位置与坐标知识点总结与经典题型归纳
北师大版数学八年级上册第三章位置与坐标知识点归纳及例题(含答案)
北师大版八年级上册第三章位置与坐标知识点归纳及例题1 平面直角坐标系【要点梳理】知识点一、确定位置的方法有序数对:把有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b).要点诠释:有序,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同,如电影院的座位是6排7号,可以写成(6,7)的形式,而(7,6)则表示7排6号.可以用有序数对确定物体的位置,也可以用方向和距离来确定物体的位置(或称方位).知识点二、平面直角坐标系与点的坐标的概念1.平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系.水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1).知识点诠释:平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的. 2.点的坐标平面内任意一点P,过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标,记作:P(a,b),如图2.知识点诠释:(1)表示点的坐标时,约定横坐标写在前,纵坐标写在后,中间用“,”隔开.(2)点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离.(3) 对于坐标平面内任意一点都有唯一的一对有序数对(x,y)和它对应,反过来对于任意一对有序数对,在坐标平面内都有唯一的一点与它对应,也就是说,坐标平面内的点与有序数对是一一对应的.知识点三、坐标平面1. 象限建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成如图所示的Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限,如下图.知识点诠释:(1)坐标轴x轴与y轴上的点(包括原点)不属于任何象限.(2)按方位来说:第一象限在坐标平面的右上方,第二象限在左上方,第三象限在左下方,第四象限在右下方.2.各个象限内和坐标轴上点的坐标的符号特征知识点诠释:(1)对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上.(2)坐标轴上点的坐标特征:x轴上的点的纵坐标为0;y轴上的点的横坐标为0.(3)根据点的坐标的符号情况可以判断点在坐标平面上的大概位置;反之,根据点在坐标平面上的位置也可以判断点的坐标的符号情况.【典型例题】类型一、确定物体的位置1.如果将一张“13排10号”的电影票简记为(13,10),那么(10,13)表示的电影票是排号.【思路点拨】在平面上,一个数据不能确定平面上点的位置.须用有序数对来表示平面内点的位置.【答案】10,13.【解析】由条件可知:前面的数表示排数,后面的数表示号数.【总结升华】在表示时,先要“约定”顺序,一旦顺序“约定”,两个数的位置就不能随意交换,(a,b)与(b,a)顺序不同,含义就不同.2.如图,雷达探测器测得六个目标A、B、C、D、E、F出现.按照规定的目标表示方法,目标C、F的位置表示为C(6,120°)、F(5,210°).按照此方法在表示目标A、B、D、E的位置时,其中表示不正确的是()A.A(5,30°)B.B(2,90°)C.D(4,240°)D.E(3,60°)【思路点拨】按已知可得,表示一个点,横坐标是自内向外的环数,纵坐标是所在列的度数,分别判断各选项即可得解.【答案】D.【解析】由题意可知A、B、D、E的坐标可表示为:A(5,30°),故A正确;B(2,90°),故B正确;D(4,240°),故C正确;E(3,300°),故D错误.【总结升华】本题考查了学生的阅读理解能力,由已知条件正确确定点的位置是解决本题的关键.类型二、平面直角坐标系与点的坐标的概念3.如图,写出点A、B、C、D各点的坐标.【思路点拨】要确定点的坐标,要先确定点所在的象限,再看点到坐标轴的距离.【答案与解析】解:由点A向x轴作垂线,得A点的横坐标是2,再由点A向y轴作垂线,得A 点的纵坐标是3,则点A的坐标是(2,3),同理可得点B、C、D的坐标.所以,各点的坐标:A(2,3),B(3,2),C(-2,1),D(-1,-2).【总结升华】平面直角坐标系内任意一点到x轴的距离是这点纵坐标的绝对值,到y轴的距离是这点横坐标的绝对值.举一反三:【变式】多多和爸爸、妈妈周末到动物园游玩,回到家后,她利用平面直角坐标系画出了动物园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y轴.只知道马场的坐标为(﹣3,﹣3),你能帮她建立平面直角坐标系并求出其他各景点的坐标?【答案】解:建立坐标系如图:∴南门(0,0),狮子(﹣4,5),飞禽(3,4)两栖动物(4,1).4.如图,四边形OABC 各个顶点的坐标分别是O (0,0),A (3,0),B (5,2),C (2,3).求这个四边形的面积.【思路点拨】分别过C 点和B 点作x 轴和y 轴的平行线,如图,然后利用S 四边形ABCO =S 矩形OHEF ﹣S △ABH ﹣S △CBE ﹣S △OCF 进行计算.【答案与解析】解:分别过C 点和B 点作x 轴和y 轴的平行线,如图,则E(5,3),所以S四边形ABCO =S矩形OHEF﹣S△ABH﹣S△CBE﹣S△OCF=5×3﹣×2×2﹣×1×3﹣×3×2=.【总结升华】本题考查了坐标与图形性质:利用点的坐标计算相应线段的长和判断线段与坐标轴的位置关系;会运用面积的和差计算不规则图形的面积.举一反三:【变式】在平面直角坐标系中,O为坐标原点,已知:A(3,2),B(5,0),则△AOB的面积为.【答案】5.类型三、坐标平面及点的特征5. 已知点P(2m+4,m﹣1).试分别根据下列条件,求出点P的坐标.(1)点P的纵坐标比横坐标大3;(2)点P在过A(2,﹣3)点,且与x轴平行的直线上.【思路点拨】(1)根据横纵坐标的大小关系得出m﹣1﹣(2m+4)=3,即可得出m 的值,进而得出P点坐标;(2)根据平行于x轴点的坐标性质得出m﹣1=﹣3,进而得出m的值,进而得出P点坐标.【答案与解析】解:(1)∵点P(2m+4,m﹣1),点P的纵坐标比横坐标大3,∴m﹣1﹣(2m+4)=3,解得:m=﹣8,∴2m+4=﹣12,m﹣1=﹣9,∴点P的坐标为:(﹣12,﹣9);(2)∵点P在过A(2,﹣3)点,且与x轴平行的直线上,∴m﹣1=﹣3,解得:m=﹣2,∴2m+4=0,∴P点坐标为:(0,﹣3).【总结升华】此题主要考查了坐标与图形的性质,根据已知得出关于m的等式是解题关键.举一反三:【变式】在直角坐标系中,点P(x,y)在第二象限且P到x轴,y轴的距离分别为2,5,则P的坐标是_________;若去掉点P在第二象限这个条件,那么P的坐标是________.【答案】(-5,2);(5,2),(-5,2),(5,-2),(-5,-2).2 坐标平面内图形的轴对称和平移【知识点梳理】知识点一、关于坐标轴对称点的坐标特征1.关于坐标轴对称的点的坐标特征P(a,b)关于x轴对称的点的坐标为 (a,-b);P(a,b)关于y轴对称的点的坐标为 (-a,b);P(a,b)关于原点对称的点的坐标为 (-a,-b).2.象限的角平分线上点坐标的特征第一、三象限角平分线上点的横、纵坐标相等,可表示为(a,a);第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a,-a).3.平行于坐标轴的直线上的点平行于x轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同.知识点二、用坐标表示平移1.点的平移:在平面直角坐标系中,将点(x,y)向右或向左平移a个单位长度,可以得到对应点(x+a,y)或(x-a,y);将点(x,y)向上或向下平移b个单位长度,可以得到对应点(x,y+b)或(x,y-b).知识点诠释:(1)在坐标系内,左右平移的点的坐标规律:右加左减;(2)在坐标系内,上下平移的点的坐标规律:上加下减;(3)在坐标系内,平移的点的坐标规律:沿x轴平移纵坐标不变,沿y轴平移横坐标不变.2.图形的平移:在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.知识点诠释:(1)平移是图形的整体位置的移动,图形上各点都发生相同性质的变化,因此图形的平移问题可以转化为点的平移问题来解决.(2)平移只改变图形的位置,图形的大小和形状不发生变化.【典型例题】类型一、用坐标表示轴对称1.已知点P (3,-1)关于y 轴的对称点Q 的坐标是(a +b ,1-b ),则的值为_______.【思路点拨】根据关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得a +b =-3,1-b =-1,再解方程可得a 、b 的值,进而算出的值.【答案】25【解析】解:∵点P (3,-1)关于y 轴的对称点Q 的坐标是(a +b ,1-b ),∴a +b =-3,1-b =-1,解得:b =2,a =-5,=25,【总结升华】此题主要考查了关于y 轴对称点的坐标特点,关键是掌握点的坐标的变化规律.举一反三:【变式】点(3,2)关于x 轴的对称点为( )A .(3,-2)B .(-3,2)C .(-3,-2)D .(2,-3)【答案】A .2.已知点A(-3,2)与点B(x ,y)在同一条平行于y 轴的直线上,且点B 到x 轴的距离等于3,求点B 的坐标.b a b a b a【思路点拨】由“点A(-3,2)与点B(x,y)在同一条平行于y轴的直线上”可得点B的横坐标;由“点B到x轴的距离等于3”可得B的纵坐标为3或﹣3,即可确定B的坐标.【答案与解析】解:如图,∵点B与点A在同一条平行于y轴的直线上,∴点B与点A的横坐标相同,∴ x=-3.∵点B到x轴的距离为3,∴ y=3或y=-3.∴点B的坐标是(-3,3)或(-3,-3).【总结升华】在点B的横坐标为-3的条件下,点B到x轴的距离等于3,则点B可能在第二象限,也可能在第三象限,所以要分类讨论,防止漏解.举一反三:【变式1】若x轴上的点P到y轴的距离为3,则点P的坐标为().A.(3,0) B.(3,0)或(–3,0)C.(0,3) D.(0,3)或(0,–3)【答案】B.【变式2】若点P (a ,b)在第二象限,则:(1)点P1(a ,-b)在第象限;(2)点P2(-a ,b)在第象限;(3)点P3(-a ,-b)在第象限;(4)点P4( b ,a )在第象限.【答案】(1)三;(2)一;(3)四;(4)四.类型二、用坐标表示平移3.在平面直角坐标系中,将点A(﹣2,3)向右平移2个单位长度,再向下平移6个单位长度得点B,则点B的坐标是.【思路点拨】根据向右平移横坐标加,向下平移纵坐标减列式计算即可得解.【答案】(0,﹣3).【解析】解:∵将点A(﹣2,3)向右平移2个单位长度,再向下平移6个单位长度得点B,∴点B的坐标是(﹣2+2,3﹣6),即(0,﹣3).故答案为:(0,﹣3).【总结升华】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.举一反三:【变式1】已知:两点A(-4,2)、B(-2,-6),(1)线段AB的中点C坐标是;(2)若将线段AB沿x轴向右平移5个单位,得到线段A1B1,则A1点的坐标是 ,B1点的坐标是.(3)若将线段AB沿y轴向下平移3个单位,得到线段A2B2,则A2点的坐标是 ,B2点的坐标是.【答案】(1)(-3, -2); (2)(1,2),(3,-6); (3)(-4,-1),(-2,-9).度,变为P′(0,1).【答案】2、4.4. 如图中,A、B两点的坐标分别为(2,3)、(4,1),(1)求△ABO的面积.(2)把△ABO向下平移3个单位后得到一个新三角形△O′A′B′,求△O′A′B′的3个顶点的坐标.【思路点拨】(1)把△ABO放在一个矩形里面,用矩形COED的面积﹣△ACO的面积﹣△ABD的面积﹣△BEO的面积即可算出△ABO的面积;(2)根据点的坐标平移的规律,用A、B、O的坐标的纵坐标分别减去3即可.【答案与解析】解:(1)如图所示:S=3×4﹣×3×2﹣×4×1﹣×2×2=5;△ABO(2)A′(2,0),B′(4,﹣2),O′(0,﹣3).【总结升华】此题主要考查了点的平移,以及求三角形的面积,当计算一个三角形的面积时,可以把它放在一个矩形里,然后用矩形的面积减去周围三角形的面积.举一反三:【变式】如图所示,△ABC三个顶点A,B,C的坐标分别为A(1,2),B(4,3),C(3,1).把△A1B1C1向右平移4个单位长度,再向下平移3个单位长度,恰好得到△ABC,试写出△A1B1C1三个顶点的坐标.【答案】解:A1(﹣3,5),B1(0,6),C1(﹣1,4).3《平面直角坐标系》全章复习与巩固【知识网络】【知识点梳理】要点一、有序数对把一对数按某种特定意义,规定了顺序并放在一起就形成了有序数对,人们在生产生活中经常以有序数对为工具表达一个确定的意思,如某人记录某个月不确定周期的零散收入,可用(13,2000), (17,190), (21,330)…,表示,其中前一数表示日期,后一数表示收入,但更多的人们还是用它来进行空间定位,如:(4,5),(20,12),(13,2),…,用来表示电影院的座位,其中前一数表示排数,后一数表示座位号.知识点二、平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系,如下图:知识点诠释:(1)坐标平面内的点可以划分为六个区域:x轴,y轴、第一象限、第二象限、第三象限、第四象限,这六个区域中,除了x轴与y轴有一个公共点(原点)外,其他区域之间均没有公共点.(2)在平面上建立平面直角坐标系后,坐标平面上的点与有序数对(x,y)之间建立了一一对应关系,这样就将‘形’与‘数’联系起来,从而实现了代数问题与几何问题的转化.(3)要熟记坐标系中一些特殊点的坐标及特征:① x轴上的点纵坐标为零;y轴上的点横坐标为零.②平行于x轴直线上的点横坐标不相等,纵坐标相等;平行于y轴直线上的点横坐标相等,纵坐标不相等.③关于x轴对称的点横坐标相等,纵坐标互为相反数;关于y轴对称的点纵坐标相等,横坐标互为相反数;关于原点对称的点横、纵坐标分别互为相反数.④象限角平分线上的点的坐标特征:一、三象限角平分线上的点横、纵坐标相等;二、四象限角平分线上的点横、纵坐标互为相反数.注:反之亦成立.(4)理解坐标系中用坐标表示距离的方法和结论:①坐标平面内点P(x,y)到x轴的距离为|y|,到y轴的距离为|x|.② x轴上两点A(x1,0)、B(x2,0)的距离为AB=|x1- x2|;y轴上两点C(0,y1)、D(0,y2)的距离为CD=|y1- y2|.③平行于x轴的直线上两点A(x1,y)、B(x2,y)的距离为AB=|x1- x2|;平行于y轴的直线上两点C(x,y1)、D(x,y2)的距离为CD=|y1- y2|.(5)利用坐标系求一些知道关键点坐标的几何图形的面积:切割、拼补.知识点三、坐标方法的简单应用1.用坐标表示地理位置(1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.知识点诠释:(1)我们习惯选取向东、向北分别为x轴、y轴的正方向,建立坐标系的关键是确定原点的位置.(2)确定比例尺是画平面示意图的重要环节,要结合比例尺来确定坐标轴上的单位长度.2.用坐标表示平移(1)点的平移点的平移引起坐标的变化规律:在平面直角坐标中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b)).知识点诠释:上述结论反之亦成立,即点的坐标的上述变化引起的点的平移变换.(2)图形的平移在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a ,相应的新图形就是把原图形向右(或向左)平移a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a ,相应的新图形就是把原图形向上(或向下)平移a 个单位长度. 