二元一次方程组代入法练习

合集下载

(完整版)代入法解二元一次方程组专题习题

(完整版)代入法解二元一次方程组专题习题

(完整版)代入法解二元一次方程组专题习题1. 问题描述已知二元一次方程组如下:方程1: ax + by = c方程2: dx + ey = f求解方程组。

2. 解题思路代入法是解二元一次方程组的一种常用方法。

其基本思路是将其中一个方程中的一个变量表达式代入另一个方程中,从而得到只含一个变量的一元一次方程,进而求解得到这个变量的值,最后再代回原方程组求解另一个变量的值。

3. 解题步骤步骤1:将方程1中的一个变量(比如x)用另一个变量(比如y)表示,得到方程1'。

步骤2:将方程1'代入方程2,得到只含有变量y的一元一次方程。

步骤3:解得y的值。

步骤4:将y的值代入方程1',解得x的值。

4. 示例题题1:方程1: 2x + 3y = 7方程2: 3x - y = 1解:步骤1:将方程1中的变量x用y表示,得到方程1':x = (7 - 3y) / 2。

步骤2:将方程1'代入方程2,得到:3((7 - 3y) / 2) - y = 1。

步骤3:化简得到:7 - 9y + 2y = 2。

步骤4:解得y的值为y = 1。

步骤5:将y的值代入方程1':x = (7 - 3) / 2 = 2。

因此,方程组的解为x = 2,y = 1。

题2:方程1: 3x + 2y = 8方程2: 2x - y = 3解:步骤1:将方程1中的变量x用y表示,得到方程1':x = (8 -2y) / 3。

步骤2:将方程1'代入方程2,得到:2((8 - 2y) / 3) - y = 3。

步骤3:化简得到:16 - 4y - 3y = 9。

步骤4:解得y的值为y = 1。

步骤5:将y的值代入方程1':x = (8 - 2) / 3 = 2。

因此,方程组的解为x = 2,y = 1。

5. 总结代入法是解二元一次方程组的一种常用方法,通过代入和化简,可以得到方程组的解。

代入法解二元一次方程组(二)专题训练

代入法解二元一次方程组(二)专题训练

0是关 于

C. 4
D. 6
3 . 已知 +3 y=0 . 贝 4
A.1 C.一— 1 —

Y的二 元一 次方程 , 则 2 a +b=

— 一

1 3 . 女 口 果( —Y+3 ) +I 2 x+Y l =0 , 习 I j 么 3 x一
2 y=
2 y=
f + y 一 3
f 2 x=- y
B f + y 一 3 . {

9 . 若 一 3 a x 一
3 —3
和 2 7

是 同类 项 , 则 2 8+ ≯
t x一2 y= 1
3 b=
C .{

5 — — 一 —— v= : 1 3 6 D
一 一
3 一 f = 一2, f = 2,
1 0 . 如果 { 的 ’ 和{
【 =4
l v— = -3



【 y= 1
都是方程 y =似 +
+9 y= 一 4
6 y的解 , 则 0 —2 b=
+3 y =0.
2 . 已知方程组 {
7 . 方程 + =4有



组解 , 有



A ma l l i s n e v e r s o o n t r i a l a s i n t h e ma me n t o f e X C e S s i v e g o o d f o r t u n e
f Y=3 x一 1 .
( 1 ) { I
A. {
/ y=2

代入法解二元一次方程组习题1

代入法解二元一次方程组习题1

代入法解二元一次方程组习题课1.用代入法解方程组⎩⎨⎧=--=-⑵y x ⑴y x 107332,较简便的解法步骤是:先把方程变成 ,再代入方程 ,求得 的值。

然后再求 的值;2.用代入法解方程⎩⎨⎧=-=+⑵y x ⑴y x 52243,使用代入法化简, 比较容易的变形是 ( )A 、由⑴得342y x -=B 、由⑴得432x y -= C 、由⑵得25y x += D 、由⑵得52-=x y 3.将31--=x y 代入12=-y x ,可得 ( ) A 、()1312=--x x B 、1312=-⨯-x x C 、1322=++x x D 、1322=-+x x 4.解下列方程组(1) (2) (3)⎩⎨⎧=+=-82573y x y x (4)⎩⎨⎧-=+-=+32312y x x y(5)⎪⎩⎪⎨⎧=+=-123222n m n m (6)⎩⎨⎧=+=+17431232y x y x (7) ⎩⎨⎧=-=+1351843y x y x (8)11233210x y x y +⎧-=⎪⎨⎪+=⎩ (9) 74321432x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩,. (10) ()()⎪⎩⎪⎨⎧=--+=-++2823623y x y x y x y x y =x +62x +3y =8 2x +3y =-19 x +5y =15.已知方程组⎩⎨⎧-=-+=-32342x y m y x 的解x 、y 互为相反数,求m 的值。

6.已知代数式x 2+bx +c ,当x =-3时,它的值为9,当x =2时,它的值为14,当x =-8时,求代数式的值。

7.若∣m +n -5∣+(2m +3n -5)2=0,求(m +n )2的值8.已知方程组⎩⎨⎧-=+=-154by ax y x 和⎩⎨⎧=+=+184393by ax y x 有相同的解,求b a ,的值。

作业1、解方程组(1) ⎩⎨⎧=+-=18050y x y x (2) ⎩⎨⎧=-=+173x y y x (3) (4) 233511x y x y +=⎧⎨-=⎩ (5) 523,611;x y x y -=⎧⎨+=⎩ (6)⎪⎪⎩⎪⎪⎨⎧=+=+244263n m n m (7) 32522(32)28x y x x y x +=+⎧⎨+=+⎩ (8)357,23423 2.35x y x y ++⎧+=⎪⎪⎨--⎪+=⎪⎩2.已知 是方程组 的解,求a 和b 的值. 3、若方程组2(1)(1)4x y k x k y +=⎧⎨-++=⎩的解x 与y 相等,求k 的值. 4、已知方程组4234ax by x y -=⎧⎨+=⎩与2432ax by x y +=⎧⎨-=⎩的解相同,求a b +=.5、如图,8块相同的长方形地砖拼成一个长方形,每块长方形地砖m =1 n =2 am +bn =2 am -bn =3⎩⎨⎧=-=2273y x x y的长和宽分别是多少↑↓60cm6.运往灾区的两批货物,第一批共480吨,用8节火车车厢和20辆汽车正好装完;第二批共运524吨,用10节火车车厢和6辆汽车正好装完,求每节火车车厢和每辆汽车平均各装多少吨7.〈〈一千零一夜〉〉中有这样一段文字:有一群鸽子,其中一部分在树上欢歌,另一部分在地上觅食,树上的一只鸽子对地上觅食的鸽子说:“若从你们中飞上来一只,则树下的鸽子就是整个鸽群的13,若从树上飞下去一只,则树上、树下的鸽子就一样多了。

二元一次方程组解法-代入法练习题

二元一次方程组解法-代入法练习题

二元一次方程组解法(一)—-代入法(基础)巩固练习【巩固练习】一、选择题1.用代入消元法解方程组323211x yx y-=⎧⎨+=⎩①②代入消元法正确的是()。

A .由①②得y =3x+2,代入②,得3x=11—2(3x+2)B.由②得1123yx-=,代入①,得11231123yy-=-C.由①得23yx-=,代入②,得2—y=11—2yD.由②得3x=11-2y,代入①,得11-2y-y=22.用代入法解方程组34225x yx y+=⎧⎨-=⎩①②使得代入后化简比较容易的变形是().A.由①得243yx-=B.由①得234xy-=C.由②得52yx+=D.由②得y=2x-53.对于方程3x—2y—1=0,用含y的代数式表示x,应是()。

A.1(31)2y x=-B.312xy+=C.1(21)3x y=-D.213yx+=4.已知x+3y=0,则3232y xy x+-的值为().A.13B.13-C.3 D.—35.一副三角板按如图摆放,∠1的度数比∠2的度数大50°,若设,,则可得到方程组为().A. B.C。

D.6.已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解.则a -b 的值为( )。

A .-1B .1C .2D .3二、填空题7.解方程组523,61,x y x y +=⎧⎨-=⎩①②若用代入法解,最好是对方程________变形,用含_______的代数式表示________.8.如果-x+3y =5,那么7+x -3y =________.9.方程组525x y x y =+⎧⎨-=⎩的解满足方程x+y —a =0,那么a 的值是________. 10。

若方程3x -13y =12的解也是x -3y =2的解,则x =________,y =_______. 11.小刚解出了方程组332x y x y -=⎧⎨+=⎩▲的解为4x y =⎧⎨=⎩▉,因不小心滴上了两滴墨水,刚好盖住了方程组中的一个数和解中的一个数,则▲=________,▇=________。

