实验3 傅里叶变换及其性质
傅里叶变换性质证明
![傅里叶变换性质证明](https://img.taocdn.com/s3/m/61873c494b7302768e9951e79b89680203d86be5.png)
傅里叶变换性质证明性质一:线性性质F[a*f(t)+b*g(t)]=a*F[f(t)]+b*F[g(t)]其中F表示傅里叶变换。
这个性质的证明非常简单,我们只需将傅里叶变换的定义代入到等式中即可。
性质二:时移性质时移性质指的是时域上的移动会导致频域上的相位变化。
设F[f(t)]表示函数f(t)的傅里叶变换,则有:F[f(t - a)] = e^(-2πiaω) * F[f(t)]其中a是常数,ω是角频率。
这个性质的证明可以通过将f(t-a)展开成泰勒级数,并代入傅里叶变换的定义进行推导得到。
性质三:频移性质频移性质指的是频域上的移动会导致时域上的相位变化。
设F[f(t)]表示函数f(t)的傅里叶变换,则有:F[e^(2πiaω0) * f(t)] = F[f(t - a)]其中a是常数,ω0是角频率。
这个性质的证明可以利用傅里叶变换的定义以及欧拉公式进行推导。
性质四:尺度变换性质尺度变换性质指的是时域上的信号缩放会导致频域上的信号压缩。
设F[f(t)]表示函数f(t)的傅里叶变换,则有:F[f(a*t)]=,a,^(-1)*F[f(t/a)]其中a是常数。
这个性质的证明可以通过将f(a*t)展开成泰勒级数,并代入傅里叶变换的定义进行推导得到。
性质五:卷积定理卷积定理是傅里叶变换中最重要的性质之一、它指出卷积在频域上等于两个函数的傅里叶变换的乘积。
设f(t)和g(t)是两个函数,f(t)*g(t)表示它们的卷积,F[f(t)]和F[g(t)]表示它们的傅里叶变换,则有:F[f(t)*g(t)]=F[f(t)]*F[g(t)]其中*表示卷积,乘法表示两个函数的傅里叶变换的乘积。
这个性质的证明可以通过将卷积展开成积分形式,然后利用傅里叶变换的定义进行推导得到。
以上是傅里叶变换的几个重要性质及其证明。
这些性质使得傅里叶变换具有很强的分析和应用能力,在信号处理、图像处理、通信等领域得到广泛应用。
这些性质的正确性和证明对于理解和应用傅里叶变换非常重要。
信号分析与处理——傅里叶变换性质
![信号分析与处理——傅里叶变换性质](https://img.taocdn.com/s3/m/4ae5e85cc381e53a580216fc700abb68a982ada7.png)
信号分析与处理——傅里叶变换性质傅里叶变换是信号处理中常用的分析方法,通过将信号在频域上进行分解,可以获得信号的频谱信息,并对信号进行频谱分析,从而实现对信号的处理与改变。
傅里叶变换具有以下几个重要的性质,这些性质对于信号处理的理解和实际应用至关重要。
1.线性性质:傅里叶变换具有线性性质,即对于任意两个信号x(t)和y(t),以及对应的傅里叶变换X(f)和Y(f),有以下关系:a) 线性叠加:傅里叶变换对于信号的叠加是可线性的,即如果有h(t) = cx(t) + dy(t),则H(f) = cX(f) + dY(f)。
b) 变换的线性组合:如果有z(t) = ax(t) + by(t),则Z(f) =aX(f) + bY(f)。
这种线性性质为信号的分析和处理提供了很大的方便,可以通过分别对不同组成部分进行变换,再进行线性组合,得到最终的处理结果。
2. 平移性质:傅里叶变换具有平移性质,即如果一个信号x(t)的傅里叶变换为X(f),则x(t - t0)的傅里叶变换为e^(-j2πft0)X(f),其中t0为平移的时间。
这意味着信号在时域上的平移将对应于频域上的相位变化,而频域上的平移则对应于时域上的相位变化。
4.卷积定理:傅里叶变换还具有卷积定理,即信号的卷积在频域上等于信号的傅里叶变换之积。
具体来说,如果两个信号x(t)和h(t)的傅里叶变换分别为X(f)和H(f),则它们的卷积y(t)=x(t)*h(t)的傅里叶变换为Y(f)=X(f)×H(f)。
这个性质在实际的信号处理中有着重要的应用。
通过将两个信号在时域上的卷积转化为频域上的乘法操作,可以方便地进行信号处理的设计和实现。
5. Parseval定理:傅里叶变换还具有Parseval定理,即信号的能量在时域和频域上是相等的。
具体来说,如果信号x(t)的傅里叶变换为X(f),则有∫,x(t),^2dt = ∫,X(f),^2df。
这个性质意味着通过傅里叶变换可以实现信号的能量分析和功率谱估计,从而对信号的能量进行定量的测量。
傅里叶变换的性质
![傅里叶变换的性质](https://img.taocdn.com/s3/m/44e522cf6bd97f192379e9c4.png)
§3–4傅里叶变换的性质设f(t) ←→F(jω),f1(t) ←→F1(jω),f2(t) ←→F2(jω);α、α1、α2为实数,则有如下性质:一、线性:α1 f1(t) + α2 f2(t)←→α1F1(jω) + α2 F2(jω)二、对称性:F(jt)←→2πf(-ω)证明:将上式中的t换为ω,将原有的ω换为t,或:,即:F(jt)←→2π f(-ω)P.67例3-3:已知,再令==> ←→2πG(-ω)三、尺度变换:(α≠0的实数)可见信号持续时间与占有频带成反比(此性质易由积分变量代换证得)。