要点诠释:平移是图形的整体运动,某一个点的坐标发生变化,其他点的坐标也进行了相应的变化,反过来点的坐标发生了相应的变化,也就意味着点的位置也发生了变化,其变化规律遵循:“右加左减,纵不变;上加下减,横不变”. 【典型例题】 类型一、有序数对1.数学家发明了一个魔术盒,当任意数对(a ,b)进入其中时,会得到一个新的数:.例如把(3,-2)放入其中,就会有32 +(-2)+1=8,现将数对(-2,3)放入其中得到数m ,再将数对(m ,1)放入其中,得到的数是________. 【思路点拨】解答本题的关键是正确理解如何由数对得到新的数,只要按照新定义的数的运算,把数对代入求值即可. 【答案】66 .【解析】解:将(-2,3)代入,,得(-2)2+3+1=8, 再将(8,1)代入,得82 +1+1=66, 故填:66.【总结升华】解答此题的关键是把实数对(-2,3)放入其中得到实数m ,解出m 的值,即可求出把(m ,1)放入其中得到的数. 举一反三:【变式】我们规定向东和向北方向为正,如向东走4米,再向北走6米,记作(4,6),则向西走5米,再向北走3米,记作________;数对(-2,-6)表示________. 【答案】 (-5,3);向西走2米,向南走6米. 类型二、平面直角坐标系2. 第三象限内的点P(x ,y),满足|x|=5,y 2=9,则点P 的坐标为________. 【思路点拨】点在第三象限,横坐标<0,纵坐标<0.再根据所给条件即可得到x ,y 的具体值.21a b ++21a b ++21a b ++【答案】(-5,-3).【解析】因为|x|=5,y2=9.所以x=±5,y=±3,又点P(x,y)在第三象限,所以x<0,y<0,故点P的坐标为(-5,-3).【总结升华】解决本题的关键是记住各象限内点的坐标的符号,第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).举一反三:【变式1】 (乐山)在平面直角坐标系中,点P(-3,4)到x轴的距离为( ) . A.3 B.-3 C.4 D.-4【答案】C.【变式2】 (长春)如图所示,小手盖住的点的坐标可能为( ) .A.(5,2) B.(-6,3) C.(-4,-6) D.(3,-4)【答案】D.类型三、坐标方法的简单应用3.如图,是某校的平面示意图,已知图书馆、行政楼的坐标分别为(﹣3,2),(2,3).完成以下问题:(1)请根据题意在图上建立直角坐标系;(2)写出图上其他地点的坐标(3)在图中用点P表示体育馆(﹣1,﹣3)的位置.【思路点拨】(1)根据图书馆、行政楼的坐标分别为(﹣3,2),(2,3),可以建立合适的平面直角坐标系,从而可以解答本题;(2)根据(1)中的平面直角坐标系可以写出其它地点的坐标;(3)根据点P(﹣1,﹣3)可以在直角坐标系中表示出来.【答案与解析】解:(1)由题意可得,(2)由(1)中的平面直角坐标系可得,校门口的坐标是(1,0),信息楼的坐标是(1,﹣2),综合楼的坐标是(﹣5,﹣3),实验楼的坐标是(﹣4,0);(3)在图中用点P表示体育馆(﹣1,﹣3)的位置,如下图所示,【总结升华】本题考查利用坐标确定位置,解题的关键是明确题意,建立相应的平面直角坐标系.4.如图,四边形OABC各个顶点的坐标分别是O(0,0),A(3,0),B(5,2),C(2,3).求这个四边形的面积.【思路点拨】分别过C 点和B 点作x 轴和y 轴的平行线,如图,然后利用S 四边形ABCO=S 矩形OHEF ﹣S △ABH ﹣S △CBE ﹣S △OCF 进行计算.【答案与解析】解:分别过C 点和B 点作x 轴和y 轴的平行线,如图,则E (5,3),所以S 四边形ABCO =S 矩形OHEF ﹣S △ABH ﹣S △CBE ﹣S △OCF=5×3﹣×2×2﹣×1×3﹣×3×2 =.【总结升华】本题考查了坐标与图形性质:利用点的坐标计算相应线段的长和判断线段与坐标轴的位置关系;会运用面积的和差计算不规则图形的面积.5.△ABC 三个顶点坐标分别是A(4,3),B(3,1),C(1,2).(1)将△ABC 向右平移1个单位,再向下平移2个单位,所得△A 1B 1C 1的三个顶点坐标分别是什么?(2)将△ABC 三个顶点的横坐标都减去5,纵坐标不变,分别得到A 2、B 2、C 2,依次连接A 2、B 2、C 2各点,所得△A 2B 2C 2与△ABC 的大小、形状和位置上有什么关系? (3)将△ABC 三个顶点的纵坐标都减去5,横坐标不变,分别得到A 3、B 3、C 3,依次连接A 3、B 3、C 3各点,所得△A 3B 3C 3与△ABC 的大小、形状和位置上有什么关系? 【答案与解析】解:(1)A1(5,1),B1(4,-1),C1(2,0).(2)△A2B2C2与△ABC的大小、形状完全相同,在位置上是把△ABC向左平移5个单位得到.(3)△A3B3C3与△ABC的大小、形状完全相同,在位置上是把△ABC向下移5个单位得到.【总结升华】此题揭示了平移的整体性,以及平移前后的坐标关系是一一对应的,在平移中,横坐标减小等价于向左平移;横坐标增大等价于向右平移;纵坐标减小等价于向下平移;纵坐标增大等价于向上平移.举一反三:【变式】在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,2)重合,则点A的坐标是()A.(2,5)B.(﹣8,5)C.(﹣8,﹣1)D.(2,﹣1)【答案】D.解:在坐标系中,点(﹣3,2)先向右平移5个单位得(2,2),再把(2,2)向下平移3个单位后的坐标为(2,﹣1),则A点的坐标为(2,﹣1).故选:D.类型四、综合应用6. 三角形ABC三个顶点A、B、C的坐标分别为A(2,-1)、B(1,-3)、C (4,-3.5).(1)在直角坐标系中画出三角形ABC;(2)把三角形A1B1C1向右平移4个单位,再向下平移3个单位,恰好得到三角形ABC,试写出三角形A1B1C1三个顶点的坐标,并在直角坐标系中描出这些点;(3)求出三角形A1B1C1的面积.【思路点拨】(1)建立平面直角坐标系,从中描出A、B、C三点,顺次连接即可.(2)把三角形A1B1C1向右平移4个单位,再向下平移3个单位,恰好得到三角形ABC,即三角形ABC向上平移3个单位,向左平移4个单位,得到三角形A1B1C1,按照平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减.写出三角形A1B1C1三个顶点的坐标,从坐标系中画出图形.(3)把△A1B1C1补成矩形再把周边的三角形面积减去,即可求得△A1B1C1的面积.【答案与解析】解:(1)如图1,(2)如图2,A1(-2,2),B1(-3,0),C1(0,-0.5);(3)把△A1B1C1补成矩形再把周边的三角形面积减去,即可求得△A1B1C1的面积=3×2.5-1-2.5-0.75=3.25.∴△A1B1C1的面积=3.25.【总结升华】本题综合考查了平面直角坐标系,及平移变换.注意平移时,要找到三角形各顶点的对应点是关键,然后割补法求出三角形ABC的面积。
八年级数学位置与坐标知识归纳
一、在平面内,确定物体的位置一般需要两个数据。
二、平面直角坐标系及有关概念1、平面直角坐标系在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。
其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。
它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
2、为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
[注意]:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。
3、点的坐标的概念1.对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。
2.点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。
平面内点的坐标是有序实数对,当ba≠时,(a,b)和(b,a)是两个不同点的坐标。
3.平面内点的与有序实数对是一一对应的。
4、不同位置的点的坐标的特征(1)、各象限内点的坐标的特征点P(x,y)在第一象限0x⇔y,0>>点P(x,y)在第二象限0,0>⇔yx<点P(x,y)在第三象限0x⇔y,0<<点P(x,y)在第四象限0x⇔y,0<>(2)、坐标轴上的点的特征点P(x,y)在x轴上0⇔y,x为任意实数=点P(x,y)在y轴上0=⇔x,y为任意实数点P(x,y)既在x轴上,又在y轴上⇔x,y同时为零,即点P坐标为(0,0)即原点(3)、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线(直线y=x)上⇔x与y相等点P(x,y)在第二、四象限夹角平分线上⇔x与y互为相反数(4)、和坐标轴平行的直线上点的坐标的特征位于平行于x轴的直线上的各点的纵坐标相同。
新北师大版八年级数学上册第三章位置与坐标知识点总结和典型例题分析星辰出品
新北师大版八年级数学上册第四章地点与坐标一、生活中确立地点的方法(重难点)1、队列定位法把平面分红若干个队列的组合,而后用行号和列号表示平面中点的地点,要正确表示平面中的地点,需要行号、列号两个独立的数据,缺一不行。
2、方向角加距离定位法此方法也叫极坐标定位法,是生活中常用的方法。
在平面中确立地点时需要两个独立的数据:方向角、距离。
特别需要注意的是中心地点确实定。
3、方格定位法在方格纸上,一点的地点由横向方格数和纵向方格数确立,记作(横向方个数,纵向方个数)。
需要两个数据确立物体地点。
4、地区定位法是生活中常用的方法,也需要两个数据才能确立物体的地点。
此方法简单了然,但不够正确。
A1 区,D3 区等。
5、经纬度定位法利用经度和纬度来确立物体地点的方法,也同时需要两个数据才能确立物体的地点。
二、平面直角坐标系1、平面直角坐标系及有关观点(要点)在平面内,两条互相垂直且有公共原点的数轴构成平面直角坐标系,简称直角坐标系。
往常两条数轴地点水平易垂直地点,规定水平轴向右和垂直轴向上为两条数轴的正方向。
水平数轴称为x 轴或横轴,垂直数轴称为y 轴或许纵轴,x 轴、 y 轴统称坐标轴,公共原点O称为坐标系的原点。
两条数轴把平面区分为四个部分,右上部分叫做第一象限,其他部分按逆时针方向分别叫做第二、第三、第四象限。
2、点的坐标表示(要点)在平面直角坐标系中,平面上的随意一点P,都能够用坐标来表示。
过点P 分别向 x 轴、 y 轴作垂线,垂足在 x 轴、 y 轴上对应的数a、 b 分别叫做点P 的横坐标、纵坐标,有序数对(a, b)叫做点P 的坐标。
在平面直角坐标系中,平面上的随意一点P,都有独一一对有序实数(即点的坐标)与它对应;反之,对于随意一对有序实数,都能够在平面上找到独一一点与它对应。
3、特别地点上点的坐标特色(难点)(1)坐标轴上点的坐标特色x 轴上点的纵坐标为0;y 轴上点的横坐标为0;原点的横坐标、纵坐标都为0。
位置与坐标(知识点+题型)
位置与坐标4.平面直角坐标系内点的坐标特征:若P的坐标为(a,b),则P到x轴距离为_______,到y轴距离为_______.(1)坐标轴把平面分隔成四个象限。
根据点所在位置填表(2)坐标轴上的点不属于任何象限,它们的坐标特征○1在x轴上的点______坐标为0;○2在y轴上的点______坐标为0;(3)P(a,b)关于x轴、y轴、原点的对称点坐标特征○1点P(a,b)关于x轴对称点P1_____________ ;○2点 P(a,b)关于y轴对称点P2_____________ ;○3点P(a,b)关于原点对称点P3_____________ 。
5.平行于x轴的直线上的点______坐标相同;平行于y轴的直线上的点_______坐标相同.6.探索图形变换与坐标变化规律(1)若两个图形关于x轴对称.则对应各点横坐标_________,纵坐标互为___________.(2)若两个图形关于y轴对称,则对应各点纵坐标_________,横坐标互为___________.【练习】1、下列数据不能确定物体位置的是()A.4楼9号B.北偏东300 C.希望路25号D.东经1180、北纬450 2、下列语句中不正确的是()A.平面直角坐标系把平面分成了四部分,坐标轴上的点不在任何一个象限内.B.在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系.C.坐标轴上的点与有序实数对是一一对应的.D.凡是两条互相垂直的直线,都能组成平面直角坐标系.3、平行于x轴的直线上的任意两点的坐标之间的关系是()A.横坐标相等 B.纵坐标相等C.横坐标和纵坐标都相等 D.以上结论都不对4、在坐标平面内,有一点P(a,b),若ab=0,那么点P的位置在()A.原点B.x轴上C.y轴D.坐标轴上5、已知点P(x,y)在第四象限,且|x|=3,|y|=5,则P点的坐标是()A.(-3,5) B.(5,-3)C.(-3,-5)D.(3,-5)6、纵坐标为-3的点一定在()A.与x轴平行,且距离为3的直线上B.与y轴平行,且距离为3的直线上C.与x轴负半轴相交,与y轴平行,且距离为3得直线D.与y轴负半轴相交,与x轴平行,且距离为3得直线7、用两个数字来确定一个点的位置是常用的确定位置的方法,如图,A点用(2,3)来表示,那么B点的位置为.8、点P(a+5,a-2)在x轴上,则a =________.9、若点A(a,b)在第三象限,则点(-a+1,3b-5)在第______象限.10、A(8,-7)和点M关于原点对称,则M点坐标为________.【拓展训练】1、点P(-6,5)到x轴的距离是,到y轴的距离是,到原点的距离是.2、以点P(0,-1)为圆心,3为半径画圆,分别交y轴的正半轴、负半轴于点A、B,则点A 坐标为,B点坐标为.3、点P(6,-4)关于x轴对称点P'的坐标为,关于y轴对称点P''的坐标为.4、若点(3a-6,2a+10)是y轴上的点,则a的值是________.5、将一个图形的每一点的纵坐标保持不变,横坐标乘以-1后所得的新图形与原图形( )A.关于x轴对称B.关于y轴对称C.关于原点轴对称D.向左平移1个单位6、平面直角坐标系内某个图形各个点的横坐标不变,纵坐标都乘以-1,所得图形与原图形的关系是 ( )A.关于x轴对称B.关于y轴对称C.关于原点对称D.无法确定7、在直角坐标系中,已知A(1,3),B(-1,3),则下列说法正确的是( )A.点A 、B 关于x 轴对称B.直线AB 平行于y 轴C.A 、B 间的距离是2D.A 、B 间的距离是68、点A (a -1,5),B (3, b )关于y 轴对称,则___=+b a .9、已知)4,(),3(b N a M 、-,根据下列条件求出b a 、的值; (1)N M 、两点关于x 轴对称;(2)N M 、两点关于y 轴对称;(3)N M 、两点关于原点对称;.2、已知点P 在第二象限,且到x 轴的距离是2,到y 轴的距离是3,则P 点坐标为___________3.坐标平面内的点与___________ 是一一对应关系.4.若点M (a,b )在第四象限,则点M (b -a,a -b )在( )A .第一象限B .第二象限C .第三象限D .第四象限5.若P (x ,y )中xy=0,则P 点在( )A .x 轴上B .y 轴上C .坐标原点D .坐标轴上6.若P (a,a -2)在第四象限,则a 的取值范围为()A .-2<a <0B .0<a <2C .a >2D .a <07有意义,那么直角坐标系中点 A (a ,b )的位置在( ) A .第一象限 B .第二象限 C 第三象限 D.第四象限8.已知M(3a -9,1-a)在第三象限,且它的坐标都是整数,则a 等于( )A .1B .2C .3D .09.如图 1-5-3,方格纸上一圆经过(2,5),(-2,l ),(2,-3),( 6,1)四点,则该圆的圆心的坐标为( )A .(2,-1)B .(2,2)C .(2,1)D .(3,l )10.已知点P (-3, 2),点A 与点P 关于y 轴对称,则A 点的坐标为______11.矩形ABCD 中的顶点A 、B 、C 、D 按顺时针方向排列,若在平面直角坐标系中,B 、D 两点对应的坐标分别是(2,0),(0,0),且A 、C 关于x 轴对称,则C 点对应的坐标是( )A 、(1, 1)B 、(1,-1)C 、(1,-2)D 、(2,-2)12.点P(3,-4)关于y 轴的对称点坐标为_______,它关于x 轴的对称点坐标为_______.它关于原点的对称点坐标为_______.13.若P(a, 3-b),Q(5, 2)关于x轴对称,则a=___,b=______14.点(-1, 4)关于原点对称的点的坐标是()A.(-1,-4)B.(1,-4)C.(l,4)D.(4,-1)15.在平面直角坐标系中,点P(-2,1)关于原点的对称点在()A.第一象限B.第M象限C.第M象限D.第四象限16.对于任意实数x,(x,x-1)一定不在第___________象限.17.若点A(a,b)在第三象限,则点C(-a+1,3b-5)在第_____________象限.18.P(-5,4)到x轴的距离是________,到y 轴的距离是_________19.与点P(a,b)与点Q(1,2)关于x轴对称,则a+b=__________20.如图1-5-18所示,已知边长为1的正方把OABC在直角坐标系中,B、C两点在第二象限内,OA与x轴外夹角为60°,那么B点的坐标为_____。