二元一次方程组代入法练习题(附标准答案)

二元一次方程组代入法练习题(附标准答案)

二元一次方程组代入法练习题(附标准答案)一、基础过关1.把下列方程改写成用含x 的代数式表示y 的形式:(1)5x-y=3; (2)2(x-y)=3: (3)−x 2+y 5=1;(4)(2xy) -3(x-2y)=12. 2.用代入法解方程提 {x +3y =10,3x −5y =2.较简便的步骤是:先把方程 变形为 . 3.用代入法解方程提 {2x +3y −2=04x +1=9y 的正确解决是( ) A.先将①变形为 x =3y−22,再代入② B.先将①变形为 y =2−2x 3,再代入②C.先将②变形为 x =94y1,再代入①D.先将②变形为y=9(4x-1),再代入① 4.关于x 、y 的方程组 {ax −4y =8,3x +2y =6的解中y=0,则a 的取值为( ) A.--1 B. a>4 C. a<4 D. a=65.关于x 、y 的方程组 {4x −3y =2,kx +(k −1)y =6的解x 与,的值相等,则x 的值为() A.4 B. 3 C.2 D. 16.用代入法解下列方程组:(1){y =2x −1,7x −3y =1; (2){3x =4y.x −2y =−5;(3){4x −2y =4,2x +y =2; (4){x +2y =4,2x −y =28.二、综合创新7.(综合题) 方程组 {ax −3y =5,2x +by =1中,如果 {x =12y =−1是它的一个解,求3(a-b)-a ² 的值。

8.取一根绳子测量教室的长度,若把绳子折成5等份来测量,绳子多1米;若把绳子折成4等份来测量,绳子多3米,间绳子和教室各有多长?9.解方程组(1) (2005年, 南京) (2)(2005年,北京海淀)解方程组 {x −2y =0,3x +2y =8.解方程组 {x −4y =−1,2x +y =16.答案:1.(1) y=5x-3. (2)y =x −32. (3)y =10+5x 2, (4)y =12+x 5.2.①:x=10-3y; ②;",x3. B4. A 点拨:把y=0代入②,得x-2,把x=2,y=0代入①,得a=4,故选A.5. C 点拨:由题意,有 {4x −3y =2,kx +(k −1)y =6,x =y.把③代入①,得 4x-3x-2, ∴x-2.把x=y=2代入②,得2k+2(k-1)=6,解得k=2,故选C.6.(1) {x =−2.y =−5. (2)解: {3x =4y,x −2y =−5. 山②,得 x =ai 2y −5,② 把③代入①得,3(2y-5)-4y,解得 y =π4.5.把y-7.5代入③得 x=2×7.5 -5-10.∴{x =10.y =7.5(3){x =1,y =0. (4){x =12,y =−4.7. 解: 否 {x =12,y =−1代入方程组 {ax −3y =5.2x +by =1得{12a +3=5.1−b =1.解这个方程组,得 {a =4,b =0. ∴3(a-b)-a ²-3×(4-0) -4²-4.8. (1)解:设绳子长x 米,教室长y 米,依题意得{x 5−y =1,x 4−y =3.11 {x −5y =5,x −4y =12.解这个方程组,得 {x =40,y =7.答:海子长40米.收宝长7米.(2)解:设足球有x 个,球员有y 人, 由题意,得 {y =x +6,y 2+6=x解这个方程组,得 {x =18,y =24.一个白块则围有三个黑块, 一个黑块周围有五个白块,即黑白比例为3:5.设白块有x 块由题意得:∴123=z 5,∴x =20.答:这批足球共有18个。

专题 解二元一次方程组(计算题50题)(原卷版)

专题 解二元一次方程组(计算题50题)(原卷版)

