标系和参 数方程可以实现曲线的平移、旋
转、缩放等变换
A
B
C
D
曲线的求解:利用极坐标系和参 数方程可以方便地求解曲线的方
程和性质
曲线的拟合:利用极坐标系和参 数方程可以对实验数据进行拟合,
得到曲线的方程和性质
相贯:直线 穿过圆心, 且与圆有两 个交点
Part Three
椭圆与双曲线
椭圆的基本性质
定义:平面内到两个定点 的距离之和为常数的点的 集合
焦点:椭圆有两个焦点, 位于椭圆的长轴上
离心率:椭圆的离心率等 于椭圆的焦点到椭圆中心 的距离除以椭圆的长轴
标准方程:椭圆的标准方 程为x^2/a^2 + y^2/b^2 = 1,其中a和 b分别表示椭圆的长轴和 短轴
感谢您的观看与聆听
101
极坐标系中的点与平面解析几 何中的点之间可以相互转换。
参数方程的基本概念与性质
01
02
03
04
参数方程的定义: 用参数表示的方 程,如x=f(t), y=g(t)
参数方程的性质: 参数方程可以表 示曲线、曲面等 几何图形

【知识梳理】解析几何的20个微专题(附高考数学真题讲析)

【知识梳理】解析几何的20个微专题(附高考数学真题讲析)