位置与坐标 知识点总结
位置与坐标知识点总结1. 位置与坐标的定义位置是指一个物体或点在空间中的具体所在的地方,而坐标是描述一个点在空间中位置的一种方法。
坐标可以用来描述一个点在平面上或者空间中的位置,它通常使用一组数值来表示,包括横坐标和纵坐标(对于平面坐标系)或者横坐标、纵坐标和高度(对于空间坐标系)等。
2.坐标系坐标系是用来描述和表示位置的一种数学工具,它是由几条互相垂直的直线组成的。
常用的坐标系有直角坐标系、极坐标系、球坐标系等。
在直角坐标系中,通常使用x轴和y轴(或者还有z轴)来表示位置,而在极坐标系中,使用角度和半径来表示位置,而在球坐标系中使用两个角度和半径来表示位置。
3. 坐标变换坐标变换是指描述一个点在不同坐标系中的位置关系。
当我们要在不同的坐标系中描述同一个点的位置时,就需要进行坐标变换。
常见的坐标变换包括直角坐标系到极坐标系的变换、直角坐标系到球坐标系的变换等。
坐标变换通常涉及到三角函数、矩阵等数学工具的运用。
4. 坐标之间的距离和方向在空间中,可以通过计算不同点之间的距离和方向来描述它们之间的位置关系。
在直角坐标系中,两点之间的距离可以通过勾股定理来计算,而在其他坐标系中可以通过不同的数学方法来计算。
方向通常使用角度或者方向余弦、方向角等来表示。
5. 应用位置与坐标在现实生活中有广泛的应用,包括地理定位、导航系统、机器人运动、航天飞行、地图绘制等领域。
例如,在导航系统中,通过使用坐标系和坐标变换可以准确定位和导航;在航天飞行中,通过计算不同天体之间的位置关系可以实现航天器的飞行计划。
总之,位置与坐标是数学中非常重要的概念,它们在几何学、物理学、工程学等领域都有着广泛的应用。
掌握位置与坐标的知识可以帮助我们更好地描述和理解物体的位置关系,从而应用到现实生活中的各种问题中。
八年级数学上册《位置与坐标》重点笔记整理
八年级数学上册《位置与坐标》重点笔记整理1、确定位置在平面内,确定物体的位置一般需要两个数据。
2、平面直角坐标系及有关概念①平面直角坐标系在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。
其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。
它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
②坐标轴和象限为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。
③点的坐标的概念对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。
点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。
平面内点的坐标是有序实数对,(a,b)和(b,a)是两个不同点的坐标。
平面内点的与有序实数对是一一对应的。
④不同位置的点的坐标的特征a、各象限内点的坐标的特征点P(x,y)在第一象限→x>0,y>0点P(x,y)在第二象限→x<0,y>0点P(x,y)在第三象限→x<0,y<0点P(x,y)在第四象限→x>0,y<0b、坐标轴上的点的特征点P(x,y)在x轴上→y=0,x为任意实数点P(x,y)在y轴上→x=0,y为任意实数点P(x,y)既在x轴上,又在y轴上→x,y同时为零,即点P坐标为(0,0)即原点c、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线(直线y=x)上→x与y相等点P(x,y)在第二、四象限夹角平分线上→x与y互为相反数d、和坐标轴平行的直线上点的坐标的特征位于平行于x轴的直线上的各点的纵坐标相同。
位于平行于y轴的直线上的各点的横坐标相同。
新北师大版八年级数学上册第三章位置与坐标知识点总结和典型例题分析
新北师大版八年级数学上册第四章位置与坐标一、生活中确定位置的方法(重难点)1、行列定位法把平面分成若干个行列的组合,然后用行号和列号表示平面中点的位置,要准确表示平面中的位置,需要行号、列号两个独立的数据,缺一不可。
2、方位角加距离定位法此方法也叫极坐标定位法,是生活中常用的方法。
在平面中确定位置时需要两个独立的数据:方位角、距离。
特别需要注意的是中心位置的确定。
3、方格定位法在方格纸上,一点的位置由横向方格数和纵向方格数确定,记作(横向方个数,纵向方个数)。
需要两个数据确定物体位置。
4、区域定位法是生活中常用的方法,也需要两个数据才能确定物体的位置。
此方法简单明了,但不够准确。
A1区,D3区等。
5、经纬度定位法利用经度和纬度来确定物体位置的方法,也同时需要两个数据才能确定物体的位置。
二、平面直角坐标系1、平面直角坐标系及相关概念(重点)在平面内,两条相互垂直且有公共原点的数轴组成平面直角坐标系,简称直角坐标系。
通常两条数轴位置水平和垂直位置,规定水平轴向右和垂直轴向上为两条数轴的正方向。
水平数轴称为x轴或横轴,垂直数轴称为y轴或者纵轴,x轴、y轴统称坐标轴,公共原点O称为坐标系的原点。
两条数轴把平面划分为四个部分,右上部分叫做第一象限,其余部分按逆时针方向分别叫做第二、第三、第四象限。
2、点的坐标表示(重点)在平面直角坐标系中,平面上的任意一点P,都可以用坐标来表示。
过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a、b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。
在平面直角坐标系中,平面上的任意一点P,都有唯一一对有序实数(即点的坐标)与它对应;反之,对于任意一对有序实数,都可以在平面上找到唯一一点与它对应。
3、特殊位置上点的坐标特点(难点)(1)坐标轴上点的坐标特点x轴上点的纵坐标为0;y轴上点的横坐标为0;原点的横坐标、纵坐标都为0。
(2)余坐标轴平行直线上点的坐标特点与x轴平行直线上所有点的纵坐标相同;与y轴平行直线上所有点的横坐标相同。
位置与坐标(全章知识梳理与考点分类讲解)-八年级数学上册基础知识专项突破讲与练(北师大版)
专题3.14位置与坐标(全章知识梳理与考点分类讲解)【知识点1】有序数对把一对数按某种特定意义,规定了顺序并放在一起就形成了有序数对,人们在生产生活中经常以有序数对为工具表达一个确定的意思,如某人记录某个月不确定周期的零散收入,可用(13,2000),(17,190),(21,330)…,表示,其中前一数表示日期,后一数表示收入,但更多的人们还是用它来进行空间定位,如:(4,5),(20,12),(13,2),…,用来表示电影院的座位,其中前一数表示排数,后一数表示座位号.【知识点2】平面直角坐标系的概念在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系,如下图:【知识点3】平面直角坐标系(1)各象限内点的坐标的符号特征点(,)P x y 在第一象限⇔0x >,0y >;点(,)P x y 在第二象限⇔0x <,0y >;点(,)P x y 在第三象限⇔0x <,0y <;点(,)P x y 在第四象限⇔0x >,0y <.(2)坐标轴上点的坐标特征点在横轴上⇔y =0;点在纵轴上⇔x =0;点在原点⇔x =0,y =0.(3)各象限角平分线上点的坐标①三象限角平分线上的点的横、纵坐标相等;②四象限角平分线上的点的横、纵坐标互为相反数.(4)平行于坐标轴的直线上点的坐标特征①平行于x 轴的直线上的点的纵坐标都相等;②平行于y 轴的直线上的点的横坐标都相等.【知识点4】点的距离问题(1)点到坐标轴、原点的距离点(,)M a b 到x 轴的距离为b ;点(,)M a b 到y 轴的距离为a ;点(,)M a b 到原点的距离OM .(2)平行于x 轴,y 轴的直线上两点间的距离①水平线段12AB x x =-,铅锤线段12CD y y =-;②两点之间的距离公式:d =③中点公式:1212(,22x x y y ++.【知识点5】点的平移与对称(1)点(,)P x y 平移的坐标特征向左平移a 个单位的坐标为(,)P x a y -;向右平移a 个单位的坐标为(,)P x a y +;向上平移b 个单位的坐标为(,)P x y b +;向下平移b 个单位的坐标为(,)P x y b -;口诀:“右加左减,上加下减”.(2)点(,)P x y 的对称点的坐标特征关于x 轴对称的点P 1的坐标为1(,)P x y -;关于y 轴对称的点P 2的坐标为2(,)P x y -;关于原点对称的点P 3的坐标为3(,)P x y --.口诀:关于谁对称谁不变,另一个变号;关于原点对称都要变号.【考点一】平面直角坐标系➼➻有序数对【例1】(2023秋·全国·八年级专题练习)如图为某县区几个公共设施的平面示意图,小正方形的边长为1.(1)请以学校为坐标原点,建立平面直角坐标系;(2)在所建立的平面直角坐标系中,写出其余各设施的坐标.【答案】(1)见分析;(2)图书馆:()2,3-,商场:()5,2,医院:()3,1--,车站:()2,4-【分析】(1)以学校为原点建立直角坐标系即可;(2)以学校为原点建立直角坐标系,根据图形可得其余各设施的坐标.(1)解:如图:以学校为坐标原点,建立平面直角坐标系如下:(2)解:其余各设施的坐标分别为:图书馆:()2,3-,商场:()5,2,医院:()3,1--,车站:()2,4-.【点拨】本题主要考查的是用坐标确定位置,准确写出其余各设施的坐标是解决本题的关键.【举一反三】【变式1】(2022秋·八年级课时练习)下列数据中不能确定物体位置的是()A .电影票上的“5排8号”B .小明住在某小区3号楼7号C .南偏西37°D .东经130°,北纬54°的城市【答案】C【分析】根据以坐标确定位置需要两个数据对各选项进行判断即可.解:A .电影票上的“5排8号”,位置明确,故本选项不符合题意;B .小明住在某小区3号楼7号,位置明确,故本选项不符合题意;C .南偏西37°,位置不明确,故本选项符合题意;D .东经130°,北纬54°的城市,位置明确,故本选项不符合题意;故选:C .【点拨】本题考查了坐标确定位置,理解位置的确定需要两个数据是解答本题的关键.【变式2】(2023春·七年级课时练习)如图,点A 在射线OX 上,OA 等于2cm ,如果OA 绕点O 按逆时针方向旋转30°到OA ′,那么点A ′的位置可以用(2,30°)表示.若OB =3cm ,且OA ′⊥OB ,则点B 的位置可表示为.【答案】(3,120°)【分析】根据题意得出坐标中第一个数为线段长度,第二个数是逆时针旋转的角度,进而得出B点位置即可.解:∵OA等于2cm,如果OA绕点O按逆时针方向旋转30°到OA′,那么点A′的位置可以用(2,30°)表示,∵OA′⊥OB,∴∠BOA=90°+30°=120°,∴OB=3cm,∴点B的位置可表示为:(3,120°).故答案为:(3,120°).【点拨】此题主要考查了用有序数对表示位置,解决本题的关键是理解所给例子的含义.【考点二】平面直角坐标系➼➻象限内点的坐标的符号特征【例2】(2023春·全国·七年级专题练习)已知平面直角坐标系中有一点P(2m+1,m﹣3).(1)若点P在第四象限,求m的取值范围;(2)若点P到y轴的距离为3,求点P的坐标.【答案】(1)12-<m<3;(2)点P的坐标为(3,﹣2)或(﹣3,﹣5).【分析】(1)直接利用第四象限内点的坐标特点分析得出答案;(2)利用点P到y轴的距离为3,得出m的值.(1)解:由题知21030 mm+>⎧⎨-<⎩,解得:13 2m-<<;(2)解:由题知|2m+1|=3,解得m=1或m=﹣2.当m=1时,得P(3,﹣2);当m=﹣2时,得P(﹣3,﹣5).综上,点P的坐标为(3,﹣2)或(﹣3,﹣5).【点拨】此题主要考查了点的坐标,熟练掌握点在各象限内的特点以及点到坐标轴的距离是解题关键.【举一反三】【变式1】(2023春·全国·七年级专题练习)不论m 取何实数,点()2,3P m m -+都不在()A .第一象限B .第二象限C .第三象限D .第四象限【答案】C 【分析】先判断点P 的纵坐标、横坐标之和为5,大于0,然后根据各象限内点的坐标特征解答.解:∵()()232350m m m m -++=-++=>,∴点P 的纵坐标、横坐标之和为5,大于0,∵第三象限的点的横坐标是负数,纵坐标是负数,∴纵坐标、横坐标之和必然小于0,∴点P 一定不在第三象限,故选:C .【点拨】本题考查了点的坐标,利用作差法求出点P 的横坐标大于纵坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).【变式2】(2023春·七年级单元测试)经过点Q (1,﹣3)且垂直于y 轴的直线可以表示为直线.【答案】y =﹣3【分析】垂直于y 轴的直线,纵坐标相等,为-3,所以为直线:y =-3.解:由题意得:经过点Q (1,﹣3)且垂直于y 轴的直线可以表示为直线y =﹣3,故答案为:y =﹣3.【点拨】本题考查了点的坐标,解题的关键是抓住过某点的坐标且垂直于y 轴的直线的特点:纵坐标相【考点三】平面直角坐标系➼➻坐标轴点的坐标的符号特征【例3】(2020秋·广东佛山·八年级校考阶段练习)已知点P (8﹣2m ,m +1).(1)若点P 在y 轴上,求m 的值.(2)若点P 在第一象限,且点P 到x 轴的距离是到y 轴距离的2倍,求P 点的坐标.【答案】(1)4;(2)P (2,4).【分析】(1)直接利用y 轴上点的坐标特点得出m 的值;(2)直接利用P 点位置结合其到x ,y 轴距离得出点的坐标.(1)解:∵点P (8﹣2m ,m +1),点P 在y 轴上,∴8﹣2m =0,解得:m =4;(2)解:由题意可得:m +1=2(8﹣2m ),解得:m =3,则8﹣2m =2,m +1=4,故P (2,4).【点拨】此题主要考查了点的坐标,正确掌握平面内点的坐标特点是解题关键.【举一反三】【变式1】(2023春·七年级课时练习)下列说法不正确的是()A .点()21,1A a b --+一定在第二象限B .点()2,3P -到y 轴的距离为2C .若(),P x y 中0xy =,则P 点在x 轴上D .若(),P x y 在x 轴上,则0y =【答案】C【分析】A :第二象限的点满足(-,+),B :找出P 点坐标即可确定与y 轴的距离,C :xy =0,可确定x 、y 至少有一个为0来确定,D :根据x 轴上点的坐标特征即可判定.解:A :21a --<0,1b +>0,本选项说法正确;B :P 点到y 轴距离是2,本选项说法正确;C :xy =0,得到x 、y 至少有一个为0,P 可能在x 轴上,也可能在y 轴上,本选项说法错误;D :点P 在x 轴上,则y =0,本选项说法正确.故选:C .【点拨】本题考查坐标上点的特征.确定各个象限的点和坐标轴上点的特征是解决本题的关键.