七年级下册数学《第八章二元一次方程组》专题解二元一次方程组(计算题50题)1.用代入法解下列方程组:(1)x−y=4,3x+y=16;(2)x−y=2,3x+5y=14.2.用代入法解下列方程组:(1)2x−y=33x+2y=8;(2)u+v=103u−2v=5.3.用代入法解下列方程组:(1)3x−y=2,9x+8y=17;(2)3x−4y=10x+3y=12.4.用代入法解下列方程组.(1)x+2y=4y=2x−3;(2)x−y=44x+2y=−2.5.用代入法解下列方程组:(1)5x+4y=−1.52x−3y=4(2)4x−3y−10=03x−2y=06.用代入法解下列方程组:(1)x−y=42x+y=5;(2)3x−y=29x+8y=17;(3)3x+2y=−8 6x−3y=−9.7.用代入法解下列方程组:(1)3x+2y=11,①x=y+3,②(2)4x−3y=36,①y+5x=7,②(3)2x−3y=1,①3x+2y=8,②8.用代入法解下列方程组:(1)5x+2y=15①8x+3y=−1②;(2)3(y−2)=x−172(x−1)=5y−8.9.用代入法解下列方程组:(1)x=6−5y3x−6y=4(2)5x+2y=15x+y=6(3)3x+4y=22x−y=5(4)2x+3y=73x−5y=110.用代入法解下列方程组:(1)2x+y=3x+2y=−6;(2)x+5y=43x−6y=5;(3)2x−y=63x+2y=2;(4)5x+2y=113y−x=−9;1.用加减法解下列方程组:(1)4x−y =143x +y =7 (2x−2y =7x−3y =−82.用加减法解下列方程组:(1)2m +7n =53m +n =−2(2)2u−5v =124u +3v =−2(3y 7=12+y 7=133.用加减法解下列方程组:(1)x−y =52x +y =4;(2)x−2y =33x +4y =−1.4.用加减法解下列方程组:(1)4x−3y =11,2x +y =13;(2)x−y =3,2y +3(x−y)=115.用加减法解下列方程组:(1)3μ+2t =76μ−2t =11 (2)2a +b =33a +b =4.6.(2023•市北区校级开学)用加减法解下列方程组:(1)3y−4x =04x +y =8; (2+y =3x−32y =−1.7.(2022秋•陕西期末)用加减法解下列方程组:(1)x−y =33x−8y =14; (2+2y =10=1+y 13.8.用加减法解下列方程组:(1)x +3=y ,2(x +1)−y =6; (2)x +y =2800,96%x +64%y =2800×92%.9.用加减法解下列方程组:(1)x−y =5,①2x +y =4;②(2)x−2y =1,①x +3y =6;②(3)2x−y =5,①x−1=12(2y−1).②10.用加减法解下列方程组:(1)x +3y =62x−3y =3 (2)7x +8y =−57x−y =4(3)y−1=3(x−2)y+4=2(x+1)(4+y4=1−y3=−1.1.(2022春•新田县期中)用指定的方法解下列方程组:(1)2x−5y=14①y=−x②(代入法);(2)2x+3y=9①3x+5y=16②(加减法).2.(2022春•安岳县校级月考)解下列方程组:(1)3x−y=75x+2y=8(用代入法);(2+n3=10−n4=5(用加减法).3.(2022春•大连期中)用指定的方法解下列方程组:(1)x−3y=42x+y=13(代入法);(2)5x+2y=4x+4y=−6(加减法).4.(2022春•宁远县月考)请用指定的方法解下列方程组(1)5a−b=113a+b=7(代入消元法);(2)2x−5y=245x+2y=31(加减消元法).5.(2021秋•蒲城县期末)请用指定的方法解下列方程组:(1)2x+3y=11①x=y+3②(代入消元法);(2)3x−2y=2①4x+y=10②(加减消元法).6.(2022秋•历下区期中)请用指定的方法解下列方程组:(1)m−n2=22m+3n=12(代入法);(2)6s−5t=36s+t=−15(加减法).7.(2022春•泰安期中)用指定的方法解下列方程组(1)3x+4y=19x−y=4(代入消元法);(2)2x+3y=−53x−2y=12(加减消元法);(35(x−9)=6(y−2)−y13=2.8.(2021秋•历下区期中)请用指定的方法解下列方程组:(1)3x+2y=14x=y+3;(代入法)(2)2x+3y=123x+4y=17.(加减法)9.(2021春•沙河口区期末)用指定的方法解下列方程组:(1)y=2x−33x+2y=8(代入法);(2)3x+4y=165x−6y=33(加减法).10.用指定的方法解下列方程组:(1)3x+4y=19x−y=4(代入法);(2)2x+3y=−53x−2y=12(加减法).1.(2022•苏州模拟)用适当的方法解下列方程组.(1)x+2y=9y−3x=1;(2x−34y=1=4.2.(2022秋•锦江区校级期末)用适当的方法解下列方程组.(1)x=2y−14x+3y=7;(2)3x+2y=22x+3y=28,.3.用适当的方法解下列方程组:(1)x+2y=0,3x+4y=6;(2=2y1)−y=11(3)x+0.4y=40,0.5x+0.7y=35;(4+n−m4=−14,5(n1)12=2.4.(2022•天津模拟)用适当的方法解下列方程组:(1)x +y =52x−y =4; (2=y 24−y−33=112.5.(2021•越城区校级开学)用适当的方法解下列方程组:(1)2x−3y =7x−3y =7. (2)0.3p +0.4q =40.2p +2=0.9q .6.(2022春•东城区校级月考)用适当的方法解下列方程组(1)x +y =52x +y =8; (2)2x +3y =73x−2y =4.7.(2021春•哈尔滨期末)用适当的方法解下列方程组(1)x +2y =93x−2y =−1 (2)2x−y =53x +4y =28.(2022春•椒江区校级期中)用适当的方法解下列方程组:(1)2x +3y =16①x +4y =13②; (2)2s t 3=3s−2t 8=3.9.(2022春•诸暨市期中)用适当的方法解下列方程组:(1)y=2x−1x+2y=−7(2+y3=7+y2=810.(2021春•南湖区校级期中)用适当的方法解下列方程组:(1)3x+2y=9x−y=8;(2=x y2=7.1.先阅读材料,然后解方程组:材料:解方程组x+y=4①3(x+y)+y=14②在本题中,先将x+y看作一个整体,将①整体代入②,得3×4+y=14,解得y=2.把y=2代入①得x=2,所以x=2 y=2这种解法称为“整体代入法”,你若留心观察,有很多方程组可采用此法解答,请用这种方法解方程组x−y−1=0①4(x−y)−y=5②.2.(2021秋•乐平市期末)解方程组3x−2y=8⋯⋯⋯①3(3x−2y)+4y=20⋯.②时,可把①代入②得:3×8+4y=20,求得y=﹣1,从而进一步求得x=2y=−1这种解法为“整体代入法“,请用这样的方法解下列方程组2x−3y=123(2x−3y)+5y=26.3.先阅读,然后解方程组.解方程组x−y−1=0①4(x−y)−y=5②时,可由①得x﹣y=1.③,然后再将③代入②得4×1﹣y=5,求得y=﹣1,从而进一步求得x=0y=−1这种方法被称为“整体代入法”,请用这样的方法解下列方程组:=0=2y+1.4.(2022春•太和县期末)先阅读,然后解方程组.解方程组x−y−1=0①4(x−y)−y=5②时,可由①得x﹣y=1,③然后再将③代入②得4×1﹣y=5,求得y=﹣1,从而进一步求得x=0①y=−1②这种方法被称为“整体代入法”,+2y=9.5.先阅读,然后解方程组.解方程组x−y−1=0①4(x−y)−y=5②时,可由①得x﹣y=1③,然后再将③代入②得4×1﹣y=5,求得y=﹣1,从而进一步求得x这种方法被称为“整体代入法”,请用这样的方法解下列方程组:2x−3y−2=03(2x−3y)+y=7.1.用换元法解下列方程组+2y=12−1y=342.用换元法解下列方程组:(1)3(x+y)+2(x−y)=36(x+y)−4(x−y)=−16(2+x5y3=2−(x+5y)=5.3.(2022春•云阳县期中)阅读探索:解方程组(a−1)+2(b+2)=62(a−1)+(b+2)=6解:设a﹣1=x,b+2=y原方程组可以化为x+2y=62x+y=6,解得x=2y=2,即:a−1=2b+2=2∴a=3b=0,此种解方程组的方法叫换元法.(1)拓展提高运用上述方法解下列方程组(a4−1)+2(b5+2)=102(a4−1)+(b5+2)=11;(2)能力运用已知关于x,y的方程组a1x+b1y=c1a2x+b2y=c2的解为x=6y=7,求关于m、n的方程组a1(m−2)+b1(n+3)=c1a2(m−2)+b2(n+3)=c2的解.4+x−y10=3①−x−y10=−1②,你会解这个方程组吗?小明、小刚、小芳争论了一会儿,他们分别写出了一种方法:小明:把原方程组整理得8x+2y=90③2x+8y=−30④④×4﹣③得30y=﹣210,所以y=﹣7把y=﹣7代入③得8x=104,所以x=13,即x=13y=−7小刚:设x y6=m,x−y10=n,则m+n=3③m−n=−1④③+④得m=1,③﹣④得m=2,=1=2,所以x+y=6x−y=20,所以x=13y=−7.小芳:①+②得2(x y)6=2,即x+y=6.③①﹣②得2(x−y)10=4,即x﹣y=20.④③④组成方程组得x=13③﹣④得y =﹣7,即x =13y =−7.老师看过后,非常高兴,特别是小刚的方法独特,像小刚的这种方法叫做换元法,你能用换元法解下列方程组吗?+2x 3y 7=1−2x 3y 7=5.5.(2022春•卧龙区校级月考)阅读探索(1)知识积累解方程组(a−1)+2(b +2)=62(a−1)+(b +2)=6.解:设a ﹣1=x ,b +2=y .原方程组可变为x +2y =62x +y =6,解这个方程组得x =2y =2,即a−1=2b +2=2,所以a =3b =0,这种解方程组的方法叫换元法.(2)拓展提高运用上述方法解下列方程组:(m 3−1)+2(n 5+2)=43(m 3−1)−(n 5+2)=5.(3)能力运用已知关于x ,y 的方程组a 1x +b 1y =c 1a 2x +b 2y =c 2的解为x =3y =4,请直接写出关于m 、n 的方程组a 1(m +2)−b 1n =c 1a 2(m +2)−b 2n =c 2的解是 .。