【知识梳理】解析几何的20个微专题[1]专题1:直线与方程知识梳理: (1)直线的倾斜角定义:当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.当直线与x 轴平行或重合时,规定它的倾斜角为︒0.倾斜角的范围为[)︒︒180,0. (2)直线的斜率:定义:一条直线的倾斜角α的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,即=k αtan .倾斜角是︒90的直线,斜率不存在. (3) 过两点的直线的斜率公式:经过两点),(),,(222111y x P y x P 的直线的斜率公式:当21x x ≠时,1212x x y y k --=;当21x x =时,斜率不存在.注:①任何直线都有倾斜角,但不是任何直线都有斜率,倾斜角是︒90的直线的斜率不存在.②斜率随倾斜角的变化规律:③可以用斜率来证明三点共线,即若AC AB k k =,则C B A ,,三点共线. 直线方程的五种形式注意:①求直线方程的方法主要有两种:一是直接法,根据已知条件,选择适当的直线方程的形式,直接写出直线方程;二是待定系数法,先设出直线方程,再根据条件求出待定系数,最后代入求出直线方程.但使用直线方程时,一定要注意限制条件,以免解题过程中丢解.②截距与距离的区别:截距可为一切实数,纵截距是直线与y 轴交点的纵坐标,横截距是直线与x 轴交点的横坐标,而距离是一个非负数.直线与直线位置关系1.两条直线的交点若直线1l :0111=++C y B x A 和2l :0222=++C y B x A 相交,则交点坐标是方程组⎩⎨⎧=++=++0222111C y B x A C y B x A 的解. 2.两条直线位置关系的判定 (1)利用斜率判定若直线1l 和2l 分别有斜截式方程1l :11b x k y +=和2l :22b x k y +=,则 ①直线1l ∥2l 的等价条件为2121,b b k k ≠=. ②直线1l 与2l 重合的等价条件为2121,b b k k ==.③直线1l 与2l 相交的等价条件为21k k ≠;特别地,1l ⊥2l 的等价条件为121-=⋅k k .若1l 与2l 斜率都不存在,则1l 与2l 平行或重合.若1l 与2l 中的一条斜率不存在而另一条斜率为0,则1l 与2l 垂直.(2)用直线一般式方程的系数判定设直线1l :0111=++C y B x A ,2l :0222=++C y B x A ,则 ①直线1l ∥2l 的等价条件为0012211221≠-=-C B C B B A B A 且. ②直线1l 与2l 重合的等价条件为0012211221=-=-C B C B B A B A 且.③直线1l 与2l 相交的等价条件为01221≠-B A B A ;特别地, 1l ⊥2l 的等价条件为02121=+B B A A .注:与0=++CBy Ax 平行的直线方程一般可设为0=++m By Ax 的形式,与0=++C By Ax 垂直的直线方程一般可设为0=+-n Ay Bx 的形式.(3)用两直线联立的方程组的解的个数判定设直线1l :0111=++C y B x A ,2l :0222=++C y B x A ,将这两条直线的方程联立,得方程组⎩⎨⎧=++=++00222111C y B x A C y B x A ,若方程组有惟一解,则1l 与2l 相交,此解就是1l ,2l 交点的坐标;若方程组无解,此时1l 与2l 无公共点,则1l ∥2l ;若方程组有无数个解,则1l 与2l 重合.3. 直线系问题(1)设直线1l :0111=++C y B x A 和2l :0222=++C y B x A若1l 与2l 相交,则0)(222111=+++++C y B x A C y B x A λ表示过1l 与2l 的交点的直线系(不包括2l );若1l ∥2l ,则上述形式的方程表示与与2l 平行的直线系.(2)过定点),(00y x 的旋转直线系方程为))((00R k x x k y y ∈-=-(不包括0x x =);斜率为0k 的平行直线系方程为)(0R b b x k y ∈+=.注:直线系是具有某一共同性质的直线的全体,巧妙地使用直线系,可以减少运算量,简化运算过程. 距离公式与对称问题 1.距离公式(1)两点间的距离公式平面上的两点),(),,(222111y x P y x P 间的距离=21P P 212212)()(y y x x -+-.特别地,原点)0,0(O 与任一点),(y x P 的距离=OP 22y x +.若x P P //21轴时,=21P P 21x x -;若y P P //21轴时,=21P P 21y y -. (2)点到直线的距离公式已知点),(000y x P ,直线l :0=++C By Ax ,则点0P 到直线l 的距离=d 2200BA CBy Ax +++.已知点),(000y x P ,直线l :a x =,则点0P 到直线l 的距离=d a x -0. 已知点),(000y x P ,直线l :b y =,则点0P 到直线l 的距离=d b y -0. 注:用此公式求解点到直线距离问题时,直线方程要化成一般式. (3)两条平行直线间的距离公式已知两平行直线1l :0111=++C y B x A 和2l :0222=++C y B x A ,若点),(000y x P 在1l 上,则两平行直线1l 和2l 的距离可转化为),(000y x P 到直线2l 的距离.已知两平行直线1l :01=++C By Ax 和2l :02=++C By Ax ,则两直线1l 和2l 的距离=d 2221BA C C +-.注:用此公式求解两平行直线间的距离时,直线方程要化成一般式,并且y x ,项的系数必须对应相等. 2.对称问题 (1)中心对称 ①点关于点的对称点),(00y x P 关于),(b a A 的对称点为)2,2(001y b x a P --. ②直线关于点的对称在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点的坐标,再由两点式求出直线的方程,或者求出一个对称点,再利用1l ∥2l ,由点斜式求出直线的方程,或者在所求直线上任取一点),(y x ,求出它关于已知点的对称点的坐标,代入已知直线,即可得到所求直线的方程. (2)轴对称①点关于直线的对称点),(00y x P 关于b kx y +=的对称点为),(111y x P ,则有⎪⎪⎩⎪⎪⎨⎧++⋅=+-=⋅--b x x k y y k x x y y 22101010101,由此可求出11,y x .特别地, 点),(00y x P 关于a x =的对称点为),2(001y x a P -,点),(00y x P 关于b y =的对称点为)2,(001y b x P -. ②直线关于直线的对称此类问题一般转化为点关于直线的对称问题来解决,有两种情况:一是已知直线与对称直线相交,一是已知直线与对称直线平行. 本章知识结构专题2:圆的标准方程与一般方程知识梳理:⑴.圆的一般方程的概念:当 时,二元二次方程220x y Dx Ey F ++++=叫做圆的一般方程。

高中数学平面解析几何知识点归纳

高中数学平面解析几何知识点归纳

高中数学平面解析几何知识点归纳高中数学平面解析几何知识点有哪些你知道吗?近年的高中数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,一起来看看高中数学平面解析几何知识点,欢迎查阅!高中数学平面解析几何知识点平面解析几何初步:①直线与方程是解析几何的基础,是高考重点考查的内容,单独考查多以选择题、填空题出现;间接考查则以直线与圆、椭圆、双曲线、抛物线等知识综合为主,多为中、高难度试题,往往作为把关题出现在高考题目中。