【变式2】(2021春·重庆巫溪·七年级统考期末)若点()2,3M a a -+在y 轴上,则点M 的坐标是.【答案】()0,5【分析】根据y 轴上点的坐标的特点即可求得.解:∵点()2,3M a a -+在y 轴上,∴a -2=0,解得a =2,故a +3=2+3=5,故点M 的坐标为()0,5,故答案为:()0,5.【点拨】本题考查了y 轴上点的坐标的特点,熟练掌握和运用y 轴上点的坐标特点是解决本题的关键.【考点四】平面直角坐标系➼➻角平分线上点的坐标特征【例4】(2018秋·八年级单元测试)(1)若点M (5+a ,a -3)在第二、四象限角平分线上,求a 的值;(2)已知点N 的坐标为(2-a ,3a +6),且点N 到两坐标轴的距离相等,求点N 的坐标.【答案】(1)a =-1;(2)点N 的坐标为(3,3)或(6,-6).【分析】(1)分析题目中点M 、N 的坐标特征,第二、四象限角平分线上点的横纵坐标互为相反数,即可得到5+a=-(a-3),求解可得a 的值;(2)点到两坐标轴的距离相等,则点的横纵坐标相等或互为相反数,据此列式求解,即可得到a 的值,进而确定点N 的坐标.解:(1)由题意可得5+a +a -3=0,解得a =-1.(2)由题意可得|2-a|=|3a +6|,即2-a =3a +6或2-a =-(3a +6),解得a =-1或a =-4,所以点N 的坐标为(3,3)或(6,-6).【点拨】本题考查了坐标的相关知识点,解题的关键是熟练的掌握象限内点的坐标的特征.【举一反三】【变式1】(2021秋·九年级单元测试)已知坐标平面内一点()12A -,,若A 、B 两点关于第一、三象限内两轴夹角平分线对称,则B 点的坐标为.【答案】()2,1-【分析】画出相关图形可得纵横坐标交换位置即可.解:由图中可得答案为(-2,1).故答案为(-2,1).【点拨】本题考查了两点关于坐标轴夹角平分线对称的关系;用到的知识点为:点(a ,b )关于第一、三象限角平分线的对称点的坐标为(b ,a ).【变式2】(2018秋·八年级单元测试)已知A (2x -1,3x +2)是第一、三象限角平分线上的点,则点A 的坐标是.【答案】(-7,-7)【分析】根据第一、三象限的角平分线上点的特点:横坐标等于纵坐标,可得方程,根据解方程,可得答案.解:由A (2x -1,3x +2)在第一、三象限的角平分线上,得2x-1=3x+2,解得x=-3,则点A 的坐标为(-7,-7),故答案为:(-7,-7).【点拨】本题考查的是平面直角坐标系中象限角平分线上点的特点,熟练掌握该特点是解题的关键.【考点五】平面直角坐标系➼➻平行于坐标轴上点的坐标特征【例5】(2023春·全国·七年级期末)在平面直角坐标系中,点()0A a ,,()2B b ,,()40C ,,且0a >.(1)若2(2)40a b --=,求点A ,点B 的坐标;(2)如图,在(1)的条件下,过点B 作BD 平行y 轴,交AC 于点D ,求点D 的坐标;【答案】(1)()02A ,,()24B ,;(2)()21D ,【分析】(1)由非负性质得出20a -=,40b -=,得出2a =,4b =,即可得出答案;(2)延长BD 交OC 于M ,由题意得出点D 的横坐标为2,可得点D 是AC 的中点,即可得出答案.(1)解:2(2)0a -= ,20a ∴-=,且40b -=,2a ∴=,4b =,∴点()02A ,,()24B ,;(2)解:延长BD 交OC 于M ,如图所示:,BD x ∥轴,DM OC ∴⊥,点D 的横坐标为2,()02A ,,()40C ,,∴点D 是AC 的中点,()21D ∴,.【点拨】本题考查了偶次方和算术平方根的非负性质、坐标与图形等知识,熟练掌握非负数的性质是解题的关键.【举一反三】【变式1】(2022秋·福建三明·八年级统考阶段练习)过点(3,2)A 和(1,2)B -作直线,则直线AB ()A .与x 轴平行B .与y 轴平行C .与x 轴相交D .与x 轴、y 轴均相交【答案】A【分析】根据A ,B 两点的纵坐标相等,得出直线AB 平行于x 轴.解: 点(3,2)A 和(1,2)B -,∴直线AB 为:2y =,直线2y =与x 轴平行,∴直线AB x ∥轴,故A 正确.故选:A .【点拨】本题考查了坐标与图形的性质,熟记平行坐标轴的直线的特征是解本题的关键.【变式2】(2023春·北京·七年级校联考期中)经过点()3,2M -与点(),N x y 的直线平行干x 轴,且4MN =,则点N 的坐标是.【答案】(1,2)--或(7,2)-【分析】本题根据两点在同一平行于x 轴的直线上确定点N 的纵坐标,继而根据两点距离确定点N 的横坐标.解:由已知得:点N 的纵坐标为2-,设点N 的横坐标为x ,则M 、N 的距离可表示为3x -,∵4MN =,∴34x -=,求解得:7x =或=1x -,故点N 坐标为(1,2)--或(7,2)-.故填:(1,2)--或(7,2)-.【点拨】本题考查点坐标的求法,解题关键在于理清两点之间的位置关系,其次此类型题目通常需要分类讨论,确保结果不重不漏.【考点六】平面直角坐标系➼➻两点之间距离【例6】(2022秋·甘肃白银·八年级校考期中)阅读下列一段文字,然后回答下列问题.已知在平面内两点111(,)P x y 、222(,)P x y ,其两点间的距离12PP 所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为21x x -或21y y -.(1)已知(24)A ,、(3,8)--B ,试求A 、B 两点间的距离;(2)已知A 、B 在平行于y 轴的直线上,点A 的纵坐标为4,点B 的纵坐标为-1,试求A 、B 两点间的距离;(3)已知一个三角形各顶点坐标为6(1)D ,、(2,2)E -、2(4)F ,,你能判定此三角形的形状吗?说明理由;(4)在上一问的条件下,平面直角坐标中,在x 轴上找一点P ,使PD PF +的长度最短,求PD PF +的最短长度.【答案】(1)13AB =;(2)5AB =;(3)DEF 为等腰三角形,理由见分析;(4)PD PF +的最短长【分析】(1)由已知两点坐标,根据公式计算即可;(2)由已知两点纵坐标,根据公式计算;(3)由两点间距离公式分别计算三角形三边长,根据三边大小关系可判断;(4)根据轴对称知识,作点F 关于x 轴的对称点F ',则(4,2)F ¢-,连接DF ',与x 轴交于点P ,根据两点间线段最短,此时DP PF +最短,计算DF '即得解.(1)解:∵(2,4)A 、(3,8)--B ,∴13AB =(2)解:∵A 、B 在平行于y 轴的直线上,点A 的纵坐标为4,点B 的纵坐标为1-,∴5|(41)|AB =--=;(3)解:DEF 为等腰三角形,理由为:)6(1,D 、(2,2)E -、(4,2)F ,∴5DE ==,5DF ==,6EF =,即DE DF =,则DEF 为等腰三角形;(4)解:做出F 关于x 轴的对称点F ',则(4,2)F ¢-,连接DF ',与x 轴交于点P ,此时DP PF +最短,∵PF PF '=,∴PD PF DP PF DF ⅱ+=+==则PD PF +【点拨】本题考查平面直角坐标系内两点间距离计算,轴对称,两点之间线段最短;运用轴对称知识得到线段相等是解题的关键.【举一反三】【变式】(2023秋·全国·八年级专题练习)设点()5P a a -,到x 轴的距离为1m ,到y 轴的距离为2m .(1)当1a =时,12m m -=;(2)若点P 在第四象限,且12210m km +=(k 为常数),则k 的值为;(3)若127m m +=,则点P 的坐标为.【答案】32()16--,或()61,【分析】(1)当1a =时()14P -,,从而可得出1241m m ==,,代入进行计算即可得到答案;(2)由点P 在第四象限可得050a a >-<,,从而得出125m a m a =-=,,代入12210m km +=得10210a ka -+=,即可求出k 的值;(3)根据题意可得57a a -+=,讨论a 的范围,分三段:当a<0时;当05a ≤≤时;当5a >时,分别进行计算即可得到答案.解:(1)当1a =时,5154a -=-=-,()14P ∴-,,点()5P a a -,到x 轴的距高力1m ,到y 轴的距离为2m ,1241m m ∴==,,12413m m ∴-=-=,故答案为:3;(2) 点P 在第四象限,050a a ∴>-<,,1255m a a m a a ∴=-=-==,,12210m km +=,()2510a ka ∴-+=,10210a ka ∴-+=,2k ∴=,故答案为:2;(3) 点()5P a a -,到x 轴的距高力1m ,到y 轴的距离为2m ,125m a m a ∴=-=,,127m m +=,57a a ∴-+=,当a<0时,57a a --+=,解得:1a =-,()16P ∴--,,当05a ≤≤时,557a a -+=≠,不成立,舍去,当5a >时,57a a -+=,解得:6a =,()61P ∴,,综上所述,点P 的坐标为()16--,或()61,.【点拨】本题主要考查了点到坐标轴的距离,熟练掌握平面直角坐标系中的点到x 轴的距离是纵坐标的绝对值,到y 轴的距离是横坐标的绝对值,是解题的关键.【考点七】平面直角坐标系➼➻中点坐标公式【例7】(2023春·陕西商洛·七年级校考期末)在平面直角坐标系中,线段AB 平移得到的线段记为线段CD .其中点A 的对应点是点C ,点B 的对应点是点D .(1)若()1,2--A ,()41B ,,()2,3C -,则点D 的坐标为.(2)已知13,2A m ⎛⎫- ⎪⎝⎭,()6B n -,,1,2C m ⎛⎫-- ⎪⎝⎭,()7,6D n ,请写出m 和n 之间的数量关系,并说明理由.【答案】(1)()7,0;(2)2m n =-;理由见分析【分析】(1)设点D 的坐标为(),D D x y ,根据平移的性质列出方程组()()421132D Dx y ⎧-=--⎪⎨-=---⎪⎩,解方程组即可;(2)根据平移的特点得出()73n n m m --=--,整理即可得出答案.(1)解:设点D 的坐标为(),D D x y ,根据题意得:()()421132D Dx y ⎧-=--⎪⎨-=---⎪⎩,解得:70D Dx y =⎧⎨=⎩,∴点D 的坐标为()7,0.故答案为:()7,0.(2)解:2m n =-;理由如下:∵线段AB 平移得到的线段记为线段CD ,其中点A 的对应点是点C ,点B 的对应点是点D ,∴()73n n m m --=--,整理得:2m n =-.【点拨】本题主要考查了坐标平移的特点,解题的关键是熟练掌握坐标平移的性质,列出相应的等式.【举一反三】【变式】(2021春·广东广州·七年级广州大学附属中学校考期中)已知点()00,E x y ,点()22,F x y ,点()11,M x y 是线段EF 的中点,则02021122x x y y x y ++==.在平面直角坐标系中有三个点()()()1,11,10,1A B C ---,,,点()0,2P 关于A 的对称点为1P (即1P A P 、、三点共线,且1PA P A =),1P 关于B 的对称点为2P ,2P 关于C 的对称点为3P ,按此规律以、、A B C 为对称点重复前面的操作,依次得到456P P P 、、,则点2018P 的坐标是().A .()0,0B .()0,2C .()2,4-D .()4,2-【答案】D 【分析】首先利用题目所给公式求出1P 的坐标,然后利用公式求出对称点2P 的坐标,依此类推即可求出7P 的坐标;由7P 的坐标和1P 的坐标相同,即坐标以6为周期循环,利用这个规律即可求出点2018P的坐标.解:设()1P x y ,,()1,1A -,()0,2P ,且A 是1PP 的中点,∴012x +=,212y +=-解得:24x y ==-,,()124P ∴-,同理可得:()()()()()()234567424022000224P P P P P P ----,,,,,,,,,,,,∴每6个点一个循环,201833626=∴点2018P 的坐标是()201842P -,故选D .【点拨】本题考查的是平面直角坐标系中点的对称点的坐标,解题的关键在于找出对称点坐标的规律.【考点八】平面直角坐标系➼➻点的平移【例8】(2023春·甘肃武威·七年级校联考期末)在平面直角坐标系中,O 为原点,点()()()022040A B C -,,,,,.(1)如图①,则三角形ABC 的面积为;(2)如图②,将点B 向右平移7个单位长度,再向上平移4个单位长度,得到对应点D .①求三角形ACD 的面积;②点()3P m ,是一动点,若三角形PAO 的面积等于三角形CAO 的面积.请直接写出点P 坐标.【答案】(1)6(2)①9;②()43P -,或()43,.【分析】(1)根据题意得出OA OB OC ,,,然后直接计算即可;(2)①连接OD ,根据ACD AOD COD AOC S S S S =+- 解题即可;②根据三角形PAO 的面积等于三角形CAO 的面积列方程求解即可.解:(1)∵()()()022040A B C -,,,,,,∴224OA OB OC ===,,,∴11·62622ABC S BC AO ==⨯⨯= .故答案为6.(2)①如图②中由题意()54D ,,连接OD .ACD AOD COD AOCS S S S =+-1112544249222=⨯⨯+⨯⨯-⨯⨯=.②由题意:1122422m ⨯⨯=⨯⨯,解得4m =±,∴()43P -,或()43,.【点拨】本题考查了点的平移,三角形的面积,分割法,掌握数形结合的方法是解题关键.【举一反三】【变式1】(2022·山东淄博·统考中考真题)如图,在平面直角坐标系中,平移△ABC 至△A 1B 1C 1的位置.若顶点A (﹣3,4)的对应点是A 1(2,5),则点B (﹣4,2)的对应点B 1的坐标是.【答案】(1,3)【分析】根据点A 和点1A 的坐标可得出平移规律,从而进一步可得出结论.解:∵顶点A (﹣3,4)的对应点是A 1(2,5),又352,415-+=+=∴平移ABC ∆至111A B C ∆的规律为:将ABC ∆向右平移5个单位,再向上平移1个单位即可得到111A B C ∆∵B (﹣4,2)∴1B 的坐标是(-4+5,2+1),即(1,3)故答案为:(1,3)【点拨】本题主要考查了坐标与图形,正确找出平移规律是解答本题的关键.【变式2】(2023春·河北保定·八年级校考期中)将点()3,2P -先向右平移2个单位,再向下平移4个单位,得到的点的坐标为()A .()1,4--B .()1,2--C .()5,4--D .()5,2--【答案】B【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得答案.解:将点()3,2P -先向右平移2个单位,再向下平移4个单位,得到的点的坐标为()32,24-+-,即()1,2--,故选:B .【点拨】此题主要考查了坐标与图形的变化—平移,关键是掌握点的坐标的变化规律.。
第三章位置与坐标知识点总结