初一数学下册知识点《解二元一次方程组--代入消元法》150例题及解析

初一数学下册知识点《解二元一次方程组--代入消元法》150例题及解析

初一数学下册知识点《解二元一次方程组--代入消元法》150例题及解析副标题题号一二三四总分得分一、选择题(本大题共35小题,共105.0分)1.若关于x,y的二元一次方程组无解,则a的值为A. B. 1 C. D. 3【答案】A【解析】解:由②得:x=3+3y,③把③代入①得:a(3+3y)-y=4,整理得:(3a-1)y=4-3a,∵方程组无解,∴3a-1=0,且4-3a≠0,∴a=.故选:A.把第二个方程整理得到x=3+3y,然后利用代入消元法消掉未知数x得到关于y的一元一次方程,再根据方程组无解,未知数的系数等于0列式计算即可得解.本题考查了二元一次方程组的解,消元得到关于y的方程是解题的关键,难点在于明确方程组无解,未知数的系数等于0.2.由方程组,可得x与y的关系是()A. 2x+y=-4B. 2x-y=-4C. 2x+y=4D. 2x-y=4【答案】C【解析】【分析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法,方程组消元m即可得到x与y的关系式.【解答】解:,把②代入①得:2x+y-3=1,整理得:2x+y=4,故选C.3.若方程组中x与y互为相反数,则m的值是A. 1B. D. 36【答案】C【解析】【分析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.根据x与y互为相反数,得到x+y=0,即y=-x,代入方程组求出m的值即可.【解答】解:,根据题意得:x+y=0,即y=-x③,把③代入②得:-2x=8,即x=-4,y=4,把x=-4,y=4代入①得:-20-16=m,解得:m=-36,故C正确.故选C.4.把方程2x-y=3改写成用含x的式子表示y的形式正确的是()A. 2x=y+3B. x=C. y=2x-3D. y=3-2x【答案】C【解析】解:由2x-y=3知2x-3=y,即y=2x-3,故选:C.将x看做常数移项求出y即可得.此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.5.用代入法解方程组时,用①代入②得()A. 2-x(x-7)=1B. 2x-1-7=1C. 2x-3(x-7)=1D. 2x-3x-7=1【答案】C【解析】【分析】本题考查了解二元一次方程组,主要考查了代入法的思想,比较简单.根据代入法的思想,把②中的y换为(x-7)即可.【解答】解:①代入②既是把②中的y替换成(x-7),得:2x-3(x-7)=1.故选C.6.用“代入消元法”解方程组时,把①代入②正确的是()A. 3x﹣2x+4=7B. 3x﹣2x﹣4=7C. 3x﹣2x+2=7D. 3x﹣2x﹣2=7【答案】A【解析】【分析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.观察方程组,可知①式可直接代入②式中,再去括号,即可得到结果.【解答】解:用“代入消元法”解方程组时,把①代入②得,去括号得:故选:A.7.解方程组时,把①代入②,得()A. B.C. D.【答案】D【解析】【分析】本题主要考查二元一次方程组的解法.根据把①代入②,得到的结果即可.【解答】解:解方程组时,把①代入②,得2y-5(3y-2)=10.故选D.8.解方程组①,②,比较简便的方法是A. 都用代入法B. 都用加减法C. ①用代入法,②用加减法D. ①用加减法,②用代入法【答案】C【解析】略.9.在等式y=kx+b中,当x=1时,y=5,当x=-2时,y=11,则k、b的值为()A. B. C. D.【答案】D【解析】解:由题意得,解得.故选D.根据已知条件可以列出关于k、b的二元一次方程组,通过解该方程组得到.本题考查二元一次方程组,有加减法和代入法两种,一般选用加减法解二元一次方程组较简单.10.已知,,用只含的代数式表示正确的是()A. B. C. D.【答案】A【解析】【分析】此题主要考查了解二元一次方程组,消去t表示出y是解本题的关键.由x=2-t移项可得t=2-x,将此代入计算即可求解.【解答】解:由x=2-t得t=2-x,∴y=3+2(2-x)=3+4-2x=-2x+7.故选A.11.由方程组,可得出x与y的关系式是()A. B. C. D.【答案】A【解析】【分析】本题考查了代入消元法解方程组,是一个基础题.【解答】解:由①得m=6-x,代入方程②,即可消去m得到关于x,y的关系式.∴6-x=y-3∴x+y=9.故选A.12.如果2m9-x n y和-3m2y n3x+1是同类项,则2m9-x n y+(-3m2y n3x+1)=()A. -m8n4B. mn4C. -m9nD. 5m3n2【答案】A【解析】解:由题意,得9-x=2y且y=3x+1,解得x=1,y=4,当x=1,y=4时,2m9-x n y+(-3m2y n3x+1)=2m8n4+(-3m8n4)=-m8n4,故选:A.根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.本题考查了同类项,利用同类项得出9-x=2y且y=3x+1是解题关键,又考查了二元一次方程组.13.在关于x、y的二元一次方程组的下列说法中,正确的是①当a=3时,方程的两根互为相反数;②当且仅当a=-4时,解得x与y相等;③x,y满足关系式;④若,则a=10.A. ①③B. ①②C. ①②③D. ①②③④【答案】D【解析】【分析】本题考查三元一次方程组的解法,方程组的解.把a=3 代入原方程,求解即可判定①;把a=-4代入原方程求解,即可判定②;把原方程中第一个方程乘以2,两式相减即可得x+5y的值,即可判定③;由9x×27y=81,得32x+3y=34,所以2x+3y=4,将原方程中第二方程-第一方程,即可得2x+3y=a-6,所以有a-6=4,即可求出a值,从而可判定④.继而得出答案.【解答】解:∵,把a=3代入方程组得解得:,∴x、y互为相反数,故①正确;把a=-4代入方程组得,解得:,∴x=y,故②正确;②-①×2得x+5y=-12,故③正确;②-①得2x+3y=a-6,又∵9x×27y=81,∴32x+3y=34,∴2x+3y=4,∴a-6=4,解得:a=10,故④正确∴正确的有①②③④.故选D.14.方程组消去y后所得的方程是()A. 3x-4x+10=8B. 3x-4x+5=8C. 3x-4x-5=8D. 3x-4x-10=8【答案】A【解析】【分析】本题主要考查代入消元法解方程组.把方程中的未知数换为另一个未知数的代数式即可,比较简单.根据代入消元法,把①代入②,把②中的y换成2x-5即可.【解答】解:,把①代入②,得3x-2(2x-5)=8,即3x-4x+10=8.故选A.15.用代入法解方程组时,代入正确的是( )A. x-2-x=4B. x-2-2x=4C. x-2+2x=4D. x-2+x=4【答案】C【解析】【分析】本题考查了用代入法解二元一次方程组,是基础知识要熟练掌握.将①代入②整理即可得出答案.【解答】解:,把①代入②得,x-2(1-x)=4,去括号得,x-2+2x=4.故选C.16.解二元一次方程组时,用代入消元法整体消去4,得到的方程是()A. 2=﹣2B. 2=﹣36C. 12=﹣36D. 12=﹣2【答案】B【解析】解:由①得:4x=17-5y③,把③代入②得:17-5y+7y=-19,2y=-36,故选:B.由①得出4x=17-5y③,把③代入②即可.本题考查了解二元一次方程组,能够正确代入是解此题的关键.17.若方程组的解满足x+y=3,则a的值是()A. 6B. 7C. 8D. 9【答案】C【解析】【分析】本题主要考查加减消元法解二元一次方程组和一元一次方程组的解法,先运用加减消元法求出,再将转化为,解出a的值即可.【解答】解:得,,∵,∴解得.故选C.18.如果方程组的解与方程组的解相同,则a+b的值为()A. -1B. 2C. 1D. 0【答案】C【解析】略19.二元一次方程2x+y=5的正整数解有()A. 1个B. 2个C. 3个D. 4个【答案】B【解析】解:方程2x+y=5,解得:y=-2x+5,当x=1时,y=3;x=2时,y=1,则方程的正整数解有2个.故选:B.方程变形后表示出y,确定出正整数解的个数即可.此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.20.如果方程组的解为那么被“★”“■”遮住的两个数分别为( )A. 10,4B. 4,10C. 3,10D. 10,3【答案】A【解析】【分析】本题考查的是二元一次方程组的解有关知识,把方程组的解代入2x+y=16先求出■,再代入x+y求★.【解答】解:把代入2x+y=16得12+■,解得:■=4再把代入x+y=★得★=6+4=10故选A.21.若二元一次方程组的解中x,y互为相反数,则m的值为()A. 10B. -7C. -10D. -12【答案】C【解析】【分析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 由x与y互为相反数,得到x+y=0,即x=-y,代入方程组求出m的值即可.【解答】解:由x与y互为相反数,得到x+y=0,即x=-y,代入方程组得:,消去x得:3m+9=2m-1,解得:m=-10.故选C.22.如果方程组的解与方程组的解相同,则a,b的值是( )A. B. C. D.【答案】A【解析】【分析】本题考查了同解方程组的知识,解答此题的关键是熟知方程组有公共解的含义,考查了学生对题意的理解能力.因为方程组有相同的解,所以只需求出一组解代入另一组,即可求出未知数的值.【解答】解:由题意得:是的解,故可得:,解得:.故选A.23.方程组的解也是方程3x+ky=10的解,则k的值是()A. 4B. 10C. 9D.【答案】A【解析】【分析】此题考查二元一次方程解的定义和解法,解二元一次方程组首先要消元,然后再求解,同时也考查的方程的同解,比较简单.解方程组求出x、y的值,再代入方程得出关于k 的方程,解之可得.【解答】解:解方程组,①×2-②,得:3x=6,解得:x=2,将x=2代入①得:3×2+y=7,解得:y=1,∴方程组的解为,代入方程3x+ky=10得6+k=10,解得k=4,故选A.24.若点A(-4,0)、B(0,5)、C(m,-5)在同一条直线上,则m的值是( )A. 8B. 4C. -6D. -8【答案】D【解析】【分析】本题考查用待定系数法求一次函数解析式,要注意利用一次函数的特点,列出方程组,求出未知数,写出解析式,是解题的关键,已知点A(-4,0)、B(0,5)在同一条直线上,用待定系数法可求出函数关系式.再把C(m,-5)代入求出m的值.【解答】解:设直线y=kx+b,已知A(-4,0)、B(0,5)的坐标,可列出方程组,解得,写出解析式y=x+5,因为点A(-4,0)、B(0,5)、C(m,-5)在同一条直线上,则得到-5=m+5,解得:m=-8.故选D.25.二元一次方程组的解是()A. B. C. D.【答案】C【解析】【分析】此题主要考查二元一次方程组的解法.用代入消元法解二元一次方程组即可.【解答】解:,把②代入①,得x+2×2x=10,解得x=2,把x=2代入②中,得y=4,所以方程组的解为,故选C.26.已知是关于x,y的二元一次方程组的解,则a+b的值是( )A. 1B. 3C. 6D. 8【答案】D【解析】【分析】本题考查了二元一次方程组的解和解二元一次方程组,熟练掌握解方程组的方法是解题的关键,所谓“方程组”的解,指的是该数值满足方程组中的每一方程的值,只需将方程的解代入方程组,就可得到关于a、b的二元一次方程组,解得a、b的值,即可得到答案.【解答】解:把代入方程组得,,即,则a+b==8,故选D.27.已知-3a x+y b2与-a3b x是同类项,则x、y的值分别为( )A. 3、3B. -1、1C. 2、3D. 2、1【答案】D【解析】【分析】本题考查了同类项的定义,属于基础题.根据同类项的定义可得,解出x,y即可.【解答】解:因为-3a x+y b2与-a3b x是同类项,所以,解得.