推论(折叠性):f(-t) ←→F(-jω)四、时移性:(此性质易由傅氏变换的定义证得)推论(同时具有尺度变换与时移):P.69-70例3-4请大家浏览。
五、频移性:(此性质易由傅氏变换的定义证得) π.70例3-5请大家浏览。
频移性的重要应用——调制定理:欧拉公式?例如门信号的调制:显然,当ω0足够大时,就可使原频谱密度函数被向左、右复制时几乎不失真。
六、时域卷积:f1(t)* f2(t) ←→F1(jω)F2(jω)证明:时域卷积的重要应用——求零状态响应的频域法:时域:yf(t) = f(t)* h(t) ==> 频域:Y f(jω) = F(jω)H(jω)七、频域卷积:f1(t). f2(t) ←→1/2π[F1(jω)*F2(jω)]八、时域微分性:df(t)/dt←→ jωF(jω) (其证明请自学P.72-73有关内容)推论:条件:例如:d(t) ←→1 ==>δ'(t) ←→jω九、时域积分性:证:故信号t轴上、下面积相等时F(0)=0,否则微分性与积分性是不可逆的。
十、频域微分性:例如:十一、频域积分性:f(0)=0时频域微分性与频域积分性才是可逆的。
十二、帕塞瓦尔定理:若f(t)为实函数,则能量表3-2傅里叶变换的基本性质下面再举几个例子说明性质的综合运用。
傅里叶变换的基本性质和应用
![傅里叶变换的基本性质和应用](https://img.taocdn.com/s3/m/2941a8d4afaad1f34693daef5ef7ba0d4a736d9c.png)
傅里叶变换的基本性质和应用傅里叶变换,是20世纪初法国数学家傅里叶的发明,是将一个时间函数或空间函数的复杂波形分解成一系列简单的正弦波的工具。
它是信号处理和图像处理领域非常重要的一种数学变换,广泛应用于通信、图像、音频等领域。
一、傅里叶变换的基本概念傅里叶变换是一种将时域信号(即关于时间的函数)转换为频域信号(即关于频率的函数)的数学工具。
在时域中,信号可以表示为一个随着时间变化而变化的函数;在频域中,信号可以表示为它的频谱分布,即各个频率成分的大小。
傅里叶变换是互逆的,也就是说,将一样以频率表示的信号进过傅里叶逆变换,可以得到原始的时域信号。
傅里叶变换和傅里叶逆变换的基本公式分别如下:$$ F(\omega) = \int_{-\infty}^{\infty}f(t)e^{-i\omega t}dt $$$$ f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty}F(\omega)e^{i\omega t}d\omega $$其中,$f(t)$ 是时域信号,$F(\omega)$ 是频域信号,$\omega$ 是角频率。
傅里叶变换可以看作一种基变换,将时域信号换到频域进行分析,从而可以更好地理解信号的性质。
二、傅里叶变换的基本性质1. 线性性质傅里叶变换是线性的,即对于一个常数乘以一个时域信号进行傅里叶变换,等价于将该常数乘以该信号的傅里叶变换。
即:$$ F(cf(t)) = cF(f(t)) $$其中,$c$ 是常数。
此外,傅里叶变换具有加权叠加的特性,也就是说,将两个时域信号求和再进行傅里叶变换,等价于分别对这两个信号进行傅里叶变换后再相加。
即:$$ F(f(t) + g(t)) = F(f(t)) + F(g(t)) $$2. 时移性质傅里叶变换具有时移性质,也就是说,在时域中将一个信号向右或向左平移 $\tau$ 个单位,它的傅里叶变换相位也会相应发生$\tau$ 的变化。
傅里叶变换基本性质
![傅里叶变换基本性质](https://img.taocdn.com/s3/m/d9e22fae763231126edb11d7.png)
傅里叶变换的基本性质(一)傅里叶变换建立了时间函数和频谱函数之间转换关系。
在实际信号分析中,经常需要对信号的时域和频域之间的对应关系及转换规律有一个清楚而深入的理解。
因此有必要讨论傅里叶变换的基本性质,并说明其应用。
一、线性傅里叶变换是一种线性运算。
若则其中a和b均为常数,它的证明只需根据傅里叶变换的定义即可得出。
例3-6利用傅里叶变换的线性性质求单位阶跃信号的频谱函数。
解因由式(3-55)得二、对称性若则证明因为有将上式中变量换为x,积分结果不变,即再将t用代之,上述关系依然成立,即最后再将x用t代替,则得所以证毕若是一个偶函数,即,相应有,则式(3-56)成为可见,傅里叶变换之间存在着对称关系,即信号波形与信号频谱函数的波形有着互相置换的关系,其幅度之比为常数。
式中的表示频谱函数坐标轴必须正负对调。
例如:例3-7若信号的傅里叶变换为试求。
解将中的换成t,并考虑为的实函数,有该信号的傅里叶变换由式(3-54)可知为根据对称性故再将中的换成t,则得为抽样函数,其波形和频谱如图3-20所示。
三、折叠性若则四、尺度变换性若则证明因a>0,由令,则,代入前式,可得函数表示沿时间轴压缩(或时间尺度扩展) a倍,而则表示沿频率轴扩展(或频率尺度压缩) a倍。
该性质反映了信号的持续时间与其占有频带成反比,信号持续时间压缩的倍数恰好等于占有频带的展宽倍数,反之亦然。
例3-8已知,求频谱函数。