第三章位置与坐标知识点总结第三章位置与坐标知识点1 坐标确定位置知识链接平⾯内特殊位置的点的坐标特征(1)各象限内点P (a ,b )的坐标特征:①第⼀象限:a >0,b >0;②第⼆象限:a <0,b >0;③第三象限:a <0,b <0;④第四象限:a >0,b <0.(2)坐标轴上点P (a ,b )的坐标特征:①x 轴上:a 为任意实数,b=0;②y 轴上:b 为任意实数,a=0;③坐标原点:a=0,b=0.(3)两坐标轴夹⾓平分线上点P (a ,b )的坐标特征:①⼀、三象限:b a =;②⼆、四象限:b a -=.同步练习1.定义:直线l 1与l 2相交于点O ,对于平⾯内任意⼀点M ,点M 到直线l 1、l 2的距离分别为p 、q ,则称有序实数对(p ,q )是点M 的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是() A .2 B .3 C .4 D .52.如图,是⽤围棋⼦摆出的图案(⽤棋⼦的位置⽤⽤有序数对表⽰,如A 点在(5,1)),如果再摆⼀⿊⼀⽩两枚棋⼦,使9枚棋⼦组成的图案既是轴对称图形⼜是中⼼对称图形,则下列摆放正确的是()A .⿊(3,3),⽩(3,1)B .⿊(3,1),⽩(3,3)C .⿊(1,5),⽩(5,5)D .⿊(3,2),⽩(3,3)3.如图为⼩杰使⽤⼿机内的通讯软件跟⼩智对话的纪录.根据图中两⼈的对话纪录,若下列有⼀种⾛法能从邮局出发⾛到⼩杰家,则此⾛法为何?()A .向北直⾛700公尺,再向西直⾛100公尺B .向北直⾛100公尺,再向东直⾛700公尺C .向北直⾛300公尺,再向西直⾛400公尺D .向北直⾛400公尺,再向东直⾛300公尺4.如图是我市⼏个旅游景点的⼤致位置⽰意图,如果⽤(0,0)表⽰新宁莨⼭的位置,⽤(1,5)表⽰隆回花瑶的位置,那么城市南⼭的位置可以表⽰为()A.(2,1)B.(0,1)C.(-2,-1)D.(-2,1)5.⼩军从点O向东⾛了3千⽶后,再向西⾛了8千⽶,如果要使⼩军沿东西⽅向回到点O的位置,那么⼩明需要()A.向东⾛5千⽶B.向西⾛5千⽶C.向东⾛8千⽶D.向西⾛8千⽶6.在⼀次寻宝游戏中,寻宝⼈找到了如图所⽰的两个标志点A(2,1)、B(4,-1),这两个B(-3,-3)可认,⽽主要建筑C(3,2)破损,请通过建⽴直⾓坐标系找到图中C点的位置.11.如图是某台阶的⼀部分,如果A点的坐标为(0,0),B点的坐标为(1,1).(1)请建⽴适当的直⾓坐标系,并写出其余各点的坐标;(2)说明B,C,D,E,F的坐标与点A的坐标⽐较有什么变化?(3)现要给台阶铺上地毯,单位长度为1,请你算算要多长的单位长度的地毯?12.常⽤的确定物体位置的⽅法有两种.如图,在4×4个边长为1的正⽅形组成的⽅格中,标有A,B两点.请你⽤两种不同⽅法表述点B相对点A的位置.知识点2 平⾯直⾓坐标系知识链接1点的坐标(1)我们把有顺序的两个数a和b组成的数对,叫做有序数对,记作(a,b).(2)平⾯直⾓坐标系的相关概念①建⽴平⾯直⾓坐标系的⽅法:在同⼀平⾯内画两条有公共原点且垂直的数轴.②各部分名称:⽔平数轴叫x轴(横轴),竖直数轴叫y轴(纵轴),x轴⼀般取向右为正⽅向,y轴⼀般取象上为正⽅向,两轴交点叫坐标系的原点.它既属于x轴,⼜属于y轴.(3)坐标平⾯的划分建⽴了坐标系的平⾯叫做坐标平⾯,两轴把此平⾯分成四部分,分别叫第⼀象限,第⼆象限,第三象限,第四象限.坐标轴上的点不属于任何⼀个象限.(4)坐标平⾯内的点与有序实数对是⼀⼀对应的关系.2 两点间的距离公式:设有两点A(x1,y1),B(x2,y2),则这两点间的距离为AB=(x1-x2)2+(y1-y2)2.说明:求直⾓坐标系内任意两点间的距离可直接套⽤此公式.、有图形中⼀些点的坐标求⾯积时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题A .a=bB .2a+b=-1C .2a-b=1D .2a+b=15.如图,在平⾯直⾓坐标系中,有⼀矩形COAB ,其中三个顶点的坐标分别为C (0,3),O (0,0)和A (4,0),点B 在⊙O 上.(1)求点B 的坐标;(2)求⊙O 的⾯积.6.如图,在平⾯直⾓坐标系中,OABC 是正⽅形,点A 的坐标是(4,0),点P 在AB边上,且∠CPB=60°,将△CPB 沿CP 折叠,使得点B 落在D 处,则D 的坐标为()A .(2,32)B .(3 , 32-)C .(2,324-)D .(3,324-)A .(2 ,n )B .(m ,n )C .(m ,2)D .(2,2) *13.(2014?海港区⼀模)如图,在直⾓坐标系中,有16×16的正⽅形⽹格,△ABC 的顶点分别在⽹格的格点上.以原点O 为位似中⼼,放⼤△ABC 使放⼤后的△A′B′C′的顶点还在格点上,最⼤的△A′B′C′的⾯积是()A .8B .16C .32D .64知识点4 坐标与图形的变化知识链接1 坐标与图形变化---对称(1)关于x轴对称横坐标相等,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,-y).(2)关于y轴对称纵坐标相等,横坐标互为相反数.即点P(x,y)关于y轴的对称点P′的坐标是(-x,y).(3)关于直线对称①关于直线x=m对称,P(a,b)?P(2m-a,b)②关于直线y=n对称,P(a,b)?P(a,2n-b)2 坐标与图形变化---平移(1)平移变换与坐标变化向右平移a个单位,坐标P(x,y)?P(x+a,y)向左平移a个单位,坐标P(x,y)?P(x-a,y)向上平移b个单位,坐标P(x,y)?P(x,y+b)向下平移b个单位,坐标P(x,y)?P(x,y-b)(2)在平⾯直⾓坐标系内,把⼀个图形各个点的横坐标都加上(或减去)⼀个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)⼀个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)3 坐标与图形变化---旋转(1)关于原点对称的点的坐标.即点P(x,y)关于原点O的对称点是P′(-x,-y).(2)旋转图形的坐标图形或点旋转之后要结合旋转的⾓度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊⾓度如:30°,45°,60°,90°,180°.同步练习1.在平⾯直⾓坐标系中,将点(2,3)向上平移1个单位,所得到的点的坐标是()A.(1,3)B.(2,2)C.(2,4)D.(3,3)2.将点A(-2,-3)向右平移3个单位长度得到点B,则点B所处的象限是()A.第⼀象限B.第⼆象限C.第三象限D.第四象限3.如图,把ABC经过⼀定的变换得到△A′B′C′,如果△ABC上点P的坐标为(x,y),那么这个点在△A′B′C′中的对应点P′的坐标为()A.(-x,y-2)B.(-x,y+2)C.(-x+2,-y)D.(-x+2,y+2)4.如图,已知正⽅形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正⽅形ABCD先沿x轴翻折,再向左平移1个单位”为⼀次变换,如此这样,连续经过2014次变换后,正⽅形ABCD的对⾓线交点M的坐标变为()A.(-2012,2)B.(-2012,-2)C.(-2013,-2)D.(-2013,2)5.如图,在平⾯直⾓坐标系中,点A坐标为(1,3),将线段OA向左平移2个单位长度,得到线段O′A′,则点A的对应点A′的坐标为.。
位置与坐标知识点总结与经典题型归纳
伐JL与坐标知叔点一确犬∕⅛JL1. 平面确良一个场体的佞置需要2个救据。
2. 平面确定伐.置的几种方法:ClJ行列定住比:>4这种方出中常把平面分成若干行、刃,然后利用行号和列号表示平面上点的位置,症此方出中,要牢诃禁点的佞置需要两个互相独立的数据,两者缺一不可。
(2) 方伐.角距禽岌伐.法:方佞角和距窗。
(3) 经纬主佞法:它也需要两个数据:经度和纬度。
(4) 区城良佞法:只描述.票点所往的大玫佞査。
如“解放珞22号”。
知帜点二平面直角坐标余1. 岌义在平面、两条互相______ 且具有公共_______ 的数轴纽成平面直角坐标糸.其中水平方向的数轴叫 ________ ⅛________ ,向 _ ___ 为正方向;竖直方向的数轴叫_______ ⅛ _______ ,向为正方向;两条救轴交点叫平面直角坐标糸的_________________ .2. 年■面点的坐标对于平面任盘一点P,it P分别向X ¼, y軸作垂线4,x軸上的垂足对应的数a 叫P的 _ —坐标$轴上的垂足对应的救b叫P的________________________________ 坐标。
有序数对(a,b),叫A P的坐标。
若P的坐标τ⅛(a,b),则P到X抽距富为_____________ ,到y4⅛距富为__________ ・di⅛:平面以的坐标是有序实数对,Ca, b丿和(b, a)是两个不同点的坐标.3 .平面直角坐标糸点的坐标特征:(1)坐标4⅛把平而分隔成切个象喂。
根据点所淮.住置填哀(2) 坐标軸上的点不厲于任何象限.它们的坐标特征ΦA ×轴上的点 _________ 坐标为0;②Ay 軸上的点 _________ 坐标为0.(3) P(a,b)关于X 抽、y 轴、原点的对称点坐标特征φA P(a,b)关于X 轴对称点P l ________________ ;② 点P(a,b)关于y 轴对称点P 2 _____________ ;③ 点P(a,b)关于療6对称点P3 ___________ •4•平行于X 轴的直线上的点 _________ 坐标相同;平行于y 轴的直线上的6 ___________ 坐标柏同•知钗点王 4⅛对处与坐标支化⑴若两个图形关于×轴对称•则对应各点橫坐标 _________________________ ,纵坐标互为 ⑵若两个图形关于y 轴对称。
北师版八年级数学上册 第三章 位置与坐标 知识归纳与题型突破(十二类题型清单)
第三章位置与坐标知识归纳与题型突破(十二类题型清单)01思维导图02知识速记一、有序数对把一对数按某种特定意义,规定了顺序并放在一起就形成了有序数对,人们在生产生活中经常以有序数对为工具表达一个确定的意思,如某人记录某个月不确定周期的零散收入,可用(13,2000),(17,190),(21,330)…,表示,其中前一数表示日期,后一数表示收入,但更多的人们还是用它来进行空间定位,如:(4,5),(20,12),(13,2),…,用来表示电影院的座位,其中前一数表示排数,后一数表示座位号.二、平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系,如下图:要点:(1)坐标平面内的点可以划分为六个区域:x 轴,y 轴、第一象限、第二象限、第三象限、第四象限,这六个区域中,除了x 轴与y 轴有一个公共点(原点)外,其他区域之间均没有公共点.(2)在平面上建立平面直角坐标系后,坐标平面上的点与有序数对(x,y)之间建立了一一对应关系,这样就将‘形’与‘数’联系起来,从而实现了代数问题与几何问题的转化.(3)要熟记坐标系中一些特殊点的坐标及特征:①x 轴上的点纵坐标为零;y 轴上的点横坐标为零.②平行于x 轴直线上的点横坐标不相等,纵坐标相等;平行于y 轴直线上的点横坐标相等,纵坐标不相等.③关于x 轴对称的点横坐标相等,纵坐标互为相反数;关于y 轴对称的点纵坐标相等,横坐标互为相反数;关于原点对称的点横、纵坐标分别互为相反数.④象限角平分线上的点的坐标特征:一、三象限角平分线上的点横、纵坐标相等;二、四象限角平分线上的点横、纵坐标互为相反数.注:反之亦成立.(4)理解坐标系中用坐标表示距离的方法和结论:①坐标平面内点P(x,y)到x 轴的距离为|y|,到y 轴的距离为|x|.②x 轴上两点A(x 1,0)、B(x 2,0)的距离为AB=|x 1-x 2|;y 轴上两点C(0,y 1)、D(0,y 2)的距离为CD=|y 1-y 2|.③平行于x 轴的直线上两点A(x 1,y)、B(x 2,y)的距离为AB=|x 1-x 2|;平行于y 轴的直线上两点C(x,y 1)、D(x,y 2)的距离为CD=|y 1-y 2|.(5)利用坐标系求一些知道关键点坐标的几何图形的面积:切割、拼补.三、坐标方法的简单应用1.用坐标表示地理位置(1)建立坐标系,选择一个适当的参照点为原点,确定x 轴、y 轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.要点:(1)我们习惯选取向东、向北分别为x轴、y轴的正方向,建立坐标系的关键是确定原点的位置.(2)确定比例尺是画平面示意图的重要环节,要结合比例尺来确定坐标轴上的单位长度.2.用坐标表示平移(1)点的平移点的平移引起坐标的变化规律:在平面直角坐标中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b)).要点:上述结论反之亦成立,即点的坐标的上述变化引起的点的平移变换.(2)图形的平移在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.要点:平移是图形的整体运动,某一个点的坐标发生变化,其他点的坐标也进行了相应的变化,反过来点的坐标发生了相应的变化,也就意味着点的位置也发生了变化,其变化规律遵循:“右加左减,纵不变;上加下减,横不变”.四、关于坐标轴对称点的坐标特征1.关于坐标轴对称的点的坐标特征P(a,b)关于x轴对称的点的坐标为(a,-b);P(a,b)关于y轴对称的点的坐标为(-a,b);P(a,b)关于原点对称的点的坐标为(-a,-b).2.象限的角平分线上点坐标的特征第一、三象限角平分线上点的横、纵坐标相等,可表示为(a,a);第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a,-a).3.平行于坐标轴的直线上的点平行于x轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同.03题型归纳题型一确定位置及其路径1.在平面内,下列数据不能确定物体位置的是()A.3号楼2单元5楼1号B.黄海路8号C.北偏西60︒D.东经120︒,北纬30︒巩固训练2.一个学生方队,B的位置是第8列第7行,记为(8,7),则学生A在第二列第三行的位置可以表示为() A.(2,1)B.(3,3)C.(2,3)D.(3,2)3.如图是某电视塔周围的建筑群平面示意图,这个电视塔的位置用A表示.某人由点B出发到电视塔,他的路径表示错误的是(注:街在前,巷在后)()A .()()()2,22,55,6→→B .()()()2,22,56,5→→C .()()()2,26,26,5→→D .()()()()22236365→→→,,,,题型二判断点所在的象限4.点(6,3)-在()A .第一象限B .第二象限C .第三象限D .第四象限巩固训练5.如图,在平面直角坐标系中,点P 的坐标可能是()A .()1.3,1B .()1.3,1-C .()1.3,1--D .()1.3,1-6.如果点(),P a b ab +在第二象限,那么点(),Q a b -在第()象限.A .一B .二C .三D .四题型三求点到坐标轴的距离7.点F 的坐标为()2,3-,那么点F 到x 轴和y 轴的距离依次是()A .3,2-B .2,3-C .3,2D .2,3巩固训练8.在平面直角坐标系中,点(2-到x 轴的距离为()A .2BC .2-D .题型四写出平面直角坐标系中点的坐标9.若点()35P a a --,在y 轴上,则点P 的坐标为()A .(0,4)B .(40),C .(2,0)-D .(0,2)-巩固训练10.已知点P 位于第二象限,到x 轴的距离为3,到y 轴的距离为5,则点P 的坐标为()A .()35-,B .()53-,C .()35-,或()35,D .()53-,或()53,11.若点A 的坐标是()2,1-,4AB =,且AB x ∥轴,则点B 的坐标为()A .()2,5-B .()6,1-或()2,1--C .()2,3D .()2,3或()2,5-12.点P 在x 轴的下侧,y 轴的右侧,距离x 轴3个单位长度,距离y 轴4个单位长度,则点P 的坐标为()A .()3,4-B .()4,3-C .()4,3-D .()3,4-13.已知点Q 的坐标为()2,3-,点P 的坐标为()22,5a a +-,若直线PQ y ⊥轴,则点P 的坐标为()A .()2,5-B .()2,2C .()6,3-D .()14,3--14.已知点(),P a b 到x 轴的距离为2,到y 轴的距离为5,且a b a b -=-,则点P 的坐标为()A .()52-,B .()52-,C .()52-,或()52-,D .()52,或()52-,题型五平面直角坐标系中点的坐标综合判断15.下列说法中错误的是()A .x 轴上的所有点的纵坐标都等于0B .y 轴上的所有点的横坐标都等于0C .原点的坐标是(0,0)D .点(2,7)A -与点(7,2)B -是同一个点巩固训练16.下列说法正确的是()A .(32),和(2,3)表示同一个点B .点在x 轴的正半轴上C .点(2,4)-在第四象限D .点(31)-,到x 轴的距离为317.下列命题不正确的是()A .平行于x 轴的直线上的所有点的纵坐标都相同B .在平面直角坐标系中,()1,2-和()2,1-表示两个不同的点C .若点(),P a b 在y 轴上,则=0aD .