故选D.28.已知方程组的解是,则2m+n的值为( )A. 1B. 2C. 3D. 0【答案】C【解析】【分析】此题主要考查了二元一次方程组解的定义以及解二元一次方程组的基本方法.所谓“方程组”的解,指的是该数值满足方程组中的每一方程的值,只需将方程的解代入方程组,就可得到关于m,n的二元一次方程组,解得m,n的值,即可求2m+n的值.【解答】解:根据定义把代入方程组,得,解得.∴2m+n=2×2-1=3.故选C.29.已知关于a,b的方程组的解是,则直线y=mx+n不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】【分析】本题考查的知识点是二元一次方程的解,解二元一次方程组,一次函数的性质,首先由方程组的解是求出m,n的值,代入得到一次函数解析式,再根据一次函数的性质,即可得到答案.【解答】解:∵关于a,b的方程组的解是,∴,∴,∴直线y=mx+n的解析式为,∵k=-2,b=-3,∴过第二、三、四象限,故选A.30.已知和都是方程mx+ny=8的解,则m、n的值分别为()A. 1,﹣4B. ﹣1,4C. ﹣1,﹣4D. 1,4【答案】D把x与y的值代入方程计算即可求出m与n的值.此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.【解答】解:把和代入方程得:,解得:,故选:D.31.方程组的解是()A. B. C. D.【答案】B【解析】解:,把②代入①得:7x+5(x+3)=9,解得:x=-,把x=-代入②得:y=.所以原方程组的解是.故选:B.方程组利用代入消元法求出解即可.此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.32.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数,的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是在图2所示的算筹图中有一个图形被墨水覆盖了,如果图2所表示的方程组中的值为,则被墨水所覆盖的图形为( )A. B. C. D.【答案】C此题是一道材料分析题,先要读懂材料所给出的用算筹表示二元一次方程组的方法,再解方程组,设被墨水所覆盖的图形表示的数据为a,根据题意列出方程组,把x=3代入,求得a的值便可.【解答】解:设被墨水所覆盖的图形表示的数据为a,根据题意得,,把x=3代入得,,由③得,y=5,把y=5代入④得,12+5a=27,∴a=3,故选C.33.二元一次方程组的解是()A. B. C. D.【答案】C【解析】【分析】本题考查的二元一次方程组的解法有关知识,首先把y=2x代入x+2y=10中,解出x,然后把x代入y=2x中即可解答.【解答】解:把②代入①可得:x+4x=10,解得:x=2,把x=5代入②可得:y=4.原方程组的解为.故选C.34.若方程,则A,B的值分别为A. 2,1B. 1,2C. 1,1D. ,【答案】C【解析】【分析】本题考查了分式的加减,利用相等项的系数相等得出关于A、B的方程组是解题关键.根据通分,可得相等分式,根据相等项的系数相等,可得关于A、B的方程组,根据解方程组,可得答案.【解答】解:通分,得:,化简:由相等项的系数相等,得:解得:故选:C.35.若﹣2a m b4与5a n+2b2m+n和为单项式,则m n的值是()A. 2B. 0C. ﹣1D. 1【答案】D【解析】【分析】本题考查了合并同类项以及二元一次方程组的解法,根据同类项是字母相同且相同字母的指数也相同,可得关于m、n的二元一次方程组,解出m、n的值,再根据有理数的乘方运算,可求得答案.【解答】解:由可以合并一项,得:,解得,∴故选D.二、填空题(本大题共20小题,共60.0分)36.二元一次方程7x+y=15的正整数解为______.【答案】或【解析】解:方程7x+y=15,解得:y=-7x+15,x=1,y=8;x=2,y=1,则方程的正整数解为或.故答案为:或把x看做已知数表示出y,即可求出正整数解.此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.37.已知方程5x+2y=10,如果用含x的代数式表示y,则y=______.【答案】【解析】解:方程5x+2y=10,解得:y=,故答案为:把x看做已知数求出y即可.此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.38.若a+2b=8,3a+4b=18,则a+b的值为______.【答案】5【解析】解:法一:∵a+2b=8,3a+4b=18,则a=8-2b,代入3a+4b=18,解得:b=3,则a=2,故a+b=5.法二:a+2b=8 ①,3a+4b=18 ②,②-①,得2a+2b=10,因此,a+b=5.故答案为:5.直接利用已知条件,解方程组或者根据所需条件对原式进行变形都可得出答案.此题主要考查了解二元一次方程组和代数式求值,正确选用解题方法是解题关键.39.若-2x+y=5,则y=______(用含x的式子表示).【答案】2x+5【解析】解:方程-2x+y=5,解得:y=2x+5.故答案为:2x+5.将x看做已知数求出y即可.此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.40.已知x,y满足方程组,则无论k取何值,x,y恒有关系式是______.【答案】x+y=1【解析】【分析】本题主要考查二元一次方程组,解二元一次方程组的基本思想是“消元”,基本方法是代入法和加减法,此题实际是消元法的考核,由方程组消去k,得到一个关于x,y的方程,化简这个方程即可.【解答】解:由x+k=y+2得k=-x+y+2,代入到x+3y=k可得:x+3y=-x+y+2,整理可得2x+2y=2,即x+y=1,故答案为:x+y=1.41.如果单项式与是同类项,则这两个单项式的积为_______________【答案】【解析】【分析】本题考查了同类项、二元一次方程组的解法、单项式乘单项式的知识点,根据同类项的定义列出方程组是解题的关键.根据同类项的定义列出关于a、b的二元一次方程组,求解得到a、b的值,再根据单项式的乘法进行计算即可得解.【解答】解:根据题意得,,由①得,a=-2b③,③代入②得,5×(-2b)+8b=2,解得b=-1,把b=-1代入③得,a=-2×(-1)=2,∴两单项式分别为-3x5y2、x5y2,它们的积为-3x5y2•x5y2=-x10y4.故答案为.42.已知x.y,t满足方程组,则x和y之间应满足的关系式是________.【答案】x=15y-6【解析】【分析】本题主要考查了代入法解二元一次方程组,掌握代入法解二元一次方程组的步骤是解题的关键.由第一个方程可得,把t代入第二个方程即可求得答案.【解答】解:由第一个方程,得,把代入3y-2t=x,得,整理得:x=15y-6,即x和y之间的关系式为x=15y-6.43.甲、乙两名同学参加户外拓展活动,过程如下:甲、乙分别从直线赛道A、B两端同时出发,匀速相向而行.相遇时,甲将出发时在A地抽取的任务单递给乙后继续向B地前行,乙原地执行任务,用时14分钟,再继续向A地前行,此时甲尚未到达B地.当甲和乙分别到达B地和A地后立即以原路原速返回并交换角色,即由乙在A地抽取任务单,与甲相遇时交给甲,由甲原地执行任务,乙继续向B地前行.抽取和递交任务单的时间忽略不计.甲、乙两名同学之间的距离y(米)与运动时间x(分)之间的关系如图所示.已知甲的速度为60米/分,且甲的速度小于乙的速度,则甲在出发后第______分钟时开始执行任务.【答案】44【解析】【分析】本题考查了一次函数的应用,关键是把条件表述的几个过程对应图象理解清楚,再找出对应x和y表示的数量关系.函数图象可看作是线段CD、DE、EF、FH、HI构成:CD对应两人从出发到第一次相遇,其中5分钟时,两人相距980米;DE对应乙在原地执行任务,甲继续前进;EF对应甲继续向B地走,乙继续向A地走;FH对应甲到达B地返回走,乙继续向A地走,其中x=31时,两人相距1180米;HI对应两人都返回走到第二次相遇.设乙的速度为v 米/分,AB两地距离为s米,根据两个确定的x和y值找等量关系列方程.【解答】解:甲的速度为60米/分,设乙的速度为v米/分,AB两地距离为s米,∵x=5时,y=980,此时两人相距980米,列方程得:5(60+v)+980=s①当x=31时,甲走的路程为:60×31=1860(米)图象中,x=31时,y=1180,即此时甲乙两人相距1180米,甲已经到达B地并返回,乙还在前往A地列方程得:1860-s+1180=(31-14)v②①②联立方程组解得:设甲出发t分钟时开始执行任务,此时甲乙第二次相遇,两人走的总路程和为3s,列方程得:60t+80(t-14)=3×1680解得:t=44故答案为:4444.二元一次方程组的解为_______.【答案】【解析】略45.已知,则=____.【答案】-3【解析】【分析】此题考查了加减消元法解二元一次方程组,代数式的值,①﹣②得:x+3y=0,即x=-3y,将x=-3y代入中计算,即可得到答案.【解答】解:,①﹣②得:x+3y=0,即x=-3y,∴=-3,故答案为-3.46.设是一个等腰三角形的两边长,且满足,则该三角形的周长是____【答案】22【解析】【分析】本题考查了等腰三角形的性质,非负数的性质,难点在于分情况讨论并利用三角形的三边关系进行判断.根据非负数的性质列式求出a、b的值,再分a是腰长与底边两种情况讨论求解.【解答】解:根据题意得,,解得a=4,b=9,当①a=4是腰长时,三角形的三边分别为4、4、9,但4、4、9不能组成三角形,②a=4是底长时,三角形的三边分别为4、9、9,4、9、9能组成三角形,∴三角形的周长为4+9+9=22.综上所述,三角形的周长为22.故答案为22.47.若是二元一次方程,则a =________ ,b = ___________【答案】1;0【解析】【分析】本题主要考查二元一次方程的定义,根据二元一次方程的定义可知3a-2b-2=1,a+b=1,据此可解出a,b,根据未知数的次数为1,可以列出方程组求解.【解答】解:依题意,得,解得,故答案为:1,0.48.(1)的算术平方根为________.的平方根是________.(2)若,则(a+2)2的平方根是________.(3)已知一个正数的平方根是3x-2和5x+6,则这个数是________.(4)已知,则x y=________.(5)若a是(-8)2的平方根,则等于________.【答案】(1)2;;(2);(3);(4)1;(5)8.【解析】(1)【分析】本题考查算术平方根,平方根和立方根的定义,根据算术平方根,平方根和立方根的定义即可解答,关键是注意.【解答】解:∵,∴的算术平方根为2.的平方根是.故答案为2;.(2)【分析】本题考查算术平方根和平方根定义,有理数的乘方,根据算术平方根和平方根定义即可解答,关键是由得a+2=16.【解答】解:∵,∴a+2=16,∴(a+2)2=162=256,∴(a+2)2的平方根是.故答案为.(3)【分析】本题考查平方根定义,一元一次方程的解法,根据平方根的定义可知:一个正数的平方根有两个,它们互为相反数得方程3x-2+5x+6=0,解方程求出x,再求出5x+6或3x-2的值即可解答.【解答】解:∵一个正数的两个平方根分别是3x−2 和5x+6 ,∴3x−2+5x+6=0 ,解得:x =,∴5x+6=,∴这个数是.故答案为.(4)【分析】本题考查算术平方根和偶次方的非负性,求代数式的值,关键是先根据算术平方根和偶次方的非负性得方程组,解方程组求得x,y的值,再代入计算即可.【解答】解:由题意得,解得,∴故答案为1.(5)【分析】本题考查算术平方根,平方根的定义,有理数的乘方,关键是先由a是(-8)2的平方根求得a的值,再代入计算即可解答.【解答】解:∵(-8)2=64,a是(-8)2的平方根,∴a=,∴.故答案为8.综上所述答案为:(1)2;;(2);(3);(4)1;(5)8.49.当多项式取得最小值时,_______________。