解前面已讨论了的频谱函数,且根据尺度变换性,信号比的时间尺度扩展一倍,即波形压缩了一半,因此其频谱函数两种信号的波形及频谱函数如图3-21所示。
五、时移性若则此性质可根据傅里叶变换定义不难得到证明。
它表明若在时域平移时间,则其频谱函数的振幅并不改变,但其相位却将改变。
例3-9求的频谱函数。
解: 根据前面所讨论的矩形脉冲信号和傅里叶变换的时移性,有六、频移性若则证明证毕频移性说明若信号乘以,相当于信号所分解的每一指数分量都乘以,这就使频谱中的每条谱线都必须平移,亦即整个频谱相应地搬移了位置。
付立叶变换及其性质
![付立叶变换及其性质](https://img.taocdn.com/s3/m/bdf6e2ef80eb6294dc886c24.png)
傅里叶变换的性质这里主要介绍二维离散傅里叶变换(DFT ,discrete FT )中的几个常用性质(可分离线、周期性和共轭对称性、平移性、旋转性质、卷积与相关定理):可分离性二维离散傅立叶变换DFT 可分离性的基本思想是二维DFT 可分离为两次一维DFT 。
因此可以用通过计算两次一维的FFT 来得到二维快速傅立叶变换FFT 算法 。
根据快速傅里叶变换的计算要求,需要图像的行列数均满足2的n 次,如果不满足,在计算FFT 之前先要对图像补零以满足2的n 次。
一个M 行N 列的二维图像f(x,y),先按行对列变量y 做一次长度为N 的一维离散傅里叶变换,再将计算结果按列向对变量x 做一次长度为M 傅里叶变换就可以得到该图像的傅里叶变换结果,如下式所示:()()()()∑∑-=-=-⎥⎥⎦⎤⎢⎢⎣⎡-=10102exp 2exp ,1,M x N y M ux j N vy j y x f MN v u F ππ 将上式分解开来就是如下两部分,首先得到F(x,v)再由F(x,v)得到F(u,v):∑-=-=-=101...10]/2exp[),(1),(N y N v N vy j y x f N v x F ,,,π∑-=-=-=101,...,1,0,]/2exp[),(1),(N x M v u M ux j v x F M v u F πu=0,1,2,…M-1;v=0,1,2,...N-1计算过程如下图所示:每一行有N 个点,对每一行的一维N 点序列进行离散傅里叶变换得到F(x,u),再对得到F(x,u)按列向对每一列做M 点的离散傅里叶变换,就可以得到二维图像f(x,y)的离散傅里叶变换F(u,v)同样,做傅里叶逆变换时,先对列向做一维傅里叶逆变换,再对行做一维逆傅里叶变换,如下式所示:()()()()∑∑-=-=⎥⎦⎤⎢⎣⎡=10102exp 2exp ,,M u N v M ux j N vy j v u F y x f ππ x=0,1,2,…M-1;y=0,1,2,...N-1周期性和共轭对称性由傅里叶变换的基本性质可以知道,离散信号的频谱具有周期性。
傅里叶变换性质及定理
![傅里叶变换性质及定理](https://img.taocdn.com/s3/m/9e9ac70cb84ae45c3b358cf5.png)
(1-15)
(1-16)
• 将变量t与ω
互换 2f ( ) F (t)e jtdt
所以
2πf(-ω) ←→ F(t)
特别地, 当f(t)是t的偶函数, 那么
F(t) ←→ 2πf(-ω)=2πf(ω)
即有
f () 1 F(t) 2
(1-17)
•
例1-6 已知F1(ω)如图1-10所示, 利
仍以例1-3的f1(t)、 f(t)为例, f0(t)
的频谱F0(ω)如图1-7(b)所示。 利用一个
低通滤波器(在后面介绍), 滤除2ω0附
近的频率分量, 即可提取f1(t), 实现解
调。
(a)
f (t)
f0(t)
低 通 滤波 器
f1(t)
cos0t
F() A 2
A 4
(b) - 20
-0
0
0
A F0() 2
信号与系统
傅里叶变换性质及定理
•
1. 线性
•
若f1(t)←→F1(ω), f2(t)←→F2(ω), 则
•
af1(t)+bf2(t) ←→ aF1(ω)+bF2(ω)
• 式中, a、 b为任意常数。
(3.3-1)
•证
af1(te jtdt
b
f(-t) ←→ F(-ω)
尺度特性说明, 信号在时域中压缩, 频域中 就扩展; 反之, 信号在时域中扩展, 在频域中 就一定压缩; 即信号的脉宽与频宽成反比。
•
一般时宽有限的信号, 其频宽无限,
反之亦然。 由于信号在时域压缩(扩展)
时, 其能量成比例的减少(增加), 因
此其频谱幅度要相应乘以系数1/|a|。 也
傅里叶变换的性质与应用
![傅里叶变换的性质与应用](https://img.taocdn.com/s3/m/0628f620fbd6195f312b3169a45177232e60e44a.png)
傅里叶变换的性质与应用傅里叶变换(Fourier Transform)是一种在信号和图像处理领域中广泛应用的数学工具。
它通过将一个函数表示为一系列正弦和余弦函数的线性组合来描述时域和频域之间的关系。
在本文中,我们将探讨傅里叶变换的性质以及其在各个领域中的应用。
一、傅里叶变换的性质1. 线性性质傅里叶变换具有线性性质,即对于任意常数a和b以及函数f(t)和g(t),有以下等式成立:F(af(t) + bg(t))= aF(f(t))+ bF(g(t))其中F(f(t))表示对函数f(t)进行傅里叶变换后得到的频域函数。