()3,4P -到x 轴的距离为318.在平面直角坐标系中,已知点()1,23M m m -+,分别根据下列条件,求出M 点的坐标.(1)点M 在y 轴上;(2)点M 到x 轴的距离为1;(3)点N 的坐标为(5,1)-,且MN x ∥轴.19.已知在平面直角坐标系中,有线段MN ,其中点()2,3M -,点()8,3N ,则线段MN 中点的坐标为()A .()5,3B .()4.5,3C .()4,3D .()3,3题型六轴对称20.下列图形中,对称轴最多的图形是()A .B .C .D .巩固训练21.下列轴对称图形中,对称轴的条数四条的有()个A .1B .2C .3D .4题型七轴对称的应用22.一个车牌号码在水中的倒影如图所示,则该车牌号码为.巩固训练23.如图,这是小明在平面镜里看到的背后墙上电子钟显示的时间,则此刻的实际时间应该是.题型八坐标的平移24.将点A 先向下平移3个单位,再向右平移2个单位后得B (﹣1,5),则A 点坐标为()A .(﹣4,11)B .(﹣2,6)C .(﹣4,8)D .(﹣3,8)巩固训练25.如果点(),P a b 向上平移3个单位长度,再向左平移2个单位长度后得到的点的坐标是()2,3--,那么a ,b 的值分别是()A .0,0a b ==B .0,6a b ==-C .0,4a b ==D .5,1a b ==-26.佳佳将坐标系中一图案横向拉长2倍,又向右平移2个单位长度,若想变回原来的图案,需要变化后的图案上各点坐标()A .纵坐标不变,横坐标减2B .纵坐标不变,横坐标先除以2,再均减2C .纵坐标不变,横坐标除以2D .纵坐标不变,横坐标先减2,再均除以2题型九坐标的对称问题27.在平面直角坐标系中,点(5,6)关于x 轴的对称点是()A .(6,5)B .(-5,6)C .(5,-6)D .(-5,-6)巩固训练28.已知()2,A a 、(),3B b -两点关于x 轴对称,则a b +的值为()A .5B .1C .1-D .5-29.在平面直角坐标系中,若点(2,3)P m 与点(4,)Q n -关于原点对称,则m n -的值为()A .2B .5-C .5D .8-30.如图,△ABC 的三个顶点的坐标分别为()()()0,0,1,3,2,2A B C .(1)请画出平面直角坐标系;(2)画出ABC V 关于y 轴对称的111A B C △;(3)判断ABC V 的形状,并说明理由.题型十坐标系的简单应用31.根据下面的描述,在平面图上标出各场所的位置.(1)小彬家在广场西南方向1200米处;(2)小丽家在广场北偏西20°方向600米处;(3)柳柳家在广场东偏北30°方向900米处.巩固训练32.如图是某学校的平面示意图,已知从清源楼向西走300米到达明德楼,图书馆在知行楼与致远楼的正中间位置.(1)请根据以上条件,选取清源楼为坐标原点,以正东方向为x轴的正方向,以100米为一个单位长度建立平面直角坐标系,并标出图书馆的位置;(2)在(1)的条件下,可得致远楼坐标为()14,,请直接写出图书馆、知行楼、清源楼和崇文楼的坐标.33.如图是中国象棋棋盘的一部分,棋盘中“马”所在的位置用(2,3)表示.(1)图中“象”的位置可表示为;(2)根据象棋的走子规则,“马”只能从“日”字的一角走到与它相对的另一角;“象”只能从“田”字的一角走到与它相对的另一角.请按此规则分别写出“马”和“象”下一步可以到达的位置.题型十一点坐标的规律问题34.小明同学在一次数学探究活动中,将小正方形放置在如图所示的平面直角坐标系中,使得小正方形的中心(即正方形对角线的交点)位于原点,各顶点在坐标轴上,若各顶点到原点的距离为1.接下来,按如.图方式...作新正方形,即从第二个正方形开始,以前一个正方形的一条对角线为边作正方形,则第十个正方形中心10O 的坐标为()A .()8,16B .()8,20C .()15,46D .()15,48巩固训练35.如图,在平面直角坐标系中,对ABC V 进行循环往复的轴对称变换,若原来点B 坐标是()5,2-,则经过第2023次变换后点B 的对应点的坐标为()A .()5,2--B .()5,2-C .()5,2-D .()5,236.在平面直角坐标系中,横、纵坐标均为整数的点称为整数点.如图,一列按箭头方向有规律排列的整数点,其坐标依次为(1,0),(1,1),(2,1),(2,0),(3,0),(3,1),(3,2),(2,2),…,根据规律,第2024个整数点的坐标为.37.如图,在平面直角坐标系中,一电子蚂蚁按照设定程序从原点O 出发,按图中箭头所示的方向运动,第1次从原点运动到点(,第2次接着运动到点()2,0,第3次接着运动到点()2,2-,第4次接着运动到点()4,2-,第5次接着运动到点()4,0,第6次接着运动到点(L ,按这样的运动规律,经过2024次运动后,电子蚂蚁运动到的位置的坐标是.题型十二平面直角坐标系的几何应用38.在平面直角坐标系中,点(0)A m ,,230()B m +,,210()P m +,,PQ x ⊥轴,点Q 的纵坐标为m .则以下说法错误的是()A .当5m =-,点B 是线段AP 的中点B .当1m ≥-,点P 一定在线段AB 上C .存在唯一一个m 的值,使得AB PQ =D .存在唯一一个m 的值,使得2AB PQ=巩固训练39.在平面直角坐标系中,O 为坐标原点,过点()8,6A 分别作x 轴、y 轴的平行线,交y 轴于点B ,交x 轴于点C .(1)直接写出点B 和点C 的坐标,其中点B 的坐标为__________,点C 的坐标为__________;(2)动点P 若从点O 出发,沿射线OC 以1个单位长度/秒的速度运动,运动时间为t (秒),当OAP 为直角三角形时,求t 的值.(3)动点P 若从点B 出发,沿B A C →→以2个单位长度/秒的速度向终点C 运动,运动时间为t (秒),点()2,0D ,连接PD 、AD ,是否存在这样的t 值,使112APD ABOC S S =四边形△,若存在,请求出t 值,若不存在,请说明理由.40.如图,在平面直角坐标系中,直线AB 与两坐标轴分别交于A ,B 两点,若线段OA 与OB 的长满足等式290OB OA -+=.(1)求线段OA ,OB 的长;(2)若点C 的坐标为()1,2-,连接,AC BC ,则ABC V 的面积为______;(3)若点D 在线段AB 上,且2AD BD =,点Q 在x 轴上且10ADQ S = ,请直接写出点D 的坐标______,点Q 的坐标______.(数学活动小组的同学发现:可连接OD ,OBD 的面积是OAB △面积的13,OAD △的面积是OAB △面积的23,利用其面积即可求出点D 坐标.41.已知,ABC V 是等腰直角三角形,BC AB =,A 点在x 轴负半轴上,直角顶点B 在y 轴上,点C 在x 轴上方.(1)如图1所示,若A 的坐标是()30-,,点B 的坐标是()01,,求点C 的坐标;(2)如图2,过点C 作CD y ⊥轴于D ,请直接写出线段OA OD CD ,,之间等量关系;(3)如图3,若x 轴恰好平分BAC BC ∠,与x 轴交于点E ,过点C 作CF x ⊥轴于F ,问CF 与AE 有怎样的数量关系?并说明理由.第三章位置与坐标知识归纳与题型突破(十二类题型清单)01思维导图02知识速记一、有序数对把一对数按某种特定意义,规定了顺序并放在一起就形成了有序数对,人们在生产生活中经常以有序数对为工具表达一个确定的意思,如某人记录某个月不确定周期的零散收入,可用(13,2000),(17,190),(21,330)…,表示,其中前一数表示日期,后一数表示收入,但更多的人们还是用它来进行空间定位,如:(4,5),(20,12),(13,2),…,用来表示电影院的座位,其中前一数表示排数,后一数表示座位号.二、平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系,如下图:要点:(1)坐标平面内的点可以划分为六个区域:x 轴,y 轴、第一象限、第二象限、第三象限、第四象限,这六个区域中,除了x 轴与y 轴有一个公共点(原点)外,其他区域之间均没有公共点.(2)在平面上建立平面直角坐标系后,坐标平面上的点与有序数对(x,y)之间建立了一一对应关系,这样就将‘形’与‘数’联系起来,从而实现了代数问题与几何问题的转化.(3)要熟记坐标系中一些特殊点的坐标及特征:①x 轴上的点纵坐标为零;y 轴上的点横坐标为零.②平行于x 轴直线上的点横坐标不相等,纵坐标相等;平行于y 轴直线上的点横坐标相等,纵坐标不相等.③关于x 轴对称的点横坐标相等,纵坐标互为相反数;关于y 轴对称的点纵坐标相等,横坐标互为相反数;关于原点对称的点横、纵坐标分别互为相反数.④象限角平分线上的点的坐标特征:一、三象限角平分线上的点横、纵坐标相等;二、四象限角平分线上的点横、纵坐标互为相反数.注:反之亦成立.(4)理解坐标系中用坐标表示距离的方法和结论:①坐标平面内点P(x,y)到x 轴的距离为|y|,到y 轴的距离为|x|.②x 轴上两点A(x 1,0)、B(x 2,0)的距离为AB=|x 1-x 2|;y 轴上两点C(0,y 1)、D(0,y 2)的距离为CD=|y 1-y 2|.③平行于x 轴的直线上两点A(x 1,y)、B(x 2,y)的距离为AB=|x 1-x 2|;平行于y 轴的直线上两点C(x,y 1)、D(x,y 2)的距离为CD=|y 1-y 2|.(5)利用坐标系求一些知道关键点坐标的几何图形的面积:切割、拼补.三、坐标方法的简单应用1.用坐标表示地理位置(1)建立坐标系,选择一个适当的参照点为原点,确定x 轴、y 轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.要点:(1)我们习惯选取向东、向北分别为x轴、y轴的正方向,建立坐标系的关键是确定原点的位置.(2)确定比例尺是画平面示意图的重要环节,要结合比例尺来确定坐标轴上的单位长度.2.用坐标表示平移(1)点的平移点的平移引起坐标的变化规律:在平面直角坐标中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b)).要点:上述结论反之亦成立,即点的坐标的上述变化引起的点的平移变换.(2)图形的平移在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.要点:平移是图形的整体运动,某一个点的坐标发生变化,其他点的坐标也进行了相应的变化,反过来点的坐标发生了相应的变化,也就意味着点的位置也发生了变化,其变化规律遵循:“右加左减,纵不变;上加下减,横不变”.四、关于坐标轴对称点的坐标特征1.关于坐标轴对称的点的坐标特征P(a,b)关于x轴对称的点的坐标为(a,-b);P(a,b)关于y轴对称的点的坐标为(-a,b);P(a,b)关于原点对称的点的坐标为(-a,-b).2.象限的角平分线上点坐标的特征第一、三象限角平分线上点的横、纵坐标相等,可表示为(a,a);第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a,-a).3.平行于坐标轴的直线上的点平行于x轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同.03题型归纳题型一确定位置及其路径1.在平面内,下列数据不能确定物体位置的是()A.3号楼2单元5楼1号B.黄海路8号C.北偏西60︒D.东经120︒,北纬30︒【答案】C【分析】本题主要考查了确定物体的位置,解题的关键是掌握确定物体的位置的方法.【解析】解:北偏西60︒只有方向,没有距离,不能确定物体位置的,故选:C.巩固训练2.一个学生方队,B 的位置是第8列第7行,记为(8,7),则学生A 在第二列第三行的位置可以表示为()A .(2,1)B .(3,3)C .(2,3)D .(3,2)【答案】C【分析】数对表示位置的方法是:第一个数字表示列,第二个数字表示行,据此即可解答.【解析】根据题干分析可得:B 的位置是第8列第7行,记为(8,7),学生A 在第二列第三行的位置可以表示为:(2,3).故选C .【点睛】本题考查了数对表示位置的方法,根据已知得出列与行的意义是解题的关键.3.如图是某电视塔周围的建筑群平面示意图,这个电视塔的位置用A 表示.某人由点B 出发到电视塔,他的路径表示错误的是(注:街在前,巷在后)()A .()()()2,22,55,6→→B .()()()2,22,56,5→→C .()()()2,26,26,5→→D .()()()()22236365→→→,,,,【答案】A【分析】根据图象一一判断即可解决问题.【解析】A 选项:由图象可知()()()2,22,55,6→→不能到达点A ,正确.B 选项:由图象可知()()()2,22,56,5→→能到达点A ,与题意不符.C 选项:由图象可知()()()2,26,26,5→→到达点A ,与题意不符.D 选项:由图象可知(()()()()22236365→→→,,,,到达点A 正确,与题意不符.故选:A .【点睛】本题考查坐标确定位置、解题的关键是理解点与有序数对是一一对应关系,属于中考常考题型.题型二判断点所在的象限4.点(6,3)-在()A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【分析】利用各象限内点的坐标的符号特征进而得出答案.【解析】解:因为点(6,3)-横坐标为负数,纵坐标为正数,所以点(6,3)-在第二象限,故选:B .【点睛】本题考查了各象限内点的坐标的符号特征,解题的关键是记住各象限内点的坐标的符号,四个象限的符号特点分别是:第一象限(,)++;第二象限(,)-+;第三象限(,)--;第四象限(,)+-.巩固训练5.如图,在平面直角坐标系中,点P 的坐标可能是()A .()1.3,1B .()1.3,1-C .()1.3,1--D .()1.3,1-【答案】C【分析】根据平面直角坐标系中第三象限点的坐标特征(),--,即可解答.【解析】解:如图,在平面直角坐标系中,点P 在第三象限∴点P 的坐标可能是()1.3,1--故选:C .【点睛】本题考查了点的坐标,熟练掌握平面直角坐标系中每一象限点的坐标特征是解题的关键.6.如果点(),P a b ab +在第二象限,那么点(),Q a b -在第()象限.A .一B .二C .三D .四【答案】B【分析】由点P 在第二象限得到0,0a b ab +<>,,即可得到a 与b 的符号,由此判断点Q 所在的象限.【解析】解:∵点(),P a b ab +在第二象限,∴0,0a b ab +<>,∴0,0a b <<,∴0b ->,∴点(),Q a b -在第二象限.故选:B【点睛】此题考查象限中点的坐标特点,熟记每个象限中的点坐标特点是解题的关键.题型三求点到坐标轴的距离7.点F 的坐标为()2,3-,那么点F 到x 轴和y 轴的距离依次是()A .3,2-B .2,3-C .3,2D .2,3【答案】C【分析】根据点到x 轴的距离等于纵坐标的绝对值,点到y 轴的距离等于横坐标的绝对值,进行计算即可解答.【解析】解:∵点F 的坐标为()2,3-,∴点F 到x 轴和y 轴的距离依次是3,2故选:C .【点睛】本题考查了点的坐标,解题的关键是熟练掌握点到x 轴的距离等于纵坐标的绝对值,点到y 轴的距离等于横坐标的绝对值.巩固训练8.在平面直角坐标系中,点(2-到x 轴的距离为()A .2BC .2-D .9.若点()35P a a --,在y 轴上,则点P 的坐标为()A .(0,4)B .(40),C .(2,0)-D .(0,2)-【答案】D【分析】直接利用y 轴上点的坐标特点得出a 的值,进而得出答案.【解析】解:∵点)3,5(P a a --在y 轴上,∴30a -=,解得:3a =,则52a -=-,则点P 的坐标为(0,2)-.故选:D .【点睛】此题主要考查了点的坐标,掌握y 轴上点的坐标特点,横坐标为零是解题关键.巩固训练10.已知点P 位于第二象限,到x 轴的距离为3,到y 轴的距离为5,则点P 的坐标为()A .()35-,B .()53-,C .()35-,或()35,D .()53-,或()53,【答案】B【分析】直接利用第二象限内的点的坐标特征即可得到答案.【解析】解: 点P 位于第二象限,到x 轴的距离为3,到y 轴的距离为5,∴点P 的坐标为()53-,,故选:B .