用代入法解二元一次方程组的题

用代入法解二元一次方程组的题

用代入法解二元一次方程组的题哎呀,今天咱们来聊聊代入法解二元一次方程组这件事,听起来挺复杂,其实就像我们平时生活中的小挑战,咱们把它想得简单点,嘿嘿,别紧张。

先给大家说个小故事,想象一下你跟朋友一起去逛超市,准备买水果。

你们计划买苹果和香蕉,苹果一斤5块,香蕉一斤3块。

然后,你们说好,总共买了5斤水果,花了20块钱。

这个时候,你们就得开始动脑筋了,如何分配这5斤水果,让花的钱正好是20块。

咱们先来写下方程。

一个方程是苹果和香蕉的总重量,另一个方程是总花费。

设苹果的斤数为x,香蕉的斤数为y。

于是就有了这两个方程:x + y = 5,还有5x + 3y = 20。

听着是不是有点小晕?别担心,咱们慢慢来。

先把第一个方程简化一下,也就是从x + y = 5中,咱们把y表示成x:y = 5 x。

现在这玩意儿就简单多了吧,哈哈。

现在把这个y代入第二个方程,咱们就得到了一个只含有x的方程:5x + 3(5 x) = 20。

这里可得注意啦,要小心点!咱们得把括号展开,结果就是5x + 15 3x = 20。

再把同类项合并一下,变成2x + 15 = 20。

哎,恭喜你,这时候只要一小步就能到达答案。

把15移到右边,2x = 20 15,2x = 5,x = 2.5。

哇,苹果的斤数出来了,2.5斤!咱们再来求香蕉的斤数。

把x = 2.5代回去,y = 5 x,y = 5 2.5,y = 2.5。

嘿,真有意思,原来苹果和香蕉各占了一半,都是2.5斤。

这就像你和朋友决定买一份披萨,结果两个人都吃得一样开心,真是美好时光。

现在,回过头来看看,咱们刚刚做的这个过程,代入法其实就像是把一个复杂的谜题拆开,然后逐步解决。

生活中常常有这样的小问题,比如说你想买多少件衣服,花多少钱,或者去看电影,票价和人数之间的关系。

这些都能用代入法来处理,简单直接,容易理解。

关键在于,别怕动脑,慢慢来。

生活嘛,很多事情就像解方程一样,有时候看起来复杂得要命,但其实慢慢捋清楚后,真是豁然开朗。

代入消元法解二元一次方程组专题习题

代入消元法解二元一次方程组专题习题

代入消元法解二元一次方程组专题习题1.已知$x-y=1$,用含有$x$的代数式表示$y$为:$y=x-1$;用含有$y$的代数式表示$x$为:$x=y+1$。

2.已知$x-2y=1$,用含有$x$的代数式表示$y$为:$y=\frac{x-1}{2}$;用含有$y$的代数式表示$x$为:$x=2y+1$。

3.已知$4x+5y=3$,用含有$x$的代数式表示$y$为:$y=\frac{3-4x}{5}$;用含有$y$的代数式表示$x$为:$x=\frac{3-5y}{4}$。

4.用代入法解下列方程组:1)$\begin{cases}y=4x\\2x+y=5\end{cases}$解:将$y=4x$代入$2x+y=5$得:2x+4x=5$,解方程得:$x=\frac{5}{6}$,将$x=\frac{5}{6}$代入$y=4x$得:$y=2\frac{2}{3}$,所以,原方程组的解为:$(x,y)=(\frac{5}{6},2\frac{2}{3})$。

2)$\begin{cases}x-y=4\\2x+y=5\end{cases}$解:将$x-y=4$解出$y$得:$y=x-4$,将$y=x-4$代入$2x+y=5$得:2x+x-4=5$,解方程得:$x=3$,将$x=3$代入$y=x-4$得:$y=-1$,所以,原方程组的解为:$(x,y)=(3,-1)$。

3)$\begin{cases}3m+2n=6\\4m-3n=1\end{cases}$解:将$3m+2n=6$解出$3m$得:$3m=6-2n$,即$m=2-\frac{2}{3}n$,将$m=2-\frac{2}{3}n$代入$4m-3n=1$得:4(2-\frac{2}{3}n)-3n=1$,解方程得:$n=-\frac{5}{2}$,将$n=-\frac{5}{2}$代入$m=2-\frac{2}{3}n$得:$m=4$,所以,原方程组的解为:$(m,n)=(4,-\frac{5}{2})$。

代入法解二元一次方程组(二)专题训练

代入法解二元一次方程组(二)专题训练

目录代入法解二元一次方程组(二)专题训练 (2)(一)导入新课 (3)(二)讲解新知 (3)(三)课堂练习 (4)(四)小结作业 (4)解二元一次方程组(专题练习二) (23)代入法解二元一次方程组(二)专题训练真题示例:《代入法解二元一次方程组》【考题回顾】1.题目:代入法解二元一次方程组2.内容:3.基本要求:(1)试讲时间10分钟以内;(2)讲解要目的明确、条理清楚、重点突出;【考题解析】【教案设计】(一)导入新课创设两名同学去文具店买文具的情境,引导学生列出方程组,点明这是前面所学的二元一次方程组,这节课学习如何解二一次方程组。