2. 对称性质傅里叶变换具有一系列对称性质。
其中最为重要的对称性质为奇偶对称性。
当函数f(t)为实函数并满足奇偶对称时,其傅里叶变换具有如下关系:F(-t)= F(t)(偶对称函数)F(-t)= -F(t)(奇对称函数)3. 尺度变换性质傅里叶变换可以对函数的尺度进行变换。
对于函数f(a * t)的傅里叶变换后得到的频域函数为F(w / a),其中a为正数。
二、傅里叶变换的应用1. 信号处理傅里叶变换在信号处理中被广泛应用。
它可以将时域信号转换为频域信号,使得信号的频率成分更加明确。
通过傅里叶变换,我们可以分析和处理各种信号,例如音频信号、图像信号和视频信号等。
在音频领域中,傅里叶变换可以用于音乐频谱分析、滤波器设计和音频压缩等方面。
在图像处理领域中,傅里叶变换可以用于图像增强、图像去噪和图像压缩等方面。
2. 通信系统傅里叶变换在通信系统中具有重要的应用。
通过傅里叶变换,我们可以将信号转换为频域信号,并根据频域特性进行信号调制和解调。
傅里叶变换可以用于调制解调器的设计、信道估计和信号的频谱分析等方面。
在无线通信系统中,傅里叶变换也广泛应用于OFDM(正交频分复用)技术,以提高信号传输效率和抗干扰性能。
3. 图像处理傅里叶变换在图像处理中有广泛的应用。
通过将图像转换到频域,我们可以对图像进行滤波、增强和去噪等操作。
实验三傅里叶变换及其性质
![实验三傅里叶变换及其性质](https://img.taocdn.com/s3/m/1ae1f04af90f76c661371ae8.png)
信息工程学院实验报告课程名称:信号与系统实验项目名称:实验3 傅里叶变换及其性质实验时间:2013-11-29班级: : 学号:一、实验目的:1、学会运用MATLAB 求连续时间信号的傅里叶(Fourier )变换;2、学会运用MATLAB 求连续时间信号的频谱图;3、学会运用MATLAB 分析连续时间信号的傅里叶变换的性质。
二、实验环境:1、硬件:在windows 7 操作环境下;2、软件:Matlab 版本7.1三、实验原理:3.1傅里叶变换的实现信号()f t 的傅里叶变换定义为: ()[()]()j t F F f t f t e dt ωω∞--∞==⎰,傅里叶反变换定义为:11()[()]()2j t f t F F f e d ωωωωπ∞--∞==⎰。
信号的傅里叶变换主要包括MATLAB 符号运算和MATLAB 数值分析两种方法,下面分别加以探讨。
同时,学习连续时间信号的频谱图。
3.1.1 MATLAB 符号运算求解法MATLAB 符号数学工具箱提供了直接求解傅里叶变换与傅里叶反变换的函数fourier( )和ifourier( )。
Fourier 变换的语句格式分为三种。
(1)F=fourier(f):它是符号函数f 的Fourier 变换,默认返回是关于ω的函数。
(2)F=fourier(f,v):它返回函数F 是关于符号对象v 的函数,而不是默认的ω,即()()jvt F v f t e dt ∞--∞=⎰。
(3)F=fourier(f,u,v):是对关于u 的函数f 进行变换,返回函数F 是关于v 的函数,即()()jvu F v f t e du ∞--∞=⎰。
傅里叶反变换的语句格式也分为三种。
(1)f=ifourier(F):它是符号函数F 的Fourier 反变换,独立变量默认为ω,默认返回是关于x 的函数。
(2)f=ifourier(F,u):它返回函数f 是u 的函数,而不是默认的x 。
傅里叶变换及其性质
![傅里叶变换及其性质](https://img.taocdn.com/s3/m/be80f19aab00b52acfc789eb172ded630b1c98fc.png)
小量dω,而离散频率nΩ变成连续频率ω。在这种极限情况下,
Fn趋于无穷小量,但
Fn
T
可2望Fn趋
于
有
限
值
,
且
为
一
种连续函数,一般记为F(jω),即
第2章 连续时间傅里叶变换
f(t)lim F nej n t 1F (j )ej td
T n
2
非周期信号旳傅里叶变换可简记为
一般来说,傅里叶变换存在旳充分条件为f(t)应满足绝对
这是一种偶函数,且x→0时,Sa(x)=1;当x=kπ时,Sa(kπ)=0。
据此,可将周期矩形脉冲信号旳复振幅写成取样函数旳形式,即
Fn
E
T
San
2
第2章 连续时间傅里叶变换
Sa(x) 1
-3-2 - o
2 3
x
图 2.2-3 Sa(x)函数旳波形
第2章 连续时间傅里叶变换
Fn
E
T
2 4
o 3
特点旳频谱图一般要画两个,一种称为振幅频谱,另一种称 为相位频谱。振幅频谱以ω为横坐标,以振幅为纵坐标画出谱 线图;相位频谱以ω为横坐标,以相位为纵坐标得到谱线图。
若信号旳复振幅 为FnnΩ旳实函数,其复振幅Fn与变量(nΩ)
旳关系也能够用一种图绘出。
第2章 连续时间傅里叶变换
取样函数定义为
Sa(x) sinx x
第2章 连续时间傅里叶变换
2.5 傅里叶变换旳性质
根据傅里叶变换旳概念,一种非周期信号能够表述为指数 函数旳积分, 即
第2章 连续时间傅里叶变换
1.