【点睛】本题主要考查的是点的坐标,解答本题的关键是明确点到x 轴的距离是这点的纵坐标的绝对值,到y 轴的距离是这点的横坐标的绝对值.11.若点A 的坐标是()2,1-,4AB =,且AB x ∥轴,则点B 的坐标为()A .()2,5-B .()6,1-或()2,1--C .()2,3D .()2,3或()2,5-【答案】B【分析】根据题意,点B 与点A 的纵坐标相同,横坐标有两种情况:B 在A 右侧和B 在A 左侧,分别求解即可.【解析】解: 点A 的坐标是()2,1-,4AB =,且AB x ∥轴,∴点B 的纵坐标为1-,横坐标是242-=-或246+=,∴点B 的坐标为()2,1--或()6,1-,故选:B .【点睛】本题考查了坐标与图形的性质,属于基础题,解题时注意分类讨论,避免出现漏解的情况.12.点P 在x 轴的下侧,y 轴的右侧,距离x 轴3个单位长度,距离y 轴4个单位长度,则点P 的坐标为()A .()3,4-B .()4,3-C .()4,3-D .()3,4-【答案】B【分析】根据点P 在x 轴的下侧,y 轴的右侧,得出点P 在第四象限,再根据距离x 轴3个单位长度,距离y 轴4个单位长度即可得出最后结果.【解析】解: 点P 在x 轴的下侧,y 轴的右侧,∴点P 在第四象限,点P 距离x 轴3个单位长度,距离y 轴4个单位长度,∴点P 的横坐标为4,纵坐标为3-,∴点P 的坐标为()4,3-.故选:B .【点睛】本题考查的是点的坐标,用到的知识点为:点到x 轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值,判断出所求点所在的象限是解答本题的关键.13.已知点Q 的坐标为()2,3-,点P 的坐标为()22,5a a +-,若直线PQ y ⊥轴,则点P 的坐标为()A .()2,5-B .()2,2C .()6,3-D .()14,3--【答案】C【分析】利用直角坐标系中垂直于y 轴或平行于x 轴的直线上的点的纵坐标相同的特点进行计算即可.【解析】解:∵点Q 的坐标为()2,3-,点P 的坐标为()22,5a a +-,直线PQ y ⊥轴,∴53a -=-,∴2a =,∴226a +=,∴点P 的坐标为()6,3-.故选:C .【点睛】本题考查了坐标与图形的性质,解题的关键是掌握坐标系中点的坐标的特点和图形的性质.14.已知点(),P a b 到x 轴的距离为2,到y 轴的距离为5,且a b a b -=-,则点P 的坐标为()A .()52-,B .()52-,C .()52-,或()52-,D .()52,或()52-,15.下列说法中错误的是()A .x 轴上的所有点的纵坐标都等于0B .y 轴上的所有点的横坐标都等于0C .原点的坐标是(0,0)D .点(2,7)A -与点(7,2)B -是同一个点【答案】D【分析】根据平面直角坐标系中坐标轴上的点的特征,及各个象限内点的特征依次判断即可.【解析】A.x 轴上的所有点的纵坐标都等于0,正确,故不符合题意;B.y 轴上的所有点的横坐标都等于0,正确,故不符合题意;C.原点的坐标是(0,0),正确,故不符合题意;D.()2,7A -与点()7,2B -它们的横,纵坐标都不相同,所以不是同一个点,故D 选项错误,符合题意.【点睛】本题主要考查平面直角坐标系中坐标轴上的点的特征,及各个象限内点的特征.第一象限(),++;第二象限(),-+;第三象限(),--;第四象限(),+-.熟练掌握以上知识是解题的关键.巩固训练16.下列说法正确的是()A .(32),和(2,3)表示同一个点B .点在x 轴的正半轴上C .点(2,4)-在第四象限D .点(31)-,到x 轴的距离为3【答案】B17.下列命题不正确的是()A .平行于x 轴的直线上的所有点的纵坐标都相同B .在平面直角坐标系中,()1,2-和()2,1-表示两个不同的点C .若点(),P a b 在y 轴上,则=0a D .()3,4P -到x 轴的距离为3【答案】D【分析】根据平面直角坐标系中点的坐标特点,点到坐标轴的距离求解即可.【解析】解:A .平行于x 轴的直线上所有点的纵坐标都相同,正确,不符合题意;B .在平面直角坐标系中,()1,2-和()2,1-表示两个不同的点,正确,不符合题意;C .点P (a ,b )在y 轴上,则a =0,正确,不符合题意;D .点P (3-,4),则P 到x 轴的距离为|4|=4,选项错误,符合题意.故选:D .【点睛】此题考查了平面直角坐标系中点的坐标特点,点到坐标轴的距离等知识,解题的关键是熟练掌握以上知识点.18.在平面直角坐标系中,已知点()1,23M m m -+,分别根据下列条件,求出M 点的坐标.(1)点M 在y 轴上;(2)点M 到x 轴的距离为1;(3)点N 的坐标为(5,1)-,且MN x ∥轴.【答案】(1)()0,5M。
位置与坐标知识点总结与经典题型归纳
位置与坐标知识点一确定位置1.平面内确定一个物体的位置需要2个数据。
2.平面内确定位置的几种方法:(1)行列定位法:在这种方法中常把平面分成若干行、列,然后利用行号和列号表示平面上点的位置,在此方法中,要牢记某点的位置需要两个互相独立的数据,两者缺一不可。
(2)方位角距离定位法:方位角和距离。
(3)经纬定位法:它也需要两个数据:经度和纬度。
(4)区域定位法:只描述某点所在的大致位置。
如“解放路22号”。
知识点二平面直角坐标系1.定义在平面内,两条互相_____且具有公共_____的数轴组成平面直角坐标系.其中水平方向的数轴叫____ 或______,向__ 为正方向;竖直方向的数轴叫_______或______,向____为正方向;两条数轴交点叫平面直角坐标系的_____.2.平面内点的坐标对于平面内任意一点P,过P分别向x轴、y 轴作垂线,x轴上的垂足对应的数a叫P的___ _坐标,y轴上的垂足对应的数b叫P的_______坐标。
有序数对(a,b),叫点P的坐标。
若P的坐标为(a,b),则P到x轴距离为_______,到y轴距离为_______.注意:平面内点的坐标是有序实数对,(a,b)和(b,a)是两个不同点的坐标.3.平面直角坐标系内点的坐标特征:(1)(2)坐标轴上的点不属于任何象限,它们的坐标特征①在x轴上的点______坐标为0;②在y轴上的点______坐标为0 .(3)P(a,b)关于x轴、y轴、原点的对称点坐标特征_____________;①点P(a,b)关于x轴对称点P1②点 P(a,b)关于y轴对称点P_____________;2③点P(a,b)关于原点对称点P 3____________.4.平行于x 轴的直线上的点______坐标相同;平行于y 轴的直线上的点_______坐标相同.知识点三 轴对称与坐标变化(1)若两个图形关于x 轴对称.则对应各点横坐标________,纵坐标互为___________.(2)若两个图形关于y 轴对称,则对应各点纵坐标________,横坐标互为___________.(3)将一个图形向上(或向下)平移n(n>0)个单位,则图形上各点横坐标____,纵坐标加上(或减去)n 个单位.(4)将一个图形向右(或向左)平移n(n>O)个单位,则图形上各点纵坐标____,横坐标加上(或减去)n 个单位.(5)纵坐标不变,横坐标分别变为原来的a 倍,则图形为原来横向伸长的a 倍(a>1)或图形横向缩短为原来的a 倍(0<a<1)。
新北师大版八年级数学上册位置与坐标知识点总结和典型例题分析
新北师大版八年级数学上册第四章位置与坐标一、生活中确定位置的方法重难点1、行列定位法把平面分成若干个行列的组合;然后用行号和列号表示平面中点的位置;要准确表示平面中的位置;需要行号、列号两个独立的数据;缺一不可..2、方位角加距离定位法此方法也叫极坐标定位法;是生活中常用的方法..在平面中确定位置时需要两个独立的数据:方位角、距离..特别需要注意的是中心位置的确定..3、方格定位法在方格纸上;一点的位置由横向方格数和纵向方格数确定;记作横向方个数;纵向方个数..需要两个数据确定物体位置..4、区域定位法是生活中常用的方法;也需要两个数据才能确定物体的位置..此方法简单明了;但不够准确..A1区;D3区等..5、经纬度定位法利用经度和纬度来确定物体位置的方法;也同时需要两个数据才能确定物体的位置..二、平面直角坐标系1、平面直角坐标系及相关概念重点在平面内;两条相互垂直且有公共原点的数轴组成平面直角坐标系;简称直角坐标系..通常两条数轴位置水平和垂直位置;规定水平轴向右和垂直轴向上为两条数轴的正方向..水平数轴称为x轴或横轴;垂直数轴称为y轴或者纵轴;x轴、y轴统称坐标轴;公共原点O称为坐标系的原点..两条数轴把平面划分为四个部分;右上部分叫做第一象限;其余部分按逆时针方向分别叫做第二、第三、第四象限..2、点的坐标表示重点在平面直角坐标系中;平面上的任意一点P;都可以用坐标来表示..过点P分别向x 轴、y轴作垂线;垂足在x轴、y轴上对应的数a、b分别叫做点P的横坐标、纵坐标;有序数对a;b叫做点P的坐标..在平面直角坐标系中;平面上的任意一点P;都有唯一一对有序实数即点的坐标与它对应;反之;对于任意一对有序实数;都可以在平面上找到唯一一点与它对应..3、特殊位置上点的坐标特点难点1坐标轴上点的坐标特点x轴上点的纵坐标为0;y轴上点的横坐标为0;原点的横坐标、纵坐标都为0.. 2余坐标轴平行直线上点的坐标特点与x轴平行直线上所有点的纵坐标相同;与y轴平行直线上所有点的横坐标相同.. 3各象限内点Pa;b的坐标特点第一象限:a>0;b>0;第二象限:a<0;b>0;第三象限:a<0;b<0;第四象限:a>0;b<0..4、根据点的坐标描点连线组成图形重点1已知点的坐标确定点的位置:分别根据坐标值在x轴、y轴作垂线;交点及为该点.. 2连线是只能连各组内的点;两组之间的点不要相连..5、建立适当的直角坐标系求点的坐标难点1建立坐标系的思路:首先分析选择适当的点做为坐标原点;其次过原点在水平和垂直的方向画出x轴和y轴;再次确定正方形、单位长度..2建立坐标系的方法不唯一;原则是:运算简单;所得坐标简单..三、轴对称与坐标变换1、图形的坐标变化与轴对称重点1横坐标不变;纵坐标分别乘-1;所得图形与x轴对称;反之与y轴对称..2在坐标系中作轴对称图形的方法:确定对称点坐标;描出各对称点;依次连线..2、直角坐标系中对称点的坐标关系重点关于x轴对称的两点坐标;横坐标相同;纵坐标互为相反数;关于y轴对称的两点坐标;纵坐标相同;横坐标互为相反数..考题一平面直角坐标系、点的坐标1.如图;ABCD是平行四边形;AD=4;AB=5;点A的坐标为-2;0;求点B、C、D的坐标.2.在直角坐标系中;点A位于y轴左侧;距y轴5个单位长度;在x轴上方;距x轴3个单位长度;则点A坐标为____________.3.在直角坐标系中;O为坐标原点;已知点A1;1;在x轴上确定点P;使△AOP为等腰三角形;则符合条件的点P的个数共有A.4B.3C.2D.1考题二特殊位置上的点的坐标特点1.已知点P(2,3)a b+-;①若P在x轴上;则b=_________;②若P在y轴上;则a=_______;③若P在第四象限;则a________;b________;2.点P(,3)a a-在第四象限;则a的取值范围是A.—2<a<0 B.0<a<2 C.a>0 D.a<03.若点P(,2)a b a b+-+在一、三象限两轴夹角平分线上;则 a=________;b=________;考题三对称点坐标特征求下列各点关于x轴、y轴、以及原点对称的点1A-3;0 2B0;6 3C2;-7 4D2;3考题四平面内点与点的距离1.求A、B两点的距离1A2;0;B-3;0 2A0;6;B0;-33A4;5;B2;-7 4A2;2;B-3;3考题五建立直角坐标系求点的坐标1.对于边长为6的正三角形ABC;建立适当的直角坐标系;写出各个顶点的坐标.2.如图;正六边形ABCDEO的边长为a;求各顶点的坐标.考题六根据点的坐标描点连线构成图形及其变化与对称1.已知A 0;0;B 2;2;C 4;01依次连接各点可得到什么图形;并在图的平面直角坐标系中画出这个图形2若想将此图案向左平移3个单位长度;坐标该如何变换3将此图案向下平移3个单位长度呢4将此图案沿y轴作轴对称图形呢2.下面的三角形ABC;三顶点的坐标分别为A0;0;B4;-2;C5;3下面将三角形三顶点的坐标做如下变化:1横坐标不变;纵坐标变为原来的2倍;此时所得三角形与原三角形相比有什么变化2横、纵坐标均乘以-1;所得新三角形与原三角形相比有什么变化3在2的条件下;横坐标减去2;纵坐标加上2;所得图形与原三角形有什么变化3.如图;在△ABC中;三个顶点的坐标分别为A-5;0;B4;0;C2;5;将△ABC沿x轴正方向平移2个单位长度;再沿y轴沿负方向平移1个单位长度得到△EFG..1求△EFG的三个顶点坐标.. 2求△EFG的面积..。
八上第三章《位置与坐标》复习知识点+练习
第三章 位置与坐标知识点一:确定位置在平面内,确定物体的位置一般需要 个数据。
1、在平面内,下列数据不能确定物体位置的是( ) A .3楼5号 B .北偏西40°C .解放路30号D .东经120°,北纬30° 知识点二:平面直角坐标系及有关概念 1.平面直角坐标系在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。
其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;x 轴和y 轴统称坐标轴。
2.平面直角坐标系的四个象限:第一象限、第二象限、第三象限、第四象限。
[注意]:x 轴和y 轴上的点(坐标轴上的点),不属于任何一个象限。
1、下列各点是第二象限的是( ) A 、(2,3) B 、(-2,-3) C 、(-2,3) D 、(-2,-3)2、在平面直角坐标系中,点(-1,12+m )一定在第_____象限 知识点三: 轴对称与坐标变换关于x 轴、y 轴或原点对称的点的坐标的特征(1)点P 与点p ’关于x 轴对称⇔横坐标相等,纵坐标互为相反数,即点P (x ,y )关于x 轴的对称点为P ’(x ,-y )(2)点P 与点p ’关于y 轴对称⇔纵坐标相等,横坐标互为相反数,即点P (x ,y )关于y 轴的对称点为P ’(-x ,y )(3)点P 与点p ’关于原点对称⇔横、纵坐标都互为相反数,即点P (x ,y )关于原点的对称点为P ’(-x ,-y )1、 在平面直角坐标系中,点A (1,5)关于x 轴对称的点为点B (a ,-5),则a= .2、若+(b+2)2=0,则点M (a ,b )关于y 轴的对称点的坐标为.3.已知点P (﹣3,2),点A 与点P 关于原点对称,则点A 的坐标是 . 知识点四: 点P(x,y)到坐标轴及原点的距离 (1)点P(x,y)到x 轴的距离等于y (2)点P(x,y)到y 轴的距离等于x(3)点P(x,y)到原点的距离等于22y x +1、点P (-4,3)到x 轴的距离是______,到y 轴的距离是_____,到原点的距离是______。
2019中考数学知识点:位置与坐标_题型归纳
2019中考数学知识点:位置与坐标_题型归纳1、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。
其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两轴的交点O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:x轴和y轴上的点,不属于任何象限。
2、点的坐标的概念点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有,分开,横、纵坐标的位置不能颠倒。