直接考查主要考查直线的倾斜角、直线方程,两直线的位置关系,点到直线的距离,对称问题等,间接考查一定会出现在高考试卷中,主要考查直线与圆锥曲线的综合问题。

②圆的问题主要涉及圆的方程、直线与圆的位置关系、圆与圆的位置关系以及圆的'集合性质的讨论,难度中等或偏易,多以选择题、填空题的形式出现,其中热点为圆的切线问题。

③空间直角坐标系是平面直角坐标系在空间的推广,在解决空间问题中具有重要的作业,空间向量的坐标运算就是在空间直角坐标系下实现的。

空间直角坐标系也是解答立体几何问题的重要工具,一般是与空间向量在坐标运算结合起来运用,也不排除出现考查基础知识的选择题和填空题。

高中数学平面解析几何知识点平面解析几何,又称解析几何(英语:Analytic geometry)、坐标几何(英语:Coordinate geometry)或卡氏几何(英语:Cartesian geometry),早先被叫作笛卡儿几何,是一种借助于解析式进行图形研究的几何学分支。

解析几何通常使用二维的平面直角坐标系研究直线、圆、圆锥曲线、摆线、星形线等各种一般平面曲线,使用三维的空间直角坐标系来研究平面、球等各种一般空间曲面,同时研究它们的方程,并定义一些图形的概念和参数。