引入课题。

(或者复习导入:回顾一元一次方程及其求解方法。

)(二)讲解新知请学生同桌两人为一组,尝试解方程组:,教师巡视并提示:学过解什么样的方程?可否将二元一次方程组转化为会求解的方程?请学生上黑板板演计算过程,结合板书教师讲解,由②知x=13-4y③,将③代入①,则:2(13-4y)+3y=16,化简求得:y=2。

将y=2代入③中,求得:x=5。

所以原方程组的解是。

教师肯定学生作答,并请学生尝试用x表示y进行求解,比较求得的结果是否一样。

请学生比较两次求解过程,思考上面解方程组的基本思路是什么,主要步骤又有哪些。

预设学生能够回答出。

上题是将二元一次方程组转化为一元一次方程来进行求解。

师生共同总结步骤:(1)将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,(2)把得到的式子代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,并求解;(3)把求得的解代入方程,求得另一个未知数的解。

教师总结:这种解方程组的方法称为代入消元法。

简称代入法。

(三)课堂练习练习:用代入法解下列方程组:(1)(2)(四)小结作业小结:重点回顾代入法解二元一次方程组的基本思路及步骤。

作业:思考练习题中的两个方程组是否有其他的求解方法。

【板书设计】【答辩解析】1.二元一次方程组有哪些解法?答:初中所学解二元一次方程组主要有以下两种解法:①代入消元法:将方程组中的一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入到另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程的解。

二元一次方程代入法例题30道

二元一次方程代入法例题30道

二元一次方程代入法例题30道好的,下面我将为你列举30道关于二元一次方程的代入法的例题。

1. 2x + 3y = 12, x y = 4,求解x和y的值。

2. 3x 2y = 7, x + 4y = 5,求解x和y的值。

3. 5x + 2y = 11, 3x y = 7,求解x和y的值。

4. 4x 3y = 10, 2x + 5y = 8,求解x和y的值。

5. x + 2y = 9, 3x y = 5,求解x和y的值。

6. 2x 5y = 3, 3x + 4y = 10,求解x和y的值。

7. 4x + 2y = 12, x 3y = 1,求解x和y的值。

8. 3x 4y = 6, 2x + 7y = 1,求解x和y的值。

10. x + y = 8, 2x 3y = 4,求解x和y的值。

11. 3x + 2y = 14, 2x y = 3,求解x和y的值。

12. 4x 2y = 10, 3x + 5y = 9,求解x和y的值。

13. 2x + 3y = 11, x 2y = 4,求解x和y的值。

14. 5x 4y = 13, 3x + 2y = 7,求解x和y的值。

15. x + 3y = 10, 2x y = 4,求解x和y的值。

16. 3x 2y = 8, 4x + 5y = 17,求解x和y的值。

17. 2x + y = 9, x 4y = 2,求解x和y的值。

18. 4x 3y = 12, 2x + 7y = 5,求解x和y的值。

19. 3x + 2y = 13, 5x y = 7,求解x和y的值。

21. 4x 2y = 11, 3x + 4y = 7,求解x和y的值。

22. 2x + 3y = 12, x 2y = 3,求解x和y的值。

23. 5x 4y = 15, 3x + 2y = 8,求解x和y的值。

24. x + 3y = 11, 2x y = 5,求解x和y的值。

25. 3x 2y = 9, 4x + 5y = 14,求解x和y的值。

用代入法解二元一次方程组典型例题

用代入法解二元一次方程组典型例题

用代入法解二元一次方程组典型例题[例1]解方程组⎪⎩⎪⎨⎧=+=+0214143y x y x 分析:题中方程①x 的系数为1,则用含y 的代数式表示x ,代入第②个方程;得到一个关于y 的一元一次方程,求出y ,进而再求出x ;题中方程②出现常数项为零的情况,则由②得x =-2y ,再代入①中消去x ,进而求出方程组的解.解法一:由②得x +2y =0即x =-2y .把③代入①得-2y +3y =4,得y =4把y =4代入③得x =-2×4=-8所以原方程的解为⎩⎨⎧=-=48y x 解法二:由①得x =4-3y③ 把③代入②得y y 21)34(41+-=0 即y =4把y =4代入③得x =4-3×4=-8所以原方程组的解为⎩⎨⎧=-=48y x 评注:解二元一次方程组的基本思想是“消元”,把二元一次方程组转化为我们已熟悉的一元一次方程来解.“代入法”是消元的一种方法,用代入法解二元一次方程组,首先要观察方程组中未知数系数的特点,尽可能选择变形后的方程比较简单和代入后化简比较容易的方程变形,这是很关键的一步.[例2]解方程组⎪⎩⎪⎨⎧+=+=-4132123y x x y 分析:先把方程②整理为一般形式4x -3y =-5③,通过观察发现方程①和③中y 的系数是“+3”和“-3”,可以用整体代入法将①变形为3y =1+2x 后代入③,得出关于x 的一元一次方程,进而得到方程组的解.解:原方程整理为 ⎩⎨⎧-=-=-534123y x x y 由①得3y =1+2x ④把④代入③得4x -(2x +1)=-5解得x =-2把x =-2代入④,得3y =2×(-2)+1y =-1 ①②①②①③所以原方程的解为⎩⎨⎧-=-=12y x评注:①解二元一次方程组一般要整理成标准形式,这样有利于确定消去哪个未知数;②用代入法解方程组,关键是灵活“变形”和“代入”,以达到“消元”的目的,要认真体会此题代入的技巧和方法.[例3]已知关于x 、y 的方程组⎩⎨⎧=+=+⎩⎨⎧-=+=-33211231332by ax y x by ax y x 和的解相同,求a 、b 的值. 分析:既然两个方程组的解相同,那么两个方程组的解也应与方程组⎩⎨⎧=+=-1123332y x y x 的解相同,将此方程组的解代入含有a 、b 的另两个方程,则解关于a 、b 的二元一次方程组,从而求出a 、b 的值.解:求得方程组⎩⎨⎧=+=-1123332y x y x 解为⎩⎨⎧==,13y x 将其代入ax +by =-1,2ax +3by =3,可得 ⎩⎨⎧=+-=+33613b a b a 由①得,b =-3a -1 ③把③代入②,得6a +3(-3a -1)=3.解得a =-2把a =-2代入④,得b =5所以a =-2,b =5①②。

82二元一次方程组代入法练习题(含答案)

82二元一次方程组代入法练习题(含答案)