若 f1 ( t) F 1 (j)f2 ,( t) F 2 (j),
实验三 离散傅里叶变换及性质
![实验三 离散傅里叶变换及性质](https://img.taocdn.com/s3/m/6d09c639f18583d049645963.png)
实验3 离散傅里叶变换及性质1、实验目的(1)通过本实验的练习,了解离散时间信号时域运算的基本实现方法。
(2)了解相关函数的调用格式及作用。
(3)通过本实验,掌握离散傅里叶变换的原理及编程思想。
2、实验原理对于离散序列,存在着两种傅里叶变换——离散时间傅里叶变换(DTFT)和离散傅里叶变换(DFT)。
DTFT用以求出离散信号的连续频谱,它仅在时域上离散而在频域上是连续的;DFT用以求出连续频谱上的离散样本点,所以其在时域和频域上都是离散的。
对于一个离散序列x(n),它的离散时间傅里叶变换(DTFT)的定义为:离散时间傅里叶变换收敛的充分条件是x(n)绝对可加,即利用离散快速傅里叶变换函数计算傅里叶变换。
MATLAB提供了内部函数来快速地进行离散傅里叶变换(DFT)和逆变换(IDFT)的计算,如下所列。
fft(x), fft(x,N), ifft(x), ifft(x,N)(1) fft(x):计算L点的DFT,L为序列x的长度,即L=length(x)。
(2) fft(x,N):计算N点的DFT。
N为指定采用的点数,当N>L,则程序会自动给x后面补N-L个零点;如果N<L,则程序会自动截断x,取前N个数据。
(3) ifft(x):计算L点的IDFT,L为序列x的长度,即L=length(x)。
(4) ifft(x,N):计算N点的IDFT。
N为指定采用的点数,当N>L,则程序会自动给x后面补N-L个零点;如果N<L,则程序会自动截断x,取前N个数据。
3、实验内容和方法1. 离散时间傅里叶变换DTFT【例3-1】求有限长序列x(n)=[1,2,3,4,5]的DTFT,画出它的幅值谱、相位谱、实部和虚部。
MATLAB程序如下:clf;x=[1,2,3,4,5];nx=[-1:3];w=linspace(0,2*pi,512);H=x*exp(-j*nx'*w);subplot(2,2,1); plot(w,abs(H)); ylabel('幅度'); grid on;%画幅度特性曲线subplot(2,2,2); plot(w,angle(H)); ylabel('相角'); grid on;%画相位特性曲线subplot(2,2,3); plot(w,real(H)); ylabel('实部'); grid on;%画幅度实部特性曲线subplot(2,2,4); plot(w,imag(H)); ylabel('虚部'); grid on;%画幅度虚部特性曲线set(gcf,'color','w');程序运行的结果如图3.1所示。
傅里叶变换性质-傅里叶变换的性质证明
![傅里叶变换性质-傅里叶变换的性质证明](https://img.taocdn.com/s3/m/954020f7ba0d4a7302763aaa.png)
B
2
Bf
1
例3-7-1 例3-7-2
相移全通 网络
例3-7-3
例3-7-4(时移性质,教材3-2)
求图(a)所示三脉冲信号的 频谱。 解:
令f 0 t 表示矩形单脉冲 信号,其频谱函数 0 , F
f t
E
T
其中G t 为矩形脉冲,脉冲幅度 E, 为
E
f t
脉宽为 , 试求其频谱函数。 o t 解: 2 2 已知矩形脉冲 t 的频谱G 为 G (a)矩形调幅信号的波形 G E Sa 2 因为 1 f t G t e j 0t e j 0t 2 根据频移性质, t 频谱F 为 f 1 1 F G 0 G 0 2 2
f 0
f t
F 0
F
O
t
O
f t d t f 0
t 0
1 f 0 2 1 2
F e jt d F d
F 0
F d F 0B
B
f t d t
§4.3
傅里叶变换的性质
主要内容
对称性质 线性性质
奇偶虚实性
时移特性
尺度变换性质
频移特性
微分性质
时域积分性质
意义
傅里叶变换具有惟一性。傅氏变换的性质揭示了 信号的时域特性和频域特性之间的确定的内在联系。 讨论傅里叶变换的性质,目的在于:
•了解特性的内在联系;
•用性质求F(ω);
傅里叶变换的性质
![傅里叶变换的性质](https://img.taocdn.com/s3/m/8f16ba6da4e9856a561252d380eb6294dd882225.png)
证明
设 $f(x)$ 和 $g(x)$ 的傅里叶变换分别为 $F(w)$ 和 $G(w)$,则有 $F(w) = int f(x) e^{-2pi i x w} dx$ 和 $G(w) = int g(x) e^{-2pi i x w} dx$。对 $a f(x) + b g(x)$ 进 行傅里叶变换,得到 $(a f(x) + b g(x)) star e^{2pi i x w} = a F(w) e^{2pi i x w} + b
详细描述
在进行傅里叶变换时,如果对信号进行了尺度变换,那么需要使用逆变换来还原信号。 逆变换是将傅里叶变换的复数指数部分取共轭后再乘以原信号,从而得到还原后的信号。