平面内点的坐标是有序实数对,当时,(a,b)和(b,a)是两个不同点的坐标点的坐标:设点P是坐标平面内的任一点,由点P向轴作垂线,垂足对应着轴上的一个实数;由点P向轴作垂线,垂足对应着轴上一个实数,则点P的坐标就是(),其中叫点P的横坐标,叫做点P的纵坐标.说明:点的坐标的定义实际上给出了求点的坐标的一种非常重要的方法,要注意横坐标与纵坐标的顺序不能颠倒.3、不同位置的点的坐标的特征﹝1﹞、各象限内点的坐标的特征点P(x,y)在第一象限点P(x,y)在第二象限点P(x,y)在第三象限点P(x,y)在第四象限﹝2﹞、坐标轴上的点的特征点P(x,y)在x轴上,x为任意实数点P(x,y)在y轴上,y为任意实数点P(x,y)既在x轴上,又在y轴上x,y同时为零,即点P坐标为(0,0)﹝3﹞、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上x与y相等点P(x,y)在第二、四象限夹角平分线上x与y互为相反数﹝4﹞、和坐标轴平行的直线上点的坐标的特征位于平行于x轴的直线上的各点的纵坐标相同。
位于平行于y轴的直线上的各点的横坐标相同。
﹝5﹞、关于x轴、y轴或远点对称的点的坐标的特征点关于x轴的对称点是.点关于y轴的对称点是.点关于原点的对称点是.﹝6﹞、点到坐标轴及原点的距离点P(x,y)到坐标轴及原点的距离:点P(x,y)到x轴的距离等于点P(x,y)到y轴的距离等于点P(x,y)到原点的距离等于☆.﹝7﹞(1)若PQ☆x轴,则..(2)若PQ☆y轴,则.☆﹝8﹞.若,,当是线段AB的中点时*﹝9﹞.若,,则﹝10﹞.坐标平面内的点和有序实数对(x,y)之间建立了一一对应关系.。
位置及坐标知识点总结及经典题型归纳
位置与坐标知识点一确定位置1.平面内确定一个物体的位置需要2个数据。
2.平面内确定位置的几种方法:(1)行列定位法:在这种方法中常把平面分成若干行、列,然后利用行号和列号表示平面上点的位置,在此方法中,要牢记某点的位置需要两个互相独立的数据,两者缺一不可。
(2)方位角距离定位法:方位角和距离。
(3)经纬定位法:它也需要两个数据:经度和纬度。
(4)区域定位法:只描述某点所在的大致位置。
如“解放路22号”。
知识点二平面直角坐标系1.定义在平面内,两条互相_____且具有公共_____的数轴组成平面直角坐标系.其中水平方向的数轴叫____ 或______,向__ 为正方向;竖直方向的数轴叫_______或______,向____为正方向;两条数轴交点叫平面直角坐标系的_____.2.平面内点的坐标对于平面内任意一点P,过P分别向x轴、y 轴作垂线,x轴上的垂足对应的数a叫P的___ _坐标,y轴上的垂足对应的数b叫P的_______坐标。
有序数对(a,b),叫点P的坐标。
若P的坐标为(a,b),则P到x轴距离为_______,到y轴距离为_______.注意:平面内点的坐标是有序实数对,(a,b)和(b,a)是两个不同点的坐标.3.平面直角坐标系内点的坐标特征:(1)点的位置横坐标符号纵坐标符号第一象限第二象限第三象限第四象限(2)坐标轴上的点不属于任何象限,它们的坐标特征①在x轴上的点______坐标为0;②在y轴上的点______坐标为0 .(3)P(a,b)关于x轴、y轴、原点的对称点坐标特征_____________;①点P(a,b)关于x轴对称点P1②点 P(a,b)关于y轴对称点P_____________;2③点P(a,b)关于原点对称点P 3____________.4.平行于x 轴的直线上的点______坐标相同;平行于y 轴的直线上的点_______坐标相同.知识点三 轴对称与坐标变化(1)若两个图形关于x 轴对称.则对应各点横坐标________,纵坐标互为___________.(2)若两个图形关于y 轴对称,则对应各点纵坐标________,横坐标互为___________.(3)将一个图形向上(或向下)平移n(n>0)个单位,则图形上各点横坐标____,纵坐标加上(或减去)n 个单位.(4)将一个图形向右(或向左)平移n(n>O)个单位,则图形上各点纵坐标____,横坐标加上(或减去)n 个单位.(5)纵坐标不变,横坐标分别变为原来的a 倍,则图形为原来横向伸长的a 倍(a>1)或图形横向缩短为原来的a 倍(0<a<1)。
八年级数学上册位置与坐标重点知识整理
八年级数学上册位置与坐标重点知识整理1、确定位置在平面内,确定物体的位置一般需要两个数据。
2、平面直角坐标系及有关概念①平面直角坐标系在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。
其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。
它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
②坐标轴和象限为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。
③点的坐标的概念对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。
点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。
平面内点的坐标是有序实数对,(a,b)和(b,a)是两个不同点的坐标。
平面内点的与有序实数对是一一对应的。
④不同位置的点的坐标的特征a、各象限内点的坐标的特征点P(x,y)在第一象限→x>0,y>0点P(x,y)在第二象限→x<0,y>0点P(x,y)在第三象限→x<0,y<0点P(x,y)在第四象限→x>0,y<0b、坐标轴上的点的特征点P(x,y)在x轴上→y=0,x为任意实数点P(x,y)在y轴上→x=0,y为任意实数点P(x,y)既在x轴上,又在y轴上→x,y同时为零,即点P坐标为(0,0)即原点c、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线(直线y=x)上→x与y相等点P(x,y)在第二、四象限夹角平分线上→x与y互为相反数d、和坐标轴平行的直线上点的坐标的特征位于平行于x轴的直线上的各点的纵坐标相同。
位于平行于y轴的直线上的各点的横坐标相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
位置与坐标知识点一确定位置1.平面确定一个物体的位置需要2个数据。
2.平面确定位置的几种方法:(1)行列定位法:在这种方法中常把平面分成若干行、列,然后利用行号和列号表示平面上点的位置,在此方法中,要牢记某点的位置需要两个互相独立的数据,两者缺一不可。
(2)方位角距离定位法:方位角和距离。
(3)经纬定位法:它也需要两个数据:经度和纬度。
(4)区域定位法:只描述某点所在的大致位置。
如“解放路22号”。
知识点二平面直角坐标系1.定义在平面,两条互相_____且具有公共_____的数轴组成平面直角坐标系.其中水平方向的数轴叫____ 或______,向__ 为正方向;竖直方向的数轴叫_______或______,向____为正方向;两条数轴交点叫平面直角坐标系的_____.2.平面点的坐标对于平面任意一点P,过P分别向x轴、y 轴作垂线,x轴上的垂足对应的数a 叫P的___ _坐标,y轴上的垂足对应的数b叫P的_______坐标。
有序数对(a,b),叫点P的坐标。
若P的坐标为(a,b),则P到x轴距离为_______,到y轴距离为_______.注意:平面点的坐标是有序实数对,(a,b)和(b,a)是两个不同点的坐标.3.平面直角坐标系点的坐标特征:(1)坐标轴把平面分隔成四个象限。
根据点所在位置填表点的位置横坐标符号纵坐标符号第一象限第二象限第三象限第四象限(2)坐标轴上的点不属于任何象限,它们的坐标特征①在x轴上的点______坐标为0;②在y轴上的点______坐标为0 .(3)P(a,b)关于x轴、y轴、原点的对称点坐标特征①点P(a,b)关于x轴对称点P1_____________;②点P(a,b)关于y轴对称点P2_____________;③点P(a,b)关于原点对称点P3____________.4.平行于x轴的直线上的点______坐标相同;平行于y轴的直线上的点_______坐标相同.知识点三轴对称与坐标变化(1)若两个图形关于x轴对称.则对应各点横坐标________,纵坐标互为___________.(2)若两个图形关于y轴对称,则对应各点纵坐标________,横坐标互为___________.(3)将一个图形向上(或向下)平移n(n>0)个单位,则图形上各点横坐标____,纵坐标加上(或减去)n个单位.(4)将一个图形向右(或向左)平移n(n>O)个单位,则图形上各点纵坐标____,横坐标加上(或减去)n 个单位.(5)纵坐标不变,横坐标分别变为原来的a 倍,则图形为原来横向伸长的a 倍(a>1)或图形横向缩短为原来的a 倍(0<a<1)。
(6)横坐标不变,纵坐标分别变为原来的a 倍,则图形为原来纵向伸长的a 倍(a>1)或图形纵向缩短为原来的a 倍(0<a<1)。
(7)横坐标与纵坐标同时变为原来的a 倍,则图形被放大,形状不变(a>1)。
题型一 坐标系的理解1.平面点的坐标是( )A 一个点B 一个图形C 一个数D 一个有序数对2.在平面要确定一个点的位置,一般需要________个数据;在空间要确定一个点的位置,一般需要________个数据.3.在平面直角坐标系,下列说法错误的是( )A 原点O 不在任何象限B 原点O 的坐标是0C 原点O 既在X 轴上也在Y 轴上D 原点O 在坐标平面题型二 已知坐标系中特殊位置上的点,求点的坐标1.点P 在x 轴上对应的实数是,则点P 的坐标是 ,若点Q 在y 对应的实数是31,则点Q 的坐标是 . 2.点P (a-1,2a-9)在x 轴负半轴上,则P 点坐标是 .3.点P(m+2,m-1)在y 轴上,则点P 的坐标是 .4.已知点A (m ,-2),点B (3,m-1),且直线AB ∥x 轴,则m 的值为 .5.已知A(1,2),B(x,y),AB ∥x 轴,且B 到y 轴距离为2,则B 的坐标是 .6.平行于x 轴的直线上的点的纵坐标一定( )A .大于0B .小于0C .相等D .互为相反数7.若点(a ,2)在第二象限,且在两坐标轴的夹角平分线上,则a= .8.已知点P (x 2-3,1)在一、三象限夹角平分线上,则x= .9.过点A (2,-3)且垂直于y 轴的直线交y 轴于点B ,则点B 坐标为( )A .(0,2)B .(2,0)C .(0,-3)D .(-3,0)题型三 点符号特征1.如果a -b <0,且ab <0,那么点(a ,b)在( )A .第一象限B .第二象限C .第三象限D .第四象限2.如果xy <0,那么点P (x ,y )在( ) A . 第二象限 B .第四象限C .第四象限或第二象限D .第一象限或第三象限3.点P 的坐标是(2,-3),则点P 在第 象限.5.点P (x ,y )在第四象限,且|x|=3,|y|=2,则P 点的坐标是 。
6.点 A 在第二象限 ,它到 x 轴 、y 轴的距离分别是 3 、2,则坐标是 ;7.若点P (x ,y )的坐标满足xy ﹥0,则点P 在第 象限;若点P (x ,y )的坐标满足xy ﹤0,且在x 轴上方,则点P 在第 象限. 若点P (a ,b )在第三象限,则点P '(-a ,-b +1)在第 象限;8.若点P(m -1, m )在第二象限,则下列关系正确的是( )A.10<<mB.0<mC.0>mD.1>m9.点(x ,1-x )不可能在( )A.第一象限B.第二象限C.第三象限D.第四象限10.已知点P(102-x ,x -3)在第三象限,则x 的取值围是( )A.53<<xB.3≤x ≤5C.5>x 或3<xD.x ≥5或x ≤311.如果a-b <0,且ab <0,那么点(a ,b)在( )A.第一象限,B.第二象限C.第三象限D.第四象限题型四 求一些特殊图形,在平面直角坐标系中的点的坐标1.X 轴上的点P 到Y 轴的距离为2.5,则点P 的坐标为( )A .(2.5,0) B.(-2.5,0) C.(0,2.5) D.(2.5,0)或(-2.5,0)2.点A(2,3)到x 轴的距离为 ;点B(-4,0)到y 轴的距离为 ;点C 到x 轴的距离为1,到y 轴的距离为3,且在第三象限,则C 点坐标是 。
3.若点P (a ,b )到x 轴的距离是2,到y 轴的距离是3,则这样的点P 有( )A.1个B.2个C.3个D.4个4.已知直角三角形ABC 的顶点A(2 ,0),B(2 ,3).A 是直角顶点,斜边长为5,求顶点C 的坐标 .5. 直角坐标系中,正三角形的一个顶点的坐标是(0,3),另两个顶点B 、C 都在x 轴上,求B ,C 的坐标.6.对于边长为6的正△ABC ,建立适当的直角坐标系,并写出各个顶点的坐标.7.在平面直角坐标系中,A ,B ,C 三点的坐标分别为(0,0),(0,-5),(-2,-2),•以这三点为平行四边形的三个顶点,则第四个顶点不可能在第_______象限.8.如图,正方形ABCD以(0,0)为中心,边长为4,求各顶点的坐标.9.已知等边△ABC的两个顶点坐标为A(-4,0),B(2,0).求:(1)点C的坐标;(2)△ABC的面积10.如右图,在直角坐标系中,△AOB的顶点O和B的坐标分别是O(0,0),B (6,0),且∠OAB=90°,AO=AB,则顶点A关于x轴的对称点的坐标是()A.(3,3) B.(-3,3)C.(3,-3)D.(-3,-3)11.△ABC在平面直角坐标系中的位置如图所示.(1)作出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)作出将△ABC绕点O顺时针旋转180°后的△A2B2C2;(3)求S△ABC. OAB y12.在如图所示的直角坐标系中,四边形ABCD的各个顶点的坐标分别是A(0,0),B(2,5),C(9,8),D(12,0),求出这个四边形的面积.题型五对称点的坐标特征1.已知A(-3,5),则该点关于x轴对称的点的坐标为_________;关于y轴对的点的坐标为____________;关于原点对称的点的坐标为___________;关于直线x=2对称的点的坐标为____________。
2.将三角形ABC 的各顶点的横坐标都乘以1-,则所得三角形与三角形ABC 的关系( )A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .将三角形ABC 向左平移了一个单位3.若点A(m,-2),B(1,n)关于原点对称,则m= ,n= .4.已知点P 的坐标是(m ,1-),且点P 关于x 轴对称的点的坐标是(3-,n 2),则_________,==n m ;5.若 ),()与,(13-m n N m M 关于原点对称 ,则 __________,==n m ;6.已知0=mn ,则点(m ,n )在 ;7.直角坐标系中,将某一图形的各顶点的横坐标都乘以1-,纵坐标保持不变,得到的图形与原图形关于________轴对称;将某一图形的各顶点的纵坐标都乘以1-,横坐标保持不变,得到的图形与原图形关于________轴对称.8. (b+2)2=0,则点M (a ,b )关于y 轴的对称点的坐标为_______.9.若一个点的横坐标与纵坐标互为相反数,则此点一定在( )A .原点B .两坐标轴第一、三象限夹角的平分线上C .x 轴上D .两坐标轴第二、四象限夹角的平分线上知识点六:利用直角坐标系描述实际点的位置。
需要根据具体情况建立适当的平面直角坐标系,找出对应点的坐标。
1.如图所示,在象棋盘上建立平面直角坐标系,使“马”位于点(2,2),“炮”位于点(-1,2),写出“兵”所在位置的坐标 .2. 用两个数字来确定一个点的位置是常用的确定位置的方法,如图,A 点用(2,3)来表示,那么B 点的位置为 .知识点七:平移、旋转的坐标特点。
1. 三角形ABC 三个顶点A 、B 、C 的坐标分别为A(2,-1)、B(1,-3)、C(4,-3.5).把三角形A 1B 1C 1向右平移4个单位,再向下平移3个单位,恰好得到三角形ABC ,试写出三角形A 1B 1C 1三个顶点的坐标.2.在平面直角坐标系中,将点M (1,0)向右平移3个单位,得到点1M ,则点1M 的坐标为________.3.矩形ABCD 在坐标系中的位置如图3所示,若矩形的边长AB 为1,AD 为2,则点A ,B ,C ,D 的坐标依次为________;把矩形向右平移3个单位,得矩形A B C D '''',A B C D '''',,,的坐标为________.图34.线段CD是由线段AB平移得到的,点A(-1,3)的对应点C(2,5),则B(-3,-2)的对应点D的坐标为。