8.2 解二元一次方程组(代入法)一、基础过关1.把下列方程改写成用含x 的代数式表示y 的形式:(1)5x-y=3;(2)2(x-y )=3;(3)-2x +5y =1;(4)(2x-y )-3(x-2y )=12.2.用代入法解方程组310,35 2.x y x y +=⎧⎨-=⎩较简便的步骤是:先把方程________变形为__________,再代入方程___________,求得_________的值,然后再求________的值.3.用代入法解方程组2320,419x y x y +-=⎧⎨+=⎩的正确解法是( ) A .先将①变形为x=322y -,再代入② B .先将①变形为y=223x -,再代入② C .先将②变形为x=94y-1,再代入① D .先将②变形为y=9(4x+1),再代入① 4.关于x 、y 的方程组48,326ax y x y -=⎧⎨+=⎩的解中y=0,则a 的取值为( ) A .a=4 B .a>4 C .a<4 D .a=-65.关于x 、y 的方程组432,(1)6x y kx k y -=⎧⎨+-=⎩的解x 与y 的值相等,则k 的值为( )A .4B .3C .2D .16.用代入法解下列方程组:(1)21,731;y x x y =-⎧⎨-=⎩(2)34,25;x yx y=⎧⎨-=-⎩(3)424,22;x yx y-=⎧⎨+=⎩(4)24, 228. x yx y+=⎧⎨-=⎩二、综合创新7.(综合题)方程组35,21ax yx by-=⎧⎨+=⎩中,如果1,21xy⎧=⎪⎨⎪=-⎩是它的一个解,求3(a-b)-a2的值.8.(应用题)(1)取一根绳子测量教室的长度,若把绳子折成5等份来测量,绳子多1米;若把绳子折成4等份来测量,绳子多3米,问绳子和教室各有多长?(2)为了庆祝中国足球队勇夺亚州杯亚军,曙光体育器材厂赠送一批足球给希望中学足球队.若足球队每人领一个则少6个球;若每两人领一个则余6个球.•问这批足球共有多少个?小明领到足球后十分高兴,就仔细研究起足球上的黑白块,结果发现,黑块是五边形,白块是六边形,黑白相间在球体上(如图8-2-1),黑块共12块,问白块有几块?9.(创新题)如果关于x,y的二元一次方程组316,215x ayx by-=⎧⎨+=⎩的解是7,1.xy=⎧⎨=⎩,求关于x,y的方程组的解:(1)3()()16,2()()15;x y a x yx y b x y+--=⎧⎨++-=⎩(2)3(2)16,23(2)15.3x y aybx y y-⎧-=⎪⎪⎨⎪-+=⎪⎩10.(1)(2005年,南京)解方程组20, 328; x yx y-=⎧⎨+=⎩(2)(2005年,北京海淀)解方程组41, 216. x yx y-=-⎧⎨+=⎩三、培优训练11.(探究题)一列快车长168米,一列慢车长184米,如果两车相向而行,从相遇到离开需4秒;如果同向而行,从快车追及慢车到离开需16秒,求两列车的平均速度.四、数学世界欧几里得的数学题古希腊著名数学家欧几里得是欧几里得几何学的创始人,现在中、小学里学的几何学,基本上还是欧几里得几何学体系.下面这道题还与他有关呢!驴子和骡子一同走,它们负担着不同袋数的货物,但每袋货物都是一样重的.驴子抱怨包担太重.“你抱怨啥呢?”骡子说,“如果你给我一袋,那我所负担的就是你的两倍,如果我给你一袋,我们的负担恰恰相等.”驴子和骡子各负担着几袋货物?请你也来解解大数学家的这道题.答案:1.(1)y=5x-3. (2)y=x-32. (3)y=1052x +. (4)y=125x +. 2.①;x=10-3y ;②;y ;x3.B4.A 点拨:把y=0代入②,得x=2,把x=2,y=0代入①,得a=4,故选A .5.C 点拨:由题意,得432,(1)6,.x y kx k y x y -=⎧⎪+-=⎨⎪=⎩把③代入①,得4x-3x=2.∴x=2.把x=y=2代入②,得2k+2(k-1)=6,解得k=2.故选C .6.(1)2,5.x y =-⎧⎨=-⎩(2)解:34,2 5.x y x y =⎧⎨-=-⎩由②,得x=2y-5.③把③代入①得,3(2y-5)=4y ,解得y=7.5.把y=7.5代入③得x=2×7.5-5=10.∴10,7.5.x y =⎧⎨=⎩(3)1,0.x y =⎧⎨=⎩ (4)12,4.x y =⎧⎨=-⎩ 7.解:把1,21x y ⎧=⎪⎨⎪=-⎩代入方程组35,21ax y x by -=⎧⎨+=⎩得 135,21 1.a b ⎧+=⎪⎨⎪-=⎩ 解这个方程组,得4,0.a b =⎧⎨=⎩ ∴3(a-b )-a 2=3×(4-0)-42=-4.8.(1)解:设绳子长x 米,教室长y 米,依题意得1,5 3.4x y x y ⎧-=⎪⎪⎨⎪-=⎪⎩ 即55,412.x y x y -=⎧⎨-=⎩ 解这个方程组,得40,7.x y =⎧⎨=⎩答:绳子长40米,教室长7米.(2)解:设足球有x 个,球员有y 人,由题意,得6,6.2y x y x =+⎧⎪⎨+=⎪⎩ 解这个方程组,得18,24.x y =⎧⎨=⎩一个白块周围有三个黑块,一个黑块周围有五个白块,即黑白比例为3:5. 设白块有z 块由题意得: ∴123=5z ,∴z=20. 答:这批足球共有18个,一个足球上有白块20块.9.解:(1)由第一个方程组的解为7,1.x y =⎧⎨=⎩可得7,1.x y x y +=⎧⎨-=⎩解得4,3.x y =⎧⎨=⎩.(2)由第一个方程组的解为7,1.x y =⎧⎨=⎩可得27,21 1.3x y y -⎧=⎪⎪⎨⎪=⎪⎩ 解得20,3.x y =⎧⎨=⎩ 点拨:(1)认真观察两个方程组,其不同之处是x →x+y ,y →x-y .(2)认真观察两个方程组,其不同之处是x →22x y -,y →13y . 10.(1)解:由①得x=2y .③把③代入②,3×2y+2y=8,即y=1.把y=1代入③,得x=2.∴原方程组的解是.2,1. xy=⎧⎨=⎩(2)解:由①得x=4y-1.③把③代入②,2(4y-1)+y=16.即y=2.把y=2代入③,得x=7.∴原方程组的解是7,2. xy=⎧⎨=⎩11.解:设快、慢车的平均速度分别为x米/秒、y米/秒,依题意,得44168184, 1616168184.x yx y+=+⎧⎨-=+⎩化简,得88,22. x yx y+=⎧⎨-=⎩解之,得55,33. xy=⎧⎨=⎩答:快车的平均速度是55米/秒,慢车的平均速度是33米/秒.数学世界:驴子负担着5袋货物,骡子负担着7袋货物.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.
11、已知二元一次方程3x-y=1,当x=2时,y等于()
A.5 B.-3 C.-7 D.7
12、已知x=2,y=-3是二元一次方程5x+my+2=0的解,则m的值为
(A)4 (B)-4 (C )(D )-
13、方程组的解是()
A. B. C. D.
14、下列方程:①xy-3z=4;②+2y=3;③x+y+=0;④5(x-1)=6(y-2);⑤x+=2是二元一次方程的有()A、1个B、2个C、3个D、4个
15、是方程ax-y=3的解,则a的取值是()A.5 B.-5 C.2 D.1
16、下列方程中,二元一次方程是().
(A)xy=1 (B)y=3x - 1 (C)x+=2 (D)x2+y-3=0
17、方程有一组解是,则的值是().
(A)1 (B)—1 (C)0 (D)2.
18、下列方程组中,是二元一次方程组的是().
(A )(B )(C )(D )
19、是方程ax-3y=2的一个解,则a为(). A、8; B 、; C 、-; D 、-
20、下列方程组中,是二元一次方程组的是().
A 、
B 、
C 、
D 、
21、已知是方程kx-y=3的一个解,那么k的值是( ).
(A) 2 (B)-2 (C) 1 (D)-1
22、二元一次方程2x+y=10的一个解是().
(A)x=-2,y=6 (B)x=3,y=-4 (C)x=4,y=3 (D)x=6,y=-2
25、如果是方程3x-ay=8的一个解,那么a=_________。

26、请写出方程x+2y=7的一个正整数解是______。

27、已知方程3x+5y-3=0,用含x的代数式表示y,则y=________.
28、已知方程,用含的代数式表示,则.
29、已知是方程的解,则。

30、若x-2y=3,则
31、已知是方程k x-2y-1=0的解,则k=________。

32、已知方程4x+5y=8,用含x的代数式表示y 为__________________。

33、已知│x-1│+(2y+1)2=0,且2x-ky=4,则k=_____.
34、若方程x-2y+3z=0,且当x=1时,y=2,则z=______;
35、在方程中,用含的代数式表示为
参考答案
一、计算题
1、
2、
3、
解:由(1)得,(3),
把(3)代入(2)式得,解得,
把代入(3)得∴原方程组的解是
4、解:①×8,得:8x+8y=120 ③;………………2分
③-②,得:4x=20
∴x=5 ………………4分把x=5代入①得:y=15,所以原方程组的解是
5、解:
①+②,得,
解得
把代入①,得,解得-
∴此方程组的解是-
6、解:,
①+②得3x=9,解得x=3,
把x=3代入②,得3-y=1,解得y=2。

∴原方程组的解是。

7、解:,
②×3-①,得11y=22,y=2;
将y=1代入②,得x+6=9,x=3。

∴方程组的解为。

8、
9、
10、解:将①代入②,得x-2x=1,
-x=1,
x=-1.………3分
将x=-1代入①,得y=-2.………………4分
所以原方程组的解是…………………5分
二、选择题
11、A
12、A
13、C
14、C
15、A
16、B
17、A
18、D
19、B;
20、C;
21、A
22、D
23、C 解析:根据二元一次方程的定义来判定,•含有两个未知数且未知数的次数不超过1次的整式方程叫二元一次方程,注意⑧整理后是二元一次方程.
24、B
三、填空题
25、-1 26、或或其中的任何一个均可;
27、
28、;
29、1
30、 2
31、3
32、;
33、4 解析:由已知得x-1=0,2y+1=0,
∴x=1,y=-,把代入方程2x-ky=4中,2+k=4,∴k=1.
34、1;
35、。

相关文档
最新文档