尺度变换的共轭
总结词
尺度变换的共轭是指在进行尺度变换时 ,将复数指数的共轭值乘以信号的过程 。
VS
详细描述
在进行尺度变换时,为了保持信号的能量 不变,需要对复数指数取共轭。这是因为 傅里叶变换中的复数指数具有共轭对称性 ,即如果一个复数取共轭,其傅里叶变换 的结果也会取共轭。因此,在进行尺度变 换时,需要将复数指数取共轭后再乘以信 号,以保持信号的能量不变。
时移的逆变换
要信号通过傅里叶反变 换恢复到原始状态的过程。
要点二
详细描述
在傅里叶反变换中,如果已知一个频谱函数经过了相位变 化,那么可以通过逆变换将其恢复到原始的时间信号。这 个过程相当于在频率域上对相位进行补偿,以抵消时间平 移带来的影响。
时移的共轭
总结词
解释
频移的共轭表明,当函数在时间 轴上取反时,其傅里叶变换在频 率轴上取反。
03 共轭性质
共轭
共轭
如果函数$f(t)$的傅里叶变换是 $F(omega)$,那么$f(-t)$的傅里叶变换 是$F(-omega)$。
傅里叶变换实验报告
![傅里叶变换实验报告](https://img.taocdn.com/s3/m/ba623ba5951ea76e58fafab069dc5022aaea46a9.png)
一、实验目的1. 理解傅里叶变换的基本原理及其在信号处理中的应用。
2. 掌握傅里叶变换的数学计算方法。
3. 利用MATLAB软件实现傅里叶变换,并对实验结果进行分析。
二、实验原理傅里叶变换是一种重要的信号处理方法,它可以将信号从时域转换到频域。
在频域中,信号的特征更加明显,便于分析和处理。
傅里叶变换的基本原理是将一个信号分解为不同频率的正弦波和余弦波的叠加。
傅里叶变换分为连续傅里叶变换(CFT)和离散傅里叶变换(DFT)。
CFT适用于连续信号,而DFT适用于离散信号。
在本实验中,我们将使用DFT。
三、实验步骤1. 利用MATLAB软件创建一个时域信号,如正弦波、方波或三角波。
2. 对信号进行采样,得到离散信号。
3. 使用MATLAB的fft函数对离散信号进行傅里叶变换。
4. 分析傅里叶变换后的频谱,观察信号在不同频率下的能量分布。
5. 对频谱进行滤波处理,提取感兴趣的特征。
6. 将滤波后的频谱进行逆傅里叶变换,还原信号。
四、实验结果与分析1. 信号创建在本实验中,我们创建了一个频率为50Hz的正弦波信号,采样频率为1000Hz。
2. 傅里叶变换使用MATLAB的fft函数对信号进行傅里叶变换,得到频谱。
观察频谱,发现50Hz 处的能量最大,与信号频率一致。
3. 滤波处理对频谱进行低通滤波,保留50Hz以下的频率成分,滤除高于50Hz的频率成分。
然后对滤波后的频谱进行逆傅里叶变换,还原信号。
观察还原后的信号,发现高频噪声被滤除,信号质量得到提高。
4. 逆傅里叶变换将滤波后的频谱进行逆傅里叶变换,还原信号。
观察还原后的信号,发现其波形与原始信号基本一致,但噪声明显减少。
五、实验结论1. 通过本实验,我们掌握了傅里叶变换的基本原理和计算方法。
2. 利用MATLAB软件可以方便地实现傅里叶变换,并对实验结果进行分析。
3. 傅里叶变换在信号处理中具有广泛的应用,如信号滤波、图像处理、通信等领域。
4. 本实验验证了傅里叶变换在噪声抑制方面的有效性,有助于提高信号质量。
傅里叶变换及其性质课件
![傅里叶变换及其性质课件](https://img.taocdn.com/s3/m/f32d5552876fb84ae45c3b3567ec102de2bddfcf.png)
应用
频移性质在信号调制和解调中非常有 用,例如在通信系统中的振荡器设计 和频率调制。
共轭性质
共轭性质
若 $f(t)$ 的傅里叶变换为 $F(omega)$,则 $f(-t)$ 的傅里叶 变换为 $overline{F(-omega)}$。
05
傅里叶变换的扩展
离散傅里叶变换
定义
离散傅里叶变换(DFT)是一种将离散时间信号转换为频域表示的方法。它将一个有限长 度的离散时间信号序列通过数学运算转换为复数序列,表示信号的频域特征。
性质
离散傅里叶变换具有线性、时移性、频移性、共轭对称性和周期性等性质。这些性质使得 离散傅里叶变换在信号处理、图像处理、数字通信等领域得到广泛应用。
度和相位信息。
02 03
信号处理
傅里叶变换在信号处理中有着广泛的应用,如滤波、去噪、压缩等。通 过对信号进行傅里叶变换,可以提取出信号中的特征信息,实现信号的 分类、识别和分类。
图像处理
傅里叶变换在图像处理中也有着重要的应用,如图像滤波、图像增强、 图像压缩等。通过对图像进行傅里叶变换,可以提取出图像中的特征信 息,实现图像的分类、识别和分类。
傅里叶变换的分类
离散傅里叶变换(DFT)
对时间域或空间域的信号进行离散采样,然后对离散的采样值进行傅里叶变换 。DFT广泛应用于数字信号处理和图像处理等领域。
快速傅里叶变换(FFT)