平面解析几何基本理论坐标在解析几何当中,平面给出了坐标系,即每个点都有对应的一对实数坐标。

最常见的是笛卡儿坐标系,其中,每个点都有x-坐标对应水平位置,和y-坐标对应垂直位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面解析几何(直线和圆的方程、圆锥曲线)专题17.0 圆锥曲线几何性质如果涉及到其两“焦点”,优先选用圆锥曲线第一定义;如果涉及到其“焦点”、“准线”或 “离心率”,优先选用圆锥曲线第二定义;此外,如果涉及到焦点三角形的问题,也要重视焦半径和三角形中正余 弦定理等几何性质的应用•PF t +PF 2| =2a 》£沪2方程为椭圆,椭圆方程的第一定义:PF 1 - PF 2 =2a F I F 2无轨迹,PF 1 - PF 2 =2a = F t F 2以F"F 2为端点的线段 |PF t _PF 2| =2aYF t F 2方程为双曲线双曲线的第一定义: PF 1 _PF 2 =2a - F 1F 2无轨迹PF i -PF 2 =2a=F i F 2以F i ,F 2的一个端点的一条射线圆锥曲线第二定义(统一定义):平面内到定点F 和定直线|的距离之比为常数e 的点的轨迹.简言之就 是“ e=点点距(数的统一)”,椭圆,双曲线,抛物线相对关系(形的统一)如右图.点线距当0 e 1时,轨迹为椭圆; 当e =1时,轨迹为抛物线; 当e -1时,轨迹为双曲线;当e =0时,轨迹为圆(e =£,当c =0, a =b 时).a圆锥曲线的对称性、圆锥曲线的范围、圆锥曲线的特殊点线、圆锥曲线的变化趋势b=・,1 —e 2、双曲线中 b . e 2 -1 . a a圆锥曲线的焦半径公式如下图:特征直角三角形、焦半径的最值、焦点弦的最值及其“顶点、焦点、准线等相互之间与坐标系无关的几 何性质”,尤其是双曲线中焦半径最值、焦点弦最值的特点17.1圆锥曲线中的精要结论:.其中e =c ,椭圆中aa exa —ex=1:1.焦半径:2 2(1)椭圆2+ y2=1(a Ab =0): PR = a + ex;3, PF2 = a —exj ;(左+ 右- a b2 2椭圆X2+E—1(a >b>0):b aa2 a2PR =6(X0 —)=a+ex)(X0<0), PF2 =e(—-X0)=ex)-a(X0〉O)c c=1:2 2筈•与=t(t 是大于0的参数,a -b -0)的离心率也是e=£,我们称此方程为共离心率的椭圆系方程. a 2 b 2 a5. 双曲线中的结论:2 222(1) 双曲线W 1 ( a 0,b 0)的渐近线:D 0 ;2.2 2 .2a ba bb 2 2(2) 共渐进线y = _bx 的双曲线标准方程为 D (-为参数,■工0);a a 2b 2(3) 双曲线焦点三角形:2⑵双曲线冷-a 2b 2 “长加短减”原则:MF ! =ex 0 aM F - _ex 0 _a构成满足MF ! _MF 2|=2aMF 2 =ex 0 -aM F 2 - -ex 0 a(与椭圆焦半径不同,椭圆焦半径要带符号计算, 而双曲线不带符号)MF j =ey 0 -aMF 2 = ey 0 aM F i = —ey o M F 2 = -ey 0⑵抛物线:PF =x 0 +卫22.弦长公式:AB = 1 k 2 X 2 - X i = (1 k 2)[(x i X 2)2 -4X I X 2】n 二(i:2)[(y i y 2)2 -4%y 2];【注】:(1)焦点弦长:i .椭圆:| AB 2a _&为• x 2);.抛物线:AB 为 * X 2 * p - p; sin «(2)通径(最短弦) i .椭圆、双曲线: ii .抛物线:2p .2b 2 a2 23. 过两点的椭圆、双曲线标准方程可设为:mx • ny =1( m, n 同时大于 时表示双曲线); 4. 椭圆中的结论:(1) 内接矩形最大面积:2ab ;1 111(2) P, Q 为椭圆上任意两点,且 OP _0Q ,贝U - - m|OP | |OQ| a b(3) 椭圆焦点三角形:9,,0时表示椭圆,ii .点M 是PF |F 2内心,⑷当点P 与椭圆短轴顶点重合时⑸共离心率的椭圆系的方程:椭圆PM 交 F 1F 2于点 N ,则 L PM _|;| MN | c—F 1PF 2 最大;2 2务与=1(a -b -0)的离心率是a be =* (c = . a 2 -b 2),方程a2 0 ①i - S PF 1F 2 = b cot —,(寸=F 1PF 2);2 2ii . P 是双曲线X 2 —与=1(a >0, b > 0)的左(右)支上一点,F i 、F 2分别为左、右焦点,则厶PF 1F 2 a b 的内切圆的圆心横坐标为 _a,(a); ⑷等轴双曲线:双曲线x 2_y 2 离心率e =$2 . 二a 2称为等轴双曲线,其渐近线方程为 y 二x(渐近线互相垂直), (5)共渐近线的双曲线系方程:△ =0时,它的双曲线方程可设为 a b (6)共轭双曲线:以已知双曲线的虚轴为实轴, 2线.笃 a⑺若P 在双曲线 2y 孑2 Xa 则P 到两准线的距离比为 _e_ PF? 简证:岂二d 22 2 2 $_牛「(,0)的渐近线方程为笃 a 2 b 2 a 2 2 2 —(=0). a b 2V 如果双曲线的渐近线为 二二枭互为共轭双曲线, 2 一一爲=1,则常用结论 b 2 m : n . 实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲 2 2 —0 . a 2 b 2 ▲它们具有共同的渐近线: 1 : P 到焦点的3331xye常用结论2:从双曲线一个焦点到另一条渐近线的距离(8)直线与双曲线的位置关系:无切线,2条与渐近线平行的直线,合计 2条;即定点在双曲线上,1条切线,2条与渐近线平行的直线, 合计3 条; 2条切线,2条与渐近线平行的直线,合计 4条;即定点在渐近线上且非原点,1条切线,1条与渐近线平行的直线, 即过原点,无切线,无与渐近线平行的直线.等于b . 区域① 区域② 区域③ 区域④ 区域⑤ 小结:过定点作直线与双曲线有且仅有一个交点,可以作出的直线数目可能有 若直线与双曲线一支有交点,交点为二个时,求确定直线的斜率可用代入 根之和与两根之积同号.6.抛物线中的结论:(1)抛物线y 2 = 2 px ( p ■ 0)的焦点弦AB 性质:2 p %X 241 | AF |•以AB •以AF ii .iii iv v . S .AOB (2)抛物线y 2x 1x 2 2y 1 y 2 - - p ;|BF | p '为直径的圆与准线相切;(或BF )为直径的圆与y 轴相切; 2P 2 sin :^2 px (p - 0)内结直角三角形 OAB 的性质:2 2=4P ,y 』2 = -4P ;ii . I AB 恒过定点(2p,0);iii .代B 中点轨迹方程:y 2二p(x-2p);iv . OM _ AB ,则 M 轨迹方程为:(x - p)2 y 2 二 p 2 ; 2V . (S AOB ) min _ 4 p .合计 2条; 0、2、 3、4 条. 法与渐近线求交和两(3)抛物线y2=2px (p .0),对称轴上一定点A(a,0),则:i .当0 :::a < p时,顶点到点A距离最小,最小值为a ;2 ii .当a . p时,抛物线上有关于x轴对称的两点到点A距离最小,最小值为2ap-p .17.2、两个常见的曲线系方程(1) 过曲线f i(x,y) =0, f2(x,y) =0的交点的曲线系方程是f i(x,y) ■ f2(x,y)=0(■为参数).2 2(2) 共焦点的有心圆锥曲线系方程二2y i,其中k :: max{a2,b2}.a2—k b2—k2 2 2 2 2 2当k ::: min {a ,b }时,表示椭圆;当min {a ,b } . k .max{a ,b }时,表示双曲线.17.3、圆1、圆系方程(1)过点A(N, yj , B(X2, y?)的圆系方程是(x - x1)(x - x2) (y - y1)(y - y2),[(x - x1)(y1 - y2)- (y - y1 )(x1 - x2)] = 0(x -xj(x -X2) (y — yj(y -y2)“ ■ (ax by c) = 0 ,其中ax by c=0 是直线AB 的方程,入是待定的系数.2 2⑵过直线l : Ax By C = 0与圆C:x y Dx Ey 0的交点的圆系方程是2 2x y Dx Ey F (Ax By C) =0,入是待定的系数.2 2 9 2⑶过圆G :x y D1x E1 y F^ 0与圆C?: x y - D2x E2y F2 = 0的交点的圆系方程2 2 2 2是x y D1x E1y F^ ■ (x y - D:x - E z y • F2) = 0 ,入是待定的系数.特别地,当■- -1 时,x2y2D1X ■E1y F1 (x2y2D2X ■ E?y ■ F2) = 0 就是(D1 —D2)x ■ (E1 —E2)y ■ (F1 —F2) = 0表示:①当两圆相交时,为公共弦所在的直线方程;②向两圆所引切线长相等的点的轨迹(直线)方程,有的称这条直线为根轴;2、点与圆的位置关系:点P(x),y0)与圆(x-a)2• (y-b)2二r2的位置关系有三种若d = ,(a -x。