一种高效计算DFT的算法,能够在 $O(Nlog N)$ 的时间内计算出 $N$ 个采样 值的 DFT,大大提高了计算效率。FFT广泛应用于信号处理、图像处理等领域 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验3 傅里叶变换及其性质1. 实验目的学会运用MATLAB 求连续时间信号的傅里叶(Fourier )变换;学会运用MATLAB 求连续时间信号的频谱图;学会运用MATLAB 分析连续时间信号的傅里叶变换的性质。
2. 实验原理及实例分析傅里叶变换的实现信号()f t 的傅里叶变换定义为: ()[()]()j t F F f t f t e dt ωω∞--∞==⎰, 傅里叶反变换定义为:11()[()]()2j t f t F F f e d ωωωωπ∞--∞==⎰。
信号的傅里叶变换主要包括MATLAB 符号运算和MATLAB 数值分析两种方 法,下面分别加以探讨。
同时,学习连续时间信号的频谱图。
MATLAB 符号运算求解法MATLAB 符号数学工具箱提供了直接求解傅里叶变换与傅里叶反变换的函 数fourier( )和ifourier( )。
Fourier 变换的语句格式分为三种。
(1) F=fourier(f):它是符号函数f 的Fourier 变换,默认返回是关于ω的函数。
(2) F=fourier(f,v):它返回函数F 是关于符号对象v 的函数,而不是默认的ω,即()()jvt F v f t e dt ∞--∞=⎰。
(3) F=fourier(f,u,v):是对关于u 的函数f 进行变换,返回函数F 是关于v 的函数,即()()jvu F v f t e du ∞--∞=⎰。
傅里叶反变换的语句格式也分为三种。
(1) f=ifourier(F):它是符号函数F 的Fourier 反变换,独立变量默认为ω,默认返回是关于x 的函数。
(2) f=ifourier(F,u):它返回函数f 是u 的函数,而不是默认的x 。
(3) f=ifourier(F,u,v):是对关于v 的函数F 进行反变换,返回关于u 的函数f 。
值得注意的是,函数fourier( )和ifourier( )都是接受由sym 函数所定义的符号 变量或者符号表达式。
例1 用MATLAB 符号运算求解法求单边指数信号2()()t f t e u t -=的傅里叶变换。
解:MATLAB 源程序为:ft = sym('exp(-2*t)*Heaviside(t)');Fw = fourier(ft)运行结果为:Fw = 1/(2+i*w)例2 用MATLAB 符号运算法求21()1F ωω=+的傅里叶逆变换()f t 解:MATLAB 源程序为:ft = sym('exp(-2*t)*Heaviside(t)');Fw = fourier(ft)运行结果为:ft = 1/2*exp(-t)*heaviside(t)+1/2*exp(t)*heaviside(-t)连续时间信号的频谱图信号()f t 的傅里叶变换()F ω表达了信号在ω处的频谱密度分布情况,这就 是信号的傅里叶变换的物理含义。
()F ω一般是复函数,可以表示成 ()()()j F F e ϕωωω=。
()~F ωω与()~ϕωω曲线分别称为非周期信号的幅度频谱与相位频谱,它们都是频率ω的连续函数,在形状上与相应的周期信号频谱包络线相同。
非周期信号的频谱有两个特点,密度谱和连续谱。
要注意到,采用fourier()和ifourier() 得到的返回函数,仍然是符号表达式。
若需对返回函数作图,则需应用ezplot()绘图命令。
例3 用MATLAB 命令绘出例1中单边指数信号的幅度谱和相位谱。
解:MATLAB 源程序为ft = sym('exp(-2*t)*Heaviside(t)');Fw = fourier(ft);subplot(211)ezplot(abs(Fw));grid ontitle('幅度谱')phase = atan(imag(Fw)/real(Fw));subplot(212)ezplot(phase);grid ontitle('相位谱')图1 单边指数信号的幅度谱和相位谱MATLAB 数值计算求解法fourier( )和ifourier( )函数的一个局限性是,如果返回函数中有诸如单位冲激函数()t δ等项,则用ezplot()函数无法作图。
对某些信号求变换时,其返回函数可能包含一些不能直接用符号表达的式子,因此不能对返回函数作图。
此外,在很多实际情况中,尽管信号()f t 是连续的,但经过抽样所获得的信号则是多组离散的数值量()f n ,因此无法表示成符号表达式,此时不能应用fourier()函数对f(n)进行处理,而只能用数值计算方法来近似求解。
从傅里叶变换定义出发有0()()lim ()j t j n F f t e dt f n e ωωω∞∞-∞∆→-∞--∆==∆∆∑⎰, 当∆足够小时,上式的近似情况可以满足实际需要。
对于时限信号()f t ,或者在所研究的时间范围内让()f t 衰减到足够小,从而近似地看成时限信号,则对于上式可以考虑有限n 的取值。
假设是因果信号,则有10()(),01M n j n F f n e n M ωω-=-∆=∆∆≤≤-∑傅里叶变换后在ω域用MATLAB 进行求解,对上式的角频率ω进行离散化。