)2• (b-y。

)2,则d • r =点P在圆外;d =r =点P在圆上;d v r=点P在圆内.3、直线与圆的位置关系- 2 2 2Aa + Bb + C 直线Ax+By+C=0与圆(x—a) +(y—b) =r的位置关系有三种(d=—):J A2+B2 d相离 u = ::0 ;d=ru 相切=二=0 ;d :::r =相交=:0.4、两圆位置关系的判定方法:设两圆圆心分别为半径分别为r1,r2, O1O2 = dd •斤+匚=外离二4条公切线;d=r1+「2 :=外切=3条公切线;I;-r2| : d ::叫+「2 =相交二2条公切线;d = % -「2二内切二1条公切线;0 :::d •朮兀:=内含=无公切线5、圆的切线方程及切线长公式2 2(1)已知圆x y Dx Ey F =0.①若已知切点(x°,y°)在圆上,则切线只有条,其方程是D(X Q +x) E(y ° + y) ___ x 0x y 0y- -F = 0.2 2当(心丫-)圆外时,x 0x y 0yX ) -E(y-9・F=0表示过两个切点的切2 2点弦方程.求切点弦方程,还可以通过连心线为直径的圆与原圆的公共弦确定 ② 过圆外一点的切线方程可设为y - y ° = k(x - x °),再利用相切条件求k ,这时必有两条切 线,注意不要漏掉平行于 y 轴的切线.③ 斜率为k 的切线方程可设为 y = kx b ,再利用相切条件求b ,必有两条切线.2 2 2⑵ 已知圆(x-a) ・(y-b) -r 的切线方程.… 2 2 2①若P(x 。

相关文档
最新文档