假设离散化后得到N 个样值,即 2,0k k k N N πω=≤≤∆-1, 因此有 10()(),01M n k j n F k f n ek N ω-=-∆=∆∆≤≤-∑。
采用行向量,用矩阵表示为1*1**[()][()][]k j n T T T N M M N F k f n eω-∆=∆∆。
其要点是要正确生成()f t 的M 个样本向量[()]f n ∆与向量[]j n k e ω-∆。
当∆足够小时,上式的内积运算(即相乘求和运算)结果即为所求的连续时间信号傅里叶变换的数值解。
例4 用MATLAB 数值计算法求三角脉冲幅度谱。
三角脉冲的数学表达式如下:12,402()12,042t t f t t t ⎧+-≤≤⎪⎪=⎨⎪-+≤≤⎪⎩ 解:MATLAB 源程序为:dt = 0.01;t = -4:dt:4;ft = (t+4 )/2.*uCT(t+4)-t.*uCT(t)+(t-4)/2.*uCT(t-4);N = 2000;k = -N:N;W = 2*pi*k/((2*N+1)*dt);F = dt * ft*exp(-j*t'*W);plot(W,F), grid onaxis([-pi pi -1 9]);xlabel('W'), ylabel('F(W)')title('amplitude spectrum');图2 三角脉冲信号的幅度谱傅里叶变换的性质傅里叶变换的性质包含了丰富的物理意义,并且揭示了信号的时域和频域的关系。
熟悉这些性质成为信号分析研究工作中最重要的内容之一。
尺度变换特性傅里叶变换的尺度变换特性为:若()()f t Fω↔,则有1()()f at Fa aω↔,其中,a为非零实常数。
例5设矩形信号()(1/2)(1/2)f t u t u t=+--,用MATLAB命令绘出该信号及其频谱图。
当信号()f t的时域波形扩展为原来的2倍,或压缩为原来的1/2时,则分别得到(/2)f t和(2)f t,用MATLAB命令绘出(/2)f t和(2)f t的频谱图,并加以分析比较。
解:采用符号运算法求解,并分析结果。
MATLAB源程序为:ft1 = sym('Heaviside(t+1/2)-Heaviside(t-1/2)');subplot(321);ezplot(ft1,[-1.5 1.5]),grid onFw1 = simplify(fourier(ft1));subplot(322);ezplot(abs(Fw1),[-10*pi 10*pi]), grid onaxis([-10*pi 10*pi -0.2 2.2]);ft2 = sym('Heaviside(t/2+1/2)-Heaviside(t/2-1/2)');subplot(323);ezplot(ft2,[-1.5 1.5]), grid onFw2 = simplify(fourier(ft2));subplot(324);ezplot(abs(Fw2),[-10*pi 10*pi]),grid onaxis([-10*pi 10*pi -0.2 2.2]);ft3 = sym('Heaviside(2*t+1/2)-Heaviside(2*t-1/2)');subplot(325);ezplot(ft3,[-1.5 1.5]), grid onFw3 = simplify(fourier(ft3));subplot(326);ezplot(abs(Fw3),[-10*pi 10*pi]),grid onaxis([-10*pi 10*pi -0.2 2.2]);频移特性傅里叶变换的频移特性为:若()()f t F ω↔,则有00()()j t f t e F ωωω↔-。
频 移技术在通信系统中得到广泛应用,诸如调幅变频等过程都是在频谱搬移的基础上完成的。
频移的实现原理是将信号()f t 乘以载波信号0cos t ω或0sin t ω,从而完成频谱的搬移,即0000001()cos [()()]2()sin [()()]2f t t F F j f t t F F ωωωωωωωωωω↔++-↔+-- 例6 阅读并运行如下程序段,并观察信号调制前后的频谱。
ft1 = sym('4*(Heaviside(t+1/4)-Heaviside(t-1/4))');Fw1 = simplify(fourier(ft1));subplot(121);ezplot(abs(Fw1),[-24*pi 24*pi]),grid onaxis([-24*pi 24*pi -0.2 2.2]);title('矩形信号频谱');ft2 = sym('4*cos(2*pi*6*t)*(Heaviside(t+1/4)-Heaviside(t-1/4))');Fw2 = simplify(fourier(ft2));subplot(122);ezplot(abs(Fw2),[-24*pi 24*pi]),grid onaxis([-24*pi 24*pi -0.2 2.2]);title('矩形调制信号频谱');3. 实验内容试用MATLAB 命令求下列信号的傅里叶变换,并绘出其幅度谱和相位谱。